
RECONFIGURABLE MEDIA CODING: SELF-DESCRIBING MULTIMEDIA BITSTREAMS

Joseph Thomas-Kerr1, Jomn Janneck2, Marco Mattavelli3, Ian Burnettl and Christian Ritz'

'University of Wollongong, 2Xilinx, 3Ecole Polytechnique Federale de Lausanne (EPFL)

ABSTRACT This paper presents aspects of Reconfigurable Media Cod-
The development of MP3 and JPEG sparked an explosion in ing (RMC), an alternative paradigm for coders that greatly sim-
digital content on the internet. These early encoding formats plifies interoperation between increasingly diverse multimedia
have since been joined by many others, including Quicktime, devices. This paradigm makes content self-describing, in that
Ogg, MPEG-2 and MPEG-4, which poses an escalating chal- an RMC bitstream includes information to build a decoder
lenge to vendors wishing to develop devices that interoperate from fundamental building-blocks (Figure 1). As a result,
with as much content as possible. This paper presents aspects multimedia decoder vendors no longer need to (largely inde-
of Reconfigurable Media Coding (RMC), a project currently pendently) develop implementations of new coding formats
underway at MPEG to define a self-describing bitstream for- for their devices. Instead, the device will provide a generic
mat. In other words, an RMC bitstream contains metadata to RMC decoder which can be reconfigured on-the-fly according
assemble a decoder from a fundamental building-blocks, as to the information in an RMC bitstream. RMC is currently in
well as a schema that describes the syntax of the content data, the process of standardization by MPEG [2].
and how it may be parsed. RMC makes it easy to extend (re- What follows is a discussion of the usage scenarios (sec-
configure) existing codecs, for example adding error resilience tion 1.1) and requirements (1.2) for RMC. The remainder of the
or new chroma-subsampling profiles, or to build entirely new paper will give particular emphasis to the syntax description
codecs. This paper addresses the bitstream syntax component component of the work, considering alternative approaches
of RMC, validating the approach by applying it to the recent (section 2), the programming paradigm used to allow reconfig-
MPEG-4 Video simple profile coder. urability (section 3), and the syntax description language itself

(section 4). See [3] for a general treatment of RMC.
1. INTRODUCTION

1.1. Usage scenarios for reconfigurable coding
The MP3 digital audio format was first published in 1991The P3 igial udi fomatwasfirt pblihedin 991 Media bitstreams can describe the decoders required to pro-Only in the last five years, however, has Moore's law allowed M ed itstream can sc the decoers requred top-cess them in several ways, which differ in the tradeoffs theysuch audio to be decoded by battery-powered, portable devices, make with respect to, for instance, generality, processing re-
fundamentally changing the way most people obtain and con-

sumemusi, anmaing P3 ahoushol nam. Ina siila quirements, openness, and infrastructure. For instance, in asmms,anmuimdiar library-based decoder, the bitstream describes its decoder as aperiod, MP3 has been joined by a plethora of other network that consists of the instantiation (and parametrization)
formats: Windows Media, Quicktime, Ogg, Flash, MPEG-2, of decoding tools taken from a library of predefined mod-and MPEG-4 to name a few. Furthermore, the diversity of the ules. This approach results in relatively small configurationdevices on which multimedia content is rendered, and of the

... ' . ~overhead, but it assumes the existence of a standardized orcommunication channels across which it is delivered, has in- otherwise agreed-upon library of decoder modules, or a mech-
creased dramatically. This proliferation of multimedia formats .. .

a

and devices presents an escalating challenge to interoperability ans by whica tfom ma a enw mdeot
between the format that content is stored in and the devices on fl (e ow nding the over anetwork).

which users whichto consume it. At the other end of the spectrum are fully programmablewhich users whic to consume it.decoders, in which the bitstream contains a complete exe-Despite the recent growth in multimedia coding technolo-
gies, the process of standardizing new algorithms and coding Bitstream Decoder
techniques remains very lengthy. This standardization process Multimedia Data Syntax Structure -*Content
has been necessary for coding technology to be useful to the Gi I | CoQfigurationl
wider public, because without it there is no guarantee that one Mt,,
vendor's encoder will work with another's decoder. The typical
lead-time between innovation and mass-deployment for recent Decoder
standards has been three to five years; work on H.264/AVC ' fPamSCr Dder d Decder Block C

until the release of the video iPod in late 2005. <
Fig. 1. A RMC bitstream is self-describing

1-4244-1222-6/07/$25.00 ©C2007 IEEE 319 SiPS 2007

VideoObjectLayerlype SEQUENCE f
header VOLHeaderType,

VideoObjectLayerType = I longHeader shortHeader), vops SEQUIENE vopO
Vi/deoOjectPlaneTYpe I VOLHeaderType:: CHO!ZEf

IongHe der = VOLStartCode, (* and so on longHeader LongHeaderType,
VOLStartCode = StartCodleType shortHeader ShortHeaderTypel
StartCodeType 4 * hex-digit LongHeaderType SEOLJENC {
hex-digit -0" " I 1$ ' 3 "4" 75" 76" 'l 1 78" 1 "9" volstartCoe StartCodeTYpe-and so on-j

"A"I'B"VI"C'I SID' I'E" I StartCocdeTlype OctetStringType ZE(4))
(a)EBNF (b)ASN. 1

<ComplexType WvideoOjectLayerTyp&e,Vo
<sequence>
<choice> < a _>

c1a b-VideoObjectLayer() f <group reF-"'IongHeader" bs2 JfNext-6 }100000 X 20'7>
(nA32)* next bits; /look-ahead only <group er"shortHeader7>
(hnext-bits OxOOQO 120) /choice>
short_video_header = 0; <element rl.S1 -E,VOP" ty:){, VideoObjectPlaneType
int(32) VOLStartCode; % SfNo "00000 I B613 rn XM nS='hbounded'/>

.. and so on I/sequence>
}) 'se { </complexType>
short_video_header = I; <group name="ongHeader'>

<sequence>
<element n W?-'VOLStartCode" type"SCTYpe7/>
<da-...andso on...->

VideoObectPlanef); bs2:variable mnae "rnbCourt",Val~ e-"(($volWidth+ 1 5)
(rt321*nt bits; idiv 16)*($volHeight 15) idiv 1 6)7/><!-b->

} W e (next bits Ox00000x 1 B6); </sequence>
1/group>

(c)Flavor (d)BSDL
Fig. 2. There are numerous syntax description metalanguages. These examples show a small part of the MPEG-4 Video syntax

cutable description of its decoder in a platform independent This points to the need for a component model that empha-
specification. This scenario requires much more infrastruc- sizes strong encapsulation of state and thin communication in-
ture on the decoder side, which needs to be able to quickly terfaces. In particular, the requirement for parallelizability, and
translate a decoder specification into an efficiently executable schedule independence suggests the absence of shared mem-
implementation on its specific hardware platform. It would ory between components. In the absence of shared memory,
thus need to incorporate an complete compilation infrastruc- components need to interact by sending each other messages
ture for the decoder specification language. That language, in containing packets of data we call tokens.
turn, needs to be platform-agnostic, and still yield reasonable These requirements outlined are usually met very well
implementations on a wide range of hardware and software by approaches known by names such as datafiow or stream
targets. In such a scenario, bitstreams may describe decoders processing, which include Kahn process networks [4] and
that are arbitrarily tuned to their specific requirements, without Dennis Dataflow [5]. The RMC work builds on CAL [6]
a for encoder and decoder to agree on a specific library. for describing modules of media codecs. It is a language for

Somewhere between the two are hybrid decoders, in which writing dataflow blocks, designed to combine expressiveness
some of the coding tools could be specified using an executable with analyzability. For further discussion of the various stream
language, while others are instantiated from a standard library. processing approaches and their applicability to RMC, see [3].
A plausible instance of this would be the executable description Finally, a reconfigurable decoder requires information
of the bitstream parser (for instance in the form of a grammar about the syntax of the media content, so that it may pass
which is interpreted or compiled on the fly), but standard the correct input data to each of the subsequent components.
blocks for the remaining decoder modules. This information must include enough detail to parse data into

1.2. Requirements for reconfigurable coding the atomic units expected by each component. It must identify
T ys their not just cardinality constraints on syntactical elements, but

The key requirement for reconfigurable decoders is that ter also the algorithm to determine the actual cardinality of an
basic architecture allows for a variety of implementations. instae alterntie fo this tas acussedibelow.instance. Alternatives for this task are discussed below.
This may be, for example, in software on single or multiple
processors, in hardware, or in a heterogeneous mix of hardware 2. APPROACHES TO SYNTAX DESCRIPTION
and software components. Consequently, the description of
such a decoder should lend itself easily to parallelization, and Syntax description is a mature field that has its roots largely in
it should permit the use of various scheduling policies, programming language specification. The (Enhanced) Backus-

320

Naur Form (EBNF) [7] is a notation that has become the 3. DATAFLOW IN RECONFIGURABLE CODING
de facto standard for specifying the syntax of programming The stream-oriented programming paradigm of dataflow lends
languages, although it has many variants. Syntax is, in fact,

a fudametalspec of lmot an for of ommuicaton, itself naturally to describing the processing of media streamsa fudamnta asectof lmot an fom o comuncaton, that pervade most of media coding. In addition, the strongand alternative syntax notations have been developed for other thatpevadmosaofdediacod In aiovn, t song
domans.Forexamle,Absrac Synax otaion ne ASN 1) encapsulation afforded by the actor model provides a solid

[7ains.widely uedampto AbspeaciSynetw potocols, and XMLN.1 foundation for the modular specification of media codecs. Ac-
[7]~~~~~~~ ~iswieyue.oseiyntokpooos n M

tors are the fundamental modules that are the basic buildingSchema or Document Type Definitions constrain the syntax of tr r h udmna oue htaetebscbidnXchemL orDocuments[7] e Definitions constrain the syntax of

blocks of a dataflow system. As in Dennis dataflow [5], the
actors we use perform their computation in a sequence of

Specification of multimedia syntax, on the other hand, has atomic steps (firings). In each of these steps, they can do any
traditionally used ad hoc notations (Quicktime, for example combination of the following:
[8]), some of which are loosely based on EBNF (such as AVI > Consume one or more tokens at any of their input ports;
[9]). More recently, two multimedia-specific syntax metalan-
guages have been proposed: Flavor and BSDL. Flavor [10]
uses C++/Java-like expression to specify bitstream syntax for > Modify internal state variables;
automatic parser generation. The Bitstream Syntax Descrip- The state variables of two different actors are always disjoint;
tion Language (BSDL) [11], on the other hand, is an extension one actor can never directly modify the state of another. It is
ofXML Schema, specifying how atomic data-types from the this property that allows us to view actors exclusively in terms
latter map to binary symbols, and providing control-flow con- of the production and consumption of tokens on their ports,
structs to manage parsing. BSDL was originally designed to which in turn greatly facilitates their composition. As a side
enable adaptation of scalable multimedia content in a format- effect, the strict separation of state and the asynchronous com-
independent manner, that is, using adaptation software that did munication through token sending and receiving allows for the
not possess detailed knowledge of the content format it was distributed and parallel implementation of dataflow networks,
adapting. This was achieved via an XML view of the content, which becomes especially useful for demanding media coding
hence the choice of XML Schema. applications, such as those involving high-definition video.

To highlight the differences between syntax description The actors are described in an actor language called CAL,
* ~~~~~~~whichis described here only in so far as is necessary for thelanguages, Figure 2 shows descriptions of the same part of an y y

MPEG-4 Visual bitstream [12]. ASN. 1 explicitly separates subsequent discussion of parser generation. Further detail

content (abstract syntax, shown in the figure) from encoding may be found in [6]. In essence, the description of an actor

(not shown). This is in recognition of the fact that identical has to define the atomic steps it can make at each point in

message content may be encoded differently depending on its execution. In CAL, these steps are described as actions.

context (for example, a more efficient binary encoding may An actor description can comprise any number of actions.

be preferred for low bandwidth applications). This separation Each action consists of the elements of an atomic step (how
much input is consumed the output values produced and howis indeed valid for multimedia: the same content could be p p

encoded in H.264, or in MPEG-4 Simple Profile, for example. the state is modified), along with a definition of its enabling
However, the distinction is not relevant at the level of individ- conditions (guards), which all need to be true for the action

ual symbols at which it is made in ASN. 1. For multimedia, to be able to fire. The guards of an action always include
abstraction of content from encoding at the symbol level sig- the requirement that all tokens that will be consumed by the

nificantly adds to complexity, without improving portability, action need to be present. In addition, they may include the
following:

In order to parse raw content of a particular format, ad- > Any boolean predicate on the values of the input tokens,
ditional information is necessary beyond a description of its state variables, or a combination of the two; and/or
syntax. This may be seen, for example, in EBNF (Figure 2a) The priority of the action with respect to other actions.
and ASN. 1 2b), which specify that a VOL object may con-
tain either a long header or a short header, but not how to tell Priorities can be used to constrain the choice of the next ac-

which is actually present within a bitstream. Flavor provides tion to be fired in cases where more than one action is enabled.

this information via an if block, and BSDL using an bs2:if Next If this happens, and there is no priority ordering between the

attribute (or others, see Section 4.1). In the RMC framework, concurrently enabled actions, then the next action may be
BSDL is preferred over Flavor because either of them and the choice is unspecified. This kind of non-

> it is stable and defined by an international standard [1]; determinism may be desirable in some cases, but priorities can
be used in other situations requiring deterministic execution.

> its XML-based syntax integrates well with the XML syntax
used to describe the rest of the RMC decoder; and bidn asr safnt tt ahn FM hc a

>~the RMC bitstream parser may be easily derived by trans- be part of the actor state. Here, an action can be defined as
forming the BSDL using standard tools (e.g. XSLT [13]). the transition between any two states of the FSM. In this case,

321

~<c0mplexT peXM< ,sbecp<nT
<sequTene> T all, element and group. Elements are given a type, which is
<elemaentr{ "vopHdr" tp "VOPHeaderTypeI defined by either a complexType (the element contains another

<telementClwtvoUpoHaeTaet"/> <1-C particle), or a simpleType (the element contains binary content).
<element inSeaemotiorShapeTyxture" g$vopCodd 1 BSDL defines how simple types are read from the bitstream.
nsequence> <b v I¾> For example, the facet xsd:maxExclusive defines the number of

/compfexType> bits read by integer types, and xsd:length the number of bytes
in a string or hexBinary type. BSDL also adds annotations

<complexType r"r;e=-"V0PHeaderType > that provide the additional information required for bitstream
<sequence> parsing, including identification of which choice option is actu-<elmnt Xa rX~XCvbO SC ty 6e`SC7Typeiy><em C C ally chosen, whether optional particles are in fact present, and
<elementllan .vopCoded gwtyp-,"bs I *b how many occurrences of multiple particles exist. We have

"nWrbffmtr<uel 3 !-~e ~-> already seen one example of these annotations: the bs2:ifNext
</sequence> attribute in Figure 2(d), at marker (a). This attribute specifies

</cormplexTrype> that the structure to which it is attached should be read from<complexType "MotionShapeTextureType"> the bitstream only if the next bytes in the bitstream correspond
<sequence>

I

<1 -> to the hex value of the attribute1.
<element idir Z"MB" vV,1r--'_' "hMB71Type& tMB3"

r" ak0 rcLir"LjhbbLhdd" b-2-i"'-'0C =$mCnt,>/ The other BSDL construct in Figure 2(d) is bs2:variable (at
</sequence> <1 f-> b), which, (unsurprisingly) creates a variable with the given

J/complexType> name containing the result of the value expression. Variables are
used in other annotation expressions within the schema. In this

<complexType "MBType"> case, the variable mbCount stores the number of MacroBlocks 2

K!- -> in each frame. The number of macroblocks in a frame are thus
<element T3->t11,=horizMVD,ata" MVDataTyPe'p7> computed from the height and width (in pixels) of the video.
<K ->
</sequence> Figure 3 shows more of the BSDL Schema for MPEG-4

o/complexlTpe> Video, highlighting other pertinent features of the language:

<s,_ImpleTxpJ b MVDIfaType(c) rmc:port on the vopHdr element specifies that this structure

<restrnctiol ex Tye (and descendant content) should be output from the parser
<annotation><appinfo> on the vopHeader port.
<bs I -script IeThvDatacal" !Nanr-calU/> (d) bs2:if is similar to bs2:ifNext except that it evaluates a bool-

<IrepIstrin /<lnottion> ean expression rather than a value in the raw bitstream.
</restriction>
o/simple)tpe> (e) The variable $vopCoded is stored during the parsing of the

IVOPHeaderType, where rmc:variable is a shorthand variable
declaration indicating that the name and value are equiva-

actions acquire an additional guard: that the FSM is in a state lent to those of the parent element.
having a transition effected by the action in question. (f) bs2:nOccurs specifies the number of occurences of the mac-

4. BITSTREAM DESCRIPTION IN RMC roblock element, using the variable computed in Figure
2(d). Macroblocks are also output to a port.

The syntax of the media content in an RMC bitstream is de- (g) Numerous fields in MPEG-4 or any other media format are
scribed by a BSDL schema that is delivered alongside the encoded using variable-length codes to increase bandwidth
content, as shown in Figure 1. An RMC decoder transforms efficiency. Common techniques such as Huffman coding
this schema into a parser block that converts the raw data into or lookup tables could be hard-coded into the language,
structured fields and objects which are used by subsequent but this would necessitate normative changes to support
decoder blocks. In the reference implementation described future encoding methods, defeating the purpose of RMC.
here, this is described using the XML Transformation lan- Consequently, arbitrary decoding algorithms may be speci-
guage XSLT. However, implementations may use other means fled in BSDL by sub-classing bsl:extensionType, providing
to parse an RMC bitstream according to its schema. a script node that implements the decoder. RMC uses the

4.1. The Bitstream Syntax Description Language CAL language to specify the decoder operation, so this is
Before looking in detail at the parser generation process, we the language used in BSDL scripts in RMC.
will first expand upon the example of Figure 2(d) to high-
light some pertinent features. BSDL is an extension of XML
Schema [11]. It is the latter that defines the structural features i bs2:ifNext has other options too; the interested reader is directed to [11].
Of a BSDL Schema (known as particles): choice, sequence, 2blocks of 16x16 pixels, the atomic unit in MPEG video codecs.

322

<Idhdrna> BS bs2 I fNex tt V 'default)<!
1 > Schema FS "0000020'ln tr

HParser 0030

At
ACtor> 0 __default)H

Ahttion Fig. 5. FSM fragment for a choice particle
CALML Poities
Iates 1 Fid bit4 structions, from which the FSM Transition and Action sets

lengHs may be built. This operation is performed by the Linearize

Fig. 4. Components of the parser generation process component, which reads the preprocessed BSDL Schema and
outputs an intermediate data structure comprising the linear

4.2. Syntax Schemata in RMC sequence of read actions. It is from this intermediate structure

The BSDL Schema transmitted with an RMC bitstream con- that the FSM is assembled.
tains all of the information necessary to parse the rest of the There are two exceptions to this linearity: Choice particles
bitstream. The decoder translates this schema into a parser and Union types. Choice particles (such as that in Figure
block whose task is to convert the raw bits into structured 2(d)) cause the FSM to diverge from its linear path to one of a

data that may be processed by subsequent decoder modules. number of parallel paths, each of which parse a single option
Although this translation is relatively involved (Figure 4), the of the choice. For example, Figure 5 depicts the FSM fragment
declarative model shared by both BSDL and CAL means that for the VOL header choice of Figure 2(d). Each of the parallel
the translation process may be efficiently specified. Figure paths has a test action that determines which of the options is
4 shows the components of this process. Each component selected. As before, the guards on each test action are built
is implemented in a separate XSLT stylesheet, which is then from control-flow constructs in the BSDL Schema. BSDL
imported by a master sheet that coordinates the overall process. specifies that the order of options within a choice establishes

Preprocessing is the first operation conducted by the style- their priority: the first option has priority over the second, and
sheet. In general, a BSDL Schema may be composed of a so on. These priorities are recorded in the actor as priorities
number of separate Schemata, which are imported by a master between the test actions.
document (much the same as the stylesheet). The prepro- Union types are very similar to Choice particles, except
cessing stage is therefore necessary to collect the individual that instead of choosing between a number of different objects
Schemata into a single intermediate tree, taking care to cor- to instantiate, a Union chooses between a number of different
rectly manage the namespace of each component Schema. The types that a single object could take. For example, a single field
preprocessor also performs a number of other tasks, including could be either 16 bits or 32 bits, depending on the resolution it
assigning names to anonymous types and structures (so that is required to record. Union types have the same state structure
they may be referred to by the FSM transition set), resolving as choice particles, but differ in the composition of their test
inheritance relationships, and removing structures which are guards.
not significant to the parsing process. Field bit-length in BSDL is specified indirectly via the

Finite State Machine (FSM) design is the major compo- xsd:maxExclusive facet of XML Schema. A stylesheet compo-
nent of the parser actor. The FSM schedules the reading of bits nent is therefore required to compute the bit-length of simple
from the input bitstream into the fields in the various output types within the schema from their maxExclusive value. Once
structures, along with all other components of the actor. The computed, the value is stored in a constant identified by the
FSM is specified as a set of transitions, where each transition type name, and subsequently used whenever a field of that
has an initial state, a final state, and an action. Computing the type is read from the bitstream.
FSM from a BSDL Schema has several components, each of Finally, the CAL component declares templates for each
which are highlighted in bold within the figure. of the constructs in the language, such as an FSM schedule,

Actions scheduled by the FSM control the next-state deci- a function call, or an assignment. These templates are called
sion mechanism via their Guard expressions, which are built by other components of the stylesheet when building the actor.
from the control-flow constructs in the BSDL Schema (if, ifNext, Collecting all of the CAL syntax into a single stylesheet also
nOccurs and length). The Behaviour of each action is to com- means that an alternative stylesheet could be provided in place
plete such tasks as storing data in the appropriate location in of the CAL sheet, for example containing templates that output
the output structure and/or variables, and setting the number CALML (CAL-XML), or even unrelated languages.
of bits to be read for the subsequent field. 5. RESULTS

The state pattern of the FSM is predominantly linear: the
first field is read, then the next field, then the next, and so This section presents an assessment of the suitability of BSDL
on. Consequently, the hierarchical structure of the BSDL for syntax description within the RMC framework. There
Schema must be converted into a linear sequence of read in- are fundamentally two questions that must be addressed here:

323

Table 1. Extract from MPEG-4 syntax specification
> Is BSDL capable of describing real-world multimedia for- VideoObjectPlane() f Bits Mnemonic

mats in complete detail? vop_start:code 32 bsibf

> If so, can the resulting BSDL Schema be used efficiently vop_coding_type 2 uimsbf
by a generic parser module to read bitstreams? That is, o time_base bsbfmodulo_tmebse bsb
does BSDL allow efficient RMC implementations? I whil (modulo_time_base !='0')

There are also other secondary considerations such as readabil- marker_bit 1 bsibf
ity (i.e. complexity), ease of development and debugging, and vopjtimejincrement 1-16 uimsbf
verbosity. marker_bit 1 bsibf

The MPEG-4 Video Simple Profile [12] standard is used as vop_coded 1 bsibf
a test subject to address the questions raised above. Although i (vop_coded == 0)
RMC is designed for the creation of new codecs, it is prudent next_startLcode()
to first establish that it may be used successfully to describe returno)
existing ones. The MPEG-4 standard specifies syntax predomi- | a s

nantly via tables of pseudocode, an example of which is shown
in Table 1, although some parts are described in prose (such
asDTcefcetdcdn) n tesuiglo-ptbe systems. However, the well defined component model of theas DCT coefficient decoding), and others using look-up tables CAL language, and the reconfigurability of an RMC bitstream

(typically VLCs). The pseudocode shown in the figure corre- described by BSDL are significant steps toward this goal.
sponds to the BSDL Schema extract shown in Figure 3. BSDL
uses declarative structures (sequence, choice) rather than im- 7. REFERENCES
perative constructs (for, do..while), but it is straightforward to

develp a SDLchem base on hepeudoode.[1] JTU-T, "Reconmendation H.264: Advanced video cod-develop a BSDL Schema based on the pseudocode. in o eei uiviulsrie, 05
BSDL is also able to express the DCT decoding process i

specified in prose in the MPEG-4 standard. In doing so, it [2] ISO/IEC, "Working draft 3 of ISO/IEC 23001-4: Codec
in fact provides a significantly more objective specification configuration representation," 2007.
mechanism than the standard itself. BSDL does not directly [3] C. Lucarz et al., "Reconfigurable media coding: a new
support VLC decoding. However, it provides an extension specification model for multimedia coders," in Signal
mechanism for such cases to allow the parsing process to be Processing Systems, IEEE Workshop on, 2007.
specified in an external language (in this case CAL). Using this, [4] G. Kahn, "The semantics of a simple language for paral-
it is simple to express the MPEG-4 VLC tables in the BSDL lel programming," in Proceedings of the IFIP Congress.
Schema in a form that an RMC decoder is able to process. 1974, North-Holland Publishing Co.

A complete BSDL Schema for MPEG-4 Video Simple [5] J.B. Dennis, "First version data flow procedure language,"
Profile has been developed and tested, verifying that BSDL is Tech. Memo MAC TM 61, MIT Lab. Comp. Sci., 1975.
sufficiently descriptive to be used with real-world media. The [6] J. Eker and J.W. Janneck, "CAL Language Report," Tech.
use of BSDL in an RMC parser module is described in the Memo UCB/ERL M03/48, UC Berkeley, 2003.
previous section. Furthermore, work is currently in progress

to etendthivaldaton t H.64/AC, nd t deonstate [7] Paul Klint et al., "Toward an engineering discipline forto extend this validation to H.264/AVC, and to demonstrate
grmawr, C rn. nSfwr niern

the extensibility of the RMC framework by deploying content gMmarwares, ACM Tn. on Software Egnei
encoded using 4:2:2 and 4:4:4 chroma subsampling: patterns M v 1 n
that don't exist within the standardized version of MPEG- [8] Apple, "Quicktime file format," developer. apple.
4. In an RMC bitstream, this means adding extra chroma com/reference/QuickTime/, 2001.
blocks in each Macroblock, and changing the chroma block [9] Microsoft, "AVI/RIFF file reference," msdn2.
pattern header field. In the BSDL Schema, this simply requires microsoft.com/en-us/library/ms779636.
changing the maxOccurs value on the chroma blocks. [10] A. Eleftheriadis and D. Hong, "Flavor: a formal language

for audio-visual object representation," in Multimedia,
6. CONCLUSION 12th ACM intl. conf on, 2004, pp. 816-819.

The ultimate goal for RMC is to realize a fully programmable [11] C. Timmerer et al., "Digital item adaptation - coding
decoder specification model as outlined in section 1.1. Doing format independence," in The MPEG-21 Book, I. Burnett
so would substantially shorten the work-flow from multimedia et al., Eds. Wiley, Chichester, UK., 2006.
research to consumer, by obviating the need for a lengthy stan- [12] ISO/IEC, "14496 Coding of audio-visual objects," 2004.
dardization process in order to ensure interoperability. Instead, [13] J. Clark, "XSL transformations (XSLT)," www .w33-org/
new multimedia technology could be immediately deployed Rxl,9.
using RMC tools. Realizing this vision requires further work,l,19.
particularly in on-the-fly reconfigurability for FPGA-based

324

