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Abstract Swarming without positioning information is interesting in application-
oriented systems because it alleviates the need for sensors which are dependent on
the environment, expensive in terms of energy, cost, size and weight, or unusable at
useful ranges for real-life scenarios. This principle is applied to the development of a
swarm of micro air vehicles (SMAVs) for the deployment of ad-hoc wireless commu-
nication networks (SMAVNETs) between ground users in disaster areas. Rather than
relying on positioning information, MAVs rely on local communication with immediate
neighbors and proprioceptive sensors which provide heading, speed and altitude.

To solve the challenging task of designing agent controllers to achieve the swarm be-
havior of the SMAVNET, inspiration is taken from army ants which are capable of
laying and maintaining pheromone paths leading from their nest to food sources in
nature. This is analogous to the deployment of communication pathways between mul-
tiple ground users. However, instead of being physically deposited in the air or on a
map, pheromone is virtually deposited on the MAVs using local communication. This
approach is investigated in 3D simulation in a simplified scenario with two ground
users.

Keywords swarm intelligence · swarming without positioning · Micro Air Vehicles
(MAVs) · communication relay · army ants · pheromone robotics · situated
communication

1 Introduction

We aim at investigating minimal aerial swarm systems deployable in real-life scenarios
following the paradigms of swarm robotics (Şahin 2005). Our endeavor is motivated by
an application whereby several fixed-wing MAVs must organize autonomously to estab-
lish an emergency communication network between multiple users located on ground
(Fig. 1). Such SMAVNETs could replace damaged, nonexistent or congested networks
and can play an important role in disaster mitigation (Oh 2003). The aerial nature of
the system is interesting in that it allows for line-of-sight transmissions between MAVs,
which is more energy-efficient than communication in cluttered environments at ground
level. Furthermore, MAVs can fly over difficult terrain such as flooded areas or debris.
Rather than relying on positioning sensors which depend on the environment or are
costly, our MAVs only rely on proprioceptive sensors (magnetic compass, speed and
altitude sensors) and local communication with neighbors (situated communication,
Støy (2001)).

A similar minimalist approach was also investigated by Nembrini et al. (2002) with
a swarm of ground robots capable of generating a coherent movement towards a light
beacon while avoiding obstacles and maintaining global shape in both simulation and
reality. Very simple local rules and local wireless communication were responsible for
the emergence of this global behavior. However, the resulting rules were adapted to
wheeled robots with very simple dynamics, whereas fixed-wing MAVs need to maintain
forward motion in order not to stall. Also, the coherent movement of a swarm and the
generation of a communication network require completely different algorithms and no
methodology for designing the local interactions was given.
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Fig. 1 Artistic view of the use of a swarm of MAVs for establishing communication networks
between users located on ground.

More generally, current aerial swarm systems are designed to achieve tasks such as
the surveillance of an area of interest or searching for targets and subsequently de-
stroying, tracking or sensing them (Elston and Frew 2008, Flint et al. 2002, Gaudiano
et al. 2005, Kuiper and Nadjm-Tehrani 2006, Pack and York 2005, Parunak et al.
2005, Richards et al. 2005, Ryan et al. 2007, Sauter et al. 2005, Soto and Lin 2005,
Vincent and Rubin 2004, Wu et al. 1999, Yang et al. 2005). Other applications in-
clude environmental monitoring (Allred et al. 2007) and more specifically toxic plume
characterization (Kovacina et al. 2002, Lawrence et al. 2004) or forest fire detection
(Merino et al. 2006), the deployment of mobile communication networks (Basu et al.
2004, Kadrovach and Lamont 2001, Kuiper and Nadjm-Tehrani 2006) and the use of
aerial robots to achieve mobile cluster computing (Holland et al. 2005). Aerial swarms
have also attracted attention in Art where self-organizing robotic cubes are intended
to perform multi-media performances (Nembrini et al. 2005).

Swarm algorithms responsible for the execution of the above-mentioned applications
currently rely heavily on global or relative positioning information concerning them-
selves and their direct neighbors. Possible swarm strategies include having the robots
follow predefined search patterns, e.g., by sweeping over a bounded area. The swarm
cooperatively adapts to node failures by continuously reconfiguring towards the aimed
pattern (Vincent and Rubin 2004). Strategies based on Reynolds’ Flocking (Reynolds
1987) or Artificial Physics (Spears et al. 2005) allow robots to coherently move in
groups while avoiding collisions using knowledge concerning the relative position of
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nearby robots and eventually their velocity (Basu et al. 2004, De Nardi and Holland
2007, Holland et al. 2005, Kadrovach and Lamont 2001, Merino et al. 2006, Turgut et al.
2008). In map-based strategies, robots know their absolute position and deposit infor-
mation on a map, which can be shared locally or globally within the swarm. Each agent
then decides on where to navigate based on its interpretation of the map. Deposited
and sensed information can include virtual pheromone (Kuiper and Nadjm-Tehrani
2006, Parunak et al. 2005, Sauter et al. 2005), locations visited by robots over time, ar-
eas of interest in the environment or the position of homing stations (Elston and Frew
2008, Flint et al. 2002, Lawrence et al. 2004, Pack and York 2005, Yang et al. 2005).
Alternatively, artificial evolution (AE) has been used to automatically design desired
swarm algorithms. The application of AE to the development of swarming ranges from
the optimization of parameters in predesigned swarm behaviors (Gaudiano et al. 2005,
Soto and Lin 2005) to the complete evolution of position-based local interactions re-
sponsible for the emergent behavior of the swarm (Richards et al. 2005, Wu et al. 1999).

However, obtaining relative or global positioning information is challenging in mobile
robot systems. Current technologies usable in aerial swarms are subject to shortfalls
which can potentially limit the usability of the swarm systems in real-life scenarios.
Global positioning system (GPS) technologies are unreliable or impossible in cluttered
areas (Siegwart and Nourbakhsh 2004), limiting the deployability of the systems in
some environments. Alternatively, wireless technologies can be used to estimate the
range or angle between agents of the swarm and position beacons using time of ar-
rival (TOA), time difference of arrival (TDOA), angle of arrival (AOA) or the received
signal strength indicator (RSSI). However, depositing beacons in the environment is
generally not practical for the rapid deployment of swarm systems in unknown environ-
ments (Hu and Evans 2004). Off-the-shelf sensors such as cameras, laser range finders,
radars, ultrasound and infrared sensors are capable of providing relative positioning.
However, interesting usability ranges for aerial swarm deployments (>100 m) typically
entail expensive and heavy hardware which is incompatible with the scalable nature
of swarms composed of large numbers of simple and inexpensive aerial robots. Taking
these limitations into account, we aim towards a system which does not depend on
localization technologies.

Instead, we investigate the development of swarm controllers for positionless MAVs.
Until the finalization of our flying test-bed composed of 10 to 20 MAVs, controller
design is conducted in 3D simulation. Determining the local interactions responsible
for the emergence of any swarm behavior is challenging and no methodology currently
exists to deterministically solve this task. The approach presented here consists in
taking inspiration from studies conducted on biological swarms to design the MAV
controllers. Specifically, inspiration is taken from army ants, which are capable of de-
ploying to search for and maintain paths leading to food sources in nature by depositing
and sensing pheromone in their environment (Burton and Franks 1985). Similarly, we
show in simulation that we can deploy and maintain communication pathways be-
tween users on ground using the SMAVNET and then retract the swarm to its initial
launching point. Furthermore, the developed algorithm is scalable in swarm size and
reasonably robust to MAV failures. Finally, challenges due to windy environments are
identified and possible solutions are discussed.
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2 Experimental Setup

2.1 Scenario

The scenario consists of having a swarm of 15 MAVs search for a single user positioned
on ground while maintaining radio connection to the base-node present at the location
from which the MAVs are launched. MAVs must directly or indirectly (by means of
other MAVs) remain connected to the base-node in order to ensure that they do not
get lost and that the swarm as a whole remains coherent. At the beginning of each
deployment, a common search direction is broadcasted to each MAV in the swarm
which must find a randomly positioned user in the area described in Fig. 2. This area
was designed to be clearly out of the communication range of the base-node and is
located in the North sector with respect to the base-node. MAVs are launched every
15 ± 7.5 seconds within a 5 m radius from the base-node to model the fact that they
will be launched by hand by a single human operator. The swarm is given 30 minutes
to establish and maintain a communication link between the base-node and the user.
Communication is then interrupted and the MAVs must retract to the base-node as
rapidly as possible and land.

search
direction

N
E

S
Wcommunication

range
(100 m)

possible location of user

base-node
(launching point)

100 m

Fig. 2 The SMAVNET composed of 15 MAVs must be able to find any user positioned in
the area in grey. Here, the search area is located to the north of the base-node from which the
MAVs are launched.

2.2 Simulation

Experiments were conducted using a 3D simulator which realistically models MAV
trajectories, sensors, and communication. The simulation is event-based in order to
model the fact that each MAV has its own internal clock and that communication is
in general asynchronous.
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2.2.1 Flying Platform

The MAV dynamic model is implemented using a first order flight model which repro-
duces trajectories obtained with our current simple and low-cost fixed-wing airframe.
The prototype of our MAV flies at a speed of approximately 10 m/s and is unable to
hover or make sharp turns. The minimum turn radius of the MAV is assumed to be
as small as possible with respect to its communication range while still allowing the
platform to turn with reasonable energy consumption. Based on the platform currently
under development, this radius was chosen to be 10 m. Additional details concerning
the flight model of the MAV and the noise model applied to it can be found in appendix
A.

MAVs are equipped with proprioceptive sensors used for swarming. These simulated
sensors include a magnetic compass affected by uniform noise in the range [−5, 5]◦, an
altimeter affected by uniform noise in the range [−1, 1] m and a speed sensor affected
by uniform noise in the range [−2, 2] m.

2.2.2 Communication Model

Having a realistic communication model is essential for the credibility of our deployed
SMAVNET because of the real-life challenge brought on by highly dynamic systems,
signal propagation uncertainties and network topologies prone to packet collisions. Un-
like most current robot systems which use a simplified communication model (Winfield
2000), we have implemented a model based on 802.11b specifications and physics-based
wave propagation allowing a communication range of around 100 m (see appendix B).
The 802.11b medium was chosen because it can accommodate the technology used by
most potential ground users (laptop, cell phones, PDAs).

In our scenario, nodes of the network can send two types of messages, control mes-
sages and data messages. Control messages are only used for the coordination of the
swarm and are broadcasted by each node every 50 ms in a desynchronized manner.
Data messages are small messages sent from the base-node to the user every second
via the SMAVNET. They are flooded throughout the network.

3 Control Strategy

There currently exists no methodology to deterministically design the local interactions
responsible for the emergence of a desired swarm behavior. The approach presented here
consists in taking inspiration from natural systems to design efficient swarm controllers
for robots. Similar approaches have investigated foraging tasks with ground robots
based on the trophallactic behavior performed by honey-bees (Camazine et al. 1998,
Crailsheim 1998, Schmickl and Crailsheim 2006; 2007) or the formation of robot chains
between objects in the environment inspired by the observation of ant colonies foraging
for food (Nouyan et al. 2008). Foraging in nature has also inspired work by Campo
and Dorigo (2007) for the design of robot controllers. In the scope of the SMAVNET
project, we take inspiration from army ant colonies which are able to lay and maintain
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pheromone paths leading to food sources in nature, analogous to the deployment and
maintenance of communication networks.

3.1 Army Ant Raid Patterns in Nature

Army ant colonies display complex foraging raid patterns involving thousands of in-
dividuals communicating through chemical trails (pheromone). These structures are
thought to reflect an optimized mechanism to explore and exploit food resources in
nature (Solé et al. 2000). Different army ant species display different raid patterns
(Fig. 3), allowing them to adapt to different distributions of food. For example, the E.
Hamatum hunt for sparse and large sources of food while the E. Burchelli can rely on
uniform distributions of small food sources (Franks et al. 2001).

Fig. 3 Foraging pattern of three army ants Eciton Harnatum, E. Rapax, and E. Burchelli
(from left to right) each covering some 50 m x 20 m (Deneubourg et al. 1989).

In work by Deneubourg et al. (1989), a model capable of capturing the self-organizing
mechanism used for the formation of army ant raid patterns is presented. In this model,
ants leave the nest at a constant rate and navigate through a binary grid of Y-junctions
while depositing pheromone. At each bifurcation, the amount of pheromone on each
branch influences the ant’s choice to turn left or right. The speed at which the ants
advance increases sigmoidally as a function of the strength of the trail’s pheromone.
Ants which have found food carry it back to the nest while depositing larger amounts
of pheromone to reinforce successful paths. The deposited pheromone then evaporates
over time.

3.2 Adaptation to MAVs

By taking inspiration from the foraging mechanism found in army ants, we want to
create and maintain communication pathways leading to users on ground. However, in
application-oriented swarms, it is often undesirable to modify the environment in which



8

agents deploy (by physically depositing chemicals or objects) and the deploying sub-
strate is often unstable (e.g., air, water and quickly modifiable environments). Also,
depositing virtual pheromone on a map (Kuiper and Nadjm-Tehrani 2006, Parunak
et al. 2005, Sauter et al. 2005) is not possible when no global positioning is available.
To solve this issue in our system, pheromone is virtually deposited on the swarm agents
(pheromone robotics, Payton et al. (2001)). The approach proposed here consists of
separating the MAVs into two types, namely node-MAVs and ant-MAVs. Node-MAVs
constitute the environment on which pheromone can be virtually deposited and read
from. Ant-MAVs are capable of navigating through a grid of node-MAVs while deposit-
ing virtual pheromone through the use of local wireless communication.

Ideally, node-MAVs should position themselves following the Y-junction grid shown
in Fig. 4, where the length of each branch is approximately equal to the mean commu-
nication range between agents (≈ 100 m) and the junction angle is approximately of
60◦.1 Coordinates (i, j) are assigned to each node-MAV in the grid where i and j are
the number of left and right branches followed to reach a desired position relative to
the base-node. This directional positioning is possible because agents have a magnetic
compass and a fixed launching point (base-node) at the root of the grid.

0,11,0

0,0

2,0 1,1 0,2
10

0 m

60°

base-node

Fig. 4 Ideal positioning of the base-node and node-MAVs in the Y-junction pheromone grid.
Coordinates are relative to the base-node and correspond to the number of left and right
branches needed to reach a position.

The ant-based swarm algorithm described here and presented in Fig. 5 results in the
deployment, maintenance and retraction of a SMAVNET. MAVs can either explore the
environment as an ant-MAV or direct the ant-MAVs when in node-MAV state (using
pheromone information) while ensuring that all MAVs remain connected to the base-
node and to the user.

1 To the benefit of our ad-hoc network, 60◦ Y-junctions have the advantage of generating
redundant communication pathways while maximizing the area coverage of the grid. More
precisely, the chosen angle presents the advantage of generating a grid where all the nodes are
at equal distance from one another. Because this distance corresponds to the mean commu-
nication range, two agents at the extremity of a Y-junction can directly communicate (unlike
deployments with larger angles). Smaller angles would also have this property, however, the
coverage of the deployed grid would be reduced.
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Fig. 5 Schematic representation of the behavior of an MAV in our homogenous swarm. MAVs,
can either be in node-MAV or ant-MAV state. Initially, ant-MAVs are launched from the base-
station which communicates pheromone information concerning its left and right branches.
Based on this information, ant-MAVs will choose a “destination node”. The node-MAV which
is communicating pheromone information to an ant-MAV is its “reference node”. Ant-MAVs
navigate from “reference nodes” to “destination nodes” until the “reference node” is out of
range, at which point the “destination node” becomes the ant-MAV’s new “reference node” and
a further “destination-node” is chosen. If the “destination node” is not within communication
range, ant-MAVs change state to become node-MAVs. Finally, when a node-MAV does not
store any more pheromone (evaporation) it returns to the ant-MAV state and navigates back
to the base-node using a similar “reference node” to “destination node” navigation, it then
lands or redeploys.
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In detail, at launch an MAV is of type ant-MAV and its initial reference node is the
base-node positioned at the root of the pheromone grid. The reference node broadcasts
the pheromone strengths of its left φi+1,j and right φi,j+1 branches.2 On reception,
this information allows ant-MAVs to probabilistically choose a given branch following
equations (1) to (5) where πL and πR are the probabilities to choose the left or right
branches respectively. These equations were determined on the basis of the original
equations describing the probability pL to choose a left or respectively right pR branch
in the natural model developed by Deneubourg et al. (1989). As a result, ant-MAVs
favor branches with higher amounts of pheromone. The parameter µ represents the
attractivity of unexplored directions and affects the amount of exploration versus path
following displayed by the MAVs (e.g., with µ = 0 ant-MAVs have a probability of 0 of
favoring an unexplored path over one with pheromone, whereas µ = ∞ yields nearly
equal probabilities of choosing a given branch over another). However, in the natural
model, areas in the center of the grid had a higher probability of being explored than
areas on the sides (Fig. 6, left). For example, an MAV performing a sequence of two
turns had a 50% chance of reaching the position (1,1) by performing a left then right
turn or a right then left turn. Reaching the positions (0,2) or (2,0) however was not as
likely (25% chance of reaching any of these positions). To ensure a uniform search of
the environment (Fig. 6, right) a correction factor c is applied to adjust the probabili-
ties described by pL and pR.

1/21/2

1

1/4 1/2 1/4

1/21/2

1

1/3 1/3 1/3

Fig. 6 Original (left) and corrected (right) probability to reach a given node in the pheromone
grid given an equal amount of pheromone on each branch.

πL(i, j) =
pL(i, j) · cL(i, j)

pL(i, j) · cL(i, j) + (1 − pL(i, j)) · (1 − cL(i, j))
(1)

πR(i, j) = 1 − πL(i, j) (2)

cL(i, j) =
i + 1

i + j + 2
(3)

pL(i, j) =
[µ + φi+1,j ]

2

[µ + φi+1,j ]2 + [µ + φi,j+1]2
(4)

pR(i, j) = 1 − pL(i, j) (5)

Once a left or right branch is chosen, the coordinates of the node to which the ant-MAV

2 Initially, the pheromone strengths sent by the base-node are equal to zero.
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should navigate (destination node) are stored and the ant-MAV will advance in the
corresponding direction. While advancing, ant-MAVs virtually deposit ∆φant amounts
of pheromone on their reference node.

Eventually, the ant-MAV will break the communication link with its reference node
and briefly wait for a message from its destination node. If no message is received, the
destination node is assumed nonexistent and the MAV changes its type from ant-MAV
to node-MAV with coordinates corresponding to the aimed destination and an initial
amount of pheromone φinit. However, if the destination node-MAV exists, it becomes
the reference node for the ant-MAV and a new destination is chosen based on received
pheromone information. Subsequently, ant-MAVs navigate through the grid until they
reach a position which is not yet occupied by a node-MAV.

Node-MAVs maintain information concerning their own pheromone strength φi,j and
the pheromone strength of adjacent nodes (φi+1,j , φi,j+1, φi−1,j , φi,j−1). This allows
them to continuously update their knowledge concerning the amount of pheromone on
their left and right branches in the forward and backward directions. Once the grid has
formed a pathway between the base-node and a user located on ground, the pathway is
used to relay data packets between the two. Node-MAVs can detect if they are on a com-
munication pathway requiring the smallest number of network hops (least-hop routes)3

to go from the base-node to the user (see appendix C). Analogously to the mechanism
whereby ants reinforce successful paths by depositing additional pheromone when car-
rying prey to the nest, node-MAVs will receive an increase in pheromone (∆φconn)
when positioned along the least-hop routes.

In addition, pheromone saturates at a maximum value φmax. To model evaporation,
node-MAVs decrease their emitted pheromone strength every time-step, following a
subtractive decay rate ∆φdecrement.

Once the pheromone is entirely evaporated, node-MAVs become ant-MAVs and re-
turn to the base-node. No exploration is done during this retraction phase whose sole
purpose is to bring the ant-MAV to the base-node in a rapid and dependable manner
so that it can redeploy as if newly launched. Therefore, during retraction ant-MAVs
always navigate along paths with highest amounts of pheromone and they never change
to node-MAV state. As before, the choice of left or right branching is made based on
pheromone information broadcasted by node-MAVs (i.e., the amount of pheromone on
left φi−1,j and right φi,j−1 branches in direction of the base-node). To avoid splitting
the SMAVNET, only node-MAVs whose added coordinates are higher or equal to the
added coordinates of neighboring nodes should become ant-MAVs4. To enforce this,
node-MAVs which are required to maintain a communication link between the base-
node and further nodes in the grid receive ∆φinternal amounts of pheromone at each
time-step. Maintaining a direct or indirect connection between all node-MAVs and the
base-node is essential in a system without positioning. Equations 6 through 9 summa-
rize the evolution of pheromone present at node-MAVs over time.

3 In networking, a hop is the trip a data packet takes from one node to a neighbor node in
the network.

4 As an example, a node-MAV in (1,1) should retract after the one in (1,2) because it might
be serving as communication relay between the first node and the remainder of the swarm.
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∆φa =

8
<

:

∆φinternal if node-MAVi,j is connected to node-MAVk,l

with coordinates such that i + j < k + l
0 otherwise

(6)

∆φb =

8
<

:

∆φconn if node-MAVi,j is on the least-hop route from the
base-node to the user

0 otherwise
(7)

∆φc = n · ∆φant where n the number of ant-MAVs within communication
range having as a reference-node node-MAVi,j

(8)

φi,j(t) = max[φmax, φi,j(t − 1) − ∆φdecrement + ∆φa + ∆φb + ∆φc] (9)

Triggering the retraction of the MAVs is done by ending the communication be-
tween the base-node and the user. Because the node-MAVs no longer receive an in-
crease in pheromone for being on a least-hop route from the base-node to the user,
their pheromone decreases until entirely evaporated. They then become ant-MAVs and
retract to the base-node. Once arrived, they are signaled to land through a message
broadcasted by the base-node. This mechanism allows for the retraction and landing
of the swarm.

Finally, in case an ant-MAV loses connection with the grid for a duration greater
than ∆tlost, it performs a spiral trajectory and eventually reconnects and proceeds to
the nest.

Parameters of the ant-based algorithm used in our scenario are listed in Table 1.

Table 1 Parameters of the ant-based controller

Parameter Value

φinit 0.7 [units]
φmax 1 [units]
µ 0.75 [units]
∆φant 0.002 [units per communication]
∆φconn 0.01 [units per time-step]
∆φinternal 0.001 [units per time-step]
∆φdecrement 0.001 [units per time-step]
∆tlost 2 [s]

3.3 Motion Primitives

The following motion primitives describe the actual behaviors of the MAVs in terms of
physical movement of the platforms with respect to a given high-level command such
as launch, land, orbit, turn left and right or avoid MAVs.

Launching and landing MAVs perform a helicoidal trajectory until they reach a
relative altitude of 20 m or the ground respectively.
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Heading maintenance Allows the ant-MAVs to turn following the smallest turn
radius until the desired heading is met and continue straight following this heading.
This is used to follow left and right Y-junction paths.

Orbiting Unlike hovering aircrafts or ground robots, fixed-wing MAVs must con-
stantly remain in motion to produce lift. The node-MAV motion primitive con-
sists in performing the smallest possible circular trajectory. In our system, this
corresponds to a circle of approximately 10 m radius.

MAV avoidance MAV avoidance is done through altitude differentiation to avoid
changing the turning behaviors of the MAVs. Node-MAVs fly at an altitude of 20,
25 or 30 m depending on their coordinate in the grid, as can be seen in Fig. 7.
This ensures that neighboring node-MAVs do not fly at the same altitude. Ant-

20 25 30

3025

0

30 20 25

10
0m60°

base-node

20

Fig. 7 Altitude assignment for node-MAVs based on grid coordinates. This distribution en-
sures that neighboring node-MAVs are at different altitudes.

MAVs on the other hand must verify the target altitude of neighboring ant-MAVs
received through local communication and decide either to maintain their current
altitude in the case where no conflicts are detected, or to adopt the lowest possible
non-conflicting target altitude starting from 35 m and going up with steps of 5
m. While this constraint does not exclude all collisions (agents can collide while
trying to reach their target altitude), it largely reduces them to a suitable level for
a swarm system robust to failures of single nodes.

4 Results

Here we present the qualitative behavior of the swarm, its performance in terms of
search, communication, and retraction capacities and the robustness of the SMAVNET
to MAV failures or varying swarm sizes.

4.1 Swarm Behavior

An example of the behavior of the swarm in simulation can be seen in Video1-SMAVNET
provided in the online supplementary material and in Fig. 8. Observed behaviors in-
clude the formation of grids composed of several short branches deployed in multiple
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Fig. 8 Simulator screenshots showing a successful deployment, maintenance and retraction.
Screenshots are temporally sequenced from left to right and from top to bottom. Towards the
beginning of the trial, agents randomly favor the left of the area. The swarm is then successfully
able to re-organize to search the right of the search area, find the user, maintain the connection
and then finally retract and land. Node-MAVs are white with black borders, ant-MAVs in solid
black and lines represent local communication links. The circle around the base-node and user
represent their communication range with noise. A video of a similar simulation run can be
seen in Video1-SMAVNET provided in the online supplementary material.
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directions or longer chain-like grids capable of searching in a single direction for dis-
tant users. The overall network changes between different configurations until a user
is found. The paths requiring the least amount of hops to reach the user from the
base-node are then maintained and node-MAVs which are not positioned along these
paths eventually retract and redeploy, often in more suitable positions for the commu-
nication network. Retractions are done in a wave-like manner, starting from the nodes
furthest away from the base-node. The rate at which the network retracts depends
on the time needed to evaporate the pheromone present on the furthest nodes of the
network. Retraction times could thus greatly be reduced by lowering the maximum
amount of pheromone present at each node-MAV (φmax).

Obviously, the grid formed by the node-MAVs does not precisely follow the 60◦ branches
of constant length envisioned in the ideal grid presented in Fig. 4. The discrepancy
between the positions of MAVs with respect to the envisioned pheromone grid was
expected considering the noise present in the sensors and actuators of the simulated
MAVs, the noisy communication links which control the behavior of the robots and
finally, the fact that MAVs are not able to navigate precisely above emitting node-
MAVs but rather “loosely” within their communication range. Despite this, the swarm
system is able to deploy, maintain and retract the SMAVNET. This is due to the fact
that highly precise trajectories are unnecessary when the range at which a piece of
information is sensed is largely superior to the uncertainty in agent motion. Therefore
instead of having MAVs navigate following a precise trajectory, it is more suitable to
ensure that they remain within the communication range of the node-MAVs forming
the grid. In the case where an MAV leaves the communication range of the grid, addi-
tional behaviors such as spiraling allow them to reconnect. Of interest is the case of the
lost MAV which can be seen disconnected from the swarm in Fig. 8 and subsequently
reconnected to the swarm in the following images.

Finally, the dynamics of the platforms and the altitude differentiation mechanism can
be seen in Fig. 9 which shows the altitude behavior of the 15 MAVs from the moment
the first MAV is launched to the landing of the last MAV. As can be seen there is a
clear separation in altitude between node-MAVs (orbiting at lower altitudes of 20, 25
and 30 m) and ant-MAVs (navigating above the grid).

4.2 Performance

When tested on 500 trials with users randomly positioned within the search area (Fig.
2), the swarm was capable of finding more than 91% of the users as seen in Fig. 10. The
mean probability of successfully delivering a packet sent from the base-node to the user
is measured each second and averaged over the 500 trials (Fig. 11). In the first couple
of minutes of a trial, there are typically no connections established between the base-
nodes and users because swarms have not had time to sufficiently deploy. Over time,
an increasing number of trials are able to establish a connection between the base-node
and a user. The increasing performance of the swarms indicates that established con-
nections are maintained and improved to the end of the 30 minute trials Fig. 11 (left).
Fig. 11 (right) presents statistics on the mean successful packet delivery probability
over 30 minutes for 500 trials. Trials where no users are found have a probability 0
of delivering a packet to the user, while trials in which the swarm is able to rapidly
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Fig. 9 Side view of the trajectories of each MAV in the swarm over the deployment, main-
tenance and retraction trial shown in Fig. 8. The MAVs, are launched and land around Y=0.
Node-MAVs navigate at altitudes of 20, 25, and 30 m which can be seen by the compact
orbiting trajectories at these altitudes, the ant-MAVs on the other hand fly above the grid.

create and further maintain connections between the base-node and the user have a
probability close to 1. Finally, a median packet delivery probability of around 0.7 is
largely sufficient to achieve simple communication between the base-node and the user.
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Fig. 10 Users successfully connected to the base-node. The search area is grey, the found
users are represented by points and the unfound users by crosses.
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Fig. 11 Left: Mean probability of successfully delivering a packet sent from the base-node to
the user, measured each second and averaged over the 500 trials. Right: Mean successful packet
delivery probability over 30 minutes over 500 trials. The box has lines at the lower quartile,
median, and upper quartile values. The whiskers extend to the farthest data points that are
within 1.5 times the interquartile range.

Over the 500 trials, 2.6% of the 7500 MAVs launched were implicated in a collision
with another MAV and subsequently destroyed. During the retraction phase, more
than 98.5% of the deployed MAVs (not taking into account those destroyed in colli-
sions) were able to return to the base-node. The mean retraction time is 342 s (std.
dev. 81 s). Less than six minutes is reasonable for the retraction of fifteen MAVS as it
represents 1 MAV landing every 22 s.

4.3 Robustness

Experiments were conducted to test the robustness of the SMAVNET to MAV fail-
ures and to emphasize the scalability of the proposed algorithm. The scalability of the
SMAVNET is tested by deploying swarms composed of 5 to 20 MAVs. As seen in Fig.
12, deploying swarms larger than 15 MAVs increases the performance of the swarm
while lowering the number decreases it. This is due to the fact that small swarms have
difficulties reaching users positioned far from the base-node and the limited amount
of explorers means it would take more time to explore the same area than with larger
swarms. Furthermore, it is more challenging with small swarms to create redundant
communication pathways between the base-node and the user, thus often decreasing
the quality of the connections. However, even swarms with only 5 MAVs are able to
find nearly 50% of the users over 500 trials and in some cases, maintain excellent con-
nections with up to 98% packet delivery success. This also shows that our algorithm
doesn’t rely on a specific swarm size to function.
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Fig. 12 Left: Mean successful packet delivery probability over 30 minutes when swarms of 5
to 20 MAVs are deployed. Each box represents data from 500 trials. It has lines at the lower
quartile, median, and upper quartile values. The whiskers extend to the farthest data points
that are within 1.5 times the interquartile range. Outliers are shown with a + sign. Right:
Probability of finding the user over 500 trials of 30 minutes when swarms of 5 to 20 MAVs are
deployed.

To test the robustness of the swarm to node failure, we randomly removed 0 to 10
MAVs from an initial swarm composed of 15 MAVs at sequentially random moments
in the 30 minute trials. In Fig. 13, we qualitatively show that swarms with 1 or 2
failures perform comparably to systems with no failures while the performance with
more failures degrades gracefully, with examples of swarms which can even withstand
10 MAV failures. Notice that the probability of finding a user decreases with the num-
ber of failures, which is similar to the effect seen when deploying small swarms, as
mentioned previously.

5 Discussion

While our swarm algorithm works robustly in cases of MAV failures or varying swarm
size deployments, additional measures must be taken to mitigate the problem of windy
environments. Here we discuss challenges due to wind and propose three directions in
which solutions can be found without requiring profound changes to the basic control
strategy. Challenges arise from the fact that wind translates the individual MAVs (local
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Fig. 13 Left: Mean successful packet delivery probability over 30 minutes when 0 to 10 MAVs
are removed sequentially at random times from the initial swarm composed of 15 MAVs. Each
box represents data from 500 trials. It has lines at the lower quartile, median, and upper
quartile values. The whiskers extend to the farthest data points that are within 1.5 times the
interquartile range. Right: Probability of finding the user over 500 trials of 30 minutes when 0
to 10 MAVs are removed sequentially at random times.

wind) or the entire swarm (global wind) following a random direction and strength.
For example, one can imagine constant global wind pushing the MAVs away from the
base-node which is fixed. Ultimately, the swarm would disconnect from the base-node
and get lost. To counteract the effects of wind the following approaches are currently
being investigated:

– Mitigation at the autopilot level: The low-level autopilot is responsible for
controlling an MAV based on commands sent from the motion primitives described
in section 3.3. Typical commands include setting the desired turn rate, pitch rate
and speed of the MAV. To reliably execute these commands, autopilots could reac-
tively adapt the attitude of an MAV with respect to measurements provided by a
wind sensor (e.g., based on optic flow, Rodriguez et al. (2007)) . Because the effect
of wind is compensated at the lower-levels of control, no modifications are needed
at the level of swarm control.

– Mitigation at the individual level: Each agent attempts to counteract the effect
of wind by sensing that it is not at its intended “position” in the pheromone grid.
This detection can be derived from information concerning the MAVs within its
neighborhood. For example, orbiting MAVs can sense if they are fully connected,
mostly connected to or disconnected from a neighbor or the base-node and com-
parisons can be made on its intended position with respect to the grid-coordinates
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of neighbors over time. The signal to noise ratio of communication links can also
be used to position robots with respect to neighbors in a communication network
(Dixon and Frew 2008). Once a displacement has been sensed agents should per-
form local search patterns, possibly spirals, allowing them to improve their position
with respect to neighbors.

– Mitigation at the swarm level: Instead of mitigating wind on the individual
level, the swarm as a whole can strive to fix MAV displacements. Unpublished
initial results show for example that frequently replacing the node-MAVs in the
network by newly-deployed ones largely reduces the drift of the swarm. This is due
to the fact that newly-deployed MAVs have drifted for a shorter amount of time
than node-MAVs already present in the network. Because the swarm can withstand
imprecisions in the position of it’s agents (section 4.1) small displacements due to
wind over a short time are assimilated by the swarm. In our algorithm this “refresh”
mechanism can be implemented by systematically swapping roles between newly
launched ant-MAVs and node-MAVs. As a result, ant-MAVs involved in a swap
would change state to node-MAV and receive the coordinates and pheromone levels
displayed by the swapping node-MAV which would continue as if it were a passing
ant-MAV.

6 Conclusion and Future Work

This article provides insight into the design of aerial swarms capable of self-organizing
using only minimal sensing and communication capabilities for an application-oriented
scenario.

The deployment, maintenance and retraction of a swarm of positionless MAVs for
the creation of wireless communication networks (SMAVNETs) in disaster areas is
demonstrated in 3D simulation with realistic trajectories and communication. Because
the development of local interactions responsible for swarming is an unsolved problem,
inspiration is taken from the biological models of the deployment, maintenance and
retraction of pheromone paths deposited by army ants between their nest and varying
distributions of food sources in nature. When adapted to a swarm of 15 MAVs, the
system is capable of deploying an efficient communication network between two ground
users and subsequently retracting agents to their initial launching point. In addition
we show that the SMAVNET is scalable and robust to MAV failure. Because MAVs do
not rely on sensors which are dependent on the environment or expensive in terms of
weight, energy and monetary cost, this work paves the way towards minimalist aerial
swarms applicable in most environments in a rapid, inexpensive, scalable and simple
manner.

Future developments will be concerned with assessing the proposed solutions for mit-
igating the effect of wind and the development of more complex scenarios (numerous
ground users and extended search areas). Finally, within the field of swarm-engineering,
an extensive safeness and liveness analysis will be conducted to demonstrate that our
system is capable of fulfilling it’s required task while avoiding catastrophic failures and
undesirable situations (Winfield et al. 2005b;a). The final validation of our swarm ap-
proach in real-life scenarios will be demonstrated on a swarm of aerial robots currently
under development.
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Appendix

A Flight model

The fixed-wing MAVs follow a first-order flight model based on experiments run on the plat-
forms under development following equations 10 through 12 which modify the position (x, y, z)
of the platforms after each timestep of duration dt based on a desired speed v, turn rate ω and
altitude change rate ḣ.

x(t) = x(t − 1) + v · cos(ω · dt) (10)

y(t) = y(t − 1) + v · sin(ω · dt) (11)

z(t) = z(t − 1) + ḣ · dt (12)

The agents fly at a speed of 10 m
s affected by uniform noise in the range [-1,1] m

s and are
unable to hover or make sharp turns, their minimum turn radius being around 10 m. Uniform

noise in the range [-5,5]
◦

s is added to the turn rate of the MAV. A smoothing function ensures
that the turn rate can not be modified abruptly (the maximum change in turn rate is of 90
◦

s2 ). The altitude change rate is of maximum 5 m
s . This rate is affected by uniform noise in

the range [-1,1] m
s and its maximum change is of 5 m

s2 . Such physical constraints enforce a
more complex controller with respect to ground robots or hovering platforms.

B Communication

Our simulator implements lower layers of the open systems interconnection (OSI) model,
namely the network layer, data-link layer and physical layer for 802.11b wireless communi-
cations.

Network Layer The network layer is responsible for implementing the routing protocols
for relaying data messages from the base-node to other ground users. These packets are
broadcasted every second by the base-node and are then flooded throughout the network.
To do so, each router re-broadcast received packets only the first time they are received.

Data-link Layer In the data-link layer we implement the medium access control (MAC) data
communication protocol which takes care of coordinating access to the physical medium.
More specifically, we implemented the carrier sense multiple access with collision avoid-
ance (CSMA/CA) protocol described in IEEE specifications for 802.11b5. Based on the
CSMA/CA protocol, agents sense the physical medium before transmitting a packet. If
the medium is busy, the agent chooses a random back-off time after which a retransmission
will be attempted. While being able to avoid collisions between fully connected neighbors,
it can not avoid hidden node terminals which are a widely present source of collisions in
our MAV network.

Physical Layer The shadowing propagation model (Fenton 1960) was used to probabilis-
tically determine the range of inter-agent transmissions and transmissions with ground
users following equation 13. Packets sent a distance d are assumed received if the Pr(d) is
greater than the receiver’s sensitivity threshold Sr . When a node receives multiple packets
simultaneously, it calculates the signal-to-noise ratio of the strongest received signal to
the sum of other received signal strengths and the ambient noise n. If this ratio is larger

5 http://standards.ieee.org/
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than SNRthresh, the packet is correctly received. Otherwise, all packets collide and are
discarded.

Pr(d)[dBm] = Pt[dBm] − 10 · β log

„
d

d0

«
+ X[dB] (13)

where X is a Gaussian random variable with zero mean and standard deviation σdB .

Parameters of the model were based on specifications of our current wireless hardware
and the observed outdoor communication range of approximately 100 m was used to de-
termine the path loss exponent. A summary can be found in Table 2. The received signal
strength as a function of the distance between transmitter and receiver can be seen in Fig.
14.

Table 2 Parameters of the communication model

Parameter Value

transmit output power Pt 16 dBm
receive sensitivity Sr -82 dBm
path loss exponent β 4.9

shadowing deviation σdB 2 dB
signal-to-noise threshold SNRthresh 10 dB

ambient noise n -102 dBm

0 20 40 60 80 100 120 140 160 180 200−100
−80
−60
−40
−20

0
20

distance
[m]

re
ce

ive
d 

po
we

r
[d

Bm
]

receiver sensitivity
(-82 dBm)

Fig. 14 Wireless signal propagation with log-normal shadowing.

C Hop Information

Information concerning the topology of the MAV network such as the position of nodes with
respect to the shortest communication pathway (in terms of network hops) between the base-
node and a ground user can be determined based on local communication.

In our system, data messages are flooded throughout the SMAVNET from the base-node
to the ground user (appendix B). The number of network hops performed by a data message
is piggy-backed to the transmitted message and incremented after each re-broadcast, starting
from zero at the base-node. The first instance of a data message (each message broadcasted
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from the base-node has a unique ID) to arrive at the user end is assumed to have followed
the path from the base-node to the user which requires the smallest amount of network hops
hopCount. This hopCount is then retransmitted throughout the network as part of the control
message transmitted by each MAV.

MAVs determine their hop distance with respect to the base-node (BHopCount) and user
(UHopCount) based on received control messages from neighboring MAVs. This is done by
having the base-node transmit a BHopCount of 0 and MAVs within communication range of a
user transmit a UHopCounts of 1. Intermediate MAVs then determine their BHopCount and
UHopCount as being the smallest received BHopCount and UHopCount from neighboring
MAVs incremented by one.

MAVs can determine if they are approximately positioned along the shortest communica-
tion pathway by comparing their received hopCount to the addition of their BHopCount and
UHopCount. If the hopCount is larger or equal, then the MAVs are considered useful for the
communication link.
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