RECONFIGURABLE MEDIA CODING: SELF-DESCRIBING MULTIMEDIA BITSTREAMS

Joseph Thomas-Kerr', Jorn Janneck?, Marco Mattavelli®, lan Burnett' and Christian Ritz'

'University of Wollongong, ?Xilinx, *Ecole Polytechnique Federale de Lausanne (EPFL)

ABSTRACT

The development of MP3 and JPEG sparked an explosion in
digital content on the internet. These early encoding formats
have since been joined by many others, including Quicktime,
Ogg, MPEG-2 and MPEG-4, which poses an escalating chal-
lenge to vendors wishing to develop devices that interoperate
with as much content as possible. This paper presents aspects
of Reconfigurable Media Coding (RMC), a project currently
underway at MPEG to define a self-describing bitstream for-
mat. In other words, an RMC bitstream contains metadata to
assemble a decoder from a fundamental building-blocks, as
well as a schema that describes the syntax of the content data,
and how it may be parsed. RMC makes it easy to extend (re-
configure) existing codecs, for example adding error resilience
or new chroma-subsampling profiles, or to build entirely new
codecs. This paper addresses the bitstream syntax component
of RMC, validating the approach by applying it to the recent
MPEG-4 Video simple profile coder.

1. INTRODUCTION

The MP3 digital audio format was first published in 1991.
Only in the last five years, however, has Moore’s law allowed
such audio to be decoded by battery-powered, portable devices,
fundamentally changing the way most people obtain and con-
sume music, and making MP3 a household name. In a similar
period, MP3 has been joined by a plethora of other multimedia
formats: Windows Media, Quicktime, Ogg, Flash, MPEG-2,
and MPEG-4 to name a few. Furthermore, the diversity of the
devices on which multimedia content is rendered, and of the
communication channels across which it is delivered, has in-
creased dramatically. This proliferation of multimedia formats
and devices presents an escalating challenge to interoperability
between the format that content is stored in and the devices on
which users which to consume it.

Despite the recent growth in multimedia coding technolo-
gies, the process of standardizing new algorithms and coding
techniques remains very lengthy. This standardization process
has been necessary for coding technology to be useful to the
wider public, because without it there is no guarantee that one
vendor’s encoder will work with another’s decoder. The typical
lead-time between innovation and mass-deployment for recent
standards has been three to five years; work on H.264/AVC
[1] for example began in 2002, but did not see significant use
until the release of the video iPod in late 2005.

1-4244-1222-6/07/$25.00 ©2007 IEEE 319

This paper presents aspects of Reconfigurable Media Cod-
ing (RMC), an alternative paradigm for coders that greatly sim-
plifies interoperation between increasingly diverse multimedia
devices. This paradigm makes content self-describing, in that
an RMC bitstream includes information to build a decoder
from fundamental building-blocks (Figure 1). As a result,
multimedia decoder vendors no longer need to (largely inde-
pendently) develop implementations of new coding formats
for their devices. Instead, the device will provide a generic
RMC decoder which can be reconfigured on-the-fly according
to the information in an RMC bitstream. RMC is currently in
the process of standardization by MPEG [2].

What follows is a discussion of the usage scenarios (sec-
tion 1.1) and requirements (1.2) for RMC. The remainder of the
paper will give particular emphasis to the syntax description
component of the work, considering alternative approaches
(section 2), the programming paradigm used to allow reconfig-
urability (section 3), and the syntax description language itself
(section 4). See [3] for a general treatment of RMC.

1.1. Usage scenarios for reconfigurable coding

Media bitstreams can describe the decoders required to pro-
cess them in several ways, which differ in the tradeoffs they
make with respect to, for instance, generality, processing re-
quirements, openness, and infrastructure. For instance, in a
library-based decoder, the bitstream describes its decoder as a
network that consists of the instantiation (and parametrization)
of decoding tools taken from a library of predefined mod-
ules. This approach results in relatively small configuration
overhead, but it assumes the existence of a standardized or
otherwise agreed-upon library of decoder modules, or a mech-
anism by which a platform may acquire new modules on the
fly (e.g. downloading them over a network).

At the other end of the spectrum are fully programmable
decoders, in which the bitstream contains a complete exe-

Bitstream Decoder e
Multimedia Data Syntax Structure ongent)
=-»Configuration
015000201 1., |<senemax| <opr> | [EO
‘-; ------------ Friiiie...... PERCIUTRRROR,
v A ¥
S > Decoder [\&
Decoder Ly Decoder Ly Block C |
Block A Block B

Fig. 1. A RMC bitstream is self-describing

SiPS 2007

VideoObjectLayerType = | longHeader | shortHeader),
{ VideoObjectPlaneType }
longHeader = VOLStartCode, (*...and so on*)
VOLStartCode = StartCodeType
StartCodeType = 4 * hex-digit
hex-digit ="0°|"1"|"2"|"3"|"4"|"5"|"6"|"7"| "8"| 9"
| AT "BEET "B ER TE
(a)EBNF

VideoQObjectLayer() {

(32)* next_bits; //look-ahead only
(next_bits == 0x00000120) {
short_video_header = 0;
int(32) VOLStartCode;

T < ANESO O

]

short_video_header = 1;

42w
)

{
VideoObjectPlane|();
(32)* next_bits;
] (next_bits == 0x000001B6);

(c)Flavor
Fig. 2. There are numerous syntax description metalanguages.

cutable description of its decoder in a platform independent
specification. This scenario requires much more infrastruc-
ture on the decoder side, which needs to be able to quickly
translate a decoder specification into an efficiently executable
implementation on its specific hardware platform. It would
thus need to incorporate an complete compilation infrastruc-
ture for the decoder specification language. That language, in
turn, needs to be platform-agnostic, and still yield reasonable
implementations on a wide range of hardware and software
targets. In such a scenario, bitstreams may describe decoders
that are arbitrarily tuned to their specific requirements, without
a for encoder and decoder to agree on a specific library.

Somewhere between the two are hybrid decoders, in which
some of the coding tools could be specified using an executable
language, while others are instantiated from a standard library.
A plausible instance of this would be the executable description
of the bitstream parser (for instance in the form of a grammar
which is interpreted or compiled on the fly), but standard
blocks for the remaining decoder modules.

1.2. Requirements for reconfigurable coding

The key requirement for reconfigurable decoders is that their
basic architecture allows for a variety of implementations.
This may be, for example, in software on single or multiple
processors, in hardware, or in a heterogeneous mix of hardware
and software components. Consequently, the description of
such a decoder should lend itself easily to parallelization, and
it should permit the use of various scheduling policies.

VideoObjectLayerType ::= {
header VOLHeaderType,
vops vop}
VOLHeaderType ::= {
longHeader LongHeaderType,
shortHeader ShortHeaderType}

LongHeaderType ::=
volStartCode StartCodeType,—...and so on-}
StartCodeType ::= OctetStringType ((4))
(b)ASN.1
<complexType ="VideoObjectLayerType" "vol">
<sequence>
<choice> <l-a->
<group ‘longHeader” "00000120"/>
<group "shortHeader"/>
</choice>
<element NOP" "VideoObjectPlaneType"
"000001B6” ‘unbounded"/>
</sequence>
</complexType>
<group ‘longHeader™>
<sequence>
<element "VOLStartCode” "SCType"/>
<l-..andsoon..->
<bs2:variable ‘'mbCount’ "(($volWidth+15)

idiv 16)*(($SvolHeight+15) idiv 16)"/><l-b —>
</sequence>
</group>
(d)BSDL

These examples show a small part of the MPEG-4 Video syntax

This points to the need for a component model that empha-
sizes strong encapsulation of state and thin communication in-
terfaces. In particular, the requirement for parallelizability, and
schedule independence suggests the absence of shared mem-
ory between components. In the absence of shared memory,
components need to interact by sending each other messages
containing packets of data we call tokens.

These requirements outlined are usually met very well
by approaches known by names such as dataflow or stream
processing, which include Kahn process networks [4] and
Dennis Dataflow [5]. The RMC work builds on CAL [6]
for describing modules of media codecs. It is a language for
writing dataflow blocks, designed to combine expressiveness
with analyzability. For further discussion of the various stream
processing approaches and their applicability to RMC, see [3].

Finally, a reconfigurable decoder requires information
about the syntax of the media content, so that it may pass
the correct input data to each of the subsequent components.
This information must include enough detail to parse data into
the atomic units expected by each component. It must identify
not just cardinality constraints on syntactical elements, but
also the algorithm to determine the actual cardinality of an
instance. Alternatives for this task are discussed below.

2. APPROACHES TO SYNTAX DESCRIPTION

Syntax description is a mature field that has its roots largely in
programming language specification. The (Enhanced) Backus-

320

Naur Form (EBNF) [7] is a notation that has become the
de facto standard for specifying the syntax of programming
languages, although it has many variants. Syntax is, in fact,
a fundamental aspect of almost any form of communication,
and alternative syntax notations have been developed for other
domains. For example, Abstract Syntax Notation One (ASN.1)
[7] is widely used to specify network protocols, and XML
Schema or Document Type Definitions constrain the syntax of
XML documents [7].

Specification of multimedia syntax, on the other hand, has
traditionally used ad hoc notations (Quicktime, for example
[8]), some of which are loosely based on EBNF (such as AVI
[9]). More recently, two multimedia-specific syntax metalan-
guages have been proposed: Flavor and BSDI.. Flavor [10]
uses C++/Java-like expression to specify bitstream syntax for
automatic parser generation. The Bitstream Syntax Descrip-
tion Language (BSDL) [11], on the other hand, is an extension
of XML Schema, specifying how atomic data-types from the
latter map to binary symbols, and providing control-flow con-
structs to manage parsing. BSDL was originally designed to
enable adaptation of scalable multimedia content in a format-
independent manner, that is, using adaptation software that did
not possess detailed knowledge of the content format it was
adapting. This was achieved via an XML view of the content,
hence the choice of XML Schema.

To highlight the differences between syntax description
languages, Figure 2 shows descriptions of the same part of an
MPEG-4 Visual bitstream [12]. ASN.1 explicitly separates
content (abstract syntax, shown in the figure) from encoding
(not shown). This is in recognition of the fact that identical
message content may be encoded differently depending on
context (for example, a more efficient binary encoding may
be preferred for low bandwidth applications). This separation
is indeed valid for multimedia: the same content could be
encoded in H.264, or in MPEG-4 Simple Profile, for example.
However, the distinction is not relevant at the level of individ-
ual symbols at which it is made in ASN.1. For multimedia,
abstraction of content from encoding at the symbol level sig-
nificantly adds to complexity, without improving portability.

In order to parse raw content of a particular format, ad-
ditional information is necessary beyond a description of its
syntax. This may be seen, for example, in EBNF (Figure 2a)
and ASN.1 2b), which specify that a VOL object may con-
tain either a long header or a short header, but not how (o tell
which is actually present within a bitstream. Flavor provides
this information via an if block, and BSDL using an bs2:ifNext
attribute (or others, see Section 4.1). In the RMC framework,
BSDL is preferred over Flavor because
> it is stable and defined by an international standard [11];

> its XML-based syntax integrates well with the XML syntax
used to describe the rest of the RMC decoder; and

> the RMC bitstream parser may be easily derived by trans-
forming the BSDL using standard tools (e.g. XSLT [13]).

321

3. DATAFLOW IN RECONFIGURABLE CODING

The stream-oriented programming paradigm of dataflow lends
itself naturally to describing the processing of media streams
that pervade most of media coding. In addition, the strong
encapsulation afforded by the actor model provides a solid
foundation for the modular specification of media codecs. Ac-
tors are the fundamental modules that are the basic building
blocks of a dataflow system. As in Dennis dataflow [35], the
actors we use perform their computation in a sequence of
atomic steps (firings). In each of these steps, they can do any
combination of the following:

> Consume one or more tokens at any of their input ports;

> Produce token(s) on output port(s); and/or

> Modify internal state variables;
The state variables of two different actors are always disjoint;
one actor can never directly modify the state of another. It is
this property that allows us to view actors exclusively in terms
of the production and consumption of tokens on their ports,
which in turn greatly facilitates their composition. As a side
effect, the strict separation of state and the asynchronous com-
munication through token sending and receiving allows for the
distributed and parallel implementation of dataflow networks,
which becomes especially useful for demanding media coding
applications, such as those involving high-definition video.
The actors are described in an actor language called CAL,
which is described here only in so far as is necessary for the
subsequent discussion of parser generation. Further detail
may be found in [6]. In essence, the description of an actor
has to define the atomic steps it can make at each point in
its execution. In CAL, these steps are described as actions.
An actor description can comprise any number of actions.
Each action consists of the elements of an atomic step (how
much input is consumed, the output values produced, and how
the state is modified), along with a definition of its enabling
conditions (guards), which all need to be true for the action
to be able to fire. The guards of an action always include
the requirement that all tokens that will be consumed by the
action need to be present. In addition, they may include the
following:
> Any boolean predicate on the values of the input tokens,
state variables, or a combination of the two; and/or

> The priority of the action with respect to other actions.
Priorities can be used to constrain the choice of the next ac-
tion to be fired in cases where more than one action is enabled.
If this happens, and there is no priority ordering between the
concurrently enabled actions, then the next action may be
either of them and the choice is unspecified. This kind of non-
determinism may be desirable in some cases, but priorities can
be used in other situations requiring deterministic execution.
One language element that is of particular relevance when
building parsers is a finite state machine (FSM) which can
be part of the actor state. Here, an action can be defined as
the transition between any two states of the FSM. In this case,

<complexType "VideoObjectPlaneType">

<sequence>
<element "vopHdr" "VOPHeaderType"
"vopHeader"/> <l-c—>
<element "motionShapeTexture” i{0%5
"MotionShapeTextureType” "SvopCoded=1"/>
</sequence> <l-d—>
</complexType>
<complexType "VOPHeaderType">
<sequence>
<element "vopSC” "SCType"/>
L[~ —>
<element "vopCoded" ‘bs1:b1”
"true"/> <l-e-—>
</sequence>
</complexType>
<complexType "MotionShapeTextureType">
<sequence>
Sl 2
<element "‘MB* "MBType" ‘MB"
"unbounded” "SmbCount” />
</sequence> <l-f—>
</complexType>
<complexType "MBType">
<sequence>
<|—..=>
<element ="horizMVData" ‘MVDataType'/>
<l-..—>
</sequence>
</complexType>
<simpleType "MVDataType">
<restriction "bs1:extensionType"> <l-g-—>

<annotation><appinfo>
<bs1:script "'mvData.cal’
</appinfo></annotation>
</restriction>
</simpleType>

Fig. 3. More of the BSDL Schema for MPEG-4 Video

‘cal’/>

actions acquire an additional guard: that the FSM is in a state
having a transition effected by the action in question.

4. BITSTREAM DESCRIPTION IN RMC

The syntax of the media content in an RMC bitstream is de-
scribed by a BSDL schema that is delivered alongside the
content, as shown in Figure 1. An RMC decoder transforms
this schema into a parser block that converts the raw data into
structured fields and objects which are used by subsequent
decoder blocks. In the reference implementation described
here, this is described using the XML Transformation lan-
guage XSLT. However, implementations may use other means
to parse an RMC bitstream according to its schema.

4.1. The Bitstream Syntax Description Language

Before looking in detail at the parser generation process, we
will first expand upon the example of Figure 2(d) to high-
light some pertinent features. BSDL is an extension of XML
Schema [11]. It is the latter that defines the structural features
of a BSDL Schema (known as particles): choice, sequence,

322

all, element and group. Elements are given a type, which is
defined by either a complexType (the element contains another
particle), or a simpleType (the element contains binary content).
BSDL. defines how simple types are read from the bitstream.
For example, the facet xsd:maxExclusive defines the number of
bits read by integer types, and xsd:length the number of bytes
in a string or hexBinary type. BSDL also adds annotations
that provide the additional information required for bitstream
parsing, including identification of which choice option is actu-
ally chosen, whether optional particles are in fact present, and
how many occurrences of multiple particles exist. We have
already seen one example of these annotations: the bs2:ifNext
attribute in Figure 2(d), at marker (a). This attribute specifies
that the structure to which it is attached should be read from
the bitstream only if the next bytes in the bitstream correspond
to the hex value of the attribute’.

The other BSDL construct in Figure 2(d) is bs2:variable (at
b), which, (unsurprisingly) creates a variable with the given
name containing the result of the value expression. Variables are
used in other annotation expressions within the schema. In this
case, the variable mbCount stores the number of MacroBlocks 2
in each frame. The number of macroblocks in a frame are thus
computed from the height and width (in pixels) of the video.

Figure 3 shows more of the BSDL Schema for MPEG-4
Video, highlighting other pertinent features of the language:
(¢) rmeport on the vopHdr element specifies that this structure

(and descendant content) should be output from the parser

on the vopHeader port.

(d) bs2ifis similar to bs2:ifNext except that it evaluates a bool-
ean expression rather than a value in the raw bitstream.

(e) The variable $vopCoded is stored during the parsing of the
VOPHeaderType, where rmc:variable is a shorthand variable
declaration indicating that the name and value are equiva-
lent to those of the parent element.

(f) bs2:nOcceurs specifies the number of occurences of the mac-
roblock element, using the variable computed in Figure
2(d). Macroblocks are also output to a port.

(g) Numerous fields in MPEG-4 or any other media format are
encoded using variable-length codes to increase bandwidth
efficiency. Common techniques such as Huffman coding
or lookup tables could be hard-coded into the language,
but this would necessitate normative changes to support
future encoding methods, defeating the purpose of RMC.
Consequently, arbitrary decoding algorithms may be speci-
fied in BSDL by sub-classing bs1:extensionType, providing
a script node that implements the decoder. RMC uses the
CAL language to specify the decoder operation, so this is
the language used in BSDL scripts in RMC.

Ibs2:ifNext has other options too; the interested reader is directed to [11].
2plocks of 16x16 pixels, the atomic unit in MPEG video codecs.

FSM CALML
ransition Parser
»| Guards f+ [<Actor>
- e
pr';r;ess —)lLineari“ > Asggﬂns - Ry
. 4 Behaviorf—
N Action
CALML | I™| Priorities . "
Templates 3| Field bit-| |
»
lengths

Fig. 4. Components of the parser generation process

4.2. Syntax Schemata in RMC

The BSDL Schema transmitted with an RMC bitstream con-
tains all of the information necessary to parse the rest of the
bitstream. The decoder translates this schema into a parser
block whose task is to convert the raw bits into structured
data that may be processed by subsequent decoder modules.
Although this translation is relatively involved (Figure 4), the
declarative model shared by both BSDL and CAL means that
the translation process may be efficiently specified. Figure
4 shows the components of this process. Each component
is implemented in a separate XSLT stylesheet, which is then
imported by a master sheet that coordinates the overall process.

Preprocessing is the first operation conducted by the style-
sheet. In general, a BSDL Schema may be composed of a
number of separate Schemata, which are imported by a master
document (much the same as the stylesheet). The prepro-
cessing stage is therefore necessary to collect the individual
Schemata into a single intermediate tree, taking care to cor-
rectly manage the namespace of each component Schema. The
preprocessor also performs a number of other tasks, including
assigning names to anonymous types and structures (so that
they may be referred to by the FSM transition set), resolving
inheritance relationships, and removing structures which are
not significant to the parsing process.

Finite State Machine (FSM) design is the major compo-
nent of the parser actor. The FSM schedules the reading of bits
from the input bitstream into the fields in the various output
structures, along with all other components of the actor. The
FSM is specified as a set of transitions, where each transition
has an initial state, a final state, and an action. Computing the
FSM from a BSDL Schema has several components, each of
which are highlighted in bold within the figure.

Actions scheduled by the FSM control the next-state deci-
sion mechanism via their Guard expressions, which are built
from the control-flow constructs in the BSDL Schema (if, ifNext,
nOccurs and length). The Behaviour of each action is to com-
plete such tasks as storing data in the appropriate location in
the output structure and/or variables, and setting the number
of bits to be read for the subsequent field.

The state pattern of the FSM is predominantly linear: the
first field is read, then the next field, then the next, and so
on. Consequently, the hierarchical structure of the BSDL
Schema must be converted into a linear sequence of read in-

323

VE)\L (default)

.
g F»{ Start

Header Gode

choice) (

v/_) short Fe o oo j\v

(default) \Header

"00000120"

Fig. 5. FSM fragment for a choice particle

structions, from which the FSM Transition and Action sets
may be built. This operation is performed by the Linearize
component, which reads the preprocessed BSDL Schema and
outputs an intermediate data structure comprising the linear
sequence of read actions. It is from this intermediate structure
that the FSM is assembled.

There are two exceptions to this linearity: Choice particles
and Union types. Choice particles (such as that in Figure
2(d)) cause the FSM to diverge from its linear path to one of a
number of parallel paths, each of which parse a single option
of the choice. For example, Figure 5 depicts the FSM fragment
for the VOL header choice of Figure 2(d). Each of the parallel
paths has a test action that determines which of the options is
selected. As before, the guards on each test action are built
from control-flow constructs in the BSDIL. Schema. BSDL
specifies that the order of options within a choice establishes
their priority: the first option has priority over the second, and
so on. These priorities are recorded in the actor as priorities
between the test actions.

Union types are very similar to Choice particles, except
that instead of choosing between a number of different objects
to instantiate, a Union chooses between a number of different
types that a single object could take. For example, a single field
could be either 16 bits or 32 bits, depending on the resolution it
is required to record. Union types have the same state structure
as choice particles, but differ in the composition of their test
guards.

Field bit-length in BSDL is specified indirectly via the
xsd:maxExclusive facet of XML Schema. A stylesheet compo-
nent is therefore required to compute the bit-length of simple
types within the schema from their maxExclusive value. Once
computed, the value is stored in a constant identified by the
type name, and subsequently used whenever a field of that
type is read from the bitstream.

Finally, the CAL component declares templates for each
of the constructs in the language, such as an FSM schedule,
a function call, or an assignment. These templates are called
by other components of the stylesheet when building the actor.
Collecting all of the CAL syntax into a single stylesheet also
means that an alternative stylesheet could be provided in place
of the CAL sheet, for example containing templates that output
CALML (CAL-XML), or even unrelated languages.

5. RESULTS

This section presents an assessment of the suitability of BSDL
for syntax description within the RMC framework. There
are fundamentally two questions that must be addressed here:

> Is BSDL capable of describing real-world multimedia for-
mats in complete detail?

> 1If so, can the resulting BSDL Schema be used efficiently
by a generic parser module to read bitstreams? That is,
does BSDL allow efficient RMC implementations?

There are also other secondary considerations such as readabil-

ity (i.e. complexity), ease of development and debugging, and

verbosity.

The MPEG-4 Video Simple Profile [12] standard is used as
a test subject to address the questions raised above. Although
RMC is designed for the creation of new codecs, it is prudent
to first establish that it may be used successfully to describe
existing ones. The MPEG-4 standard specifies syntax predomi-
nantly via tables of pseudocode, an example of which is shown
in Table 1, although some parts are described in prose (such
as DCT coefficient decoding), and others using look-up tables
(typically VLCs). The pseudocode shown in the figure corre-
sponds to the BSDL Schema extract shown in Figure 3. BSDL
uses declarative structures (sequence, choice) rather than im-
perative constructs (for, do..while), but it is straightforward to
develop a BSDL Schema based on the pseudocode.

BSDL is also able to express the DCT decoding process
specified in prose in the MPEG-4 standard. In doing so, it
in fact provides a significantly more objective specification
mechanism than the standard itself. BSDI. does not directly
support VL.C decoding. However, it provides an extension
mechanism for such cases to allow the parsing process to be
specified in an external language (in this case CAL). Using this,
it is simple to express the MPEG-4 VL.C tables in the BSDIL.
Schema in a form that an RMC decoder is able to process.

A complete BSDL Schema for MPEG-4 Video Simple
Profile has been developed and tested, verifying that BSDL is
sufficiently descriptive to be used with real-world media. The
use of BSDL in an RMC parser module is described in the
previous section. Furthermore, work is currently in progress
to extend this validation to H.264/AVC, and to demonstrate
the extensibility of the RMC framework by deploying content
encoded using 4:2:2 and 4:4:4 chroma subsampling: patterns
that don’t exist within the standardized version of MPEG-
4. In an RMC bitstream, this means adding extra chroma
blocks in each Macroblock, and changing the chroma block
pattern header field. In the BSDL Schema, this simply requires
changing the maxOccurs value on the chroma blocks.

6. CONCLUSION

The ultimate goal for RMC is to realize a fully programmable
decoder specification model as outlined in section 1.1. Doing
so would substantially shorten the work-flow from multimedia
research to consumer, by obviating the need for a lengthy stan-
dardization process in order to ensure interoperability. Instead,
new multimedia technology could be immediately deployed
using RMC tools. Realizing this vision requires further work,
particularly in on-the-fly reconfigurability for FPGA-based

324

Table 1. Extract from MPEG-4 syntax specification

VideoObjectPlane() { Bits |Mnemonic
vop_start_code 32 bslbf
vop_coding_type 2 uimsbf
ao {

modulo_time_base 1 bsibf
}wi (modulo_time_base I="0)
marker_bit 1 bsibf
vop_time_increment 1-16 uimsbf
marker_bit 1 bsibf
vop_coded 1 bslbf
if (vop_coded =='0') {

next_start_code()

return()
} //..andsoon..

}

systems. However, the well defined component model of the
CAL language, and the reconfigurability of an RMC bitstream
described by BSDL are significant steps toward this goal.

7. REFERENCES

[1] ITU-T, “Recommendation H.264: Advanced video cod-
ing for generic audiovisual services,” 2005.

[2] ISO/IEC, “Working draft 3 of ISO/IEC 23001-4: Codec
configuration representation,” 2007.

[3] C. Lucarz et al., “Reconfigurable media coding: a new
specification model for multimedia coders,” in Signal
Processing Systems, IEEE Workshop on, 2007.

[4] G. Kahn, “The semantics of a simple language for paral-
lel programming,” in Proceedings of the IFIP Congress.
1974, North-Holland Publishing Co.

[5] 1.B. Dennis, “First version data flow procedure language,
Tech. Memo MAC TM 61, MIT Lab. Comp. Sci., 1975.

[6] J. Eker and J.W. Janneck, “CAL Language Report,” Tech.
Memo UCB/ERL M03/48, UC Berkeley, 2003.

[7] Paul Klint et al., “Toward an engineering discipline for
grammarware,” ACM Trans. on Software Engineering
Methodologies, vol. 14, no. 3, pp. 331-380, 2005.

[8]1 Apple, “Quicktime file format,” developer.apple.
com/reference/QuickTime/, 2001.

[9] Microsoft, “AVI/RIFF file reference,”

microsoft.com/en-us/library/ms779636,

>

msdn2.

[10] A.Eleftheriadis and D. Hong, “Flavor: a formal language
for audio-visual object representation,” in Multimedia,
12th ACM intl. conf. on, 2004, pp. 816-819.

[11] C. Timmerer et al., “Digital item adaptation - coding
format independence,” in The MPEG-21 Book, 1. Burnett
et al., Eds. Wiley, Chichester, UK., 2006.

[12] ISO/IEC, “14496 Coding of audio-visual objects,” 2004,

[13] T. Clark, “XSL transformations (XSLT),” www.w3.org/
TR/xslt, 1999,

