Files

Abstract

Resource and cost constraints remain a challenge for wireless sensor network security. In this paper, we propose a new approach to protect confidentiality against a parasitic adversary, which seeks to exploit sensor networks by obtaining measurements in an unauthorized way. Our low-complexity solution, GossiCrypt, leverages on the large scale of sensor networks to protect confidentiality efficiently and effectively. GossiCrypt protects data by symmetric key encryption at their source nodes and re-encryption at a randomly chosen subset of nodes en route to the sink. Furthermore, it employs key refreshing to mitigate the physical compromise of cryptographic keys. We validate GossiCrypt analytically and with simulations, showing it protects data confidentiality with probability almost one. Moreover, compared with a system that uses public-key data encryption, the energy consumption of GossiCrypt is one to three orders of magnitude lower.

Details

Actions

Preview