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Abstract. This article explores the feasibility of a market-ready, mo-
bile pattern recognition system based on the latest findings in the field of
object recognition and currently available hardware and network tech-
nology. More precisely, an innovative, mobile museum guide system is
presented, which enables camera phones to recognize paintings in art
galleries.

After careful examination, the algorithms Scale-Invariant Feature Trans-
form (SIFT) and Speeded Up Robust Features (SURF) were found most
promising for this goal. Consequently, both have been integrated in a
fully implemented prototype system and their performance has been
thoroughly evaluated under realistic conditions.

In order to speed up the matching process for finding the corresponding
sample in the feature database, an approximation to Nearest Neighbor
Search was investigated. The k-means based clustering approach was
found to significantly improve the computational time.

1 Introduction

1.1 Motivation

Worldwide, sales of camera phones are skyrocketing. Almost every new cellphone
purchased today is equipped with a built-in camera, and camera phones are
projected to outsell digital standalone cameras within a few years. The Gartner
Group estimates that in 2006 nearly 460 million camera phones were shipped
and it forecasts that number to hit one billion devices by 2010 [1].

Cellphones have clearly evolved beyond mere conversational communication
devices to ubiquitous imaging devices that support various forms of multimedia.
This prevalence, coinciding with rapidly advancing communication infrastruc-
tures, initiated a growing interest in the application of image recognition on
mobile devices. Using them as interactive user interfaces and image sensors has
the great potential to augment the user’s reality.

Several applications have already been envisioned such as bar code scanners
[2], image-based object search [3] and an urban navigation system [4].

The domain this project deals with is the appealing idea of an enhanced
museum tour guide. Today, museums and art galleries usually provide visitors



either with paper booklets or with audio guides providing an contrived identifi-
cation of system. The prototype presented here enables a camera phone to act
as a museum guide: the user points with his camera phone to the painting of
interest and takes a picture. Image processing technology recognizes the input
picture and provides multi-modal, context-sensitive information regarding the
identified painting. Details such as title, artist, historical context, critical review
can be easily communicated to the visitor in the language of his choice. Such
an augmented reality application could assist to appreciate art more deeply and
also make it more accessible to everyone.

Using cell phones as a platform for personal museum guides would have
several advantages over current audio guide systems: the interaction of taking a
snapshot is found more intuitive than finding an object’s number and typing it
into the device. Moreover, the identification can be performed not only for the
global painting, but also for details. For instance particular faces or sub-scenes
of large painting or frescoes can, if the description is available, be identified.

Finally from an economical point of view, either museum operators profit
by significantly reducing maintenance and specific infrastructure costs or tourist
operators can develop their own products, since the visitor can use his own
mobile device.

1.2 Problem statement

Object recognition is still an open problem in computer vision, and the reasons
for this are numerous. Images may be subject to variations in point of view,
illumination and sharpness; different camera characteristics can also be an issue.
Moreover, the museum environment has some unique properties: indoor lighting
in museums can be insufficient and museum rules may prohibit using a flash.
Reflection of security glass which protects pieces of art is another challenge.
Camera phones still tend to have cheap lenses that produce noisy photographs
of poor quality. As cell phones are not primarily designed for taking pictures they
are more difficult to hold steady which in turn increases the likelihood of camera
shake. In a crowded museum paintings might be partly occluded by other visitors
or even cropped if the piece of art is too vast to be captured at once. Also, more
than one painting may appear on the image if the paintings have been arranged
close together. Frames can vary from bold, rectangular ones to subtle, oval ones
and cast significant, shadowed regions. Both the shape and shadows of the frame
complicate a possible segmentation of the painting incredibly. More difficulties
become obvious when considering the content of the painting: the uniqueness
of features is reduced as paintings from the same epoch show recurring styles
and similar color schemes. In fact, in the case of studies, whole patches of some
paintings can be found repeated in other paintings.

The aim of this work was to overcome these problems in a mobile real-life
image matching application.

Most systems presented in related work in mobile visual communication have
actually been simulated on desktop PCs. This project firmly intended to deploy
the client software on a real hand-held device and evaluate its handling under



the most realistic conditions possible. For the same reason, a large database and
many test samples were chosen. These requirements bear additional challenges
to the implementation.

1.3 Related work

Object recognition Two major families of methods have evolved in the field of
object recognition. The holistic global feature approach handles the entire image
as one entity, while the local feature approach selects distinctive regions in the
image.

The most obvious global features are color histograms. A recognition system
based on color histograms was presented by Swain and Ballard [5] in 1991. Face
recognition is a well explored domain which often relies on global features [6],
[7]. Some of the most popular algorithms in this field include Eigenfaces [8],
which uses Principal Component Analysis (PCA), and Fisherfaces [9], which
adopts Fisher Linear Discriminant Analysis (FLD). PCA methodologies select
a dimensionality reducing linear projection which models the data by maximiz-
ing its scatter. FLD techniques attempt to improve reliability for classification
problems by taking into account the classes and maximizing the ratio between
the intra-class and the extra-class.

In 1988, Harris and Plessey introduced the Harris corner detector [10] to find
local interest points. Mohr et al. later applied this concept to locate invariant
features and matched them against a large database [11]. In 1996, van Gool
introduced generalized color moments that represent the shape and the inten-
sities of different color channels in a local region [12]. In 1999, Lowe presented
the Scale-Invariant Feature Transform algorithm (SIFT) which achieved scale
invariance using local extrema detected in Gauss-filtered difference images for
object recognition [13]. In 2002, Siggelkow showed methods to use local feature
histograms for content-based image retrieval [14]. In the same year Schaffalitzky
and Zisserman investigated how a combination of image invariants, covariants,
and multiple view relations can be used for efficient multiple view matching [15].
Mikolajczyk and Schmid used the differential descriptors to approximate a point
neighborhood [16]. In 2004, Till Quack et al. introduced Cortina, a large-scale
image retrieval system for images of the Web based on low-level MPEG-7 visual
features and indexed keywords as additional high-level feature.[17] Combined
with association rule mining this concept sucessfully improved the quality of the
search results.

Experimental museum guide systems In 2002, Kusonoki et al. presented
a location-aware sensing board for kids which gives visual and auditory feed-
back to attract users’ interests. Interactive museum tour-guide robots have been
proposed by Burgard [18] in 1998 and Thrun [19] in 2000.

In January 2005, Adriano Alberti et al. described an augmented reality sys-
tem using video see-through technology that provides contextual information
for details of one painting [20]. The system is trained with a large number of
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Fig. 1. High-level architecture of the prototype system

synthetically generated images. The recognition process utilizes a set of multidi-
mensional receptive field histograms that represent features such as hue, edginess
and luminance.

An Interactive Museum Guide [21] that is capable of recognizing objects in
the Swiss National Museum in Zurich was proposed by Herbert Bay et al. in
September 2005. In order to reduce the search space, Bluetooth emitters were
installed on site. Objects are recognized with an approximated SIFT algorithm.

In October 2005 Erich Bruns et al. from the Bauhaus University in Weimar
presented the PhoneGuide [22]. Two-layer neural networks are used in combi-
nation with Bluetooth emitters and trained directly on the mobile phone. All
computation for object recognition is carried out on the device.

The French-Singapore IPAL Joint Lab presented in July 2007 the Snap2Tell
prototype [23] which recognizes tourist attractions and provides multi-modal
descriptions. Scenes are recognized by distinguishing local discriminative patches
described by color and edge information. As discriminative classifiers Support
Vector Machines (SVMs) are used. The reference database contains a notable
number of images per object and GPS was evaluated as additional feature.

2 System description

2.1 Architecture

A PDA with integrated camera and Internet connection was enabled to act as a
universal museum guide for paintings in art galleries. In contrast to conventional
audio museum guides or booklets, objects are selected by simply taking a picture
of them.

The major advantage of the system presented here over other experimental
systems that have been proposed in previous work on the same subject is that



it does not depend on additional infrastructure on site. Neither barcode labels
nor extra hardware such as Bluetooth emitters need to be set up.

The architecture follows the classical server-client approach: the client only
acts as periphery which acquires and sends sample data and eventually receives
the results. No additional computation such as feature extraction is executed
on the client. This decision has been taken for several reasons: the CPU of
mobile clients is generally very slow and running the feature extraction on the
mobile client might result in unbearably long waiting times for the user. Also,
the recognition performance is good even at low resolution. Transmitting scaled
down images of small data size is sufficient for successful operation of the system.

Mobile clients have been developed for Windows Mobile and the Android
operating system by Google. Furthermore, a web browser-based interface was
implemented to enable access to the painting recognition system through the
Internet.

A very basic, high-level description of the architecture of the system is shown
in Figure 1.

2.2 Hardware

All images were captured with a HP iPAQ hw6900 handheld device and have
an original resolution of 1280 x 1024. The experiments were conducted on a
virtual private server equipped with an Intel(R) Xeon(TM) CPU 2.80GHz, 384
MB RAM and Debian Linux 3.1.

3 Feature extraction

After evaluating several methods for object recognition, Scale-Invariant Feature
Transform (SIFT), conceived by David G. Lowe et al. in 1999, and Speeded
Up Robust Features (SURF), introduced by Herbert Bay et al. in 2006, were
identified as most appropriate for museum-inherent challenges. Both are robust
regarding scale, lighting and perspective distortion. But, again, their greatest
benefit is the use of local features. When employing algorithms with global fea-
tures, the objects of interest first need to be clipped away from any background.
In this case, the reference samples in the database show only the painting with
neither frame nor background. The test samples taken in the museum, however,
include parts of the environment: often, paintings are surrounded by massive
frames. The wall does not always contrast clearly with the piece of art. Visitors
or objects besides the painting of interest may appear on the photos. If the im-
age was taken from a distance, the size of the painting proportional to the total
image size can vary significantly. Detecting the painting becomes particularly
challenging when it is surrounded by shadowed regions or if the frame is of un-
usual shape like oval. Segmentation techniques for clipping away the background
before classifying the foreground are expensive and prone to failure due to these
factors. This step can be skipped when using local features.



3.1 Scale-Invariant Feature Transform (SIFT)

The Scale-Invariant Feature Transform (SIFT) [13] algorithm provides a robust
method for extracting distinctive features from images that are invariant to ro-
tation, scale and distortion. In order to identify invariant keypoints that can be
repeatably found in multiple views of varying scale and rotation, local extrema
are detected in Gauss-filtered difference images. Stability of the extrema is fur-
ther ensured by rejecting keypoints with low contrast, and keypoints localized
along edges. As keypoint descriptor, an orientation histogram is computed for
the area around the keypoint location. Gradient magnitude and the weight of a
Gaussian window originating at the keypoint add to the value of each sample
point within the considered region.

3.2 Speeded Up Robust Features (SURF)

The Speeded Up Robust Features (SURF) [24] algorithm is a variation of the
SIFT algorithm. Its major differences include a Hessian matrix-based measure as
an interest point detector and approximated Gaussian second order derivatives
using box type convolution filters. Here, the use of integral images [25] enables
rapid implementation.

4 Matching process

4.1 Nearest Neighbor Search (NNS)

A straightforward approach to find the match of a sample keypoint within the
reference keypoints is Nearest Neighbor Search (NNS). Here, the closest can-
didate measured by Euclidean distance is found by linearly iterating over all
reference keypoints in no particular order. This method results in finding the
exact nearest neighbor to the sample keypoint. Two keypoints are considered
a match if the distance between them is closer than 0.6 times the distance of
the second nearest neighbor [26] [27]. However, for large data sets and high-
dimensional spaces this is an inefficient approach due to the time complexity of
O(N -d) where N is the number reference keypoints and d is the dimensionality
of a keypoint vector.

4.2 Best-Bin-First (BBF)

Jeffrey S. Beis and David G. Lowe proposed an approximation to NNS called
Best-Bin-First (BBF) [28].

The index structure used to store the keypoints is a k-d tree. When creating
the tree, the data set is recursively subdivided into even groups on iterating
dimensions. At each split, the keypoint which contains the median becomes a
new internal node. This step is repeated for the children at the next dimension
on the elements of the subgroups. The resulting tree is balanced and binary with
a depth d = [log, N where N is the number reference keypoints.



In order to find the nearest neighbor of a sample keypoint, the tree is first
traversed to locate the bin which contains the sample keypoint. The algorithm
backtracks from this bin, considering each node along the way for comparison.
If the distance to a node is greater than the shortest distance found so far, the
subtree of this node can be ignored.

According to [28], with x=200, this approximation provides a 2 order of
magnitude speed-up over exhaustive NNS, and still returns the correct nearest
neighbor more than 95% of the time. In our case, however, preliminary tests on
a subset of the data revealed unacceptable loss of performance.

4.3 K-means based tree

A different tree-based clustering approach adopted from the paper ” Tree-Based
Pursuit: Algorithm and Properties” by Jost et al. [29] was evaluated.

Here, clustering is achieved based on the Euclidean distance between the vec-
tors. The k-means algorithm [30] is used to cluster the data set into k subgroups.
The centroids found become internal nodes of the tree. Recursively, the clusters
are subdivided in the same manner until they consist of less than k elements.
Once this state is reached, the elements of the cluster become children of their
centroid node and leaf nodes of the tree. The resulting tree is not balanced and
its shape highly depends on the data set, the quality of the initial centers and the
value of k. The matching process of a new element breaks down to tree traversal
from the root node to the bottom of the tree always choosing the node of lowest
Euclidean distance. The leaf node is then considered the nearest neighbor.

5 Experimental results

5.1 Setup

Training sample data has been extracted from the online archive Web Gallery
of Art [31]. More precisely, all 1,002 works available from the Louvre Museum
were considered in the experiment. Each reference painting is represented by
one sample. The paintings from the online source have been digitalized without
frame.

The test sample data consists of photo series of 48 paintings taken in the
Louvre Museum (in total 200 images). Four different types of perspective have
been considered to stress test the algorithms and also evaluate their robustness
under extreme perspectives: frontal, left, right, distant.

In order to remove noise, the images have been converted to gray-level rep-
resentation. To evaluate the correlation between resolution and performance of
the algorithms, the images have been downsampled to 4 different resolutions:
512 x 410, 256 x 205, 128 x 103, 64 x 51.

Cumulative Match Characteristic (CMC) curves summarize the accuracy of
a recognition system: for each test sample, its rank is determined by finding the
position of the hypothesis for the desired, correct reference sample on a sorted
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Fig. 2. Performance comparison for approximated NNS

list of all hypotheses constructed for this sample. Ideally, the rank is 0. In this
case, the hypothesis for the correct painting also received the most votes, and the
sample could be identified successfully. The CMC chart integrates these results
and depicts the probabilities of identification for all ranges of ranks.

5.2 SIFT vs. SURF

Figure 3 shows CMC curves for the results of linear matching using NNS, grouped
by perspective. The charts on the left side result from employing the SIFT
algorithm, corresponding curves for the SURF algorithm can be found on the
opposite side.

It can be seen that higher resolution does not necessarily correspond to better
recognition rate. For the frontal perspective, even very low resolution yields
satisfying results.

5.3 Approximated SIFT

The k-means based clustering approach has been coined SIFT_fast and was
implemented with k = 15.
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Figure 2 shows CMC curves for the experiment results using a linear matching
approach (solid lines) and the approximated k-means tree approach introduced
in Section 4.3 (dashed lines). Performance losses compared to the exhaustive
approach are obvious, however, for a real-time application that deals mainly with
frontal views (as the museum guide in this work does), the algorithm SIFT_fast
for resolution 128 offers an acceptable trade-off between speed and performance.

5.4 Processing time

The table in Figure 4 lists the average times of the matching process depending
on algorithm and resolution; Figure 5 clarifies the proportions graphically.

The runtime computational complexity of SURF is lower for all resolutions.
This is due to the fact that SURF descriptor vectors are of dimension 64 in con-
trast to 128 components contained in the descriptor vectors of SIFT. However,
the median of the number of keypoints is lower, too, which has direct influence
on the recognition performance: SURF is inferior to SIFT in any experiment.

The large time increase of the conventional SIFT algorithm between reso-
lution 128 and 256 can be explained by the huge variance of keypoints of this
algorithm. The variance of SURF keypoints is much smaller in comparison. This
is beneficial as it makes the runtime of the matching process more predictable.

The gain of time achieved when matching SIFT keypoints using a k-means
tree compared to linear NNS is significant: with resolution 128, the approxi-
mated approach takes 45 seconds instead of about 306 seconds using linear NNS
matching. The downside clearly is a loss of performance as shown in Figure 2.

| I 64]  128] 256
SIFT 144.25] 305.73] 1440.36
SURF 78.54] 95.56] 198.57

SIFT _fast 13.85] 44.65| 150.68

Fig. 4. Table of average processing times in seconds

6 Discussion

In general, the evaluation reveals that the SIFT algorithm outperforms the SURF
algorithm for any resolution considered. However, the runtime computational
complexity of SURF is lower due to the fact that SURF descriptor vectors are
of lower dimension than descriptor vectors of SIF'T. The variance of the number
of keypoints found with SURF is much smaller compared to the distribution of
SIFT keys. This is advantageous as it makes the runtime of the matching process
more predictable. However, the median is lower, too, which has direct influence
on the recognition performance. In fact, the strength of the SURF algorithm
only becomes apparent at the highest resolution of 512 x 410 tested in the
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experiments. SIFT features, on the other hand, show sufficient distinctive power
even for images of significantly lower resolution than used in the experiment
section of the SIFT paper (600 x 315). Our experiments show that input images
of 128 x 103 already deliver reasonable performance.

These findings, and the fact that programming on mobile platforms is rather
cumbersome, implies an architecture on which the feature extraction part is done
on the server.

Analysis of the experimental data also clearly showed that perspective distor-
tion is still an issue. However, for an application as described in this project, it
is acceptable to assume a frontal perspective and to choose rather low resolution
parameters in order to strike a balance between efficiency and accuracy.

Moreover, clustering methods which approximate the conventional Nearest
Neighbor Search are an important extension to a recognition system, in partic-
ular to a real-life application such as this one. In fact, they enormously speed
up the response time. The tests show that the k-means based tree approach
provides an acceptable trade-off between performance loss and gain of time.

7 Conclusion

The results presented in this article demonstrate the feasibility of a market-
ready mobile pattern recognition system in the form of a universal museum
guide. Several prototype clients were fully implemented and have been subject
to thorough evaluation under realistic conditions.

Our tests showed the advantages of an architecture where the feature ex-
traction part is done on the server. Such a setup requires uploading images and
favors low resolutions, as this decreases the response time. Although the SURF
algorithm is faster than the SIFT one, for low resolution images SURF’s perfor-
mance is unacceptable.



Our tests further showed that methods which approximate the conventional
Nearest Neighbor Search can also reduce response times. The k-means based tree
approach provided an acceptable trade-off between performance loss and gain of
time.

Finally, based on this study, we conclude that a combination of client-server
architecture, the use of a SIFT algorithm with a resolution of 128 x 103, com-
bined with the k-means based tree approach is most appropriate for deployment.

The extension of the presented framework to standard representations such as
MPEG-7 would require deeper examination and remains as interesting objective
for the future.
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