
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

PAR

M.Sc. en informatique, Université de Montréal, Québec, Canada
et de nationalité canadienne

acceptée sur proposition du jury:

Lausanne, EPFL
2008

Probabilistic Models for Music

Jean-François Paiement

THÈSE NO 4148 (2008)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE le 28 juillet 2008

 À LA FACULTE SCIENCES ET TECHNIQUES DE L'INGÉNIEUR

LABORATOIRE DE L'IDIAP

Prof. P. Vandergheynst, président du jury
Prof. H. Bourlard, Dr S. Bengio, directeurs de thèse

Prof. J. M. Inesta Quereda, rapporteur
Prof. J. Larsen, rapporteur

Prof. J.-Ph. Thiran, rapporteur

~

Résumé

Dans cette thèse, nous proposons une analyse des données musicales sym-

boliques d’un point de vue statistique, en utilisant des techniques modernes

d’apprentissage machine. L’argument principal de cette thèse consiste à mon-

trer qu’il est possible de concevoir des modèles génératifs, qui sont en mesure

de prédire et de générer des données musicales, dans un style similaire à celui

d’un corpus d’entrâınement, et ce en utilisant un minimum de données.

Nos contributions majeures dans cette thèse sont de trois ordres:

• Nous avons montré empiriquement que des dépendances probabilistes à

long terme sont présentes dans les données musicales. Nous rapportons

des mesures quantitatives de telles dépendances;

• Nous avons montré empiriquement qu’utiliser des connaissances spécifiques

au domaine musical permet de mieux modéliser les dépendances à long

terme au sein des données musicales qu’avec des modèles de séries tem-

porelles standards. Ainsi, nous définissons plusieurs modèles probabilistes

destinés à capturer divers aspects des données musicales polyphoniques.

Ces modèles peuvent aussi être échantillonnés afin de générer des séquences

musicales réalistes;

• Nous avons conçu diverses représentations musicales pouvant être utilisées

directement comme observations par les modèles probabilistes proposés.

Mots-clés: Apprentissage machine, musique, modèles probabilistes, modèles

génératifs, progressions d’accords, mélodies.

ii Résumé

Abstract

This thesis proposes to analyse symbolic musical data under a statistical

viewpoint, using state-of-the-art machine learning techniques. Our main argu-

ment is to show that it is possible to design generative models that are able

to predict and to generate music given arbitrary contexts in a genre similar to

a training corpus, using a minimal amount of data. For instance, a carefully

designed generative model could guess what would be a good accompaniment

for a given melody. Conversely, we propose generative models in this thesis

that can be sampled to generate realistic melodies given harmonic context.

Most computer music research has been devoted so far to the direct mod-

eling of audio data. However, most of the music models today do not consider

the musical structure at all. We argue that reliable symbolic music models such

a the ones presented in this thesis could dramatically improve the performance

of audio algorithms applied in more general contexts.

Hence, our main contributions in this thesis are three-fold:

• We have shown empirically that long term dependencies are present in

music data and we provide quantitative measures of such dependencies;

• We have shown empirically that using domain knowledge allows to cap-

ture long term dependencies in music signal better than with standard

statistical models for temporal data. We describe many probabilistic

models aimed to capture various aspects of symbolic polyphonic music.

Such models can be used for music prediction. Moreover, these models

can be sampled to generate realistic music sequences;

• We designed various representations for music that could be used as ob-

servations by the proposed probabilistic models.

iv Abstract

Keywords: machine learning, music, probabilistic models, generative mod-

els, chord progressions, melodies.

Acknowledgments

Cette thèse est dédiée à Josiane, le plus beau coeur du monde.

J’aimerais adresser mes remerciements les plus sincères à Samy Bengio. Les

quatres dernières années furent pour moi vraiment enrichissantes et agréables,

et ce fût en grande partie grâce à lui. Samy a toujours été là au bon moment

pour me guider ou m’encourager, et je lui en suis vivement reconnaissant.

J’aimerais aussi remercier Hervé Bourlard, grâce à qui l’IDIAP est un en-

droit si propice pour faire de la recherche scientifique de qualité.

Thanks to Douglas Eck, who provided me a wonderful research environment

for more than a year in Université de Montréal.

Finally, I wish to thank all the agencies that made this research possible.

The work reported in this thesis was supported in part by the IST Program

of the European Community, under the PASCAL Network of Excellence, IST-

2002-506778, funded in part by the Swiss Federal Office for Education and

Science (OFES) and the Swiss NSF through the NCCR on IM2.

vi Acknowledgments

Contents

1 Introduction 1

1.1 Statistical Modeling of Music 1

1.2 The Nature of Music . 2

1.3 Elements of Machine Learning 8

1.4 Motivation . 13

2 Chord Progressions 17

2.1 Previous Work on Chord Progressions Models 18

2.2 A Distributed Representation for Chords 19

2.3 A Probabilistic Model of Chord Substitutions 29

2.4 Conclusion . 35

3 Comparing Chord Representations 37

3.1 Interactions Between Chords and Melodies 37

3.2 Melodic Prediction Models . 38

3.3 Experiments . 43

3.4 Conclusion . 50

4 Harmonization 53

4.1 Previous Work on Harmonization 53

4.2 Melodic Representation . 54

4.3 Modeling Root Note Progressions 55

4.4 Decomposing the Naive Representation 58

4.5 Chord Model given Root Note Progression and Melody 59

4.6 Conclusion . 62

viii Contents

5 Rhythms 67

5.1 HMMs for Rhythms . 68

5.2 Distance Model . 69

5.3 Rhythm Prediction Experiments 76

5.4 Conclusion . 80

6 Melodies 81

6.1 Previous Work . 81

6.2 Melodic Model . 88

6.3 Melodic Prediction Experiments 97

6.4 Conclusion . 99

7 Conclusion 101

7.1 Motivation . 102

7.2 Chord models . 103

7.3 Rhythms and Melodies . 105

1 Introduction

1.1 Statistical Modeling of Music

Most people – and even young children – agree when deciding whether a

sequence of notes can be considered as a melody or not. People also mostly

agree when asserting if a melody is appropriate in a given musical context.

Moreover, while there is no solid ground truth about musical genres, most

people agree when discriminating between heavy metal and reggae, even though

the same musical instruments are used when playing these two musical genres.

What intrinsic properties a sequence of notes should possess to be a melody?

What relations this sequence of notes should have with other musical compo-

nents to be considered valid in a specific context? What makes genre A different

from genre B?

When telling that a particular song genre is rock music, the listener iden-

tifies musical patterns that are common to most other rock songs, under some

invariances. However, all rock songs are far from being all identical. Where

and how is it possible to put some variability in a rock song? Where is there

specific rhythmic or melodic patterns that should be present in a song so that

it can be considered as rock music?

This thesis proposes to explore these questions under a statistical viewpoint,

using state-of-the-art machine learning techniques. The main argument of this

thesis is to show that it is possible to design probabilistic models that are able

to predict and to generate music given arbitrary contexts in a genre similar

to the training corpus, using a minimal amount of music data. The exact

meaning and the realm of the last sentence will become clear while reading

this chapter, where we first introduce basic musical concepts required for the

reader to understand the material in this thesis. Then, we introduce some

elements of machine learning, which is the design of algorithms that can learn

2 Introduction

from datasets of examples.

Musical events are tied by very long term statistical dependencies. This

has proved very difficult to model with traditional statistical methods. The

problem of long-term dependencies is not limited to music, nor to one particular

probabilistic model [Bengio et al., 1994]. One of the main contributions of this

thesis is to show that statistical dependencies in music usually follow standard

patterns that can be effectively captured with carefully designed models.

1.2 The Nature of Music

While we do not expect the reader to be an expert in music, some basic

elements of music theory [Sadie, 1980] are necessary to understand the models

presented in this thesis.

Musical notes can be described by 5 distinct characteristics: namely pitch,

rhythm, loudness, spatialization, and timbre.

1.2.1 Pitch

Pitch is the perceived frequency of a sound [Krumhansl, 1979]. The frequency

content of an idealized musical note is composed of a fundamental frequency

and integer multiples of that frequency. Human pitch perception is logarithmic

with respect to fundamental frequency. Thus, we normally refer to the pitch

of a note using pitch classes. In English, a pitch class is defined by a letter.

For instance, the note with the fundamental frequency of 440 Hz is called

A. In the Western music culture, the chromatic scale is the most common

method of organizing notes. When using the equal temperament, each successive

note is separated by a semi-tone. Two notes separated by a semi-tone have a

fundamental frequency ratio of the twelfth root of two (approximately 1.05946).

Using this system, the fundamental frequency is doubled every 12 semi-tones.

The interval between two notes refers to the space between these two notes

with regard to pitch. Two notes separated by 12 semi-tones are said to be

separated by an octave, and have the same pitch-class. For instance, the note

with fundamental frequency at 880 Hz is called A, one octave higher than the

note A with the fundamental frequency at 440 Hz. We say that the interval

between these two notes is an octave.

The symbol # (sharp) raises a note by one semi-tone. Conversely, the

symbol b (flat) lowers a note by one semi-tone. Most of the pitch classes are

separated by one tone (i.e. two semi-tones), except for notes E and F, as

well as B and C, that are separated only by one semi-tone. Table 1.1 shows

The Nature of Music 3

Table 1.1. Fundamental frequencies for pitch-classes ranging from A 440 Hz

to A 880 Hz. There is only one semi-tone between E and F, as well as between

B and C.

Pitch class Fundamental frequency (Hz)

A 440

A# / Bb 466.16

B 493.88

C 523.25

C# / Db 554.37

D 587.33

D# / Eb 622.25

E 659.26

F 698.46

F# / Gb 739.99

G 783.99

G# / Ab 830.61

A 880

fundamental frequencies for pitch-classes ranging from A 440 Hz to A 880 Hz.

In this system, A# and Bb refer to the same note. Two pitch classes that

refer to the same pitch are called enharmonics. In this thesis, we consider

enharmonics to be completely equivalent.

1.2.2 Rhythm

In most music notations, rhythm is defined relatively to an underlying beat

that divides time in equal parts. The speed of the beat is called the tempo. For

instance, when the tempo is 120, we count 120 beats per minute (BPM), or two

beats per second. Meter is the sense of strong and weak beats that arises from

the interaction among hierarchical levels of sequences having nested periodic

components. Such a hierarchy is implied in Western music notation, where

different levels are indicated by kinds of notes (whole notes, half notes, quarter

notes, etc.) and where bars (or alternatively measures) establish segments

containing an equal number of beats [Handel, 1993]. Kinds of notes are defined

relatively to each other. Whole notes have always twice the length of half notes,

which have twice the length of quarter notes, and so on. The number of beats

4 Introduction

per bar is usually defined in the beginning of a song by the time signature.

Also, depending on the meter definition, kinds of notes can last for variable

number of beats. For instance, in most four-beat meters, a quarter note lasts

one beat. Hence, an eight note lasts for half a beat, a half note lasts for two

beats, and a whole note lasts for four beats. If the tempo is 120, we play one

half note per second and there is two half notes per bar.

When some beats in the measure are played consistently stronger or weaker

than others, a recognizable metrical grid is established. Different metrical grids

are possible for the same meter, and help provide a temporal framework around

which a piece of music is organized. For example, while virtually all modern

pop songs are built around the same four-beat meter, different metrical grids

yield different musical styles. For instance, a metrical grid which stresses beats

2 and 4 is a key component of the classic 1950s rock-and-roll.

1.2.3 Loudness, Spatialization, and Timbre

The loudness of a sound depends on the amplitude of its waveform. Traditional

music notation defines loudness using Italian qualitative terms such as forte

(loud) and piano (soft).

Spatialization is just the position in space from which the sound originates.

Traditional music notation used to ignore this aspect of sounds. Nowadays,

most music composers use spatialization as an important part of their musical

language.

Timbre is the most complicated and less understood aspect of a sound

[Schouten, 1968]. It could be simply defined as being all the variable aspects

of a sound that are neither pitch, rhythm, loudness, nor spatialization. More

intuitively, the timbre of a sound is what makes the difference between two

notes played at the same pitch, same rhythm, and same loudness with two

different musical instruments. An important feature that determines timbre

is the relative amplitude of each of the harmonics of a musical sound. For

instance, an organ pipe reinforces the odd harmonics. Hence, a synthesized

waveform with very loud odd harmonics compared to even harmonics is likely

to sound like an organ.

While loudness, spatialization, and timbre are really important aspects of

sound, this thesis is mostly concerned with the modeling of pitch and rhythm.

1.2.4 Tonal Music

Tonal music comprises most of the Western music that has been written since

J.-S. Bach (including contemporary pop music.) One of the main features of

The Nature of Music 5

tonal music is its organization around chord progressions. A chord is a group

of three or more notes (generally five or less.) A chord progression is simply a

sequence of chords. In general, the chord progression itself is not played directly

in a given musical composition. Instead, notes comprising the current chord act

as central polarities for the choice of notes at a given moment in a musical piece.

Given that a particular temporal region in a musical piece is associated with

a certain chord, notes comprising that chord or sharing some harmonics with

notes of that chord are more likely to be present. In probabilistic terms, the

current chord can be seen as a latent variable (local in time) that conditions the

probabilities of choosing particular notes in other music components, such as

melodies or accompaniments. In typical tonal music, most chord progressions

are repeated in a cyclic fashion as the piece unfolds, with each chord having in

general a length equal to integer multiples of the shortest chord length. Also,

chord changes tend to align with bars. Since chord changes usually occur at

fixed time intervals, they should be much simpler to detect in audio signal than

beginnings and endings of musical notes, which can happen almost everywhere.

Meter, rhythm, and chord progressions provide a framework for developing

musical melody. For instance, in most contemporary pop songs, the first and

third beats are usually emphasized. In terms of melodic structure, this indicates

that notes perceptually closer to the chord progression are more likely to be

played on these beats while more “dissonant” notes can be played on weaker

beats. For a complete treatment of the role of meter in musical structure see

Cooper and Meyer [1960].

In most tonal music theories, chord names are defined by a root note that

can either be expressed by its absolute pitch-class or by its relation with the

current key. The key is the quality by which all the notes of a song are con-

sidered in relation with a central tone, called the tonic. The key of a song is

designated by a note name (the tonic), and is the base of a musical scale from

which most of the notes of the piece are drawn. Most commonly, that scale

can be either in major or minor mode. See for instance Schmeling [2005] for a

thorough introduction to musical scales.

Throughout this thesis, we define chords by giving the pitch class letter,

sometimes followed by symbol # (sharp) to raise a given pitch class by one

semi-tone. Finally, each pitch class is followed by a digit representing the

actual octave where the note is played. For instance, the symbol c1e2a#2d3

stands for the 4-note chord with a c on the first octave, an e and an a sharp

(b flat) on the second octave, and finally a d on the third octave. The third

octave is the octave that contains A 440 Hz.

6 Introduction

1.2.5 Computer Applications in Music

We can divide the spectrum of computer applications that deal with music

into two overlapping categories: Applications concerned directly with audio

data and applications that deal with more abstract representations of music

data.

Audio data

With the widespread use of portable music players, most computer users today

have to deal with large digital music database. Plenty of software tools (e.g.

iTunes) are available to play, retrieve, and store huge quantities of audio files. A

lot of research has been done in the recent years in the area of music information

retrieval [Pachet and Zils, 2003; Berenzweig et al., 2003; Slaney, 2002; Peeters

and Rodet, 2002; Pachet et al., 2001]. Abstract features can be extracted from

audio signal as a preprocessing step for various applications [Burges et al., 2003;

Foote, 1997; Scheirer, 2000; Davy and Godsill, 2003].

For instance, many algorithms have been proposed to do automatic mu-

sical genre recognition [Zanon and Widmer, 2003; Aucouturier and Pachet,

2003; Tzanetakis et al., 2001; Tzanetakis and Cook, 2002; Pachet and Cazaly,

2000; Soltau et al., 1998]. This application is really interesting and has obvious

huge commercial interest. An online music store would like to be able to sug-

gest music similar to what a consumer already bought. However, music genre

recognition suffers from two major drawbacks. First, most human similarity

judgments about music similarity are not based on audio data itself, but on

other meta-informations surrounding the audio file, such as the identity of the

artist, its popularity, ethnicity, the year of production, the country of origin,

and many other factors. All this information cannot be extracted from audio

data. For instance, some chord progressions in Beatles songs are almost simi-

lar to chord progressions in popular music of the 17th century, while these two

musical genres are considered completely different by most people. Another

fundamental problem in music genre recognition is that nobody agree on genre

taxonomy, hence there is no ground truth for algorithm evaluation. A promis-

ing approach would be to allow the users to define their own taxonomy and let

the learning algorithms train on these customized musical genres.

MIDI stands for Musical Instrument Digital Interface, an industry-standard

interface used on electronic musical keyboards and PCs for computer control of

musical instruments and devices. An interesting challenge arising in the music

information retrieval context is transcription, i.e. converting audio data into

The Nature of Music 7

any kind of symbolic representation such as MIDI or traditional music notation

[Cemgil et al., 2003, 2006; Klapuri, 2001; Walmsley, 2000; Sterian, 1999; Martin,

1996]. However, because of fundamental difficulties inherent to the nature

of sound, state-of-the-art techniques are not good enough for most practical

applications. Suppose for instance that the even harmonics of a particular note

have very high relative amplitude. The same sound could be produced when

playing two notes separated by one octave, if the timbre if different. These

difficulties have been addressed in pitch tracking algorithms [Saul et al., 2003;

de Cheveigné and Kawahara, 2002; Parra and Jain, 2001; Klapuri et al., 2000;

Klapuri, 1999; Slaney and Lyon, 1990] with mixed success. Pitch tracking is a

sub-problem of transcription. An algorithm for pitch tracking tries to detect

fundamental frequencies of notes in audio signals without regard to rhythm

representation.

Algorithms for beat tracking [Tzanetakis et al., 2002; Goto and Muraoka,

1998; Cemgil et al., 2000; Goto, 2001; Scheirer, 1998] are more successful than

transcription algorithms. Such algorithms can be used as preprocessors for

alignment before actual transcription. Moreover, accurate beat tracking can

be useful to synchronize visual effects with music in real-time.

Symbolic data

All the applications described so far directly consider audio data. Because

of the sudden huge popularity of portable audio players, research about al-

gorithms that sort, retrieve, and suggest music have become really important

recently. However, state-of-the-art transcription algorithms are not reliable

today. Hence, most of the music models today do not consider the musical

structure at all. They mostly rely on local properties of audio signal, such

as texture, or short term frequency analysis. For instance, in most current

approaches for transcription or pitch tracking, the algorithms have to rely on

strong assumptions about timbre or the number of simultaneous notes to de-

cide how many notes are simultaneously played, and to identify these notes.

The general applicability of these algorithms is thus limited.

An interesting intermediate approach in the context of genre classification

is proposed by Lidy et al. [2007] to overcome this problem. In this work, audio

features and symbolic features are combined, which leads to better classifi-

cation results. Symbolic features are extracted from audio data through an

intermediate transcription step. Hence, while transcription performances are

far from being perfect by themselves, they appear to be sufficient to provide

worthwhile information for genre classification purposes.

8 Introduction

However, very little research has been done to model symbolic music data

compared to the important efforts deployed to model audio data. Accurate

symbolic music models such as the ones presented in this thesis could dra-

matically improve the performance of transcription algorithms applied in more

general contexts. They would provide “musical knowledge” to algorithms that

currently only rely on basic sound properties to take decisions. In the same

way, natural language models are commonly used in speech transcription al-

gorithms [Rabiner and Schafer, 1978]. As a simple example, suppose that a

transcription algorithm knows the key of a particular song and tries to guess

the last note of a song. The prior probability that this note would be the tonic

would be very high, since most of the songs in any corpus end on the tonic.

Another advantage of symbolic music data is that it is much more com-

pressed than audio data. For instance, the symbolic representation of an audio

file of dozens of megabytes can be just a few kilobytes large. These few kilobytes

contain most of the information that is needed to reconstruct the original audio

file. Thus, we can concentrate on essential psychoacoustic features of the sig-

nal when designing algorithms to capture long term dependencies in symbolic

music data.

Finally, the most interesting advantage of dealing directly with symbolic

data is the possibility of designing realistic music generation algorithms. Most

of the probabilistic models presented in this thesis are generative models (c.f.

Section 1.3.1). Thus, these models can be sampled to generate genuine musical

events, given other musical components or not. For instance, we introduce in

Chapter 4 an algorithm that generates the most probable sequence of chords

given any melody, following the musical genre of the corpus on which the algo-

rithm was trained.

State-of-the-art research papers in the area of symbolic music modeling are

described in the chapters of this thesis related to corresponding applications.

1.3 Elements of Machine Learning

Artificial intelligence [Russell and Norvig, 2002] is a well-known subfield of

computer science, which is concerned with producing machines to automate

tasks requiring “intelligent” behavior. Early artificial intelligence systems were

usually based on the definition of a set of rules. These rules were used by

computers to solve problems, make decisions, or take actions in response to

some inputs coming from the real world. However, the sets of rules required to

solve complicated tasks such as natural language understanding or visual object

recognition turned out to be much too complicated to design and encode for

Elements of Machine Learning 9

practical purposes [Duda et al., 2000a]. Such systems were lacking flexibility

for further improvement and required huge amounts of human effort to encode

domain knowledge.

To overcome these limitations, machine learning emerged [Rosenblatt, 1958;

Vapnik, 1998] as a subfield of artificial intelligence concerned with the design

of algorithms that can learn from examples. Since datasets of examples are

usually very large in practice, the domain of machine learning is very close to

statistics. Excellent introductions to the elements of machine learning can be

found in Bishop [2006] and Duda et al. [2000b].

We assume in this thesis that the reader is familiar with the basic concepts

of random variables and probability distributions [Billingsley, 1995; Breiman,

1968; Feller, 1971]. Machine learning models can be divided into two main

categories, namely discriminative models and generative models. As a simple

application of machine learning, let us consider the problem of classification.

Let x be a multidimensional random variable corresponding to attributes of

objects that we observe in a dataset. Let y be a discrete random variable

where each state correspond to a class of the objects in the datasets. For

instance, the observed x vectors may correspond to pixels in images while the

values of y would correspond to the identities of these objects. Discriminative

models try to estimate the distribution p(y|x). In other words, a discriminative

model concentrates on a particular task, with less emphasis on the distribution

p(x) of the dataset.

Instead, the models presented in this thesis belong to the category of gen-

erative models. Bayes rule provides that

p(y|x) ∝ p(x|y)p(x) . (1.1)

Generative approaches aim to model the right part of Eq. (1.1) as an interme-

diate task. This is usually much more difficult since it requires to model the

joint distribution of all the components in x. This is especially hard when x

has high dimension, or when considering datasets with limited size. In prac-

tice, discriminative models are more efficient when the goal is to accomplish a

specific task. On the other hand, reliable generative models are more powerful

when many tasks are to be solved by the same model or when missing values

are present in datasets. Generative models can also be sampled to generate

new instances of data.

In very general terms, discriminative modeling may be seen as engineering

(i.e. solving a particular task in the most efficient way possible). On the other

hand, generative modeling may be closer to science (i.e. understanding the

fundamental principles and the relationships between empirical observations).

10 Introduction

1.3.1 Generative Models

The advantages of generative models for music are plenty: One can sample the

learned distributions to generate new music. Moreover, one can use the learned

distributions to infer the probability of musical observations given other music

components. For instance, a generative model can guess what would be a good

accompaniment for a given melody, as we present in Chapter 4. Conversely, one

could sample a generative model to generate realistic melodies given harmonic

context, as is shown in Chapter 6.

As pointed out in Section 1.2.5, most applications dealing with symbolic

music data take as inputs some musical components (e.g. melodies, chord

progressions, or audio excerpts) and produce some other musical components.

Modeling the nature of the relationships between these musical components

appears to be the common ground to all these applications. Generative models

provides an ideal framework for such a modeling task.

The probabilistic models used in this thesis are described using the graph-

ical model framework. Graphical models [Lauritzen, 1996] are useful to define

probability distributions where graphs are used as representations for a partic-

ular factorization of joint probabilities. Vertices are associated with random

variables. A directed edge going from the vertex associated with variable A

to the one corresponding to variable B accounts for the presence of the term

P (B|A) in the factorization of the joint distribution of all the variables in the

model. For instance, the graphical model in Figure 1.1 means that the joint

probability of variables A, B, and C (i.e. P (A,B,C)) can be expressed as

P (A)P (B|A)P (C|A). Defining a graphical model representation for a set of

random variables amounts to defining a set of independence assumptions be-

tween these variables, by factorization of their joint distribution. The process

of calculating probability distributions for a subset of the variables of the model

given the joint distribution of all the variables is called marginalization (e.g.

deriving P (A,B) from P (A,B,C)). The graphical model framework provides

efficient algorithms for marginalization and various learning algorithms can be

used to learn the parameters of a model, given an appropriate dataset.

The Expectation-Maximization (EM) algorithm [Dempster et al., 1977;

Bilmes, 1997] can be used to estimate the conditional probabilities of the hid-

den variables in a graphical model. Hidden variables are variables that are

neither observed during training nor during evaluation of the models. These

variables represent underlying phenomena that have an impact on the actual

observations, but that cannot be observed directly. Such variables are used

in probabilistic models to distribute or to compress information transmitted

Elements of Machine Learning 11

A

B C

Figure 1.1. Graphical model representation of the joint probability

P (A,B,C) = P (A)P (B|A)P (C|A).

between observed random variables. The EM algorithm proceeds in two steps

applied iteratively over a dataset until convergence of the parameters. Firstly,

the E step computes the expectation of the hidden variables, given the current

parameters of the model and the observations of the dataset. Secondly, the

M step updates the values of the parameters in order to maximize the joint

likelihood of the observations and the expected values of the hidden variables.

Marginalization must be carried out in the models proposed in this thesis

both for learning (during the expectation step of the EM algorithm) and for

evaluation. The inference in a graphical model can be achieved using the

Junction Tree Algorithm (JTA) [Lauritzen, 1996]. In order to build the junction

tree representation of the joint distribution of all the variables of the model,

we start by moralizing the original graph (i.e. connecting the non-connected

parents of a common child and then removing the directionality of all edges) so

that some of the independence properties in the original graph are preserved. In

the next step (called triangulation), we add edges to remove all chord-less cycles

of length 4 or more. Then, we can form clusters with the maximal cliques of

the triangulated graph. The Junction Tree representation is formed by joining

these clusters together. The functions associated to each cluster of the Junction

Tree are called potential functions. We finally apply a message passing scheme

between the potential functions. These functions can be normalized to give the

marginalized probabilities of the variables in each cluster. Given observed data,

12 Introduction

h1 h2 h3

o1 o2 o3

...

Figure 1.2. Hidden Markov Model. Each node is associated to a random

variable and arrows denote conditional dependencies. When learning the pa-

rameters of the model, white nodes are hidden whereas grey nodes are observed.

the properties of the Junction Tree allow the potential functions to be updated.

Exact marginalization techniques are tractable in the models proposed in this

thesis given their limited complexity.

1.3.2 HMMs

Here we describe the Hidden Markov Model (HMM) [Rabiner, 1989] as a simple

example of generative model for time series. Let (v1, . . . , vm) be a sequence of

states of an observed random variable v. Furthermore, let (h1, . . . , hm) be the

corresponding sequence of states for a discrete hidden variable h synchronized

with o. The joint probability of the sequences of observed and hidden states

estimated by an HMM is given by

pHMM(o1, . . . , om, h1, . . . , hm) = pπ(h1)po(v1|h1)
m∏

t=2

pō(ht|ht−1)po(vt|ht) ,

(1.2)

where the pō(.|.) terms are called transition probabilities, the po(.|.) terms are

called emission probabilities, and the pπ(.) is the initial probability of the first

state of the hidden variable. This model is presented in Figure 1.2, following

standard graphical model formalism. Each node is associated to a random

variable and arrows denote conditional dependencies. When observed data is

discrete, the probability distributions pπ, pō, and po are usually multinomials,

whose parameters can be learned efficiently by the EM algorithm

The Gaussian Mixture Model (GMM) is very similar to the HMM. It is

commonly used when observing continuous data [Reynolds et al., 2000]. The

only difference is that po is chosen to be a Gaussian distribution in this case,

Motivation 13

to allow continuous observations.

1.4 Motivation

Given infinite amount of data, one could learn the conditional distribution

of any random variable in a model given any other random variable. This would

lead to a model containing a quadratic number of parameters with respect to

the number of random variables in the model. In practical settings, this would

lead to models with very high number of parameters, i.e. models with very

high capacity. Unless provided with extremely high number of examples, such

models would inevitably overfit data [Vapnik, 1998]. In other words, a model

with too many parameters would learn the training set by heart and would fail

to generalize to unseen data.

Three approaches can be taken to overcome this problem:

1. Build or collect more data;

2. Design better representations for data;

3. Design better algorithms given a priori knowledge of the structure of

data.

Data

The first approach (i.e. building or collecting more data) may seem the eas-

iest to follow at first glance when designing music models. Millions of audio

files are available on the internet. These files usually contains useful meta-data

such as artist name, album name, or musical genre. However, these files are

usually not labeled consistently, which makes them difficult to use directly to

train algorithms for genre classification or information retrieval. Even worse,

audio files very rarely contain meta-data directly related to the psychoacous-

tical characteristics of the music they contain. For instance, very few audio

files contain rhythmic, melodic, or harmonic information. As was mentioned

in Section 1.2.5, state-of-the-art algorithms are not reliable to extract such

information from raw audio data.

The models presented in this thesis are concerned with symbolic music data.

Hence, we are limited to existing symbolic databases. The few existing MIDI

databases available today are severely limited in size. Moreover, they comprise

only specific musical genres. One can not expect to design completely general

models of music while learning only from these databases. Nevertheless, there

is a huge commercial interest towards modeling pop and jazz music today. This

14 Introduction

is due to the dramatic impact that digital portable music players had on the

listening habits of a constantly growing number of people around the world.

Harmonic and melodic structures in pop music and jazz themes are usually

very simple and follow very strong regularities [Sher, 1988].

A dataset of jazz standards (described in Section 2.2.2) was recorded by

the author. This dataset is representative of the complexity of common jazz

and pop music. It is used in the experiments reported in this thesis along with

other public datasets.

Representations

One of the key contributions of this thesis is the design of representations

that exhibits important statistical properties of music data. Using appropriate

representations is a good way of including domain knowledge in statistical

models, and should lead to better generalization.

In Chapter 2, a distributed representation for chords is introduced. This

representation is designed such that Euclidean distances correspond to psychoa-

coustical similarities. In Chapter 3, various chord representations are compared

in terms of melodic prediction accuracy. This work is currently under revision

in Paiement et al. [2008a]. In Chapter 4, a compressed representation for

melodies is introduced for harmonization purposes, along with a corresponding

representation for chords. In the following chapters, simple representations for

rhythms and melodies are also described as inputs to polyphonic music models.

Finally, we describe discrete representations of groups of three melodic notes

based on musicological theory in Chapter 6. We show that such representations

can be modeled more easily than actual sequences of notes.

Learning Algorithms

Having access to sufficiently large datasets and to reliable representations of

these observations is the basis of any machine learning system. However, most

of this thesis is concerned with the most important part of statistical analysis,

which is the design and evaluation of algorithms themselves.

In Chapter 2, we introduce two distinct graphical model topologies aimed to

capture global dependencies in chord progressions. We show empirically that

such dependencies are present in music data, and that the proposed models are

able to discover such dependencies more reliably than with a simpler HMM.

This work is already published in Paiement et al. [2005b] and Paiement et al.

[2005a].

Motivation 15

In Chapter 4, we design a somewhat complex graphical model of the proba-

bilistic relationships between melodies and chord progressions. This model can

be sampled given any melody to generate an accompaniment in the same genre

as a training corpus. This work is already published in Paiement et al. [2006].

Then, in Chapter 5, a generative model of the distance patterns between

subsequences is proposed. Instead of modeling the rhythms themselves, we

propose to model the distributions of the pairwise distances between rhythms.

Such a model is then used to put constraints on a local model of the sequences.

We show empirically that using such constraints on distances significantly in-

crease out-of-sample prediction accuracy. This work is published in Paiement

et al. [2008c].

As a final step, we propose in Chapter 6 a generative model for melodies,

given chord progressions and rhythms. This model is based on constraints im-

posed by a feature representation of groups of three notes. We show that using

these constraints leads to much better prediction accuracies than using a sim-

pler Input/Output HMM. Moreover, sampling the proposed model generates

melodies that are much more realistic than sampling a local model. This work

is currently under revision in Paiement et al. [2008b]. Finally, we describe how

to build a full model of polyphonic music by combining all the components

presented in the various chapters of this thesis.

16 Introduction

2 Chord Progressions

In this chapter, we present two graphical models that capture the chord

structures in a given musical style using as evidence a limited amount of sym-

bolic MIDI data. As stated in Section 1.3.1, one advantage of generative models

is their flexibility, suggesting that our models could be used either as analyti-

cal or generative tool to model chord progressions. Moreover, model like ours

can be integrated into more complex probabilistic transcription model, genre

classifier, or automatic composition (c.f. Section 1.2.5 for thorough references.)

Chord progressions constitute a fixed, non-dynamic structure in time. As

stated in Section 1.2, there is a strong link between chord structure and the

much more complex overall musical structure. This motivates our attempt to

model chord sequencing directly. The space of sensible chord progressions is

much more constrained than the space of sensible melodies, suggesting that a

low-capacity model of chord progressions could form an important part of a

system that analyzes or generates melodies (see for instance Chapter 6). As

an example, consider blues music. Most blues compositions are variations of a

basic same 12 bar chord progression. Identification of that chord progression

in a sequence would greatly contribute to genre recognition. Note that in this

thesis, chord progressions are considered relative to the key of each song. Thus,

transposition of a whole piece has no effect on our analysis.

In Section 2.1, we briefly present previous work [Raphael and Stoddard,

2004] about probabilistic modeling of chord progressions. In Section 2.2, a

distributed representation for chords is designed such that Euclidean distances

roughly correspond to psychoacoustic similarities. Graphical models observing

chord progressions are then compared in terms of conditional out-of-sample

likelihood. Then, in Section 2.3, estimated probabilities of chord substitutions

are derived from the same distributed representation. These probabilities are

18 Chord Progressions

used to introduce smoothing in graphical models observing chord progressions.

Parameters in the graphical models are learnt with the EM algorithm and the

classical Junction Tree algorithm is used for inference. Again, various model

architectures are compared in terms of conditional out-of-sample likelihood.

Both perceptual and statistical evidence show that binary trees related to meter

are well suited to capture chord dependencies.

2.1 Previous Work on Chord Progressions Models

Few previous work has been done so far towards probabilistic modeling

of chord progressions. In Allan and Williams [2004], a model of chord pro-

gressions given melodies is proposed. We present this model in Section 4.1.

In this section, we briefly describe the graphical model proposed by Raphael

and Stoddard [2004] for labeling MIDI data with traditional Western chord

symbols.

The analysis is performed on fixed musical periods q, say a measure (q = 1),

or half measure (q = 1/2). The pitches are partitioned into sequences of subsets

y1 . . . , yN where yn = {y1
n, . . . , y

Kn
n } is the collection of pitch-classes whose

onset times, in measures, lie in the interval [nq, (n+ 1)q].

The goal is to associate a key and chord describing the harmonic function

to each period yn. Each yn will be labeled with an element of

L = T ×M × C = {0, . . . , 11} × {major,minor} × {I, II, . . . ,VII}

where T,M,C stands for tonic, mode, and chord. For instance, (t,m, c) =

(3,major, II) would represent the triad in the key of 2 = d major build on the

II = 2nd scale degree which contains pitch-classes e,g,b.

Let X1 . . . , XN be the sequence of harmonic labels Xn ∈ L. Raphael and

Stoddard [2004] model this sequence probabilistically as a homogeneous Markov

chain

p(xn+1|x1, . . . , xn) = p(xn+1|xn) . (2.1)

The second assumption is that each data vector yn only depend on the current

label:

p(yn|x1, . . . , xn, y1, . . . , yn−1) = p(yn|xn) . (2.2)

The joint model of observed pitches and inferred labels is thus a standard HMM

as described in Section 1.3.2. Equation (2.1) is the transition probability distri-

bution while Equation (2.2) is the emission probability distribution. Efficient

parameterization are proposed in Raphael and Stoddard [2004] to model these

distributions.

A Distributed Representation for Chords 19

The Markovian assumption in Equation (2.1) seems sufficient to infer chord

symbols, but we show in Section 2.2.2 that longer term dependencies are neces-

sary to model chord progressions by themselves in a generative context, without

regard to any form of analysis.

2.2 A Distributed Representation for Chords

The research reported in this Section was already published in Paiement

et al. [2005b].

As pointed out in Section 1.4, the generalization performance of a genera-

tive model depends strongly on the chosen representation for observed chords.

A good representation encapsulates some of the psychoacoustic similarities be-

tween chords. One possibility we chose not to consider was to represent directly

some attributes of Western chord notation such as “minor”, “major”, “dimin-

ished”, etc. Though inferring these chord qualities could have aided in building

a similarity measure between chords, we found it more convenient to start by

building a more general representation directly tied to the acoustic properties

of chords. Another possibility for describing chord similarities is set-class the-

ory, a method that has been compared to perceived closeness [Kuusi, 2001]

with some success. In this Section, we consider a simpler approach where each

group of observed notes forming a chord are seen as a single timbre [Vassilakis,

1999] and we design a continuous distributed representation where close chords

with respect to Euclidean distance tend to be similar to listeners.

The frequency content of an idealized musical note i is composed of a funda-

mental frequency f0,i and integer multiples of that frequency. The amplitude

of the h-th harmonic fh,i = hf1,i of note i can be modeled with geometric

decaying ρh, with 0 < ρ < 1 [Valimaki et al., 1996].

Consider the function

m(f) = 12(log2(f)− log2(8.1758))

that maps frequency f to MIDI note m(f). Let X = {X1 . . .Xs} be the set of

the s chords present in a given corpus of chord progressions. Then, for a given

chord Xj = {i1, . . . , itj
} with tj the number of notes in chord Xj , we associate

to each MIDI note n a perceived loudness

lj(n) = max
h∈N,i∈Xj

({ρh|round(m(fh,i)) = n} ∪ {0}) (2.3)

where the function round maps a real number to the nearest integer. The max

function is used instead of a sum in order to account for the masking effect

20 Chord Progressions

[Moore, 1982]. The quantization given by the rounding function corresponds

to the fact that most of the tonal music is composed using the well-tempered

tuning. For instance, the 3rd harmonic f3,i corresponds to a note i + 7 which

is located one perfect fifth (i.e. 7 semi-tones) over the note i corresponding

to the fundamental frequency. Building the whole set of possible notes from

that principle leads to a system where flat and sharp notes are not the same,

which was found to be impractical by musical instrument designers in the

baroque era. Since then, most Western musicians used a compromise called

the well-tempered scale, where semi-tones are separated by an equal ratio of

frequencies. Hence, the rounding function in Equation (2.3) provides a fre-

quency quantization that corresponds to what an average contemporary music

listener experiences on a regular basis.

For each chord Xj , we then have a distributed representation

lj = {lj(n1), . . . , lj(nd)}

corresponding to the perceived strength of the harmonics related to every note

nk of the well-tempered scale, where we consider the d first notes of this scale

to be relevant. For instance, one can set the range of the notes n1 to nd to

correspond to audible frequencies. Using octave invariance, we can go further

and define a chord representation

vj = {vj(0), . . . , vj(11)} (2.4)

where

vj(i) =
∑

nk:1≤k≤d, (nk mod 12)=i

l(nk).

This representation gives a measure of the relative strength of each pitch classin

a given chord. For instance, value vj(0) is associated with pitch class c, value

vj(1) to pitch class c sharp, and so on. We see in Figure 2.1 that this repre-

sentation gives similar results for two different voicings of the C major chord,

as defined in Levine [1990].

We have also computed Euclidean distances between chords induced by this

representation and found that they roughly correspond to perceptual closeness,

as shown in Table 2.1. Each column gives Euclidean distances between the

chord in the first row and some other chords that are represented as described

here. The trained musician should see that these distances roughly correspond

to perceived closeness. For instance, the second column is related to a particular

inversion of the C minor chord (c1d#2a#2d3). We see that the closest chord

in the dataset (c1a#2d#3g3) is the second inversion of the same chord, as

A Distributed Representation for Chords 21

C Cs D Ds E F Fs G Gs A As B
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
c1b2e3g3

Pitch−class

P
er

ce
pt

ua
l

em
ph

as
is

C Cs D Ds E F Fs G Gs A As B
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Pitch−class
P

er
ce

pt
ua

l
em

ph
as

is

c1e2b2d3

Figure 2.1. Normalized values given by Equation (2.4) for 2 voicings of the

C major chord. We see that perceptual emphasis is higher for pitch-classes

present in the chord. These two chord representations have similar values for

pitch-classes that are not present in either chords, which makes their Euclidean

distance small.

described in Levine [1990]. Hence, we raise the note d#3 by one octave and

replace the note d3 by g3 (separated by a perfect fourth). These two notes

share some harmonics, leading to a close vectorial representation. This distance

measure could have considerable interest in a broad range of computational

generative models in music as well as for music composition.

2.2.1 Graphical Model

We now propose a graphical model that generates chord sequences using the

input representation described in the last section. The main assumption behind

the proposed model is that conditional dependencies between chords in a typical

chord progression are strongly tied to the metrical structure associated to it.

22 Chord Progressions

Table 2.1. Euclidean distances between the chord in the first row and other

chords when chord representation is given by Equation (2.4), choosing ρ = 0.97.

c1a2e3g3 0.000 c1d#2a#2d3 0.000

c1a2c3e3 1.230 c1a#2d#3g3 1.814

c1a2d3g3 1.436 c1e2a#2d#3 2.725

c1a1d2g2 2.259 c1a#2e3g#3 3.442

c1a#2e3a3 2.491 c1e2a#2d3 3.691

a0c3g3b3 2.920 a#0d#2g#2c3 3.923

c1e2b2d3 3.162 a#0d2g#2c3 4.155

c1g2c3e3 3.398 g#1g2c3d#3 4.363

a0g#2c3e3 3.643 c1e2a#2c#3 4.612

c1f2c3e3 3.914 a#1g#2d3g3 4.820

c1d#2a#2d3 4.295 f1a2d#3g3 5.030

e1e2g2c3 4.548 d1f#2c3f3 5.267

g1a#2f3a3 4.758 a0c3g3b3 5.473

e0g2d3f#3 4.969 g1f2a#2c#3 5.698

f#0e2a2c3 5.181 b0d2a2c3 5.902

g#0g2c3d#3 5.393 e1d3g3b3 6.103

f#1d#2a2c3 5.601 f#1e2a#2d#3 6.329

g0f2b2d#3 5.818 d#1c#2f#2a#2 6.530

g1f2a#2c#3 6.035 g#0b2f3g#3 6.746

g1f2b2d#3 6.242 b0a2d#3g3 6.947

Another important aspect of this model is that it is not restricted to local

dependencies, like a simpler Hidden Markov Model (HMM) would be. This

choice of structure reflects the fact that a chord progression is seen in this

model as a two dimensional architecture. Every chord in a chord progression

depends both on its position in the chord structure (global dependencies) and

on the surrounding chords (local dependencies.) We show in Section 2.2.2

that considering both aspects leads to better generalization performance as

well as better generated results than by only considering local dependencies.

Figure 2.2 shows a graphical model that can be used as a generative model for

chord progressions in this fashion.

Discrete nodes in levels 1 and 2 are unobserved. The purpose of the nodes

in level 1 is to capture global chord dependencies related to the meter. Nodes

A Distributed Representation for Chords 23

2 31

1

2
3

4
5

4
5

6
7

6
7

6
7

6
7

F
ig

ur
e

2.
2.

A
pr

ob
ab

ili
st

ic
gr

ap
hi

ca
lm

od
el

fo
r

ch
or

d
pr

og
re

ss
io

ns
.

W
hi

te
no

de
s

co
rr

es
po

nd
to

di
sc

re
te

hi
dd

en
va

ri
ab

le
s

w
hi

le
gr

ay
no

de
s

co
rr

es
po

nd
to

ob
se

rv
ed

m
ul

ti
va

ri
at

e
m

ix
tu

re
s

of
G

au
ss

ia
n

no
de

s.
N

od
es

in
le

ve
l

1
di

re
ct

ly
m

od
el

th
e

co
nt

ex
tu

al
de

pe
nd

en
ci

es
re

la
te

d

to
th

e
m

et
er

.
N

od
es

in
le

ve
l
2

co
m

bi
ne

th
is

in
fo

rm
at

io
n

w
it

h
lo

ca
l
de

pe
nd

en
ci

es
in

or
de

r
to

m
od

el
sm

oo
th

ch
or

d
pr

og
re

ss
io

ns
.

F
in

al
ly

,

co
nt

in
uo

us
no

de
s

in
le

ve
l
3

ar
e

ob
se

rv
in

g
ch

or
ds

em
be

dd
ed

in
th

e
co

nt
in

uo
us

sp
ac

e
de

fin
ed

by
E

qu
at

io
n

(2
.4

).
N

um
be

rs
in

le
ve

l
1

no
de

s

in
di

ca
te

a
pa

rt
ic

ul
ar

fo
rm

of
pa

ra
m

et
er

sh
ar

in
g

th
at

ha
s

pr
ov

en
to

be
us

ef
ul

fo
r

ge
ne

ra
liz

at
io

n
(s

ee
Se

ct
io

n
2.

2.
2)

.

24 Chord Progressions

in level 2 are modeling local chord dependencies conditioned by the global

dependencies captured in level 1. For instance, the fact that the algorithm is

accurately generating proper endings is constrained by the upper tree structure.

On the other hand, the smoothness of the voice leadings (e.g. small distances

between generated notes in two successive chords) is modeled by the horizontal

links in level 2.

The bottom nodes of the model are continuous observations conditioned

by discrete hidden variables. Hence, a mixture of Gaussians can be used to

model each observation given by the distributed representation described in

Section 2.2. Suppose a Gaussian node G has a discrete parent D, then the

conditional density p(G|D) is given by

p(G|D = i) ∼ N (µi, σi) (2.5)

where N (µ, σ) is a k-dimensional Gaussian distribution with mean µ ∈ Rk and

diagonal covariance matrix Σ ∈ Rk × Rk determined by its diagonal elements

σ ∈ Rk.

The inference in the model can be done with the EM algorithm [Demp-

ster et al., 1977] and the marginalization in the graphical model (during the

expectation step) can be achieved using the Junction Tree Algorithm [Lau-

ritzen, 1996], as described in Section 1.3.1. Each µi and σi in Equation (2.5)

are learned using the EM algorithm. Exact marginalization techniques are

tractable in this model given its limited complexity.

Many variations of this particular model can be possible, some of which are

compared in Section 2.2.2. For instance, conditional probability tables can be

tied in various ways. Also, more horizontal links in the model can be added to

reinforce the dependencies between higher level hidden variables.

Other tree structures may be more suitable for music having different meters

(e.g. ternary structures for waltzes). Using a tree structure has the advantage

of reducing the complexity of the considered dependencies from the order l

to the order log l, where l is the length of a given chord sequence. Although

we only consider musical productions with fixed length in this chapter, the

proposed models could be easily extended to variable length musical production

by adding conditional dependencies arrows between many normalized subtrees.

Tree structures for music have been used previously in Rizo et al. [2006] to

find the key of melodic segments. In this work, each measure is represented

by a tree where each observed note is represented by a leaf node. The level of

each leaf in the tree determines the duration of the associated note. In a 4-beat

measure, a leaf on the root level would represent a whole note, a leaf on the

A Distributed Representation for Chords 25

second level would represent a half note, and so on. Pitch-classes are used to

label the leaves. Then, these pitch-classes are propagated bottom-up to every

parent nodes, using a post-order traversal of the tree. Hence, all the nodes

contain the union of the pitch-classes of all their children nodes. Finally, this

representation is used to find the key of the corresponding melodic segments

with high reliability [Rizo et al., 2006].

In this section, we introduced a similar tree structure related to the meter.

However, each node of the current tree is associated to a hidden random vari-

able, instead of being labeled with observed pitch-classes. Each of these hidden

random variables are modeling global dependencies in chord progressions re-

lated to corresponding hierarchical levels of the metrical structure.

2.2.2 Experiments

52 jazz standards excerpts from Sher [1988] were interpreted and recorded by

the author in MIDI format on a Yamaha Disklavier piano. See

http://www.idiap.ch/probmusic for a listing. Standard 4-note jazz piano

voicings as described in Levine [1990] were used to convert the chord symbols

into musical notes. Thus, the model is considering chord progressions as they

might be expressed by a trained jazz musician in a realistic musical context.

The complexity of the chord sequences found in the corpus is representative

of the complexity of common chord progressions in most pop and jazz music.

We chose to record actual voiced chords rather than symbolic chord names

(e.g. Em7) because the symbolic names are ineffective at capturing the specific

voicings made by a trained jazz musician.

Every jazz standard excerpt is 8 bars long, with a 4 beats meter, and with

one chord change every 2 beats (yielding observed sequences of length 16.)

Longer chords were repeated multiple times (e.g. a 6 beat chord is represented

as 3 distinct 2-beat observations.) This simplification has a limited impact on

the quality of the model since generating a chord progression is simply a first

(but very important) step toward generating complete polyphonic music, where

modeling actual event lengths is crucial (c.f. Chapter 5). The jazz standards

were carefully chosen to exhibit a 16 bar global structure. We used the last 8

bars of each standards to train the model. Since every standard ends with a

cadenza (i.e. a musical ending), the chosen excerpts exhibits strong regularities.

Generalization

The chosen discrete chord sequences were converted into sequences of 12-dimen-

sional continuous vectors as described in Section 2.2. Frequencies ranging from

26 Chord Progressions

20Hz to 20kHz (MIDI notes going from the lowest note in the corpus to note

number 135) were considered in order to build the representation given by

Equation (2.3). A value of ρ of 0.96 was arbitrarily chosen for the experiments.

It should be pointed out that since the generative models have been trained in

an unsupervised setting, it is irrelevant to compare different chord representa-

tions in terms of likelihood or chord prediction error rate. In Chapter 3, we

introduce melodic prediction error given chords as an evaluation criterion for

chord representations.

It is however possible to measure how well a given architecture is modeling

conditional dependencies between sub-sequences of chords in terms of likeli-

hood. In order to do so, mean negative conditional out-of-sample likelihoods

of sub-sequences of length 4 on positions 1, 5, 9 and 13 have been computed

using double cross-validation.

Cross-validation [Hastie et al., 2001] is a meta learning algorithm usually

used when dealing with small datasets. We first divide the dataset into I folds.

Then, the main idea is to train the algorithm using I−1 folds and to evaluate it

on the remaining fold. This process can be repeated over each possible subsets

of I − 1 folds. The average of all the evaluations can be used itself as an

evaluation criterion for the learning algorithm.

More formally, assume also that the i-th fold in the cross-validation process

contains Ni test sequences. Let x(n,i) = (x(n,i)
1 , . . . , x

(n,i)
l) be the n-th sequence

of chords of the i-th fold in the cross-validation process. In this case, we have

l = 16. Also, each x
(n,i)
t must be equal to one of the possible values for vj in

Equation (2.4).

Using cross-validation, our evaluation criterion is given by

1
I

I∑
i=1

− log(
Ni∏

n=1

∏
t={1,5,9,13}

P (x(n,i)
t , . . . , x

(n,i)
t+3 |x

(n,i)
1 , . . . , x

(n,i)
t−1 , x

(n,i)
t+4 , . . . , x

(n,i)
16))

(2.6)

which amounts to

1
I

I∑
i=1

Ni∑
n=1

∑
t={1,5,9,13}

− log(P (x(n,i)
t , . . . , x

(n,i)
t+3 |x

(n,i)
1 , . . . , x

(n,i)
t−1 , x

(n,i)
t+4 , . . . , x

(n,i)
16))

(2.7)

where P (.|.) is the distribution of a chord sequence given the specified context

returned by the graphical model shown in Figure 2.2. We choose this particular

measure of generalization to account for the binary metrical structure of the

chord progressions in the corpus.

Double cross-validation is a recursive application of cross-validation where

both the optimization of the parameters of the model and the evaluation of

A Distributed Representation for Chords 27

Table 2.2. Mean negative conditional out-of-sample log-likelihoods of sub-

sequences of length 4 on positions 1, 5, 9 and 13. These results are computed

using double cross-validation in order to optimize the number of possible values

for hidden variables. The numbers in parentheses indicate which levels of the

tree are tied as described in Section 2.2.2. We see that some combinations of

parameter tying in the trees performs better than the standard HMM.

Model (tying) Negative log-likelihood

Tree (2, 3) 93.8910

Tree (1, 3) 94.0037

Tree (1, 2, 3) 94.9309

Tree (3) 98.2446

HMM 98.2611

the generalization of the model are carried out simultaneously. Standard cross-

validation is applied to each subset of I − 1 folds with each hyper-parameter

setting and tested with the best estimated setting on the remaining hold-out

fold. The reported conditional likelihoods are the averages of the results of

each of the I applications of simple cross-validation during this process. This

technique has been used to optimize the number of possible values of hidden

variables for various architectures. Results are given in Table 2.2.

We say that two random variables are “tied” when they share the same

conditional probability parameters. Different forms of parameter tying for the

tree model shown in Figure 2.2 have been tested. All nodes in level 3 share the

same parameters for all tested models. Hence, we use only one 12-dimensional

mixture of Gaussians (as in Equation (2.5)) independently of time, in order to

constrain the capacity of the model. Moreover, a diagonal covariance matrix

Σ has been used, thus reducing the number of free parameters to 24 in level 3

(12 for µ and 12 for Σ). Hidden variables in level 1 and 2 can be tied or not.

Tying for level 1 is done as illustrated in Figure 2.2 by the numbers inside the

nodes.

The fact that the contextual out-of-sample likelihoods presented in Ta-

ble 2.2 are better for the different trees than for the HMM indicates that

time-dependent regularities are present in the data. Sharing parameters in

levels 1 or 2 of the tree increases the out-of-sample likelihood. This indicates

that regularities are repeated over time in the signal. Further investigations

would be necessary in order to assess to what extent chord structures are hier-

28 Chord Progressions

archically related to the meter.

On the other hand, the relatively high values obtained in terms of condi-

tional out-of-sample negative log-likelihood indicates that the number of se-

quences may not be sufficient to efficiently represent the variability of the data.

Unfortunately, as pointed out in Section 1.4 reliable chord progressions data is

difficult to generate.

Generation

One can sample the proposed model in order to generate genuine chord progres-

sions. Fortunately, Euclidean distances are relevant in the observation space

created in Section 2.2. Thus, a simple approach to generate chord progressions

is to take the nearest neighbors (in the training set) of the values obtained by

sampling the observation nodes.

Chord progressions generated by the models presented in this thesis are

available at http://www.idiap.ch/probmusic. One can hear that the gen-

erated sequences are very similar to standard jazz chord progressions. For

instance, the trained musician can observe that the last 8 bars of many se-

quences are II-V-I chord progression (with lowest notes (roots) d, g and c)

[Levine, 1990], which is very common in the training set.

On the other hand, one can also listen to chord progressions generated

by the HMM model. While the chords are following each other in a smooth

fashion, there is no global relation between chords. For instance, one can see

that the lowest note of the last chord is very often not a c, which was the case

for all the chord sequences in the training set. The fundamental qualitative

difference between both methods should be obvious even for the non-musician

when listening to the generated chord sequences.

In this Section, we have shown empirically that chord progressions exhibit

global dependencies that can be better captured with a tree structure related

to the meter than with a simple dynamical HMM that concentrates on local

dependencies. The importance of contextual information for modeling chord

progressions is even more apparent when one compares sequences of chords

sampled from both models. The time-dependent hidden variables enable the

tree structure to generate coherent chord progressions both locally and globally.

However, the small difference in terms of conditional out-of-sample likeli-

hood between the tree model and the HMM, and the relatively low optimal

capacity for generalization are a good indication that increasing the number of

sequences in the dataset would probably be necessary in further developments

of probabilistic models for chord progressions. Also, a better evaluation of

A Probabilistic Model of Chord Substitutions 29

such models could be achieved by including them into a supervised task. This

problem is explored more thoroughly in Chapter 3, were we introduce melodic

prediction as a benchmark task to compare different chord representations.

2.3 A Probabilistic Model of Chord Substitutions

The research reported in this Section was already published in Paiement

et al. [2005a].

2.3.1 Probabilities of Substitution

In Section 2.2, we presented a graphical model that directly observes continuous

representations of chords. This approach suffers from two drawbacks. First, it

is unnatural to compress discrete information in a continuous space; one could

easily think of a one-dimensional continuous representation that would overfit

any discrete dataset. Second, since the set of likely chords is finite, one would

prefer to observe directly discrete variables with a finite number of possible

states.

However, there is no direct way to represent Euclidean distances between

discrete objects in the graphical model framework. Our proposed solution to

this problem is to convert the Euclidean distances between chord representa-

tions into probabilities of substitution between chords. Chords can then be

represented as individual discrete events. It is possible to convert the Eu-

clidean distances described in Section 2.2 into probabilities of substitution be-

tween chords in a given corpus of chord progression. These probabilities can

be included directly into a graphical model for chord progressions.

One can define the probability pi,j of substituting chord Xi for chord Xj in

a chord progression as

pi,j =
φi,j∑

1≤j≤s φi,j
(2.8)

with

φi,j = exp{−λ||vi − vj ||2}

with free parameter 0 ≤ λ < ∞. Each vi is the distributed representation for

the i-th chord in the database as computed in Equation (2.4), page 20. The

parameters λ and ρ (from Equation (2.3)) can be optimized by validation on

any chord progression dataset provided a suitable objective function. With

possible values going from 0 to arbitrary high values, the parameter λ allows

the substitution probability table to go from the uniform distribution with

equal entries everywhere (such that every chord has the same probability of

30 Chord Progressions

Table 2.3. Subset of the substitution probability table constructed with Equa-

tion (2.8). For each column, the number in the first row corresponds to the

probability of playing the associated chord with no substitution. The numbers

in the following rows correspond to the probability of playing the associated

chord instead of the chord in the first row of the same column.

c1a2e3g3 0.41395 c1d#2a#2d3 0.70621

c1a2c3e3 0.08366 c1a#2d#3g3 0.06677

c1a2d3g3 0.06401 c1e2a#2d#3 0.02044

c1a1d2g2 0.02195 c1a#2e3g#3 0.00805

c1a#2e3a3 0.01623 c1e2a#2d3 0.00582

a0c3g3b3 0.00929 a#0d#2g#2c3 0.00431

c1e2b2d3 0.00679 a#0d2g#2c3 0.00318

c1g2c3e3 0.00500 g#1g2c3d#3 0.00243

a0g#2c3e3 0.00363 c1e2a#2c#3 0.00176

c1f2c3e3 0.00255 a#1g#2d3g3 0.00134

c1d#2a#2d3 0.00156 f1a2d#3g3 0.00102

e1e2g2c3 0.00112 d1f#2c3f3 0.00075

g1a#2f3a3 0.00085 a0c3g3b3 0.00057

e0g2d3f#3 0.00065 g1f2a#2c#3 0.00043

f#0e2a2c3 0.00049 b0d2a2c3 0.00033

g#0g2c3d#3 0.00037 e1d3g3b3 0.00025

f#1d#2a2c3 0.00028 f#1e2a#2d#3 0.00019

g0f2b2d#3 0.00021 d#1c#2f#2a#2 0.00015

g1f2a#2c#3 0.00016 g#0b2f3g#3 0.00011

g1f2b2d#3 0.00012 b0a2d#3g3 0.00008

being played) to the identity matrix (which disallow any chord substitution).

Table 2.3 shows substitution probabilities obtained from Equation (2.8) for

chords in Table 2.1.

2.3.2 Graphical Model

We now propose a graphical model for chord sequences using the probabilities

of substitution between chords described in Equation (2.8). As for the model

presented in Section 2.2.1, the main assumption underlying the proposed model

A Probabilistic Model of Chord Substitutions 31

is that conditional dependencies between chords in a typical chord progression

are strongly tied to the metrical structure associated with it. Again, another

important aspect of this model is that it is not restricted to local dependencies,

like a simpler Hidden Markov Model (HMM) [Rabiner, 1989] would be. We

show empirically in Section 2.3.3 that considering both aspects leads to better

generalization performance as well as better generated results than by only

considering local dependencies, following the results reported in Section 2.2.2.

Figure 2.3 shows a graphical model that can be used as a generative model

for chord progressions in this fashion. All the random variables in the model

are discrete. Nodes in level 1, 2 and 3 are hidden while nodes in level 4 are

observed. Every chords are represented as distinct discrete events. Nodes in

level 1 directly model the contextual dependencies related to the meter. Nodes

in level 2 combine this information with local dependencies in order to model

smooth chord progressions. Variables in level 1 and 2 have an arbitrary number

of possible states optimized by double cross-validation [Hastie et al., 2001], as

explained in Section 2.2.2. The upper tree structure makes it possible for

the algorithm to generate proper endings. Smooth voice leadings (e.g. small

distances between generated notes in two successive chords) are made possible

by the horizontal links in level 2.

The major difference between this graphical model and the one shown in

Figure 2.2 is that the last layer of continuous nodes is replaced by two layers

of discrete nodes in Figure 2.3. Variables in levels 3 and 4 have a number of

possible states equal to the number of chords in the dataset. Hence, each state

is associated with a particular chord. The probability table associated with

the conditional dependencies going from level 3 to 4 is fixed during learning

with the values given by Equation (2.8). Values in level 3 are hidden and

represent intuitively “initial” chords that could have been substituted by the

actual observed chords in level 4.

The role of the fixed substitution matrix is to raise the probability of un-

seen events in a way that account for psychoacoustical similarities. Discarding

level 4 and directly observing nodes in level 3 would assign extremely low

probabilities to unseen chords in the training set. Instead, when observing a

given chord on level 4 during learning, the probabilities of every chords of the

dataset are updated with respect to the probabilities of substitution described

in Section 2.3.1.

Again, the marginalization in the graphical model can be achieved using

the Junction Tree Algorithm (JTA) [Lauritzen, 1996]. By defining a convenient

factorization of all the variables from the one defined by the graph, the JTA

32 Chord Progressions

23 1

1

2
3

4
5

4
5

6
7

6
7

6
7

6
7

4

8
9

9
10

10
9

10
9

10
9

10
9

10
9

10
9

F
igure

2.3.
A

probabilistic
graphicalm

odelfor
chord

progressions,as
described

in
Section

2.3.2.
N

um
bers

in
level1

and
2

nodes
indicate

a
particular

form
of

param
eter

sharing
that

has
been

used
in

the
experim

ents
(see

Section
2.3.3).

A Probabilistic Model of Chord Substitutions 33

allows marginalization of small subsets of the variables to be done efficiently.

Exact marginalization techniques are tractable in this model given its limited

complexity.

Many variations of this particular model are possible, some of which are

compared in Section 2.3.3. Conditional probability tables in the proposed

model can be tied in various ways. Also, more horizontal links in the model can

be added to reinforce the dependencies between higher level hidden variables.

2.3.3 Experiments

The 52 jazz standards excerpts from Sher [1988] described in Section 2.2.2

were used to evaluate the model presented here. However, the length of each

sequences was expanded to 32 chords. Hence, every jazz standard excerpt

was 16 bars long, with a 4 beat meter, and with one chord change every 2

beats (yielding observed sequences of length 32). We used the last 16 bars of

each standard to train the model. Remember that standard 4-note jazz piano

voicings as described in Levine [1990] were used to convert the chord symbols

into musical notes. Thus, the model is considering chord progressions as they

might be expressed by a trained jazz musician in a realistic musical context.

Generalization

The chosen discrete chord sequences were converted into sequences of 12-dimen-

sional continuous vectors as described in Section 2.3.1. Frequencies ranging

from 20Hz to 20kHz (MIDI notes going from the lowest note in the corpus to

note number 135) were considered in order to build the representation given

by Equation (2.3). Again, we want to measure how well a given architec-

ture captures conditional dependencies between sub-sequences. In order to do

so, average negative conditional out-of-sample likelihoods of sub-sequences of

length 8 on positions 1, 9, 17 and 25 have been computed. Equation (2.7) to

compute the likelihood of a model now becomes

1
I

I∑
i=1

Ni∑
n=1

∑
k={1,9,17,25}

− log(P (x(n,i)
k , . . . , x

(n,i)
k+7 |x

(n,i)
1 , . . . , x

(n,i)
k−1 , x

(n,i)
k+8 , . . . , x

(n,i)
32))

since the sequences of chords have a length of 32. Hence, the likelihood of each

subsequence is conditional on the rest of the sequence (taken in the validation

set) from which it originates.

Double cross-validation has been used to optimize the number of possible

values of hidden variables and the parameters ρ and λ for various architectures.

Results are given in Table 2.4.

34 Chord Progressions

Table 2.4. Average negative conditional out-of-sample log-likelihoods of sub-

sequences of length 8 on positions 1, 9, 17 and 25, given the rest of the se-

quences. These results are computed using double cross-validation in order to

optimize the number of possible values for hidden variables and the parameters

λ and ρ. We see that the trees perform better than the HMM.

Model (Tying in level 1) Negative log-likelihood

Tree No 32.3281

Tree Yes 32.6364

HMM 33.2527

Two forms of parameter tying for the tree model have been tested. The con-

ditional probability tables in level 1 of Figure 2.3 can be either tied as shown by

the numbers inside the nodes in the figure or can be left untied. Tying for level

2 is always done as illustrated in Figure 2.3 by the numbers inside the nodes, to

model local dependencies. All nodes in level 3 share the same parameters for

all tested models. Also, recall that parameters for the conditional probabilities

of variables in level 4 are fixed as described in Section 2.3.2.

As a benchmark, an HMM consisting of levels 2, 3 and 4 of Figure 2.3

has been trained and evaluated on the same dataset. The results presented in

Table 2.4 are similar to perplexity or prediction ability. The fact that these

contextual out-of-sample likelihoods are better for the trees than for the HMM

is an indication that time-dependent regularities are present in the data. This

is coherent with the results reported in Section 2.2.2. Further investigations

would be necessary in order to measure to what extent chord structures are

hierarchically related to the meter.

Conditional likelihood allows to compare quantitatively probabilistic mod-

els using the same chord representation. However, it is not possible to compare

different representations with this experimental setting. As an extreme case,

suppose that all different chords are represented by the same symbol. Obvi-

ously, this is a bad representation for chords because it destroys all information

about the actual chords in the corpus. Despite this fundamental inefficiency,

a model dealing with this representation would always have an out-of-sample

log-likelihood of 0, thus beating all other possible representations! In other

words, the number of possible states of a representation dramatically alters

the likelihood of any model observing this representation. This is why nega-

tive log-likelihood values are much lower in Table 2.4 (discrete representation

Conclusion 35

with a finite number of possible values) than in Table 2.2 (continuous repre-

sentation with an infinite number of potential values). This tendency is even

stronger than the fact that sequences used for the experiments reported in Ta-

ble 2.4 are twice as long as the sequences used for the experiments reported

in Table 2.2. Measured over the same representation, negative log-likelihoods

would normally tend to be higher for longer sequences. In Chapter 3, we in-

troduce melodic prediction as a supervised task that allows to compare chord

representations quantitatively.

Generation

Again, one can sample the joint distribution learned by the proposed model

in order to generate novel chord progressions. Chord progressions generated by

the models presented in this Section are available at http://www.idiap.ch/probmusic.

The generated sequences are very similar to the ones generated by the model

based on psychoacoustical features presented in Section 2.2.1. When sampling

continuous distributions, one has to find the nearest neighbors of each sample

in the training set. This approach is arbitrary and lacks statistical justifica-

tion. In contrast, the generation process described here is more principled:

Each sampled chord is simply represented as the discrete state of a random

variable.

Both models are able to capture the fact that most endings in the cur-

rent dataset are II-V-I chord progressions. However, comparing quantitatively

generated chord sequences from both models (or any other chord generation

model) would require setting up experiments involving human judgment. There

is no available mathematical measure of the quality of a chord progression, and

it is beyond the scope of this thesis to make an attempt in designing such a

measure.

That being said, the fundamental qualitative difference between the chord

progressions generated by a “local” method and our proposed model should

be obvious even for the non-musician when listening to the generated chord

sequences. Chord progressions generated by an HMM follow one another in a

smooth fashion. However, there is no global coherence among the chords.

2.4 Conclusion

In this chapter, we have shown empirically that chord progressions exhibit

global dependencies that can be better captured with a tree structure related

to the meter than with a simple dynamical HMM that concentrates on local

36 Chord Progressions

dependencies. The importance of contextual information for modeling chord

progressions is even more apparent when one compares sequences of chords

sampled from both models. The time-dependent hidden variables enable the

tree structure to generate coherent chord progressions both locally and globally.

However, the low difference in terms of conditional out-of-sample likelihood

between the tree model and the HMM, and the relatively low number of de-

grees of freedom for optimal generalization (including the low optimal number

of possible states for hidden variables) are a good indication that increasing

the number of sequences in the dataset would probably be necessary in fur-

ther developments of probabilistic models for chord progressions. Also, better

evaluation criteria than conditional likelihoods could be used to compare chord

probabilistic models. An experimental setting such as in Chapter 3 could be

used to compare the choices of parameters to build the distributed representa-

tion introduced in this chapter. A supervised task would provide a quantitative

evaluation between many distributed representations.

Applications where a chord progression model could be included range from

music transcription, music information retrieval, musical genre recognition to

music analysis applications, just to name a few.

Chord progressions are regular and simple structures that condition dra-

matically the actual choice of notes in polyphonic tonal music. Hence, we

argue that chord models are crucial in the design of efficient algorithms that

deal with such music data. Moreover, generating interesting chord progressions

can be considered to be one of the most important aspects in generating realis-

tic polyphonic music. Our proposed chord progression models constitute first

steps in that direction.

3 Comparing Chord Representations

As stated in Section 2.3.3, it is impossible to compare quantitatively chord

representations in terms of likelihood of an unsupervised model. A data repre-

sentation has limited value by itself if it is not used as input to an algorithm

embedded in a specific application. Ultimately, one has to design a supervised

task (e.g. classification) where many representations can be used as inputs to

be able to compare representations. Quantitative performance measures avail-

able for the particular task can then be considered as a performance measure

for the representation itself.

In this chapter, we use melodic prediction as a benchmark to evaluate chord

representations. In Section 3.3, we also describe unconditional and conditional

prediction error rates as more reliable evaluation criteria than the conditional

likelihoods presented in Chapter 2.

The research reported in this chapter is currently under revision for publi-

cation in Paiement et al. [2008a].

3.1 Interactions Between Chords and Melodies

Knowing the relations between chords and actual notes would certainly

help to discover long-term musical structures in tonal music. Melodies are very

often the most salient part of polyphonic music. Hence, we focus here on the

probabilistic interactions between chords and melodies.

Very useful applications could follow from an accurate probabilistic model

of the relations between chords and melodies. As pointed out in Section 1.2.5,

state-of-the-art techniques for transcription from audio to symbolic representa-

tion suffer from a lack of precision for most practical applications. An interme-

diate goal is to try to infer chord symbols from audio data [Bello and Pickens,

2005; Sheh and Ellis, 2003]. This task is simpler than complete transcription of

38 Comparing Chord Representations

polyphonic audio signal. Combining reliable chord transcription with a model

of the conditional distribution of other musical components (e.g. melodies)

given chords could help to improve transcription error rates of existing algo-

rithms. Following the same idea, such models could even be included in genre

classifiers or automatic composition systems [Eck and Schmidhuber, 2002] to

increase their performance.

What are the usual probabilistic relations between these notational compo-

nents and the actual sequences of notes in polyphonic music? We explore this

issue in this chapter by using melodic prediction given chords as a benchmark

task to evaluate the quality of many chord notational components. Likelihoods

and conditional and unconditional prediction error rates are used as comple-

mentary measures of the quality of each combination of components.

Despite the simple and relatively universal chord building principles, many

different notations have been used through music history to represent chord

progressions [Dahlhaus, 1990]. We face the same problem in the computer

science literature, where each author uses a notation corresponding to his mu-

sical background [Allan and Williams, 2004; Paiement et al., 2006; Raphael

and Stoddard, 2004; Sheh and Ellis, 2003; Thom, 1995]. All these papers de-

scribe arbitrary chord representations embedded in probabilistic models, which

are mostly variants of Hidden Markov Models (HMMs). However, to the best

of our knowledge, there is no available quantitative comparative study of the

effect of the choice of particular chord representations to solve practical appli-

cations. Each chord representation carries specific information that could be

more adapted to certain tasks (or musical styles) than others. At the same

time, all of these notations encapsulate basic information about a chord, such

as its root.

3.2 Melodic Prediction Models

In order to assess the effect of using particular chord representations for

melodic prediction, we propose two kinds of probabilistic models.

3.2.1 A Local Model

The first proposed strategy is to look at the direct effect of observing particu-

lar chord representations without any influence from past observations. In the

simple model associated with Figure 3.1, variables in level 1 are associated with

chord observations. Their particular form is described in Section 3.2.3. Such

variables are observed during training and testing. Thus, the dashed horizon-

Melodic Prediction Models 39

1

2

Figure 3.1. A simple probabilistic model where the influence of each chord is

direct on melodic observations. When all chord variables in level 1 are observed,

the dashed lines are irrelevant, thus making each observation completely local

in time. Variables in level 2 correspond to melodic observations.

tal links are not relevant in this context, making each time-step independent

of the others. While these variables are discrete, their number of possible val-

ues depend on the chosen chord representation, as described in Section 3.2.3.

Variables in level 2 correspond to melodic observations. In this chapter, we

assume octave invariance for the melodic observations. In other words, every

note belonging to the same pitch-class are considered to be the same (e.g. all

C notes regardless of octave are associated to the same random variable value).

In level 2, we assign one value to each pitch-class, plus one extra value

for silence, leading to a total of 13 possible melodic values. This melodic

representation does not account for note similarities. In the proposed models,

the probability of the melodic observations given appropriate other random

variables is modeled by multinomials. Such a distribution does not embed

any notion of similarity between its possible outcomes. However, we chose this

melodic representation for its simplicity and also to avoid introducing bias while

measuring the quality of the chord representations for melodic prediction.

While this model is overly simplistic for practical purposes, it has the ad-

vantage of isolating the direct effect of particular chord representations on the

choice of melodic notes. Since all the variables are observed, parameters for

this model can be easily computed over a training set by standard maximum

likelihood techniques.

40 Comparing Chord Representations

1

3

2

Figure 3.2. Variant of an IOHMM model. The variables in level 1 are observed

and correspond to chord observations. Variables in level 2 are hidden, while

variables in level 3 correspond to melodic observations.

3.2.2 IOHMM Model

A more realistic model can be designed by adding extra hidden variables in

the previous model to consider influences from the past when trying to pre-

dict a melody note. The model presented in Figure 3.2 is very similar to an

input/output hidden Markov model (IOHMM) [Bengio and Frasconi, 1996].

In our implementation, all the variables in the model are discrete. Vari-

ables in level 1 are always observed and again correspond to chord observations.

Variables in level 2 are always hidden and are used to introduce dependencies

between time frames in the model. Variables in level 3 correspond to melodic

observations and have 13 possible values as in the local model presented in Sec-

tion 3.2.1. There is no link between level 1 and level 3 variables on Figure 3.2,

contrary to standard IOHMMs [Bengio and Frasconi, 1996]. The number of

possible values is highly variable from one chord representation to another.

Considering that, we chose to remove the usual links between inputs and out-

puts in IOHMMs in order to limit the impact of the particular choice of a chord

representation on the capacity of the model. This way, the number of possible

values of the chosen chord representation has an impact on the parameteri-

zation of the conditional distribution of the hidden variables, but not on the

conditional distributions of the predicted melodic variables.

Marginalization must be carried out in the proposed model both for learn-

ing (during the expectation step of the EM algorithm) and for evaluation. The

Melodic Prediction Models 41

moralization and triangulation steps normally done in the Junction Tree Al-

gorithm are not applicable to the IOHMMs due to their structural simplicity,

since no variable has more than one parent and there is no loop in the graph.

Exact marginalization is thus tractable in IOHMMs because of their limited

complexity.

3.2.3 Chord Representations

The chord representations that we describe in this chapter consider chord sym-

bols as they are represented in musical analysis instead of actual instantiated

chords, as in Chapter 2. In other words, we observe chord symbols such as

they appear in music sheets [Sher, 1988] instead of observing the notes that

would be played by a musician reading these chord symbols. Both kinds of

representations may be useful for different applications. However, one should

keep in mind that the mapping from instantiated chords to chords symbols

is straightforward, if using simple notation. For instance, this is done auto-

matically by most keyboards since the mid 1980’s. When using more complex

notation, simple probabilistic approaches such as the one described in Sec-

tion 2.1 [Raphael and Stoddard, 2004] can also be used for harmonic analysis.

Hence, a model observing chord symbols instead of actual notes could still be

used over traditional MIDI data with minimal preprocessing effort.

Going from chord symbols to instantiated chords is less trivial and depends

on the musical style. Levine [1990] proposes simples rules that can be imple-

mented very easily to generate accompaniments from chord symbols. Most

keyboards embed accompaniments systems that are automatically able to gen-

erate accompaniments in a selected musical genre given appropriate sequences

of chord symbols. As we noted in Section 1.2, chords can be seen as latent

variables (local in time) that condition the probabilities of choosing particular

notes in other music components, such as melodies or accompaniments. The

chord symbol “C Maj7” is usually constructed using the pitch classes C, E,

G, and B. However, it really defines a conditional probability over all pitch

classes. For instance, the pitch class D would normally be much more likely

over this particular chord than the pitch-class G#. This approach has the

advantage of defining directly the chord components as they are conceptual-

ized by a musician. This way, it should be easier in further developments

of the proposed models to experiment with more constraints (in the form of

conditional independence assumptions between random variables) derived from

musical knowledge.

In Chapter 2, we only consider chord progressions by themselves, without

42 Comparing Chord Representations

any relationship with other musical components, such as melody or bass lines.

In this chapter, we are interested in modeling the relationships between chords

and melodies. This is why we restrict ourselves to chord symbols instead of

considering actual instantiated chords. Chord symbols have much less possible

states than all the potential actual groupings of three or more notes, leading

to models with manageable numbers of parameters.

Four chord representations have been used in the experiments described in

Section 3.3. First, what we call a Naive representation is to consider every

chord (including the choice of the root) as a distinct observation. This rep-

resentation has the disadvantage of excluding any notion of chord similarity.

According to this representation, the fact that two chords share some common

notes does not have an impact on their associated probabilities. Moreover,

this representation leads to a high number of possible values for the associ-

ated random variables (e.g. 152 in the current experiments, corresponding to

each different chord found in the dataset described in Section 3.3). This can

be harmful when learning over small datasets because of the high number of

parameters. Despite all these drawbacks, such a representation can be useful if

the notions of chord similarities are included in others parts of the models, such

as in the conditional probabilities between variables [Paiement et al., 2005a].

Another possible chord representation is to discard any information except

the root, yielding random variables with 12 possible values. While having a

reasonable number of possible values, such a representation introduces a lot

of smoothing in the models. It is shown in Section 4.5 that root progressions

already contain valuable contextual information. It is possible to automatically

detect the key and the mode (major or minor) of a song [Rizo et al., 2006].

Given that information, the root is very often sufficient to predict the whole

structure of the rest of the current chord. For instance, given a song in C major

and observing a root C, it is very likely that the complete chord associated to

this root is a variant of C major.

We can also restrict ourselves to a subset of all possible chords [Bello and

Pickens, 2005; Sheh and Ellis, 2003] by mapping more complex observed chord

symbols to a subset of simpler ones. Such a representation is also used in

the experiments described in this chapter. We define only whether a chord

is minor, major or dominant, leading to chord random variables with only 3

possible values. In this case, if we observe for instance the chord C7#5b9, we

map this chord to the value corresponding to a dominant (7) chord. In the

remaining of this chapter, this representation is referred to as the mM7 (minor-

Major-dominant 7th) representation.

Experiments 43

Finally, we can combine the Root representation and the mM7 representation.

This leads to discrete random variables with 36 possible values (12 roots times

3 chord qualities).

3.3 Experiments

The same 52 jazz standards that were used for the experiments reported

in Chapter 2 were used for the experiments reported in this Section. While

the earlier experiments were only involving chord progressions as played by a

musician, the current model is considering chord symbols and melodies. Hence,

the appropriate melodies [Sher, 1988] were interpreted and recorded by the

author in MIDI format. Corresponding chord labels were also manually added

to this corpus.

Again, the complexity of the chord sequences and melodies found in the

corpus is representative of the complexity of common jazz and pop music. The

songs were transposed to the key of C. This simplification has no impact on

the generality of the experiments since automatic key detection is relatively

reliable. Every excerpt was 16 bars long, with four beats per bar, and with one

chord change every two beats. Two melodic observations were made for each

beat, yielding observed sequences of length 128.

3.3.1 Prediction Error Rate

Cross-validation [Hastie et al., 2001] over a conditional likelihood evaluation

criterion is introduced in Equation (2.6), Section 2.2.2. Here, we introduce

classification error rate as an alternative evaluation criterion.

Let x(n,i)
t and c

(n,i)
t be respectively the melodic observation and the chord

observation in sequence n of the test set associated to the i-th fold of the

cross-validation process at time t. Assume also that the i-th fold in the cross-

validation process contains Ni test sequences, that there is a total of I folds

in the cross-validation process and that all the sequences have length T . The

rate of error is given by

1
I

I∑
i=1

1
Ni

Ni∑
n=1

1
T

T∑
t=1

d
(n,i)
t (3.1)

where

d
(n,i)
t =

{
1 if (maxx∈X p

(n,i)
t (x|c(n,i)

1 , . . . , c
(n,i)
t)) 6= x

(n,i)
t

0 otherwise
(3.2)

withX being the set of possible melodic observations and p(n,i)
t (x|c(n,i)

1 , . . . , c
(n,i)
t)

being the probability of observing melodic value x in sequence n of the test set

44 Comparing Chord Representations

associated to the i-th fold of the cross-validation process at time t, estimated

by the evaluated model. In words, the out-of-sample error is just the average

number of times the algorithm makes a mistake when trying to predict melodic

observations over songs unseen during training.

It should be pointed out that the classification (or prediction) error is re-

ally the criterion we want to minimize when developing models for prediction

applications. In such a context, the system must make a decision at each time

step, which would be the case when using it in almost any realistic context. As

an example, a melodic model could be appended to a transcription algorithm.

In such a context, the model would have to guess what is the most likely next

note, given the previous notes and the audio measurements.

On each iteration of cross-validation, one fold of the dataset is not used

for training. This subset of the dataset (referred to as the test set in machine

learning literature) can be used to evaluate the model. Hence, it is always

possible to observe a chord symbol during evaluation (or testing) that has not

been observed previously when training the model. Dirichlet priors [Hecker-

man et al., 1994] have been used on all the chord variables in the algorithms

described in this chapter in order to avoid propagating infinite negative log-

probabilities in the models in this case. Intuitively, a Dirichlet prior over a

multinomial amounts to consider that we have seen every possible observations

a certain number of times (which may not be an integer) before observing the

training data.

3.3.2 Local Model

Parameters are tied over time in the Local model presented in Figure 3.1. In

other words, the arrows between level 1 and level 2 always correspond to the

same probability table in one fold of the cross-validation.

Out-of-sample classification errors for the local model described in Sec-

tion 3.2.1 and for each of the chord representations introduced in Section 3.2.3

are presented in Table 3.1. 5-fold cross-validation was used in the experiments

reported in this table. Note that we condition over all previous chords in Equa-

tion (3.2), while a melodic prediction in the Local model only depends on the

current chord observation.

As a benchmark, we also introduce the Freq model in Table 3.1, which is

simply an algorithm that always selects the most frequent melodic observation

in the training set. It corresponds to removing level 1 random variables in

Figure 3.1, just leaving independent observations.

With the Local model, it is impossible to optimize capacity because no

Experiments 45

Table 3.1. Out-of-sample classification error and average negative log-

likelihood for local models

Model % of Error Neg. Log-Likelihood

Naive 77.39 357.48

Roots + mM7 80.93 316.33

Roots 81.40 293.95

mM7 82.41 295.29

Freq 83.34 301.40

parameter is available which relates to the number of degrees of freedom in

the model. Thus in the Local model, the only way to increase capacity is to

use a chord representation with more possible values. Looking at the obtained

results, we see that the rate of error increases when using chord representations

with fewer possible values. It is then possible that all these models somehow

underfit, making the Naive representation (with 152 possible chord values in

the current experiments) the best choice in this context. Not surprisingly, the

Freq model, which always chooses the most frequent melodic observation, is

the worst model in terms of classification error rate. Generalization capabilities

of a model can benefit from the smoothing produced by a simplified chord rep-

resentation, since this simplification is done by clustering perceptual properties

of chords (e.g. all chords with the same root are clustered together in the Root

representation). This is obviously not the case when using the Freq model.

Table 3.1 also shows the average negative out-of-sample log-likelihoods ob-

tained with the same models again using cross-validation. Using the same

notation as in Equation (3.1) and (3.2), the conditional likelihood criterion

introduced in Equation (2.6) now becomes

1
I

I∑
i=1

− log(
Ni∏

n=1

T∏
t=1

p
(n,i)
t (x(n,i)

t |c(n,i)
1 , . . . , c

(n,)
t)) (3.3)

which is equal to

1
I

I∑
i=1

Ni∑
n=1

T∑
t=1

− log(p(n,i)
t (x(n,i)

t |c(n,i)
1 , . . . , c

(n,i)
t)). (3.4)

This performance measure is the one that was optimized over the training set

when learning the parameters of the models with the EM algorithm.

As can be observed, the negative log-likelihood results are not coherent

46 Comparing Chord Representations

Table 3.2. Out-of-sample classification error and average negative log-

likelihood for IOHMM models

Model % of Error Neg. Log-Likelihood

Naive 79.05 281.84

Roots 82.09 223.67

Roots + mM7 83.17 247.48

mM7 84.71 212.47

HMM 86.56 196.27

with the classification error. For instance, the Freq model has a lower negative

log-likelihood than the Roots + mM7 and Naive models! This result is counter-

intuitive since one would expect that adding current chord information would

help the model to guess what would be the current melody note.

These discrepancies between classification error rate and negative log-like-

lihood could be explained by the fact that each of the terms of the sum on the

right hand side of Equation (3.3) is not bounded negatively. Suppose that a

model fits most of the data quite well but some of the out-of-sample examples

have very low probabilities. Then, the terms associated to these examples in

Equation (3.3) can take very large negative values that could dominate the

average negative log-likelihood for all the examples. On the other hand, the

cost of encountering a very unlikely out-of-sample sequence (with respect to

the model being evaluated) in Equation (3.1) is only proportional to 1
N , with

N being the total number of examples in the dataset. This observation raises

the following question: Is the likelihood of the model over the observed data

the best criterion to optimize when what we really want to do is to minimize

the error of classification? We further discuss this question in Section 4.6.

3.3.3 IOHMM Model

Table 3.2 shows out-of-sample classification error and average negative log-

likelihood for the IOHMM model (Section 3.2.2). These results are qualitatively

similar to those in Table 3.1 for the Local model.

This time, the number of possible values for hidden variables in level 2

of Figure 3.2 was optimized using 5-fold double cross-validation, which is a

recursive application of cross-validation where both the optimization of the pa-

rameters of the model and the evaluation of the generalization performance of

the model are carried out simultaneously, as described in Section 2.2.2. Stan-

Experiments 47

dard cross-validation was applied to each subset of 4 folds with each hyper-

parameter setting and tested with the best set of parameters (on average) on

the remaining hold-out fold.

The same parameters are used over time to define the conditional proba-

bility distributions. For instance, all the vertical arrows between variables in

level 1 and level 2 in Figure 3.2 represent the same probability table. The fact

that it was possible in this context to optimize the capacity (i.e. the number of

parameters) of the models according to the number of possible values for the

hidden variables makes the results in Table 3.2 more trustworthy than the ones

found in Table 3.1, although they are similar. It should be pointed out that

the capacity of the models was optimized with respect to the appropriate error

measure. For instance, when reporting results about prediction error rates,

capacity is optimized with respect to prediction error rate (while the models

are trained by maximizing the likelihood with the EM algorithm).

The HMM model referred to in Table 3.2 is similar to the IOHMM model

but removing the chord inputs layer. It can be represented by the model in Fig-

ure 3.1 with the horizontal dashed arrows being present. In this case, variables

in level 1 are hidden and variables in level 2 are still melodic observations. As

expected, the HMM model produces higher out-of-sample classification error

than the IOHMM models, which can take advantage of the chord symbols given

as inputs.

Interestingly, the Naive representation for chords seems to be consistently

efficient for melodic prediction. In Table 3.2, the Naive representation gives

statistically significantly better results than the Roots representation with a

confidence level of 99%. We used a standard proportion test, assuming a bino-

mial distribution for the errors and using a normal approximation. This is an

indication that developing probabilistic models with this representation could

be a viable approach, especially if psychoacoustic relations between chords are

included in the models via the conditional probabilities related to these chords,

as in Section 2.3 [Paiement et al., 2005a]. The representation including only the

roots also performs well. Given these results, this representation appears to be

a good compromise given its relative simplicity and the fact that it inherently

embodies psychoacoustically relevant smoothing. Using basic chord informa-

tion (mM7 representation) does not seem to help with respect to unconditional

classification error.

Again, average negative log-likelihoods contradict average classification er-

ror rates. Even worse, the HMM model performs much better than the IOHMM

models in terms of likelihood! This is an indication that such a measure favors

48 Comparing Chord Representations

models that are more uniform in essence, thus giving a relatively high probabil-

ity to unseen sequences. However, such models are weaker when asked to make

a decision, meaning that they define distributions with modes less precisely

adapted to the training data.

3.3.4 Conditional Classification Error

The goal of the models presented here is to predict the melodies in the dataset.

It is out of the scope of this work to evaluate the subjective artistic quality of

the predicted melodies. A more interesting measure of melodic prediction is

the out-of-sample conditional classification error, given by Equation (3.1), but

using

d
(n,i)
t =

{
1 if maxx∈X p

(n,i)
t (x|c(n,i)

1 , . . . , c
(n,i)
t , x

(n,i)
1 , . . . , x

(n,i)
t−1) 6= x

(n,i)
t

0 otherwise
(3.5)

This measure is very similar to the unconditional error described in Section 3.3.3.

However, the models have access to the true previous melodic observations

when trying to guess the next one.

The only objective performance measure we can provide about a melodic

prediction given a chord progression is to tell if a predicted melody is similar

or not to the one provided in the dataset with the same chord progression.

However, while the space of plausible melodies is huge, we only have access to

a very small number of sequences to measure the performance of the models

given a chord progression. Moreover, given a particular sequence of chords, one

can imagine that a very high number of melodies would be considered more

or less musically similar to the ones in the dataset. Among all these melodies,

some of them may not share a single note with the true melody associated with

this sequence of chords in the test set. A good melodic prediction model would

be likely to generate any one of these melodies, thus producing a very high

unconditional error rate.

The conditional error rate alleviates this problem by measuring the predic-

tion performance of a model in regions of the observation space where data is

present, leading to a much more reliable performance measure in this context.

Moreover, distributions that would generalize well according to such a measure

could also be sampled to generate realistic melodies given chord progressions

and initial melodic motives. Out-of-sample conditional classification error rates

for the IOHMM models presented in Section 3.2.2 are shown in Table 3.3. We

do not provide conditional classification error rates for the Local model de-

scribed in Section 3.2.1, because they would be identical to the unconditional

Experiments 49

Table 3.3. Out-of-sample conditional classification error rates for IOHMM

models

Model % of Error

Roots 57.41

Roots + mM7 58.21

mM7 58.32

Naive 69.77

HMM 85.27

classification error rates shown in Table 3.1. When making a prediction, such

models are completely unaware of previous observations in time. Also, we

do not provide average negative log-likelihoods, since this measure is not well

adapted to prediction tasks, as we noted in Section 3.3.

Again, the HMM model produces higher out-of-sample conditional classifi-

cation error rate than the IOHMM models which benefit from chord symbols

given as inputs. In Table 3.3, the conditional error rates are much lower than

the unconditional ones for the same models. For each chord representation,

the prediction accuracy gained when observing previous melodic notes is much

higher than the differences in error rates for each chord representations ob-

tained in Table 3.2. This means that observing previous melodic notes gives

more information about the likely choices for the current melody than any

chord information.

In Table 3.2, the Naive representation was the best one in terms of un-

conditional prediction error rate. On the other hand, this representation has

the highest conditional prediction error rate among all the IOHMMs. When

knowing nothing about the previous melodic observations, the model performs

better when provided with a more detailed chord representation. However,

given previous melodic observations, smoothed chord representations lead to

better generalization in terms of prediction error rate. The Naive representa-

tion overfits the training data because it leads to models with higher capacity.

Finally, no representation is statistically significantly better than another with

a confidence level of 90% among the three best representations in Table 3.3.

50 Comparing Chord Representations

3.4 Conclusion

The main motivation behind this chapter was to better understand the

statistical relations between chord representations and the actual choice of notes

in polyphonic music. To this end, we compared four chord representations using

melodic prediction as a benchmark task.

Surprisingly, the Naive representation where each chord is conceived as a

discrete observation apparently performs well in terms of unconditional pre-

diction error rates. However, this representation overfits when past melodic

observations are used to condition the predictions. In this case, smoothed

chord representations seems more appropriate. Given the obtained results,

representing chords only by their roots seems to be a good compromise, espe-

cially when all the songs to be analyzed are transposed to the same key. While

being extremely simple, this representation inherently includes smoothing re-

lated to psychoacoustical relations between notes. Moreover, it is shown later

in Section 4.3 that root progressions contain valuable non-local information.

The Root+mM7 representation that is used in some important music informa-

tion retrieval papers [Bello and Pickens, 2005; Raphael and Stoddard, 2004] is

not optimal in any of the experiments. However, in practice, the actual choice

of a chord representation should always be made considering the application

to be developed in mind.

An interesting observation when looking at the results of the experiments

done in Section 3.3 is that the behavior of the average out-of-sample likelihood

does not follow the trends of the average prediction error rate (conditional or

unconditional). On the one hand, the likelihood is a measure of the fit of a

whole distribution to a dataset. However, the classification error seems to be

a better descriptor of the fit of the modes of a distribution. Provided a nearly

infinite amount of data, these two measures would lead to the same ranking

of the models. Thus, likelihood and prediction error would probably be more

comparable when measured with models trained and evaluated with much more

data. How much data is needed in this particular framework to obtain such a

behavior is still an open question that needs to be addressed.

However, given realistic datasets, optimizing the likelihood of a model with

respect to training data may not be the best strategy when one is only in-

terested in the modes of the distribution, which can be the case when doing

prediction. An alternative learning strategy would be to maximize the sum

of the differences between the log-probabilities of the observed classes and the

probabilities of the most probable wrong classes instead of just maximizing the

Conclusion 51

sum of the log probabilities of the observed classes. This approach is referred

to as the minimum classification error (MCE) algorithm [Juang and Katagiri,

1992].

The probabilistic models presented in this chapter were specifically designed

to compare chord representations in terms of melodic prediction. Generated

melodies obtained when sampling these models conditional to some given chord

progression would not be realistic. We show empirically in Chapter 6 that

melodies involve long term dependencies that can not be captured by simple

stochastic models, such as the IOHMM models. However, the dual problem,

which is to generate chord progressions given melodies (called harmonization),

is much simpler and we propose a graphical model to achieve this task in

Chapter 4, leading to very good practical results.

52 Comparing Chord Representations

4 Harmonization

As an application of probabilistic models of interactions between chords

and melodies presented in Chapter 3, we propose a model for harmonization

(i.e. choosing appropriate chords given melodies). A nice property of graphical

models is that it is possible to compute the conditional marginals of any variable

given any set of other variables after appropriate training. Thus, very similar

models to the ones used for melodic prediction given chords can be used for

chord prediction given melodies. However, slight modifications are required

both for melodic and chord representations. The research results presented in

this chapter are already published in Paiement et al. [2006].

4.1 Previous Work on Harmonization

Allan and Williams [2004] designed a harmonization model for Bach chorales

using Hidden Markov Models. Their proposed model deals exclusively with

chorales, where a distinct chord occurs at each time step. A chord must be

formed with 4 notes, including the melody. They associate each melody note

to the observed state of an HMM (grey nodes in Figure 1.2). The remaining

three notes are associated to the corresponding hidden state (white nodes in

the same figure).

Pitches are represented relative to the current melody note. Specific har-

monic labels must be added manually to the corpus, which limit severely the

applicability of the algorithm to large datasets. First order assumption is made

for the transition between chords. In other words, they assume that the prob-

ability of the choice of a particular chord at a given time only depends on the

previous chord and the current melody note. We show in Section 2.2.2 that

this assumption is too strong: the choice of a chord at a given time depends

on longer term dependencies. For instance, the last chord of a song is almost

54 Harmonization

always the tonic chord. There is no direct way for a local model as an HMM

to capture that simple property of chord progressions.

The first step for harmonization is done by using a standard Viterbi al-

gorithm. Given visible states (i.e. the melodic notes on each time-step), the

algorithm finds the most likely sequence of hidden chord states.

Chords are defined simply as a specific choice of 4 notes. Since chords occur

at each time steps, specific notes have to be chosen at each time steps. This

approach is quite unrealistic in general musical settings. The authors overcome

this problem by introducing an ornamentation mechanism specific to Bach

chorales. Each time step is divided into four parts, where the notes chosen by

the already described “chord” HMM can be modified by an “ornamentation”

HMM. The visible states of this second HMM observe each intervals between

notes already generated by the first HMM. Then, the hidden states correspond

to each additional notes that can be added or not on each 4 subdivisions of

each time-step. Another Viterbi algorithm can be used to generate a sequence

of hidden states given chords found by the “chord” HMM.

While generating excellent musical results on Bach chorales, this model has

to be provided polyphonic music with specific 4 voice structure as input, re-

stricting its applicability to very particular settings. Our work in this chapter

goes a step further by modeling chord progressions given melodies in a simpler

and more general way, through the use of a carefully designed chord represen-

tation.

4.2 Melodic Representation

Melodic events tend to happen much more often than chord events. While

many note beginnings and endings can happen within a single beat, only one

chord change usually happens every two, four, or even eight beats, closely

following the metric structure.

In Section 3.3, where we explored melody prediction, chord symbols were

simply repeated for each of the time-steps they spanned. In the case of chord

prediction, however, we must nearly always deal with the fact that many notes

in the melody map onto the same chord. To address this, we introduce a

melodic representation that allows us to merge many melodic notes into one

random variable. A simple way to achieve this is to represent melodies with a

12-dimensional continuous vector representing the relative importance of each

pitch class over a given period of time t. We first observe that the lengths of

the notes comprising a melody have an impact on their perceptual emphasis.

Usually, the meter of a piece can be subdivided into small time-steps such that

Modeling Root Note Progressions 55

the beginning of any note in the whole piece will approximately occur on one of

these time-steps. For instance, let t be the time required to play a whole bar.

Given that a 4-beat piece (where each beat is a quarter note in length) contains

only eighth notes or longer notes, we could divide every bar into 8 time-steps

with length t/8 and every notes of the piece would occur approximately on the

onset of one of these time-steps occurring at times 0, t/8, 2t/8, . . . , 7t/8 (i.e. we

do quantization). Then we can assign to each pitch-class a perceptual weight

equal to the total number of such time-steps it covers during time t.

However, as said previously, it turns out that the perceptual emphasis of

a melody note depends also on its position related to the meter of the piece.

We illustrate in Table 4.1 a way of constructing a weight vector assessing the

relative importance of each time-step in a 4-beat measure divided into 12 time-

steps with “swinging” eight notes, relying on how meter interacts with musical

rhythm [Cooper and Meyer, 1960]. To play “swinging” eighth notes, one just

delays the beginning of each note that would normally occur on half the length

of a beat (following standard notation) to approximately two-thirds of the

length of the same beat. The goal of this weight vector is to quantify the

perceptual emphasis of each possible positions in a measure. To construct this

representation, we point out iteratively one or more positions that have less

perceptual emphasis than the previous added ones. Each step is represented

by a row in the table. We sum the number of time each position appears in

the process in the resulting vector on the last row. Hence, this vector accounts

for the perceptual emphasis that we apply to each time-step in the measure.

Suppose that we observe the note D on the first beat, the note G on the sec-

ond beat, and the note C on the two last beats. We would have a melodic rep-

resentation equal to (13, 0, 8, 0, 0, 0, 0, 6, 0, 0, 0, 0) for the whole measure, given

the weights in Table 4.1 (if the first index correspond to pitch-class C, and so

on). For instance, we sum the numbers in the first three positions (5+1+2 = 8)

to obtain the vectorial representation for the note D. Although this method is

based loosely on widely accepted musicological concepts, more research would

be needed to assess its statistical reliability and to find optimal weighting fac-

tors.

4.3 Modeling Root Note Progressions

As it was shown in Table 3.3, one of the most important notes in a chord

with regard to its interaction with the melody is the root. For example, bass

players play the root note of the current chord very often when accompanying

other musicians in a jazz or pop context. As a first step towards complete

56 Harmonization

Table 4.1. A way to construct a vector assessing the relative importance of

each time-step in a 4-beat measure divided into 12 time-steps

Beat 1 . . 2 . . 3 . . 4 . .

.

. .

. . . .

.

.

5 1 2 3 1 2 4 1 2 3 1 2

On each row, we add positions that have less perceptual importance than the

previous added ones, ending with a weight vector covering all the possible

time-steps.

harmonization, Figure 4.1 shows a model that learns interactions between root

notes (or chord names) and the melody.

Discrete nodes in levels 1 and 2 are not observed. The upper tree struc-

ture is the most striking difference between this graphical model and the ones

introduced in Section 3.2 for melodic prediction. The purpose of the nodes in

level 1 is to capture global chord dependencies related to the meter [Cooper

and Meyer, 1960; Paiement et al., 2005b], like in the chord models presented

in Chapter 2. Since the goal is eventually to sample chord progressions from

this model given melodies, we wanted to enforce global dependencies with such

a structure. For instance, the fact that the algorithm is accurately generat-

ing proper endings is constrained by the upper tree structure. A quantitative

comparison between this tree structure and its local counterpart is presented

in Section 4.5. Nodes in level 2 are modeling local chord dependencies condi-

tionally to the more global dependencies captured in level 1.

Such a model is able to predict sequences of root notes given a melody, which

is a non-trivial task even for humans. Nodes in level 2 are tied according to the

numbers shown inside the vertices. Probabilities of transition between levels

3 and 4 are fixed with probabilities of substitution related to psychoacoustic

similarities between notes [Paiement et al., 2005a]. These random variables

have 12 possible values corresponding to each possible root note. We model

the probability of substituting one root note for another, as in Section 3.2.3.

Nodes in level 3 are hidden while nodes in level 4 are observed. Discarding

Modeling Root Note Progressions 57

level 4 and directly observing nodes in level 3 would assign extremely low

probabilities to unseen root notes in the training set. Instead, when observing

a given chord on level 4 during learning, the probabilities of every root note is

updated with respect to the fixed probabilities of substitution. Nodes in level

5 are continuous 12-dimensional Gaussian distributions that are also observed

during training where we model each melodic observation using the technique

presented in Section 4.2.

In order to evaluate the model presented in Figure 4.1, the database de-

scribed in Section 3.3 has been used. However, this time, each beat was divided

into 6 time-steps (leading to 24 time-steps per 4-beats bars) in order to fit each

melody note to an onset. The melodic representation presented in Section 4.2

was used over a time span t of 2 beats corresponding to the chords lengths.

The proposed tree model was compared to a local model (built by removing

nodes in level 1) in terms of prediction ability given the melody. In order to

do so, average negative conditional out-of-sample likelihoods of sub-sequences

of length 4 on positions 1, 5, 9 and 13 have been computed. For each sequence

of chords x = {x1, . . . x16} in the appropriate validation set, we average the

values

− logP (xi, . . . , xi+3|x1, . . . , xi−1, xi+4, . . . , x16). (4.1)

with i ∈ {1, 5, 9, 13}, as in Equation (2.6). Again, the likelihood of each sub-

sequence is conditional on the rest of the sequence taken in the validation set

and the corresponding melody.

As mentioned in Section 3.3.3, likelihood is probably not the most informa-

tive measure to assess the quality of models designed for prediction. The goal

in this case was to make decisions (predicting the most probable melodic ob-

servation) based on the modes of the distribution at each time frames. On the

other hand, an interesting use of a harmonization algorithm would be to sample

repeatedly the estimated distribution to obtain many possible harmonizations

of the same melody. Conditional likelihood of the out-of-sample observations is

then in this case a more appropriate performance measure than the prediction

error rate.

Using double cross-validation, we let the number of possible values for ran-

dom variables in levels 1 and 2 go independently from 2 to 15. This technique

has been used to optimize the number of possible values of hidden variables and

results are given in Table 4.2 in terms of average conditional negative out-of-

sample log-likelihoods of sub-sequences. We chose this particular structure for

conditioning the observations in order to account for the binary metrical struc-

ture of chord progressions, which is not present in natural language processing,

58 Harmonization

Table 4.2. Average conditional negative out-of-sample log-likelihoods of sub-

sequences of root notes of length 4 on positions 1, 5, 9 and 13 given melodies.

Model Negative log-likelihood

Tree 6.6707

Local 8.4587

These results are computed using double cross-validation in order to optimize

the number of possible values for hidden variables. The results are better (lower

negative likelihood) for the tree model than for the local model.

for instance.

The fact that results are better for the tree model than for the local model

tells us that non-local dependencies are present in root note progressions [Paiement

et al., 2005b]. Generated root note sequences given out-of-sample melodies are

presented in Section 4.5 together with generated chord structures.

4.4 Decomposing the Naive Representation

Before describing a complete model for harmonization, we introduce in this

section a decomposition of the Naive chord representation introduced in Sec-

tion 3.2.3 that allows us to model dependencies between each chord component

and the proper pitch-class components in the melodic representation presented

in Section 4.2.

Each chord is represented by a root note component (which can have 12

possible values given by the pitch-class of the root note of the chord) and 6

structural components detailed in Table 4.3. It is out of the scope of this thesis

to describe jazz chord notation in detail [Levine, 1990], but we note that there

exists a one-to-one mapping between the chord representation introduced in

Table 4.3 and the values of the Naive representation, in which each discrete

value corresponds to distinct observed chord symbols [Sher, 1988] (see example

below). However, these two representations are not equivalent. The decom-

position allows us to model directly the impact of each chord components on

other random variables through appropriate conditional probability parame-

terizations, which is not the case with the simpler Naive representation.

For the trained musicians, we show in Table 4.4 the mappings of some chord

symbols to structural vectors according to this representation. For instance,

Chord Model given Root Note Progression and Melody 59

Table 4.3. Interpretation of the possible values of the structural random vari-

ables.

Values

Component 1 2 3 4

3rd M m sus -

5th P b # -

7th no M m M6

9th no M b #

11th no # P -

13th no M - -

Possible values for our structural decomposition of chords. For instance, the

variable associated to the 5th of the chord can have 3 possible values. Value

1 corresponds to the perfect fifth (P), value 2 to the diminished fifth (b) and

value 3 to the augmented fifth (#). While explaining harmony theory is out

of the scope of this thesis, we provide this table to detail the proposed chord

structural decomposition to trained musicians.

an observed chord may have a root C, a major third (E), a perfect fifth (G),

and no other note. This would correspond to one single arbitrary value of the

Naive representation. The same chord would be represented by 7 values in the

decomposed representation, one value for the root and 6 structural components,

namely (1, 1, 1, 1, 1, 1) (i.e. a major third, a perfect fifth, no seventh, no ninth,

no eleventh, and no thirteenth), referring to the mapping presented in Table 4.3.

The fact that each structural random variable has a limited number of

possible values will produce a model that is computationally tractable. While

such a chord decomposition may not look general for a non-musician, we believe

that it is applicable to most tonal music by introducing proper chord symbol

mappings. Moreover, as pointed out previously, it allows us to directly model

the dependencies between chord components and melodic components.

4.5 Chord Model given Root Note Progression and Melody

Figure 4.2 shows a probabilistic model designed to predict chord progres-

sions given root note progressions and melodies. The nodes in level 1 are

discrete hidden nodes as in the root notes progressions model. The gray boxes

are subgraphs that are detailed in Figure 4.3.

60 Harmonization

Table 4.4. Mappings from some chord symbols to structural vectors according

to notation described in Table 4.3

Symbol 3rd 5th 7th 9th 11th 13th

6 1 1 4 1 1 1

M7 1 1 2 1 1 1

m7b5 2 2 3 1 1 1

7b9 1 1 3 3 1 1

m7 2 1 3 1 1 1

7 1 1 3 1 1 1

9#11 1 1 3 2 2 1

m9 2 1 3 2 1 1

13 1 1 3 2 1 2

m6 2 1 4 1 1 1

9 1 1 3 2 1 1

dim7 2 2 4 1 1 1

m 2 1 1 1 1 1

7#5 1 3 3 1 1 1

9#5 1 3 3 2 1 1

Mappings for structural decomposition of chords. For instance, the chord with

symbol 7#5 has a major third (M), an augmented fifth (#), a minor seventh

(m), no ninth, no eleventh and no thirteenth.

The H node is a discrete hidden node modeling local dependencies and

corresponding to the nodes on level 2 in Figure 4.2. The R node corresponds

to the current root note. This node can have 12 different values corresponding

to the pitch class of the root note and it is always observed. Nodes labeled

from 3rd to 13th correspond to the structural chord components presented in

Section 4.4. Node B is another structural component corresponding to the bass

notation (e.g. G7/D is a G seventh chord with a D on the bass). This random

variable can have 12 possible values defining the bass note of the chord. All the

structural components are observed during training to learn their interaction

with root note progressions and melodies. These are the random variables we

try to predict when using the model on out-of-sample data. The nodes on

the last row labeled from 0 to 11 correspond to the melodic representation

introduced in Section 4.2.

Chord Model given Root Note Progression and Melody 61

Table 4.5. Average negative conditional out-of-sample log-likelihoods of sub-

sequences of chord structures

Model Negative log-likelihood

Tree 9.9197

Local 9.5889

Chord structures have length 4 and are taken on positions 1, 5, 9 and 13.

Likelihoods are conditional on the rest of the current sequence, the complete

root note progressions and complete melodies. Results are computed using

double cross-validation.

It should be noted that the melodic components are observed relative to

the current root note. In Section 4.3, the model is observing melodies with

absolute pitch, such that component 0 is associated to note C, component 1

to note C#, and so on. On the other hand, in the present model component

0 is associated to the root note defined by node R. For instance, if the current

root note is G, component 0 will be associated to G, component 1 to G#,

component 2 to A, and so on. This approach is necessary to correctly link

the structural components to the proper melodic components as shown by the

arrows between the two last rows of nodes on Figure 4.3.

It is possible to evaluate the prediction ability of the model for chord struc-

tures. We present in Table 4.5 the average negative conditional out-of-sample

log-likelihoods of chord structures of length 4 on positions 1, 5, 9 and 13, given

the rest of the sequence, the complete root note progressions and the melodies

for the tree model and the local model built by removing the nodes in level 1

in Figure 4.2.

Again, we used double cross-validation in order to optimize the number of

hidden variables in the models. We observe that the local model gives better

results than the tree model in this case. This can be explained by the fact

that the root note progressions are given in these experiments. This would

mean that most of the contextual information would be contained in the root

note progression, which makes sense intuitively. Further statistical experiments

could be done to investigate this behavior. Table 4.6 shows three different

harmonizations of the last 8 measures of the jazz standard Blame It On My

Youth [Sher, 1988] generated by the proposed model.

When observing the predicted structures given the original root note pro-

62 Harmonization

Table 4.6. Three different harmonizations of the last 8 measures of the jazz

standard Blame It On My Youth

OC (1-8) AbM7 Bb7 Gm7 Cm7 Fm7 Fm7/Eb Db9#11 C7

OR AbM7 Bb7 Gm7 C7 Fm7 Fm7 Db7 Cm7

NH C7 C7 Gm7 Gm7 Fm7 Fm7 Bb7 Bb7

OC (9-16) Fm7 Edim7 Fm7 Bb7 Eb6 Eb6 Eb6 Eb6

OR Fm7 E9 Fm7 Bb7 Eb6 Eb6 Eb6 Eb6

NH Edim7 Gm7 Fm7 Bb7 Eb6 Eb6 Eb6 Eb6

Rows beginning with OC correspond to the original chord progression. Rows

beginning with OR correspond to the most likely chord structures given the

original root note progression and melody with respect to the model presented

in Section 4.5. Finally, rows beginning with NH correspond to a new harmo-

nization generated by the same model and the root note progression model

presented in Section 4.3 when observing original melody only.

gression, we see that most of the predicted chords are the same as the originals.

When the chord differs, the musician will observe that the predicted chords are

still relevant and are not in conflict with the original chords. It is more in-

teresting to look at the sequence of chords generated by taking the sequence

of root notes with the highest probability given by the root note progression

model presented in Section 4.3 and then finding the most likely chord struc-

tures given this predicted root note progression and the original melody. While

some chord changes are debatable, most of the chords comply with the melody

and we think that the final result is musically interesting. These results show

that valid harmonization models for melodies that could learn different musical

styles could be implemented in commercial software in the short term. More

generated results from the models presented in this chapter and audio examples

are available at http://www.idiap.ch/probmusic.

4.6 Conclusion

To achieve appropriate harmonization, we introduced a chord decomposi-

tion that allows us to easily introduce domain knowledge in a probabilistic

model by considering every structural component in chord notation. As in

Chapter 2, we have shown empirically that chord progressions exhibit global

Conclusion 63

dependencies that can be better captured with a tree structure related to the

meter than with a simple dynamical model that concentrates on local depen-

dencies. However, the proposed local model seems to be sufficient when root

note progressions are provided. This behavior suggests that most of the time-

dependent information may already be contained in root note progressions.

Future work could be concerned with implementing the described approach

in more general contexts. Repeating the tree structures over time could allow

to generate harmonizations for melodies with arbitrary lengths. Our approach

could also be trivially extended to classical chord notation.

Finally, the harmonization model introduced in this chapter can be sampled

to generate realistic accompaniments to given melodies in the same style as

a training corpus. This could have considerable interest in computer music

software.

64 Harmonization

2

3

4

1 2 3 2 3 23 2

5

1

Figure 4.1. A graphical model to predict root note progressions given melodies.

White nodes are hidden random variables while gray nodes are observed.

Conclusion 65

1

2

Figure 4.2. A graphical model to predict chord progressions given root notes

progressions and melodies. The gray boxes correspond to subgraphs presented

in Figure 4.3.

66 Harmonization

...

. . .H

R

3rd
5th

7th
9th

11th
13th

B

0
1

2
3

4
5

6
7

8
9

10
11

F
igure

4.3.
Subgraph

of
the

graph
presented

in
F
igure

4.2.
E

ach
chord

com
ponent

is
linked

w
ith

the
proper

m
elodic

com
ponents

on
the

bottom
.

5 Rhythms

The research reported in this chapter will be published in Paiement et al.

[2008c].

As already stated in Section 1.2, music is characterized by strong hierar-

chical dependencies determined in large part by meter, the sense of strong and

weak beats that arises from the interaction among hierarchical levels of se-

quences having nested periodic components. For example, a long melody is

often composed by repeating with variation shorter sequences that fit into the

metrical hierarchy (e.g. sequences of 4, 8 or 16 measures). In fact even random

music can sound structured and melodic if it is built by repeating and varying

random subsequences.

In this chapter, we focus on modeling rhythmic sequences, ignoring for the

moment other aspects of music such as pitch, timbre and dynamics. Many

algorithms have been proposed for audio beat tracking [Scheirer, 1998; Dixon,

2007]. Here, we consider rhythm modeling as a first step towards full melodic

modeling. Our main contribution in this respect is to propose a generative

model for distance patterns, specifically designed for capturing long-term de-

pendencies in rhythms. In this work, distance patterns refer to distances be-

tween subsequences of equal length in particular positions. In Section 5.2, we

describe the model, detail its implementation and present an algorithm using

this model for rhythm prediction. The algorithm solves a constrained opti-

mization problem, where the distance model is used to filter out rhythms that

do not comply with the inferred structure. The proposed model is evaluated in

terms of conditional prediction error on two distinct databases in Section 5.3,

and a discussion follows.

We want to model rhythms in a dataset X consisting of rhythms of the

same musical genre. We first quantize the database by segmenting each song

68 Rhythms

in m time steps and associate each note to the nearest time step, such that all

melodies have the same length m. Note that this hypothesis is not fundamental

in the proposed model and could easily be avoided if one would have to deal

with more general datasets. It is then possible to represent rhythms by se-

quences containing potentially three different symbols: 1) Note onset, 2) Note

continuation, and 3) Silence. When using quantization, there is a one to one

mapping between this representation and the set of all possible rhythms. Using

this representation, symbol 2 can never follow symbol 3. Let A = {1, 2, 3}; in

the remaining of this chapter, we assume that xl ∈ Am for all xl ∈ X .

5.1 HMMs for Rhythms

Let X = {x1, . . . ,xn} be a dataset of rhythm sequences, where all the

sequences contain m elements: xl = (xl
1, . . . , x

l
m), l = 1, . . . , n. Furthermore,

let hl = (hl
1, . . . , h

l
m) be the corresponding sequence of states for a discrete

hidden variable synchronized with xl. The joint probability of the rhythm

sequence xl and hidden states hl estimated by an HMM is given by

pHMM(xl,hl) = pπ(hl
1)po(xl

1|hl
1)

m∏
t=2

pō(hl
t|hl

t−1)po(xl
t|hl

t) , (5.1)

where the pō(.|.) terms are the transition probabilities, the po(.|.) terms are the

emission probabilities, and the pπ(.) is the initial probability of the first state of

the hidden variable. This model is presented in Figure 5.1, following standard

graphical model formalism, where each node is associated to a random variable

and arrows denote conditional dependencies. The probability distributions pπ,

pō, and po are multinomials, whose parameters can be learned as usual by the

EM algorithm

As stated in Section 1.3.2, HMMs are commonly used to model temporal

data [Rabiner, 1989]. In principle, an HMM is able to capture complex regular-

ities in patterns between subsequences of data, provided its number of hidden

states is large enough. Thus, the HMM could be seen as a valid candidate

for rhythm prediction. However, when dealing with rhythms in music, such a

model would lead to a learning process requiring a prohibitive amount of data:

in order to learn long range interactions, the training set should be represen-

tative of the joint distribution of subsequences. To overcome this problem,

we propose in Section 5.2 to summarize the joint distribution of subsequences

by the distribution of their pairwise distances. This summary is clearly not a

sufficient statistic for the distribution of subsequences, but its distribution can

be learned from a limited number of examples. The resulting model, which

Distance Model 69

...

x
l
1 x

l
2 x

l
3

h
l
1 h

l
2 h

l
3

Figure 5.1. Hidden Markov Model. Each node is associated to a random

variable and arrows denote conditional dependencies. When learning the pa-

rameters of the model, white nodes are hidden whereas grey nodes are observed.

generates distances, is then used to constrain the generation of subsequences.

Moreover, empirical results obtained in Section 5.3 show that constraining the

HMM with distributions over distance between subsequences significantly im-

proves prediction accuracy.

5.2 Distance Model

As stated in Section 1.2, music is characterized by strong hierarchical de-

pendencies determined in large part by meter, the sense of strong and weak

beats that arises from the interaction among hierarchical levels of sequences

having nested periodic components. Such a hierarchy is implied in western

music notation, where different levels are indicated by kinds of notes (whole

notes, half notes, quarter notes, etc.) and where bars establish measures of an

equal number of beats. Meter and rhythm provide a framework for developing

musical melody. For example, a long melody is often composed by repeating

with variation shorter sequences that fit into the metrical hierarchy (e.g. se-

quences of 4, 8 or 16 measures). It is well known in music theory that distance

patterns are more important than the actual choice of notes in order to create

coherent music [Handel, 1993]. For instance, measure 1 may always be similar

to measure 5 in a particular musical genre. In fact, even random music can

sound structured and melodic if it is built by repeating random subsequences

with slight variation.

Traditionally, musicologists refer to repetition patterns in music with se-

quences of letters (e.g. AABA). Let us consider the simple pattern “AB”. This

notation does not tell to what extent the second part differs from the first. In-

stead of just stating if the second part is similar or not to the first one, we want

70 Rhythms

to quantify the distances between the two parts in a corpus of music data. We

can even go further and repeat this process hierarchically with various partition

lengths. To do so, we introduce in this section a generative model for distance

patterns and its application to rhythm sequences. Such a model is appropriate

for most music data, where distances between subsequences of data exhibit

strong regularities.

Suppose that we construct a partition of each rhythm sequence xl by divid-

ing it into ρ parts defined by yl
i = (xl

1+(i−1)m/ρ, . . . , x
l
im/ρ) with i ∈ {1, . . . , ρ}.

We are interested in modeling the distances between these subsequences, given

a suitable metric d(yi, yj) : Rm/ρ × Rm/ρ → R. As we just pointed out, the

distribution of d(yi, yj) for each specific choice of i and j may be more impor-

tant when modeling rhythms (and music in general) than the actual choice of

subsequences yi.

Let D(xl) = (dl
i,j)1≤i≤ρ,1≤j≤ρ be the distance matrix associated with each

sequence xl, where dl
i,j = d(yl

i, y
l
j). Since D(xl) is symmetric and contains only

zeros on the diagonal, it is completely characterized by the upper triangular

matrix of distances without the diagonal. Hence,

p(D(xl)) =
ρ−1∏
i=1

ρ∏
j=i+1

p(dl
i,j |Sl,i,j) (5.2)

where

Sl,i,j = {dl
r,s|(1 < s < j and 1 ≤ r < s) or (s = j and 1 ≤ r < i)} . (5.3)

In words, we order the elements column-wise and do a standard factorization,

where each random variable depends on the previous elements in the ordering.

Hence, we do not assume any conditional independence between the distances.

Since d(yi, yj) is a metric, we have that d(yi, yj) ≤ d(yi, yk) + d(yk, yj) for

all i, j, k ∈ {1, . . . , ρ}. This inequality is usually referred to as the triangle

inequality. Defining

αl
i,j = min

k∈{1,...,(i−1)}
(dl

k,j + dl
i,k) and

βl
i,j = max

k∈{1,...,(i−1)}
(|dl

k,j − dl
i,k|) ,

(5.4)

we know that given previously observed (or sampled) distances, constraints

imposed by the triangle inequality on dl
i,j are simply

βl
i,j ≤ dl

i,j ≤ αl
i,j . (5.5)

One may observe that the boundaries given in Eq. (5.4) contain a subset of

the distances that are on the conditioning side of each factor in Eq. (5.2) for

Distance Model 71

d
l
1,2 d

l
1,3 d

l
1,4

d
l
2,3 d

l
2,4

d
l
3,4

Figure 5.2. Each circle represents the random variable associated with the

corresponding factor in Eq. (5.2), when ρ = 4. For instance, the conditional

distribution for dl
2,4 possibly depends on the variables associated to the grey

circles.

each indices i and j. Thus, constraints imposed by the triangle inequality can

be taken into account when modeling each factor of p(D(xl)): each dl
i,j must

lie in the interval imposed by previously observed/sampled distances given in

Eq. (5.5). Figure 5.2 shows an example where ρ = 4. Using Eq. (5.2), the

distribution of dl
2,4 would be conditioned on dl

1,2, d
l
1,3, d

l
2,3, and dl

1,4, and

Eq. (5.5) reads |dl
1,2 − dl

1,4| ≤ dl
2,4 ≤ dl

1,2 + dl
1,4. Then, if subsequences yl

1 and

yl
2 are close and yl

1 and yl
4 are also close, we know that yl

2 and yl
4 cannot be

far. Conversely, if subsequences yl
1 and yl

2 are far and yl
1 and yl

4 are close, we

know that yl
2 and yl

4 cannot be close.

5.2.1 Modeling Relative Distances Between Rhythms

When using the rhythm representation introduced in the beginning of this chap-

ter, dl
i,j can simply be chosen to be the Hamming distance (i.e. counting the

number of positions on which corresponding symbols are different). One could

think of using more general edit distance such as the Levenshtein distance.

However, this approach would not make sense psycho-acoustically: doing an

insertion or a deletion in a rhythm produces a translation that alters dramat-

ically the nature of the sequence. Putting it another way, rhythm perception

heavily depends on the position on which rhythmic events occur. In the re-

mainder of this chapter, dl
i,j is the Hamming distance between subsequences yi

and yj .

We now have to encode our belief that rhythms of the same musical genre

72 Rhythms

have a common distance structure. For instance, drum beats in rock music

can be very repetitive, except in the endings of every four measures, without

regard to the actual beats being played. This should be accounted for in the

distributions of the corresponding dl
i,j .

With Hamming distances, the conditional distributions of dl
i,j in Eq. (5.2)

should be modeled by discrete distributions, whose range of possible values

must obey Eq. (5.5). Hence, we assume that the random variables (dl
i,j −

βl
i,j)/(α

l
i,j − βl

i,j) should be identically distributed for l = 1, . . . , n. Empirical

inspection of data supports this assumption. As an example, suppose that

measures 1 and 4 always tend to be far away, that measures 1 and 3 are close,

and that measures 3 and 4 are close; Triangle inequality states that 1 and 4

should be close in this case, but the desired model would still favor a solution

with the greatest distance complying with the constraints imposed by triangle

inequalities.

All these requirements are fulfilled if we model di,j − βi,j by a binomial

distribution of parameters (αi,j − βi,j , pi,j), where pi,j is the probability that

two symbols of subsequences yi and yj differ. With this choice, the conditional

probability of getting di,j = βi,j + δ would be

B(δ, αi,j , βi,j , pi,j) =
(
αi,j − βi,j

δ

)
(pi,j)δ(1− pi,j)(αi,j−βi,j−δ) , (5.6)

with 0 ≤ pi,j ≤ 1. If pi,j is close to zero/one, the relative distance between

subsequences yi and yj is small/large. However, the binomial distribution is not

flexible enough since there is no indication that the distribution of di,j −βi,j is

unimodal. We thus model each di,j −βi,j with a binomial mixture distribution

in order to allow multiple modes. We thus use

p(di,j = βi,j + δ|Si,j) =
c∑

k=1

w
(k)
i,j B(δ, αi,j , βi,j , p

(k)
i,j) (5.7)

with w
(k)
i,j ≥ 0,

∑c
k=1 w

(k)
i,j = 1 for every indices i and j, and Si,j defined

similarly as in Eq. (5.3). Parameters

θi,j = {w(1)
i,j , . . . , w

(c−1)
i,j } ∪ {p(1)

i,j , . . . , p
(c)
i,j }

can be learned with the EM algorithm (c.f. Section 1.3.1) on rhythm data for

a specific music style.

In words, we model the difference between the observed distance dl
i,j be-

tween two subsequences and the minimum possible value βi,j for such a differ-

ence by a binomial mixture.

The parameters θi,j can be initialized to arbitrary values before applying

the EM algorithm. However, as the likelihood of mixture models is not a

Distance Model 73

convex function, one may get better models and speed up the learning pro-

cess by choosing sensible values for the initial parameters. In the experiments

reported in Section 5.3, the k-means algorithm for clustering [Duda et al.,

2000a] was used. More precisely, k-means was used to partition the values

(dl
i,j−βl

i,j)/(α
l
i,j−βl

i,j) into c clusters corresponding to each component of the

mixture in Eq. (5.7). Let {µ(1)
i,j , . . . , µ

(c)
i,j } be the centroids and {n(1)

i,j , . . . , n
(c)
i,j }

the number of elements in each of these clusters. We initialize the parameters

θi,j with

w
(k)
i,j =

n
(k)
i,j

n
and p

(k)
i,j = µ

(k)
i,j .

We then follow a standard approach [Bilmes, 1997] to apply the EM algorithm

to the binomial mixture in Eq. (5.7). Let zl
i,j ∈ {1, . . . , c} be a hidden variable

telling which component density generated dl
i,j . For every iteration of the EM

algorithm, we first compute

p(zl
i,j = k|dl

i,j , α
l
i,j , β

l
i,j , θ̂i,j) =

ψk,i,j,l∑c
t=1 ψt,i,j,l

where θ̂i,j are the parameters estimated in the previous iteration, or the pa-

rameters guessed with k-means on the first iteration of EM, and

ψk,i,j,l = ŵ
(k)
i,j B(dl

i,j , α
l
i,j , β

l
i,j , p

(k)
i,j) .

Then, the parameters can be updated with

p
(k)
i,j =

∑n
l=1(d

l
i,j − βl

i,j)p(z
l
i,j = k|dl

i,j , α
l
i,j , β

l
i,j , θ̂i,j)∑n

l=1(α
l
i,j − βl

i,j)p(z
l
i,j = k|dl

i,j , α
l
i,j , β

l
i,j , θ̂i,j)

and

w
(k)
i,j =

1
n

n∑
l=1

p(zl
i,j = k|dl

i,j , α
l
i,j , β

l
i,j , θ̂i,j).

This process is repeated until convergence.

Note that using mixture models for discrete data is known to lead to iden-

tifiability problems. Identifiability refers here to the uniqueness of the repre-

sentation (up to an irrelevant permutation of parameters) of any distribution

that can be modeled by a mixture.

Estimation procedures may not be well-defined and asymptotic theory may

not hold if a model is not identifiable. However, the model defined in Eq. (5.7)

is identifiable if αi,j − βi,j > 2c− 1 [Titterington et al., 1985, p.40]. While this

is the case for most di,j , we observed that this condition is sometimes violated.

Whatever happens, there is no impact on the estimation because we only care

about what happens at the distribution level: there may be several parameters

74 Rhythms

leading to the same distribution, some components may vanish in the fitting

process, but this is easily remedied, and EM behaves well.

As pointed out in Section 1.2, musical patterns form hierarchical structures

closely related to meter [Handel, 1993]. Thus, the distribution of p(D(xl)) can

be computed for many numbers of partitions within each rhythmic sequence.

Let P = {ρ1, . . . ρh} be a set of numbers of partitions to be considered by our

model, where h is the number of such numbers of partitions. The choice of P
depends on the domain of application. Following meter, P may have dyadic

tree-like structure when modeling most music genres (e.g. P = {2, 4, 8, 16}).
Even when considering non-dyadic measures (e.g. a three-beat waltz), the

very large majority of the hierarchical levels in metric structures follow dyadic

patterns in most tonal music [Handel, 1993]. Let Dρr (x
l) be the distance

matrix associated with sequence xl divided into ρr parts. Estimating the joint

probability
∏h

r=1 p(Dρr (x
l)) with the EM algorithm as described in this section

leads to a model of the distance structures in rhythms datasets. Suppose

we consider 16 bar songs with four beats per bar. Using P = {8, 16} would

mean that we consider pairs of distances between every group of two measures

(ρ = 8), and every single measures (ρ = 16).

One may argue that our proposed model for long-term dependencies is

rather unorthodox. However, simpler models like Poisson or Bernoulli process

(we are working in discrete time) defined over the whole sequence would not

be flexible enough to represent the particular long-term structures in music.

5.2.2 Conditional Prediction

For most music applications, it would be particularly helpful to know which

rhythm sequence x̂s, . . . , x̂m maximizes p(x̂s, . . . , x̂m|x1, . . . , xs−1). Knowing

which musical events are the most likely given the past s − 1 observations

would be useful both for prediction and generation. Note that in this thesis, we

refer to prediction of musical events given past observations only for notational

simplicity. All the generative models presented in this thesis could be used

to predict any part of a music sequence given any other part with only minor

modifications.

While the described modeling approach captures long range interactions in

the music signal, it has two shortcomings. First, it does not model local depen-

dencies: it does not predict how the distances in the smallest subsequences (i.e.

with length smaller than m/max(P)) are distributed on the events contained

in these subsequences. Second, as the mapping from sequences to distances

is many to one, there exists several admissible sequences xl for a given set of

Distance Model 75

distances. These limitations are addressed by using another sequence learner

designed to capture short-term dependencies between musical events. Here, we

use an HMM for rhythms, as described in Section 5.1.

The two models are trained separately using their respective version of

the EM algorithm. For predicting the continuation of new sequences, they

are combined by choosing the sequence that is most likely according to the

local HMM model, provided it is also plausible regarding the model of long-

term dependencies. Let pHMM(xl) be the probability of observing sequence xl

estimated by the HMM after training. The final predicted sequence is the

solution of the following optimization problem:
max

x̃s,...,x̃m

pHMM(x̃s, . . . , x̃m|x1, . . . , xs−1)

subject to
h∏

r=1

p(Dρr (x
l)) ≥ P0 ,

(5.8)

where P0 is a threshold. In practice, one solves a Lagrangian formulation of

problem (5.8), where we use log-probabilities for computational reasons:

max
x̃s,...,x̃m

[log pHMM(x̃s, . . . , x̃m|x1, . . . , xs−1) + λ

h∑
r=1

log p(Dρr (x
l))] , (5.9)

where tuning λ has the same effect as choosing a threshold P0 in Eq. (5.8) and

can be done by cross-validation.

Multidimensional Scaling (MDS) is an algorithm that tries to embed points

(here “local” subsequences) into a potentially lower dimensional space while

trying to be faithful to the pairwise affinities given by a “global” distance ma-

trix. Here, we propose to consider the prediction problem as finding sequences

that maximize the likelihood of a “local” model of subsequences under the

constraints imposed by a “global” generative model of distances between sub-

sequences. In other words, solving problem (5.8) is similar to finding points

such that their pairwise distances are as close as possible to a given set of dis-

tances (i.e. minimizing a stress function in MDS). Naively trying all possible

subsequences to maximize (5.9) leads to O(|A|(m−s+1)) computations, where

A = {1, 2, 3} is the set of rhythm symbols. Instead, we propose to search the

space of sequences using a variant of the Greedy Max Cut (GMC) method

[Rohde, 2002] that has proven to be optimal in terms of running time and

performance for binary MDS optimization.

The subsequence x̂s, . . . , x̂m can be simply initialized with

(x̂s, . . . , x̂m) = max
x̃s,...,x̃m

pHMM(x̃s, . . . , x̃m|x1, . . . , xs−1) (5.10)

76 Rhythms

1. Initialize x̂s, . . . , x̂m using Eq. (5.10);

2. Set j = s and set end = true;

3. Set x̂j = arg max
a∈A

[log pHMM(x∗|x1, . . . , xs−1) +

λ
∑h

r=1 log p(Dρr (x1, . . . , xs−1,x∗))]

where x∗ = (x̂s, . . . , x̂j−1, a, x̂j+1, . . . , x̂m)

4. If x̂j has been modified in the last step, set end = false.

5. If j = m and end = false, go to 2;

6. If j < m, set j = j + 1 and go to 3;

7. Return x̂s, . . . , x̂m.

Figure 5.3. Simple optimization algorithm to maximize

p(x̂s, . . . , x̂m|x1, . . . , xs−1)

using the local HMM model. The complete optimization algorithm is described

in Figure 5.3. For each position, we try every admissible symbol of the alphabet

and test if a change increases the probability of the sequence. We stop when no

further change can increase the value of the utility function. Obviously, many

other methods could have been used to search the space of possible sequences

x̂s, . . . , x̂m, such as simulated annealing [Kirkpatrick et al., 1983]. Our choice is

motivated by simplicity and the fact that it yields excellent results, as reported

in the following section.

5.3 Rhythm Prediction Experiments

Two databases from different musical genres were used to evaluate the pro-

posed model. Firstly, jazz standards melodies [Sher, 1988] corresponding the

the chord progressions described in Section 2.2.2 were interpreted and recorded

by the first author in MIDI format. Appropriate rhythmic representations, as

described in the beginning of this chapter, have been extracted from these

files. Again, the complexity of the rhythm sequences found in this corpus is

representative of the complexity of common jazz and pop music. We used

the last 16 bars of each song to train the models, with four beats per bar.

Two rhythmic observations were made for each beat, yielding observed se-

quences of length 128. We also used a subset of the Nottingham database

(http://www.cs.nott.ac.uk/~ef/music/database.htm) consisting of 53 tra-

Rhythm Prediction Experiments 77

ditional British folk dance tunes called “hornpipes”. In this case, we used the

first 16 bars of each song to train the models, with four beats per bar. Three

rhythmic observations were made for each beat, yielding observed sequences

of length 192. The sequences from this second database contain no silence (or

rest), leading to sequences with binary states.

Using similar notation as in Equation (3.1), let x
(n,i)
t be the rhythmic

observation in sequence n of the test set associated to the i-th fold of the

cross-validation process at time t. Assume also that the i-th fold in the cross-

validation process contains Ni test sequences, that there is a total of I folds

in the cross-validation process and that all the sequences have length m. The

prediction accuracy is given by

1
I

I∑
i=1

1
Ni

Ni∑
n=1

1
m− s+ 1

m∑
t=s

d
(n,i)
t (5.11)

where

d
(n,i)
t =

{
1 if (maxx∈A p

(n,i)
t (x|x(n,i)

1 , . . . , x
(n,i)
s−1)) = x

(n,i)
t

0 otherwise
(5.12)

withA being the set of possible rhythmic observations and p(n,i)
t (x|xn,i

1 , . . . , x
(n,i)
s−1)

being the conditional probability of observing rhythmic value x in sequence n

of the test set associated to the i-th fold of the cross-validation process at time

t, estimated by the evaluated model, given observations from time 1 through

s−1. In words, the prediction accuracy is just the average number of times the

algorithm makes a good choice when trying to predict rhythmic observations

over songs unseen during training, given some previous observations. This per-

formance criterion is qualitatively similar to the prediction error described in

Equation (3.1), but considering a different context.

Note that, while the prediction accuracy is simple to estimate and to inter-

pret, other performance criteria, such as ratings provided by a panel of experts,

should be more appropriate to evaluate the relevance of music models. We plan

to define such an evaluation protocol in future work.

Again, we used 5-fold double cross-validation to estimate the accuracies.

Double cross-validation is a recursive application of cross-validation that en-

ables to jointly optimize the hyper-parameters of the model and evaluate its

generalization performance, as described in Section 2.2.2.

For the baseline HMM model, double cross-validation optimizes the number

of possible states for the hidden variables. 2 to 20 possible states were tried in

the reported experiments. In the case of the model with distance constraints,

referred to as the global model, the hyper-parameters that were optimized are

78 Rhythms

the number of possible states for hidden variables in the local HMM model (i.e.

2 to 20), the Lagrange multiplier λ, the number of components c (common to all

distances) for each binomial mixture, and the choice of P, i.e. which partitions

of the sequences to consider. Values of λ ranging between 0.1 and 4 and values

of c ranging between 2 and 5 were tried during double cross-validation. Since

music data commonly shows strong dyadic structure following meter, many

subsets of P = {2, 4, 8, 16} were allowed during double cross-validation.

Note that the baseline HMM model is a poor benchmark on this task,

since the predicted sequence, when prediction consists in choosing the most

probable subsequence given previous observations, only depends on the state

of the hidden variable at time s−1. This observation implies that the number of

possible states for the hidden variables of the HMM upper-bounds the number

of different sequences that the HMM can predict. However, this behavior of the

HMM does not question the validity of the reported experiments. The main

goal of this quantitative study is to measure to what extent distance patterns

are present in music data and how well these dependencies can be captured by

the proposed model. What we really want to measure is how much gain we

observe in terms of out-of-sample prediction accuracy when using an arbitrary

model if we impose additional constraints based on distance patterns. That

being said, it would be interesting to measure the effect of appending distance

constraints to more complex music prediction models [Dubnov et al., 2003;

Pachet, 2003].

Results in Table 5.1 for the jazz standards database show that considering

distance patterns significantly improves the HMM model. One can observe that

the baseline HMM model performs much better when trying to predict the last

32 symbols. This is due to the fact that this database contains song endings.

Such endings contain many silences and, in terms of accuracy, a useless model

predicting silence at any position performs already well. On the other hand,

the endings are generally different from the rest of the rhythm structures, thus

harming the performance of the global model when just trying to predict the

last 32 symbols. Results in Table 5.2 for the hornpipes database again show

that the prediction accuracy of the global model is consistently better than the

prediction accuracy of the HMM, but the difference is less marked. This is

mainly due to the fact that this dataset only contains two symbols, associated

to note onset and note continuation. Moreover, the frequency of these symbols

is quite unbalanced, making the HMM model much more accurate when almost

always predicting the most common symbol.

In Table 5.3, the set of partitions P is not optimized by double cross-

Rhythm Prediction Experiments 79

Table 5.1. Accuracy (the higher the better) for best models on the jazz stan-

dards database.

Observed Predicted HMM Global

32 96 34.5% 54.6%

64 64 34.5% 55.6%

96 32 41.6% 47.2%

Table 5.2. Accuracy (the higher the better) for best models on the hornpipes

database.

Observed Predicted HMM Global

48 144 75.1% 83.0%

96 96 75.6% 82.1%

144 48 76.6% 80.1%

validation. Results are shown for different fixed sets of partitions. The best

results are reached with “deeper” dyadic structure. This is a good indication

that the basic hypothesis underlying the proposed model is well-suited to music

data, namely that dyadic distance patterns exhibit strong regularities in music

data. We did not compute accuracies for ρ > 16 because it makes no sense to

estimate distribution of distances between too short subsequences.

Table 5.3. Accuracy over the last 64 positions for many sets of partitions P
on the jazz database, given the first 64 observations. The higher the better.

P Global

{2} 49.3%

{2, 4} 49.3%

{2, 4, 8} 51.4%

{2, 4, 8, 16} 55.6%

80 Rhythms

5.4 Conclusion

The main contribution of this chapter is the design and evaluation of a gen-

erative model for distance patterns in temporal data. The model is specifically

well-suited to rhythm data, which exhibits strong regularities in dyadic distance

patterns. Reported conditional prediction accuracies show that the proposed

model effectively captures such regularities. Rhythm prediction can be seen as

the first step towards full melodic prediction and generation. In Chapter 6, we

apply the proposed model to melody prediction. It could also be readily used to

increase the performance of beat tracking algorithms, transcription algorithms,

genre classifiers, or even automatic composition systems.

In future work, the distance constraints should be applied to other models

than the HMM. Also, different initializations could be compared, as well as

alternative optimization techniques. For instance, we could initialize the second

half of a song with the first half. A greedy algorithm could then iteratively make

modifications to the second half to introduce variability where is it usually

found in the training corpus. In this case, a drum beat would have various

“fill-ins” in the appropriate positions, while always keeping the same basic

rhythmic structure anywhere else.

Finally, besides being fundamental in music, modeling distance patterns

should also be useful in other application domains where data is represented as

sequences, such as in natural language processing. Being able to characterize

and constrain the relative distances between various parts of a sequence of bags-

of-concepts could be an efficient means to improve performance of automatic

systems such as machine translation [Och and Ney, 2004].

6 Melodies

With a reliable rhythm model available, we can turn our attention towards

probabilistic modeling of melodies given rhythms and chord progressions. As

was mentioned in Section 1.2, knowing the relations between chords and actual

notes would certainly help to discover long-term musical structures in tonal

music.

As we demonstrated in Chapter 4, it is fairly straightforward to generate

interesting chord progressions given melodies in a particular musical genre [Al-

lan and Williams, 2004; Paiement et al., 2006]. However, the dual problem

that we address in this chapter is much more difficult. In Section 6.2.2, we

describe melodic features derived from Narmour [1990] that put useful con-

straints on melodies based on musicological substantiation. We then introduce

in Section 6.2.3 a probabilistic model of melodies given chords and rhythms

that leads to significantly higher prediction rates than a simpler Markovian

model. The combination of the rhythm model presented in Section 5.2 and

the melodic model given chords of Section 6.2.3 leads to a predictive model of

music that could be interesting in many applications.

The research reported in this chapter is currently under revision for publi-

cation in Paiement et al. [2008b].

6.1 Previous Work

We are not aware of existing generative models of melodies, given chords

and rhythms, as we present in this chapter. However, we first describe previ-

ous works dealing with probabilistic modeling of polyphonic music in general.

The presented models are not designed to extract melodies from rhythms and

chords, but still involve various interactions between symbolic musical notes.

82 Melodies

6.1.1 Bayesian Music Transcription

Cemgil et al. [2006] proposed a graphical model for audio to symbolic transcrip-

tion.This model takes as input audio data, without any form of preprocessing.

Instead of using Fourier transforms like in most current transcription systems,

they model each harmonics of musical notes as sets of random variables. While

being very costly, this approach has the advantage of being completely data-

dependent. However, strong Markovian assumptions are necessary in order to

model the temporal dependencies between notes, given the high complexity of

the transcription graphical model.

Modeling a Single Note

Let y1:T = {y1 . . . , tT } be a sequence of audio samples with constant frequency

FS .

First suppose that y1:T is a Gaussian process where typical realizations are

damped sinusoids through time, with angular frequency ω:

st ∼ N (ρtB(ω)st−1, Q)

yt ∼ N (Cst, R)

s0 ∼ N (0, S)

where N (µ,Σ) denotes a multivariate Gaussian distribution with mean µ and

covariance Σ. Hence, Q, R, and S are appropriate covariance matrices. Here

B(ω) =

(
cos(ω) − sin(ω)

sin(ω) cos(ω)

)

is a given rotation matrix that rotates two dimensional vector st by ω degrees

counterclockwise. C = [1, 0] is a projection matrix. The phase and amplitude

of yt are determined by the initial condition s0 drawn from the prior with

covariance S. The damping factor 0 ≤ ρt ≤ 1 specifies the rate at which st

contracts to 0.

Musical instruments have several modes of oscillation that are roughly lo-

cated at multiple integer of the fundamental frequency ω. Cemgil et al. [2006]

propose to model such signals by a bank of oscillators giving a block diagonal

transition matrix A(ω, ρt) defined as
ρ
(1)
t B(ω) 0 · · · 0

0 ρ
(2)
t B(2ω)

...
...

. . . 0

0 · · · 0 ρ
(H)
t B(Hω)



Previous Work 83

where H is the given number of harmonics. This model can be intuitively seen

as a probabilistic version of the Fourier decomposition of an observed waveform.

From audio to symbolic representation

Hidden variables for multiples notes onsets and offsets can be linked to the audio

variables described so far. Let rj,t be indicator variables, where j ∈ {1, . . . ,M}
can be any possible note while t ∈ {1, . . . , T} runs over time. Each rj,t is

binary with values sound or mute. Each note has a fundamental frequency

ωj . A polyphonic song can be seen as a collection of indicators r1:M,1:T . Each

row rj,1:T can be seen as controlling a sound generator as described in the

last section. Then, Cemgil et al. [2006] describe a complex graphical model to

define p(r1:M,1:T |y1:T), involving very strong Markovian assumptions about the

prior transition probabilities p(r1:M,1:T) between notes.

For transcription of an audio file y1:T , the goal is to find to most likely

polyphonic sequence of notes r∗1:M,1:T given by

argmax1:M,1:T p(r1:M,1:T |y1:T) .

Given the high complexity of the model, this maximization is intractable and

greedy approximation methods have to be used to estimate the most likely

sequence of notes given an arbitrary audio sequence y1:T . Learning the param-

eters in this model is even more difficult and requires approximation methods

as well.

While this model is a very interesting modeling of transcription, we don’t

know the effect of using an overly simplistic model of p(r1:M,1:T) on (poor) prac-

tical transcription performance. In this chapter, we propose a more realistic

model for transitions between notes. We show empirically that the prediction

accuracy of such a model is significantly better than what is obtained with a

simpler Markovian model, as used in Cemgil et al. [2006].

6.1.2 Dictionary-based Predictors

Machine learning techniques have already been applied to music generation. In

Dubnov et al. [2003], two distinct methods are proposed to generate melodies

close to a given corpus. Both methods are dictionary-based predictors. A

dictionary-based prediction method parses an existing musical text into a lex-

icon of phrases/patterns, called motifs, and provides an inference method for

choosing the next musical object following a current past context.

84 Melodies

Root

a b r

b c d a

Figure 6.1. Dictionary tree created by IP when parsing the single sequence

“abracadabra”.

Incremental Parsing

An incremental parsing (IP) algorithm [Ziv and Lempel, 1978] builds a dictio-

nary of distinct motifs by one continuous left to right traversal of a sequence,

incrementally adding to a dictionary every new phrase that differs by a single

last character from the longest match that already exists in the dictionary. For

instance, given a text {ababaa...}, IP would parse {a, b, ab, aa, . . .}. The dictio-

nary may be efficiently represented by a tree, where each node correspond to

an element of the dictionary.

Let A be an alphabet. For a node labeled by string c, the conditional

probabilities of the descendents are taken as the relative portion of counts of

characters Nc(x), x ∈ A appearing in all descendants of the current node c,

setting

Pc(x) =
Nc(x)∑

y∈ANc(y)
.

As an example, the dictionary tree in Figure 6.1 is created when parsing a

single sequence “abracadabra”. In this context, the probability of generating

“abrac” estimated by IP is

P (”abrac”) = P (a|””)P (b|a)P (r|ab)P (a|abr)P (c|abra) = 4/7·1/3·2/7·1·1/3 .

Prediction Suffix Trees (PST)

In contrast to the lossless coding scheme underlying IP, the PST algorithm

[Ron et al., 1996] builds a restricted dictionary of only those motifs that both

appear a significant number of times throughout the complete source sequence,

and are meaningful for predicting the immediate future.

Previous Work 85

The empirical probability of a motif is the number of occurrences divided

by the total number of occurrences. The conditional probability of a motif

after a given context is the number of occurrences of that motif after the given

context, divided by the number of occurrences of this context.

PST uses a breadth first search to find all the motifs that comply with the

following requirements:

• The motif is no longer than some maximal length L;

• Its empirical probability is greater than Pmin;

• The conditional probability it induces over the next symbol differs by

a multiplicative factor of at least r from that of the shorter contexts it

subsumes, for at least one such next symbol.

Using this framework, the empirical probability of the motif “aa” within

the sequence “aabaaab” is 3/6. The conditional probability of seeing “b” after

“a” is 2/5. Also, the conditional probability of observing “b” after “aa” is 2/3.

Finally, the multiplicative factor between the conditional probability to observe

“b” after “aa” and that after “a” is (2/3)/(2/5) = 5/3.

In PST, the counts are incorporated using

P̂c(x) = (1− |A|g)Pc(x) + g

where |A| is the size of the alphabet and g is a smoothing factor, 0 < g < 1/|A|.

Melodic models based on IP and PST generate subjectively impressive musi-

cal results when sampled. However, we are not aware of musicological evidence

to support such modeling of melodic sequences. In contrast, we propose in

Section 6.2.2 a set of constraints on melodic shapes based on the musicological

work of Narmour [1990].

Moreover, using generative models allows to generate musical events given

appropriate contexts, which is less straightforward when using a dictionary-

based approach. For instance, we propose a generative model of melodies given

chords and rhythms in Section 6.2.3.

Finally, while models of music learned on data such as Espi et al. [2007];

Dubnov et al. [2003]; Pachet [2003] generate somewhat realistic musical results,

we are only aware of a few quantitative comparisons between generative models

of music [Lavrenko and Pickens, 2003], that is for instance in terms of out-of-

sample prediction accuracy, as it is done in Sections 5.3 and 6.3.

86 Melodies

The remainder of this report is organized as follows: In section 2

we provide a brief overview of related work, both in music mod-

eling and in recent applications of random fields. Section 3 starts

with a discussion of polyphonic music and introduces the music

representation that will be used throughout this report. In section 4

we discuss how a sample of music can be mapped onto a two-

dimensional field over binary variables. We discuss the structure of

the field, the interactions between the variables and the procedures

that can be used to induce the field and learn its parameters. In

section 5 we discuss the performance of our system and provide

a quantitative evaluation of its effectiveness. Section 6 serves to

summarize the findings of this project.

2. RELATED WORK
This section serves a dual purpose. First we will briefly survey

recent publications attempting to model music as a stochastic pro-

cess. We will also discuss the fundamental differences between

these approaches and the model we explore in the paper. Then we

will discuss relevant literature on applications of random fields in

the area of natural language processing.

2.1 Music Models
Due to the complex nature of polyphonic music, most of the

work in stochastic modeling of music, as in the music informa-

tion retrieval field in general, operates in the monophonic domain.

Examples and applications include automated score following [7]

and melody-based information retrieval [1]. Notable exceptions to

the monophonic domain are Raphael [17] and Pickens et al [16].

The former work uses carefully constructed hidden Markov models

to automatically transcribe polyphonic audio piano music, treat-

ing the actual notes (pitch values) as the hidden states and using

Viterbi to discover these values. The latter work proceeds by map-

ping each simultaneity in a piece of music onto a set of 24 triads

using a musically-motivated heuristic algorithm, then constructing

“visible” n-gram Markov models of those triad sequences.

Finally, it must be mentioned that entropy has been applied to

other areas of music, including clustering and melodic extraction.

As an example of the latter, Uitdenbogerd [19, 20] uses entropy

to select monophonic melody lines from polyphonic MIDI pieces.

What we present in this paper is a more comprehensive application

of the principles of entropy to the problem of creating reasonable

music models, which models may then be used for a wide variety

of music-related tasks.

2.2 Random Fields and Maximum Entropy
Markov Random Fields have long been a popular tool for model-

ing complex physical systems, and most of their fundamental prop-

ertieswere derived in a physical setting. The technique has also been

quite popular in the field of computer vision. However, it is only

recently that random fields found applications in large-vocabulary

applications, such as languagemodeling and information extraction.

One of the most influential works in the area is the 1997 publication

of Della Pietra et al. [6], which outlined the algorithms that will be

used in parts of this paper. The learning procedures for parameter

estimation date back to a 1972 publication by Darroch and Ratcliff

[5], but do not include the techniques for feature induction, which

are crucial for the purpose of music modeling. Berger et al. [3]

were the first to suggest the use of maximum entropy models for

natural language processing. Since then, the models have steadily

gained popularity, and variations were proposed for the tasks of lan-

guage modeling [18], text segmentation and information extraction

[12, 9], text classification [14] and machine translation [15]. Re-

cently, Malouf [11] carried out an extensive comparison of learning

algorithms for the maximum-entropy framework.

While our work was inspired by applications of random fields

to language processing, it bears more similarity to the use of the

framework by the researchers in computer vision. In most natural

language applications authors start with a reasonable set of features

(which are usually single words, or hand-crafted expressions), and

the main challenge is to optimize the weights corresponding to these

features. This works well in natural language, where words bear

significant semantic content. In our case, induction of the random

field is the crucial step. As we describe below, we will start with

a set of single notes, which by themselves cannot reflect anything

about a musical piece. We will use the techniques suggested by [6]

to automatically induce new high-level features, such as consonant

and dissonant chords, progressions and repetitions.

3. MUSIC REPRESENTATION
The domain in which we wish to apply the MRF modeling is

polyphonic music. Music has several possible representations. In

its most unstructured form, music can be represented as a sequence

of audio signal samples, as for example in a .wav or .mp3 file.

On the other end of the spectrum, music may be represented as

instructions to a performer, as in sheet music. Music in this form

contains all the notes in a piece of music, the onset, symbolic-code

duration (eg: "quarter" note, "half" note"), and pitch of every single

note. This music also comes complete with time signatures, key

signatures, sharps, flats, ties, slurs, and various other dynamics

markings which help instruct the performer as to the manner in

which the piece should be performed. We deal with neither of these

forms, but rather with a form that combines aspects of the two.

MIDI (www.midi.org) is a characteristic example, though we do
not require the music to be in this specific format. In MIDI files, the

onset, duration, and pitch of every note in a piece of music is known.

But no other information is necessarily available. The pitches are

encoded as numbers, ranging from 1 to 128. The durations are

not symbolic, but instead are given as millisecond integers. The

onset times also are not symbolic, but occur at millisecond integer

locations.

Monophonic music is such that, if a note is playing, no new note

may start until the previous note has finished. In polyphonic music,

there is no such restriction. Any note may start or finish before any

other note finishes. We may therefore think of polyphonic MIDI

music as a two-dimensional graph, with millisecond time along the

x-axis, and MIDI note number (1 to 128) along the y-axis. At any

point along the y-axis, notes turn "on", remain "on" for a particular

duration, and then turn back "off" again. As a quick example, see

the figures below. Black circles represent notes being "on". White

circles represent notes being "off".

In order to do our MRF modeling, we need to select features

from our polyphonic source documents and use those features for

modeling. We begin by selecting only the onset times of each new

pitch in the sequence, and ignoring the duration of the note. The

example above thus transforms into:

Next, we get rid of all millisecond onset times which contain

no pitches. (We are throwing away not only the duration of the

Figure 6.2. Representation of a polyphonic MIDI file, with millisecond time

along the x-axis, and MIDI note number along the y-axis

The remainder of this report is organized as follows: In section 2

we provide a brief overview of related work, both in music mod-

eling and in recent applications of random fields. Section 3 starts

with a discussion of polyphonic music and introduces the music

representation that will be used throughout this report. In section 4

we discuss how a sample of music can be mapped onto a two-

dimensional field over binary variables. We discuss the structure of

the field, the interactions between the variables and the procedures

that can be used to induce the field and learn its parameters. In

section 5 we discuss the performance of our system and provide

a quantitative evaluation of its effectiveness. Section 6 serves to

summarize the findings of this project.

2. RELATED WORK
This section serves a dual purpose. First we will briefly survey

recent publications attempting to model music as a stochastic pro-

cess. We will also discuss the fundamental differences between

these approaches and the model we explore in the paper. Then we

will discuss relevant literature on applications of random fields in

the area of natural language processing.

2.1 Music Models
Due to the complex nature of polyphonic music, most of the

work in stochastic modeling of music, as in the music informa-

tion retrieval field in general, operates in the monophonic domain.

Examples and applications include automated score following [7]

and melody-based information retrieval [1]. Notable exceptions to

the monophonic domain are Raphael [17] and Pickens et al [16].

The former work uses carefully constructed hidden Markov models

to automatically transcribe polyphonic audio piano music, treat-

ing the actual notes (pitch values) as the hidden states and using

Viterbi to discover these values. The latter work proceeds by map-

ping each simultaneity in a piece of music onto a set of 24 triads

using a musically-motivated heuristic algorithm, then constructing

“visible” n-gram Markov models of those triad sequences.

Finally, it must be mentioned that entropy has been applied to

other areas of music, including clustering and melodic extraction.

As an example of the latter, Uitdenbogerd [19, 20] uses entropy

to select monophonic melody lines from polyphonic MIDI pieces.

What we present in this paper is a more comprehensive application

of the principles of entropy to the problem of creating reasonable

music models, which models may then be used for a wide variety

of music-related tasks.

2.2 Random Fields and Maximum Entropy
Markov Random Fields have long been a popular tool for model-

ing complex physical systems, and most of their fundamental prop-

ertieswere derived in a physical setting. The technique has also been

quite popular in the field of computer vision. However, it is only

recently that random fields found applications in large-vocabulary

applications, such as languagemodeling and information extraction.

One of the most influential works in the area is the 1997 publication

of Della Pietra et al. [6], which outlined the algorithms that will be

used in parts of this paper. The learning procedures for parameter

estimation date back to a 1972 publication by Darroch and Ratcliff

[5], but do not include the techniques for feature induction, which

are crucial for the purpose of music modeling. Berger et al. [3]

were the first to suggest the use of maximum entropy models for

natural language processing. Since then, the models have steadily

gained popularity, and variations were proposed for the tasks of lan-

guage modeling [18], text segmentation and information extraction

[12, 9], text classification [14] and machine translation [15]. Re-

cently, Malouf [11] carried out an extensive comparison of learning

algorithms for the maximum-entropy framework.

While our work was inspired by applications of random fields

to language processing, it bears more similarity to the use of the

framework by the researchers in computer vision. In most natural

language applications authors start with a reasonable set of features

(which are usually single words, or hand-crafted expressions), and

the main challenge is to optimize the weights corresponding to these

features. This works well in natural language, where words bear

significant semantic content. In our case, induction of the random

field is the crucial step. As we describe below, we will start with

a set of single notes, which by themselves cannot reflect anything

about a musical piece. We will use the techniques suggested by [6]

to automatically induce new high-level features, such as consonant

and dissonant chords, progressions and repetitions.

3. MUSIC REPRESENTATION
The domain in which we wish to apply the MRF modeling is

polyphonic music. Music has several possible representations. In

its most unstructured form, music can be represented as a sequence

of audio signal samples, as for example in a .wav or .mp3 file.

On the other end of the spectrum, music may be represented as

instructions to a performer, as in sheet music. Music in this form

contains all the notes in a piece of music, the onset, symbolic-code

duration (eg: "quarter" note, "half" note"), and pitch of every single

note. This music also comes complete with time signatures, key

signatures, sharps, flats, ties, slurs, and various other dynamics

markings which help instruct the performer as to the manner in

which the piece should be performed. We deal with neither of these

forms, but rather with a form that combines aspects of the two.

MIDI (www.midi.org) is a characteristic example, though we do
not require the music to be in this specific format. In MIDI files, the

onset, duration, and pitch of every note in a piece of music is known.

But no other information is necessarily available. The pitches are

encoded as numbers, ranging from 1 to 128. The durations are

not symbolic, but instead are given as millisecond integers. The

onset times also are not symbolic, but occur at millisecond integer

locations.

Monophonic music is such that, if a note is playing, no new note

may start until the previous note has finished. In polyphonic music,

there is no such restriction. Any note may start or finish before any

other note finishes. We may therefore think of polyphonic MIDI

music as a two-dimensional graph, with millisecond time along the

x-axis, and MIDI note number (1 to 128) along the y-axis. At any

point along the y-axis, notes turn "on", remain "on" for a particular

duration, and then turn back "off" again. As a quick example, see

the figures below. Black circles represent notes being "on". White

circles represent notes being "off".

In order to do our MRF modeling, we need to select features

from our polyphonic source documents and use those features for

modeling. We begin by selecting only the onset times of each new

pitch in the sequence, and ignoring the duration of the note. The

example above thus transforms into:

Next, we get rid of all millisecond onset times which contain

no pitches. (We are throwing away not only the duration of theFigure 6.3. Simplification of the representation in Figure 6.2, where offset

information is discarded, keeping only onset information. Black circles corre-

spond to note onsets, with millisecond time along the x-axis, and MIDI note

number along the y-axis.

6.1.3 Polyphonic Music Modeling with Random Fields

Lavrenko and Pickens [2003] propose a generative model of polyphonic mu-

sic that employs Markov random fields (MRFs). Intuitively, an MRF is just

a graphical model where each random variable can only depend on its close

neighbors. However, very strong simplifications of the MIDI representation

(with information loss) are necessary for the MRFs to be tractable when mod-

eling polyphonic music.

A polyphonic MIDI file could be represented as a two dimensional MRF

with millisecond time along the x-axis, and MIDI note number (from 1 to

128) along the y-axis, as in Figure 6.2. At any point along the y-axis, notes

turn “on”, remain “on” for a particular duration, and then turn back “off”

again. From this accurate representation of MIDI data, Lavrenko and Pickens

[2003] first discard the offset information. This leads to a representation as

in Figure 6.3. Then, note durations and durations between notes are thrown

away, as illustrated in Figure 6.4. The chronological relations between musical

events is kept in this representation (including simultaneity of musical events).

Finally, the 128-note y-axis is reduced to a 12-note pitch-class set, leading to

the representation shown in Figure 6.5. As one can see, all these simplifications

in the observed representations discard very important information present in

Previous Work 87

Figure 6.4. Simplification of the representation in Figure 6.3, where note

durations and durations between notes are thrown away. Again, black circles

correspond to note onsets. The chronological relations between musical event

are kept in this representation.

Figure 6.5. Simplification of the representation in Figure 6.4, where octave

invariance is applied. MIDI note number information is converted to pitch-class

information.

the original MIDI files. For instance, one could not directly sample generative

models of this representation to generate polyphonic music. However, Lavrenko

and Pickens [2003] argue that all these simplifications are necessary for their

proposed MRFs to be tractable.

For each binary note ni,t with pitch-class i at time t, the goal is to estimate

P (ni,t|Hi,t), with

Hi,t = {nj,s|s < t} ∪ {nj,s|s = t, j < i} .

Binary feature functions can have the form

fS(ni,t,Hi,t) = ni,t

∏
nj,s∈S

nj,s

where S ⊂ Hi,t is made of close neighbors of ni,t.

A possible parameterization of P (ni,t|Hi,t) is defined by

P̂ (ni,t|Hi,t) =
1
Zi,t

exp

∑
f∈F

λff(ni,t,Hi,t)


where the λf are Lagrange multipliers, Zi,t is a normalization constant, and

F is a set of feature functions. It is possible to learn the parameterization of

88 Melodies

1. Rhythm

2. Narmour

Chords

3. Melody

Figure 6.6. Schematic overview of the proposed melodic model. We first model

rhythms. Then, we model Narmour features sequences given rhythms. Finally,

we model actual melodies given Narmour features and chords.

P̂ (ni,t|Hi,t) that maximizes the likelihood of training data. Pietra et al. [1997]

describe how to learn the values of λf and the structure of F simultaneously

for this purpose.

Lavrenko and Pickens [2003] show that using their MRF model for poly-

phonic music outperforms a simple Markov chain in terms of prediction ac-

curacy. Though the MRFs model is not restricted to chord progressions, the

dependencies it considers (by putting constraints on the choices of S) are much

shorter than in the chord models presented in Chapter 2. Also, octave informa-

tion and temporal information are discarded, making the model unsuitable for

modeling realistic chord voicings or melodies. For instance, low notes tend to

have more salience in chords than high notes [Levine, 1990]. While being very

general, this model would benefit from having access to more specific musical

knowledge, as it is the case for most of the models introduced in this thesis.

6.2 Melodic Model

We described a reliable prediction model for rhythms in Chapter 5. We can

now turn our attention to an even more difficult problem, which is to model

melody notes, given rhythm and chord progressions. In order to do so, we

proceed iteratively in three steps depicted schematically in Figure 6.6. We first

model rhythms with the model presented in Section 5.2. Then, we model fea-

tures that represent the plausibility of sequences of notes. These “Narmour”

features, introduced in Section 6.2.2, are computed for each sequence of three

consecutive notes. Their prediction is an interesting intermediate problem since

the cardinality of such features is much lower than the number of sequences

Melodic Model 89

of three notes. Moreover, such features are descriptive of the perceptual ex-

pectancy of a particular group of three notes. As stated in Section 1.2, chords

can be seen as latent variables (local in time) that condition the probabilities of

choosing particular notes in a melody. However, chords do not describe longer

term melodic structure. This is why we propose to use Narmour features as

sequences of constraints on the choices of melody notes. In Section 6.2.3, we

describe a probabilistic model for melody notes given Narmour features and

chord progressions.

Results reported in Section 6.3 show that using sequences of Narmour fea-

tures as constraints leads to much better prediction accuracy than the direct

baseline approach using the IOHMM model described in the following section.

We do not compare quantitatively our presented model with the polyphonic

music models presented in Section 6.1, introduced in previous work. The main

reason is that our proposed model is a model of melodies given chords and

rhythms. On the other hand, the various models of polyphonic music pre-

sented in Section 6.1 are unconditional models of polyphonic music. However,

the combination of our proposed conditional melodic model with the chord pro-

gression model of Chapter 2 and the rhythm model of Chapter 5 could form an

unconditional polyphonic music model by itself. As such, it could be compared

with previous probabilistic models of symbolic polyphonic music. We defer this

comparison to future work.

6.2.1 IOHMMs

A simple probabilistic model for melodies given chords can be designed by

adding input variables to the HMM, as it is done in Section 3.2.2. Let U =

{u1, . . . ,un} be a dataset of varying length melodies, where melody ul has

length gl, ul = (ul
1, . . . , u

l
gl

). Each melodic line is composed of notes ul
i in the

MIDI standard, ul
i ∈ {0, . . . , 127}. The melodies in dataset U are synchronized

with rhythms in the dataset X defined as in Section 5.2. The length gl of

melodic line ul corresponds thus to the number of note onsets (symbol 1) in

rhythm sequence xl. In addition, let νl = (νl
1, . . . , ν

l
gl

) be the chord progression

corresponding to the l-th melody. In the experiments reported in this chapter,

each νl
t is represented by the Naive representation described in Section 3.2.3.

Hence, each νl
t takes a discrete value within the number of different chords in

the dataset. The joint probability of each sequence ul, its associated chord

90 Melodies

 ...h
l
1 h

l
2 h

l
3

ν
l
1 ν

l
2 ν

l
3

u
l
3u

l
2u

l
1

1.

2.

3.

Figure 6.7. Variant of an IOHMM model for MIDI notes given chords. The

variables in level 1 are always observed and correspond to chords. Variables in

level 2 are hidden, while variables in level 3 correspond to melodic notes. All

variables in grey are observed during training.

progression νl, and hidden states hl can be modeled by

pIOHMM(ul, νl,hl) = pi(νl
1)pπ(hl

1|νl
1)po(ul

1|hl
1)

gl∏
t=2

pi(νl
t)pō(hl

t|hl
t−1, ν

l
t)po(ul

t|hl
t) .

(6.1)

This model, shown in Figure 6.7, is a specific Input/Output Hidden Markov

Model (IOHMM), as introduced by Bengio and Frasconi [1996]. Usual IOHMMs

have additional links connecting directly the input variables (level 1) to the out-

puts (level 3). We removed these links to decrease to number of parameters in

the model, and thus being less prone to overfit the training data.

The probability distributions pπ, pi, pō, and po are multinomials, as in

Equation (5.1), and the model is learned by the standard EM algorithm. Per-

formance of the IOHMM in terms of melodic prediction accuracy given chords

is presented in Section 6.3.

6.2.2 Narmour Features

In this section, we introduce melodic features that will prove to be useful for

melodic prediction. The Implication-Realization (I-R) model has been devel-

oped by Narmour [1990, 1992] as a theory of musical expectation. This fairly

complex musicological model was then simplified and implemented by Schellen-

berg [1997], who proposed a formal analysis of each sequence of three consec-

Melodic Model 91

utive notes, according to five perceptual items: registral direction, intervallic

difference, registral return, proximity, and closure, as described later in this sec-

tion. The model returns five scores measuring expectancy according to these

five criteria, and, according to Narmour’s theory, high perceptual expectancy

incurs high cumulative scores. This model was empirically shown to be relevant

in information retrieval applications [Grachten et al., 2005].

In this chapter, our goal is quite different. Instead of quantifying melodic

expectancy, we design a probabilistic model of melodic sequences given chords.

We propose to collectively use the Narmour principles as discrete features to

characterize each sequence of three consecutive notes. In the remainder of this

thesis, we refer to these features as Narmour features. There is far fewer possible

Narmour features (108 in our implementation) than possible groups of three

notes (1283 if we consider all MIDI notes). Given that observation, we expect

that modeling sequences of Narmour features should be easier than modeling

actual sequences of notes. We describe in Section 6.2.3 how we propose to

generate actual melodies given sequences of Narmour features.

Our particular implementation of the Narmour features is mostly derived

from Schellenberg [1997]. We simply define the interval vt between two notes ut

and ut−1 to be the difference vt = ut−1−ut between their MIDI note numbers.

Interval has to be taken here in its musicological sense, which is not related

to the usual mathematical definition: an interval is an integer that counts

the number of semi-tones between two notes. Each Narmour principle can

be computed for any sequence of three consecutive notes, corresponding to two

intervals. In Narmour’s theory, the first interval is referred to as the Implication

while the second interval corresponds to the Realization of a melodic pattern

of three notes. We define the sign function as

sgn(x) =


−1 if x < 0

0 if x = 0

1 if x > 0

.

The registral direction principle states that continuation in pitch direction is

expected after small intervals and that large intervals imply a change of direc-

tion. We define

rmt =


0 if |vt−1| > 6 and sgn(vt−1) = sgn(vt)

1 if |vt−1| ≤ 6

2 if |vt−1| > 6 and sgn(vt−1) 6= sgn(vt)

to be the Narmour feature scoring the registral direction principle computed

on arbitrary MIDI notes ut−2, ut−1, and ut.

92 Melodies

The intervallic difference principle says that small intervals imply similar-

sized realized intervals and that large implicative intervals imply relatively

smaller realized intervals. Formally,

idt =


1 if |vt−1| < 6 and sgn(vt−1) 6= sgn(vt) and ||vt−1| − |vt|| < 3

1 if |vt−1| < 6 and sgn(vt−1) = sgn(vt) and ||vt−1| − |vt|| < 4

1 if |vt−1| > 6 and |vt−1| ≥ |vt|
0 otherwise

is the Narmour feature scoring the intervallic difference principle.

The registral return principle states that the second tone of a realized in-

terval is expected to be very similar to the original pitch (within 2 semi-tones).

Thus, we define the following scoring function

rrt =

{
1 if |vt + vt−1| ≤ 2

0 otherwise.

Then, the closure principle states that either melody changes direction, or

that large intervals are followed by a relatively smaller interval. This feature is

scored by

clt =


2 if sgn(vt−1) 6= sgn(vt) and |vt−1| − |vt| > 2

1 if sgn(vt−1) 6= sgn(vt) and |vt−1| − |vt| < 3

1 if sgn(vt−1) = sgn(vt) and |vt−1| − |vt| > 3

0 otherwise.

Finally, the proximity principle favors small realized intervals. We define

prt =


0 if |vt| ≥ 6

1 if 3 ≤ |vt| ≤ 5

2 if 0 ≤ |vt| ≤ 2

.

We define this feature with less possible states than in [Schellenberg, 1997] in

order to limit the dimensionality of the Narmour representation. Besides, the

actual numerical values for each of the Narmour features do not correspond to

those of Schellenberg [1997], where the goal was to quantify numerically the

subjective melodic expectation. In the context of this chapter, these values

only correspond to discrete ordered values summarizing triplets of notes.

From these definitions, the Narmour features for the note triplet (ut−2, ut−1, ut)

are defined as

γt = (rmt, idt, rrt, clt,prt) .

Such features have 108 possible different discrete states.

As an example, the sequence of MIDI notes (u1, u2, u3, u4) = (71, 74, 72, 84)

would lead to the Narmour features γ3 = (1, 1, 1, 1, 2) and γ4 = (1, 0, 0, 1, 0).

Melodic Model 93

6.2.3 Melodic Model

In this section, we describe a probabilistic model for melodies given rhythms

and chord progressions. While the IOHMM in Section 6.2.1 was directly mod-

eling the choice of notes given chords (and implicitly rhythms), the model

described here proceeds in two steps. We first model sequences of Narmour

features given rhythm. Then, we model the actual choice of melodic notes,

given sequences of Narmour features generated in the last step and chord pro-

gressions. These two steps correspond to steps 2. and 3. in Figure 6.6.

IOHMM for Narmour Features

An IOHMM like the one presented in Section 6.2.1 can be used to model se-

quences of Narmour features given rhythms. We first compress the rhythm

dataset in a form that is synchronized with Narmour features: we define

al = (al
2, . . . , a

l
gl−1) to be the l-th sequence of note lengths in the rhythm

dataset X , ignoring the first and last note lengths al
1 and al

gl
. When consider-

ing the rhythm representation defined in Section 5.2.1, each al
i is equal to one

plus the number of symbols 2 following the i-th symbol 1 in the corresponding

rhythm sequence xl. For instance, the rhythm sequence xl = (1, 1, 2, 2, 3, 1, 2, 1)

produces the note length sequence al = (3, 2). We denote by γl = (γl
3, . . . , γ

l
gl

)

the sequence of Narmour features associated to the l-th melody. This sequence

starts with index 3 because each Narmour feature spans three notes.

The joint probability of each sequence of Narmour features γl, its associated

sequence of note lengths al, and hidden states hl can be modeled by

pNIOHMM(al, γl,hl) = pi(al
2)pπ(hl

1|al
2)po(γl

3|hl
1)

gl∏
t=4

pi(al
t−1)pō(hl

t−2|hl
t−3, a

l
t−1)po(γl

t|hl
t−2) . (6.2)

This model is shown in Figure 6.8. As in Equation (6.1), the probability dis-

tributions pπ, pi, pō, and po are multinomials, and the model is learned by the

standard EM algorithm.

As can be seen in Equation (6.2), we arbitrarily chose to condition the

Narmour features on the previous note length. This is due to the empirical

observation that greater intervals tend to occur after long notes while smaller

intervals tend to occur after short notes. Other models of Narmour features

given current length, a longer past context, or even no note length at all could

be considered. We leave this exploration for future work.

94 Melodies

 ...h
l
1 h

l
2 h

l
3

1.

2.

3.

a
l
2 a

l
3 a

l
4

γ
l
3 γ

l
4 γ

l
5

Figure 6.8. Variant of an IOHMM model for Narmour features given note

lengths. The variables in level 1 are always observed and correspond to pre-

vious note lengths. Variables in level 2 are hidden, while variables in level

3 correspond to Narmour features. All variables in grey are observed during

training.

Notes Model

We are now about to reach the end of our quest for a complete generative

model of melodies given chord progressions. The only piece of the puzzle that

remains to be defined is a model for MIDI notes given Narmour features and

chord progressions.

We first decompose the Naive chord representation defined in Section 3.2.3

into two parts: νl
i = (ηl

i, τ
l
i), where ηl

i is the structure of the chord and τ l
i is the

root pitch class. Chord structures are just the chord definitions aside of the

name of the root (e.g. “m7b5” is the chord structure in the chord “Bm7b5”).

Each different chord structure is mapped to a specific state of the variables

ηl
i. The sequences ηl = (ηl

1, . . . , η
l
gl

) and τ l = (τ l
1, . . . , τ

l
gl

) are respectively the

chord structure and the root progressions of the l-th song in the dataset.

Let ũl
t be an arbitrary MIDI note played at time t. We define

φ(ũl
t, τ

l
t) = ((ũl

t mod 12)− τ l
t) mod 12

to be the representation of the pitch class associated to the MIDI note ũl
t,

relative to the root of the current chord. For instance, let ũl
t = 65 (note F) be

played over the D minor chord. In that case, we have τ l
t = 2, meaning that the

pitch class of the root of the chord is D. Hence, φ(65, 2) = 3 for that particular

example, meaning that the current melody note pitch class is 3 semi-tones

higher than the root of the current chord.

Melodic Model 95

ut−2 ut−1

γt ηt

τtũt

κ̃t

Figure 6.9. Graphical model representation of the factorization of the joint

probability defined in Eq. (6.3).

It is easy to estimate p(ηl
t|ũl

t, τ
l
t) with a multinomial distribution conditioned

on the values of φ(ũl
t, τ

l
t). This distribution can be estimated by maximum

likelihood over a training set. Hence, we learn a simple distribution of the

chord structures η for each possible pitch classes of the melodies relative to

the roots of the corresponding chords. For instance, this distribution could

learn the fact that we often observe a minor seventh chord when playing a

minor third over the tonic in the melody. This is somewhat similar to the

melodic representation used in the harmonization model detailed in Figure 4.3,

on page 66.

Let γ̃l
t(u

l
t−2, u

l
t−1, ũ

l
t) be the extracted Narmour feature when notes ul

t−2

and ul
t−1 are followed by the arbitrary note ũl

t. Also, let κ̃l
t be an arbitrary

random variable such that

p(κ̃l
t = 1|ũl

t, u
l
t−2, u

l
t−1, γ

l
t) =

{
1 if γl

t = γ̃l
t(u

l
t−2, u

l
t−1, ũ

l
t)

0 otherwise.

In words, κ̃l
t is equal to 1 if and only if the Narmour feature produced when

playing arbitrary note ũl
t is equal to the given Narmour feature γl

t, given the

two previous notes.

We define a factorization of the joint probability of the variables ũl
t, u

l
t−1,

ul
t−2, η

l
t, τ

l
t , γ

l
t, and κ̃l

t with

p(ũl
t, u

l
t−1, u

l
t−2, η

l
t, τ

l
t , γ

l
t, κ̃

l
t) =

p(ul
t−1)p(u

l
t−2)p(γ

l
t)p(κ̃

l
t|ũl

t, u
l
t−2, u

l
t−1, γ

l
t)p(ũ

l
t)p(τ

l
t)p(η

l
t|ũl

t, τ
l
t)

(6.3)

at each time t. This factorization is is shown by the graphical model in Fig-

ure 6.9.

96 Melodies

We want to estimate the probability of playing any arbitrary MIDI note

ũl
t at time t in the l-th song of the dataset given the two previous observed

notes ul
t−2 and ul

t−1, the current Narmour feature γl
t, and the current chord

νl
t = (ηl

t, τ
l
t). Given the factorization in Equation (6.3), we have that

pMEL(ũl
t|ul

t−1, u
l
t−2, η

l
t, τ

l
t , γ

l
t, κ̃

l
t = 1) =

p(κ̃l
t=1|ũl

t,u
l
t−2,ul

t−1,γl
t)p(ũl

t)p(ηl
t|ũ

l
t,τ

l
t)P

ũl
t

p(κ̃l
t=1|ũl

t,u
l
t−2,ul

t−1,γl
t)p(ũl

t)p(ηl
t|ũl

t,τ
l
t)

(6.4)

where p(ũl
t) is the prior probability of observing ũl

t. The distribution p(ũl
t)

is a multinomial that can be simply estimated by maximum likelihood on the

training set.

Hence, a simple strategy to find the most likely MIDI note ũl
t given ul

t−1,

ul
t−2, η

l
t, τ

l
t , and γl is to solve

arg max
{ũl

t|κ̃l
t=1,ul

t−1,ul
t−2,γl}

p(ũl
t)p(η

l
t|ũl

t, τ
l
t) ,

since the denominator in the right-hand side of Equation (6.4) is the same for

all values of ũl
t. In other words, we search for the most likely melodic note (with

respect to the current chord) among all the possible notes given the current

Narmour constraint and the current chord. Despite the fact that this model

only predict one note at a time, it is able to take into account longer term

melodic shapes through the constraints imposed by the sequences of Narmour

features.

Melodic prediction without observing Narmour features can be done with

this model in two steps. We first generate the most likely sequence of Narmour

features given rhythms with the IOHMM model described in Section 6.2.3.

Then, we can use the melodic prediction model described in the current sec-

tion to predict MIDI notes given chord progressions. Such a model is shown

in Section 6.3 to have much better prediction accuracy than using a simpler

IOHMM model alone.

We show in Chapter 2 that unsupervised probabilistic models can be sam-

pled to generate genuine chord progressions. The melodic model described

here is able to generate realistic melodies given these chord progressions and

beginning of melodies. This system can be used as a tool to ease music com-

position. Audio files generated by sampling the different models presented in

this chapter are available at http://www.idiap.ch/probmusic. Even for the

non musician, it should be obvious that the sequences generated by sampling

the melodic model introduced in this section are much more realistic than se-

quences generated by sampling the IOHMM model described in Section 6.2.1.

Melodic Prediction Experiments 97

Both models generate notes that are coherent with the current chord. How-

ever, the sequences generated by the IOHMM model do not have any coherent

temporal structure. On the other hand, melodies generated by the melodic

model presented here tend to follow the same melodic shapes than the songs

in the training sets. These melodic shapes are constrained by the conditioning

sequences of Narmour features used as inputs.

6.3 Melodic Prediction Experiments

To compare the melodic model described in the previous section with the

IOHMM model of Section 6.2.1, we propose a slightly different evaluation crite-

rion than the prediction accuracy defined in Section 5.3. This alternate criterion

was chosen in this case for its computational simplicity.

The goal of the proposed models is to predict or generate melodies given

chord progressions and rhythm patterns. Using similar notation as in Equa-

tion (3.1), let u(n,i) = (u(n,i)
1 , . . . , u

(n,i)
g(n,i)) be the test sequence of MIDI notes

in sequence n of the test set associated to the i-th fold of the cross-validation

process. Let ν(n,i) be the sequence of chords associated to u(n,i). Assume also

that the i-th fold in the cross-validation process contains Ni test sequences,

that there is a total of I folds in the cross-validation process and each sequence

have length g(n,i). We define the local accuracy of an evaluated model to be

1
I

I∑
i=1

1
Ni

Ni∑
n=1

1
g(n,i) − s+ 1

g(n,i)∑
t=ζ

(n,i)
s

d
(n,i)
t (6.5)

where

d
(n,i)
t =

{
1 if (max

ũ
(n,i)
t ∈{0,...,127} p

(n,i)
t (ũ(n,i)

t |u(n,i)
1 , . . . , u

(n,i)
t−1 , ν

(n,i))) = u
(n,i)
t

0 otherwise
(6.6)

with p
(n,i)
t (ũ(n,i)

t |u(n,i)
1 , . . . , u

(n,i)
t−1 , ν

(n,i))) being the conditional probability of

observing note ũ(n,i)
t in sequence n of the test set associated to the i-th fold of

the cross-validation process at time t, estimated by the evaluated model. The

variable ζ(n,i)
s is the smallest note index in the same sequence, such that its

corresponding rhythm index is equal or greater than s. In words, the prediction

accuracy is just the average number of times the algorithm makes a good choice

when trying to predict rhythmic observations over songs unseen during training,

given all past observations and the whole chord progression. The difference

between this performance criterion and the prediction accuracy described in

Equation (5.11) is that the models now have access to all the previous notes,

and the whole chord progressions, to make prediction.

98 Melodies

Table 6.1. Local accuracy (the higher the better) for prediction models on the

jazz standards database, for various prediction starting points s.

s IOHMM Narmour

32 2.0% 8.9%

64 1.7% 8.1%

96 2.2% 8.3%

Table 6.2. Local accuracy (the higher the better) for prediction models on the

hornpipes database, for various prediction starting points s.

s IOHMM Narmour

48 2.5% 4.6%

96 2.6% 4.8%

144 2.6% 4.9%

2 to 20 possible hidden states were tried in the reported experiments for

the baseline IOHMM model of Section 6.2.1 and the “Narmour” IOHMM of

Section 6.2.3. Both models try to predict out-of-sample melody notes, given

chord progressions and complete test rhythm sequences. The same chord rep-

resentations are used as input for both models. 5-fold cross-validation was

used to compute prediction accuracies. We report results for the choices of

parameters that provided the highest accuracies for each model. The IOHMM

model of notes given chords is a stronger contender than would be a simpler

HMM trained on melodies, because the prediction given by the IOHMM takes

advantage of the current input.

Results in Table 6.1 for the jazz standards database show that generating

Narmour features as an intermediate step greatly improves prediction accu-

racy. Since there are 128 different MIDI notes, a completely random predictor

would have a local accuracy of 0.8%. Both models take into account chord

progressions when trying to predict the next MIDI note. However, the Nar-

mour model favors melodic shapes similar to the ones found in the training

set. The Narmour model still provides consistently better prediction accuracy

on the hornpipes database, as can be seen in Table 6.2. However, prediction

accuracies are lower on the hornpipes database than on the jazz database for

Conclusion 99

the Narmour model. Note onsets (symbol 1) occur on most rhythm positions

in this database. This means that rhythm sequences in this database have rel-

atively low entropy. Hence, rhythm sequences are less informative when used

as conditioning inputs to generate sequences of Narmour features. Another

observation is that the chord structures in this database are almost always the

same (i.e. simple triads). The melodic model of Section 6.2.3 is directly mod-

eling the distribution p(ηl
t|ũl

t, τ
l
t) of chord structures given relative MIDI notes.

This distribution was probably more helpful for melodic prediction in the jazz

database than in the hornpipes database. Despite these two drawbacks, the

melodic model of Section 6.2.3 has a prediction accuracy twice as good as what

was obtained with the simpler IOHMM model in the hornpipes database.

Again, while the prediction accuracy is simple to compute and to appre-

hend, other performance criteria, such as ratings provided by a panel of experts,

should be more appropriate to evaluate the relevance of music models. The fact

that the Narmour model accurately predict “only” about 8% of the notes on

out-of-sample sequences does not mean that it is not performing well when

generating the other “wrong” notes. Many realistic melodies can be generated

on the same chord progression in a given musical genre. Moreover, some mis-

takes are more harmful than others. For most applications, a model that would

have very low prediction accuracy, but that would generate realistic melodies,

would be preferable to a model with 50% prediction accuracy, but that would

generate unrealistic notes the other half of the time.

6.4 Conclusion

Our main contribution in this chapter is the design and evaluation of a

realistic generative model for melodies. While a few models have already been

proposed to generate music [Espi et al., 2007; Dubnov et al., 2003; Pachet,

2003], we are only aware of a few quantitative comparisons between limited

generative models of music [Lavrenko and Pickens, 2003].

We defined in Section 6.2.3 a probabilistic model of melodies that provides

significantly higher prediction rates than a simpler, yet powerful, Markovian

model. It would be interesting to use the distributions on distances introduced

in Chapter 5 to constrain the IOHMM of Narmour features. Also, future work

could try to measure the prediction accuracy of Narmour features themselves.

The combination of the rhythm model and the melodic model given chords

leads to a computational model of music that could be interesting in many

applications. Furthermore, sampling these models given appropriate musical

contexts generates realistic melodies and rhythms. Many melodic models could

100 Melodies

be combined to generate polyphonic music. One would have to design appro-

priate dependencies between all individual models.

7 Conclusion

In this thesis, we have shown empirically that it is possible to design prob-

abilistic models that are able to predict and to generate music given arbitrary

contexts in a genre similar to a training corpus, using a minimal amount of

music data.

More specifically, our main contributions are three-fold:

• We have shown empirically that long term dependencies are present in

music data and we provided quantitative measures of such dependencies;

• Our most important contribution is to have shown empirically that using

domain knowledge allows to capture long term dependencies in music

signal better than with standard statistical models for temporal data.

We included domain knowledge in probabilistic models in three distinct

ways:

– We modeled global dependencies with probabilistic trees tied to the

metrical structure of the datasets;

– We introduced a generative model for pairwise distances between

rhythm subsequences;

– We modeled melodic features derived from musicological substanti-

ation.

Hence, we introduced many probabilistic models aimed to capture various

aspects of symbolic polyphonic music. Such models can be used for music

prediction. Moreover, these models can be sampled to generate realistic

music sequences;

• Finally, we designed various representations for music that could be used

as observations by the proposed probabilistic models.

102 Conclusion

7.1 Motivation

We first introduced basic musical concepts in Section 1.2. One of the key

observations we made is that metrical grids provide a temporal framework

around which a piece of music is organized. Also, chord progressions can be seen

as latent variables that condition the probabilities of choosing particular notes.

Chord changes occur on fixed time intervals strongly tied to the metrical grid.

This makes them much simpler to model than beginning and ending of actual

musical notes that can happen almost everywhere. Hence, chord progressions

modeling appears to be a excellent way to overcome long term dependencies in

polyphonic music.

We described the wide spectrum of possible computer music applications

in Section 1.2.5. Most computer music research has been devoted so far to the

direct modeling of audio data. These algorithms rely on local properties of

audio signal, such as texture, or short term frequency analysis. Hence, most

of the music models today do not consider the musical structure at all. Little

research has been done to model symbolic music data compared to the impor-

tant efforts deployed to model audio data. We argue that reliable symbolic

music models such a the ones presented in this thesis could dramatically im-

prove the performance of audio algorithms applied in more general contexts.

This would be a very interesting avenue for future research. Reliable music

models would provide “musical knowledge” to algorithms that currently only

rely on basic sound properties to make decisions. In the same manner, natural

language models are commonly used in speech transcription algorithms. More-

over, symbolic music data is much more compressed than audio data. We can

concentrate on essential psychoacoustic features of the signal when designing

algorithms to capture long term dependencies in symbolic music data.

We introduced elements of machine learning in Section 1.3. This thesis is

mostly concerned with the design of generative models defined in the graph-

ical model framework. Defining a graphical model representation for a set of

random variables amounts to defining a set of independence assumptions be-

tween these variables, by factorization of their joint distribution. Also, the

graphical modeling framework provides efficient tools for marginalization, such

as the junction tree algorithm. Parameter learning can be usually done in

simple graphical models with the EM algorithm. We described the HMM in

Section 1.3.2 as a simple, but yet powerful, generative model for temporal data.

One of the advantages of generative models is that they can be sampled to

generate new data from the learned distributions. Also, generative models can

Chord models 103

be used to estimate the conditional probability of some random variables given

new observations. For instance, a generative model can guess what would be

a good accompaniment for a given melody, as in Chapter 4. Conversely, one

could sample a generative model to generate realistic melodies given harmonic

context, as in Chapter 6. Hence, generative models provide an ideal framework

to model music.

A model with too few parameters would be unable to learn appropriate

distributions properly. On the other hand, a model with too much parameters

would learn the training set by heart and would fail to generalize to unseen

data. Three approaches can be taken to overcome this problem: Build or collect

more data, design better representations for data, and design better algorithms

given a priori knowledge of the structure of data. These three approaches were

considered in this thesis.

The few existing MIDI databases available today are severely limited in

size. Moreover, they comprise only specific musical genres. A dataset of jazz

standards (described in Section 2.2.2) was recorded by the author. This dataset

is representative of the complexity of common jazz and pop music. It is used

in the experiments reported in this thesis along with other public datasets.

A more important contribution of this thesis is the design of representations

that exhibits important statistical properties of music data. In Chapter 2, we

introduced a distributed representation for chords, such that Euclidean dis-

tances correspond to psychoacoustical similarities. In Chapter 3, we compared

various chord representations quantitatively in terms of prediction accuracy.

In Chapter 4, compressed representations of melodies and chords for harmo-

nization were introduced. In the following chapters, simple representations for

rhythms and melodies were also described as inputs to polyphonic music mod-

els. We finally described discrete representations of groups of three melodic

notes based on musicological theory in Chapter 6. We showed that such repre-

sentations could be modeled more easily than actual sequences of notes.

Having access to sufficiently large datasets and to reliable representations

of these observations is the basis of any machine learning system. However,

most of this thesis was concerned with the most important part of statistical

analysis, which is the design and evaluation of algorithms themselves.

7.2 Chord models

In Section 2.2, we have shown empirically that chord progressions exhibit

global dependencies that can be better captured with a tree structure related

to the meter than with a simple dynamical HMM that concentrates on local

104 Conclusion

dependencies [Paiement et al., 2005b].

The low difference in terms of conditional out-of-sample likelihood between

the tree model and the HMM, and the relatively low optimal capacity for gen-

eralization are a good indication that increasing the number of sequences in the

datasets would probably be necessary in further developments of probabilistic

models for chord progressions. Results reported in Section 2.3 provide further

evidence that chord progressions exhibit global dependencies that follow hier-

archical structure related to the meter [Paiement et al., 2005a]. We described

in this section an alternative approach, where domain knowledge is included

in the conditional probability distributions, instead of being included in the

representation of the observations.

Applications where a chord progression model could be included range from

music transcription, music information retrieval, musical genre recognition to

music analysis applications, just to name a few.

Chord progressions are regular and simple structures that condition dramat-

ically the actual choice of notes in polyphonic tonal music. Hence, we argue

that chord models are crucial in the design of efficient algorithms that deal

with such music data. Moreover, generating interesting chord progressions can

be considered to be one of the most important aspects in generating realistic

polyphonic music.

Chapter 3 [Paiement et al., 2008a] was aimed at better understanding the

statistical relations between chord representations and the actual choice of notes

in polyphonic music. To this end, we compared four chord representations using

melodic prediction as a benchmark task. It should be pointed out that a similar

approach could be taken in future research to evaluate representations for other

musical components, such as rhythm or melodies.

The simplest chord representation (Naive) performs well in terms of un-

conditional prediction error rates. However, this representation overfits when

past melodic observations are used to condition the predictions. Smoothed

chord representations seems more appropriate when doing conditional predic-

tion. Only observing the roots seems to be a good compromise when all the

songs are transposed to the same key. We show in Section 4.3 that root progres-

sions contain valuable non-local information. The representation that is used

in some important music information retrieval papers (Root+mM7) is not opti-

mal in any of the experiments. That being said, chord representation should

always be chosen considering the application to be developed in mind.

We also observed in Chapter 3 that the evaluation provided by the average

out-of-sample likelihood can be completely different from what is obtained when

Rhythms and Melodies 105

computing the average prediction error rate. While the likelihood is a measure

of the fit of a whole distribution to a dataset, the classification error seems to

be a better descriptor of the fit of the modes of a distribution.

Chapter 4 [Paiement et al., 2006] was devoted to harmonization. This is a

problem that has considerable practical interest. For instance, a good model

for harmonization could be readily included in music sequencers. Amateur

musicians could compose melodies and the system would be able to suggest

realistic accompaniments in a style similar to a training corpus.

We introduced a chord decomposition specifically designed for harmoniza-

tion. Again, we observed that chord progressions exhibit global dependencies

that can be better captured with a tree structure related to the meter than with

a simple dynamical model that concentrates on local dependencies. However,

we made a very interesting observation related to root progressions. A local

model seems to be sufficient when root note progressions are provided. Hence,

most of the time-dependent information is contained in root note progressions,

at least in the corpus that we used for the experiments.

7.3 Rhythms and Melodies

In Chapter 5 [Paiement et al., 2008c], we focused on the design and evalua-

tion of a generative model for distance patterns in temporal data. We applied

this model to rhythm data, which exhibits strong regularities in dyadic distance

patterns. We have shown empirically that the proposed model effectively cap-

tures such regularities. Our proposed model could be readily used to increase

the performance of beat tracking algorithms, transcription algorithms, genre

classifiers, or even automatic composition systems.

Modeling distance patterns should also be useful in other application do-

mains where data is represented as sequences, such as in natural language

processing. For instance, being able to characterize and constrain the relative

distances between various parts of a sequence of bags-of-concepts could be an

efficient mean to improve machine translation.

Finally, in Chapter 6 [Paiement et al., 2008b], our main contribution was

the design and evaluation of a realistic generative model for melodies. In Sec-

tion 6.2.2, we described melodic features that put useful constraints on melodies

based on musicological substantiation. In future research, other features could

be used to put constraints on melodies.

It is easy to generate interesting accompaniments in various music styles

given any chord progression. Hence, all the models presented in this thesis could

be readily combined to generate genuine polyphonic music from basic melodic

106 Conclusion

motives. First, the harmonization model of Chapter 4 could generate a sequence

of chords given an initial melodic motif. Then, one of the models presented in

Chapter 2 could be sampled to extend the chord progression generated by the

harmonization model. An extended rhythm could be generated as well from

the initial motif by sampling the model introduced in Chapter 5. Finally, a

whole melody could be generated by the melodic model of Chapter 6, given the

already sampled chord progression and rhythms.

The primary contribution of this thesis is scientific in essence: we proposed

a set of probabilistic models that have been shown empirically to better learn

long-term dependencies in music data than with state-of-the-art machine learn-

ing approaches. However, one may argue that our most exciting contribution

may be closer to the domain of arts than to the realm of science. We have

described a set of models than can be used to generate realistic music in a

musical genre similar to almost any training corpus of tonal music.

Bibliography

M. Allan and C. K. I. Williams. Harmonising chorales by probabilistic inference.

In Advances in Neural Information Processing Systems, volume 17, 2004.

Jean-Julien Aucouturier and François Pachet. Representing musical genre: A

state of the art. Journal of New Music Research, 32(1):83–93, 2003. NOTE:

Classify representations of musical genre in three categories: manual, pre-

scriptive and emergent approaches.

J. P. Bello and J. Pickens. A robust mid-level representation for harmonic

content in music signals. In Proceedings of the Sixth International Conference

on Music Information Retrieval, pages p.304–311, London, 2005.

Y. Bengio and P. Frasconi. Input/output HMMs for sequence processing. IEEE

Transactions on Neural Networks, 7(5):1231–1249, 1996.

Y. Bengio, P. Simard, and P. Frasconi. Learning long-term dependencies with

gradient descent is difficult. IEEE Transactions on Neural Networks, 5(2):

157–166, 1994.

Adam Berenzweig, Daniel P.W. Ellis, and Steve Lawrence. Anchor space for

classification and similarity measurement of music. In IEEE International

Conference on Multimedia and Expo, 2003. NOTE: Mapping of music into a

space where dimensions correspond to “semantic” features.

P. Billingsley. Probability and Measure. John Wiley and Sons, New York, 1995.

J. Bilmes. A gentle tutorial on the em algorithm and its application to param-

eter estimation for gaussian mixture and hidden markov models, 1997. URL

citeseer.ist.psu.edu/bilmes98gentle.html.

citeseer.ist.psu.edu/bilmes98gentle.html

108 Bibliography

Christopher M. Bishop. Pattern Recognition and Machine Learning (Informa-

tion Science and Statistics). Springer-Verlag New York, Inc., Secaucus, NJ,

USA, 2006. ISBN 0387310738.

L. Breiman. Probability. Addison-Wesley, Reading, MA, 1968.

Christopher J.C. Burges, John C. Platt, and Soumaya Jana. Distorsion dis-

criminant analysis for audio fingerprinting. IEEE Transactions on Speech

and Audio Processing, 11(3):165–174, 2003. NOTE: This method constructs

a linear, convolutional neural network out of layers, each of which performs

an oriented PCA.

A. T. Cemgil, H. J. Kappen, and D. Barber. A Generative Model for Music

Transcription. IEEE Transactions on Audio, Speech and Language Process-

ing, 14(2):679–694, March 2006.

Ali Taylan Cemgil, Peter Desain, and Bert Kappen. Rhythm quantization for

transcription. Computer Music Journal, 24(2):60–76, 2000. NOTE: Quanti-

zation of short groups of onsets using bayesian statistics.

Ali Taylan Cemgil, Bert Kappen, and David Barber. Generative model based

polyphonic music transcription. In Proc. of IEEE WASPAA, New Paltz,

NY, October 2003. IEEE Workshop on Applications of Signal Processing to

Audio and Acoustics. NOTE: Dynamical bayesian network for simultaneous

tempo and polyphonic pitch tracking.

Grosvenor Cooper and Leonard B. Meyer. The Rhythmic Structure of Music.

The Univ. of Chicago Press, 1960.

Carl Dahlhaus. Studies on the Origin of Harmonic Tonality. Princeton Uni-

versity Press, 1990. XV-389 p.

M. Davy and S. J. Godsill. Bayesian harmonic models for musical signal analy-

sis. Bayesian Statistics, 7, 2003. NOTE: Use of Bayesian structures in order

to infer quantities about musical signals at the highest level, such as pitch,

dynamics, timbre, instrument identity, etc.

Alain de Cheveigné and Hideki Kawahara. Yin, a fundamental frequency es-

timator for speech and music. J. Acoust. Soc. Am., 111:1917–1930, 2002.

NOTE: A fundamental frequency estimator based on autocorrelations.

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from in-

complete data via the EM algorithm. Journal of the Royal Statistical Society,

39:1–38, 1977.

Bibliography 109

S. Dixon. Evaluation of the audio beat tracking system beatroot. Journal of

New Music Research, 36(1):39–50, 2007.

S. Dubnov, G. Assayag, O. Lartillot, and G. Bejerano. Using machine-learning

methods for musical style modeling. IEEE Computer, 10(38), October 2003.

R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification, Second

Edition. Wiley Interscience, 2000a.

Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern Classification

(2nd Edition). Wiley-Interscience, November 2000b. ISBN 0471056693.

Douglas Eck and Juergen Schmidhuber. Finding temporal structure in music:

Blues improvisation with LSTM recurrent networks. In H. Bourlard, edi-

tor, Neural Networks for Signal Processing XII, Proc. 2002 IEEE Workshop,

pages 747–756, New York, 2002. IEEE.

D. Espi, P.J. Ponce de Leon, C. Perez-Sancho, D. Rizo, J.M. Inesta, F. Moreno-

Seco, and A. Pertusa. A cooperative approach to style-oriented music com-

position. In Proc. of the Int. Workshop on Artificial Intelligence and Music,

MUSIC-AI, pages 25–36, Hyderabad, India, 2007.

W. Feller. An Introduction to Probability Theory and its Applications. John

Wiley and Sons, New York, 2nd edition edition, 1971.

Jonathan Foote. A similarity measure for automatic audio classification. In

Proceedings of the AAAI 1997 Spring Symposium on Intelligent Integration

and Use of Text, Image, Video, and Audio Corpora, March 1997. NOTE:

Use of the MMI-supervised vector quantizer as a measure of audio similarity.

Masataka Goto. An audio-based real-time beat tracking system for music with

or without drum-sounds. Journal of New Music Research, 30(2):159–171,

2001. NOTE: Uses onset times, chord changes, and drum patterns.

Masataka Goto and Yoichi Muraoka. An audio-based real-time beat tracking

system and its applications. In Proceedings of the 1998 International Com-

puter Music Conference, pages 17–20, October 1998. NOTE: Real-time beat

tracking system based on onset times, chord changes and drum patterns.

M. Grachten, J. LI. Arcos, and R. Lopez de Mantaras. Melody retrieval using

the implication/realization model. In Proceedings of the 6th International

Conference on Music Information Retrieval (ISMIR), 2005.

110 Bibliography

Stephen Handel. Listening: An introduction to the perception of auditory

events. MIT Press, Cambridge, Mass., 1993.

T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning.

Springer series in statistics. Springer-Verlag, 2001.

D. Heckerman, D. Geiger, and M. Chickering. Learning Bayesian networks: The

combination of knowledge and statistical data. Technical report, Microsoft

Research, 1994.

B.-H. Juang and S. Katagiri. Discriminative learning for minimum error classi-

fication. In IEEE Trans. on Signal Processing, volume 10 (12), pages 3043–

3053, 1992.

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated

annealing. Science, Number 4598, 13 May 1983, 220, 4598:671–680, 1983.

URL citeseer.ist.psu.edu/kirkpatrick83optimization.html.

Anssi Klapuri. Automatic transcription of music. Master’s thesis, Tampere

University of Technology, 2001.

Anssi Klapuri. Pitch estimation using multiple independent time-frequency

windows. In Proc. IEEE Workshop on Applications of Signal Processing to

Audio and Acoustics, New Paltz, New York, Oct. 17-20 1999. NOTE: Pitch

model that calculates independent pitch estimates in separate time-frequency

windows and then combines them.

Anssi Klapuri, Tuomas Virtanen, and Jan-Markus Holm. Robust multipitch

estimation for the analysis and manipulation of polyphonic musical signals.

In Proc. COST-G6 Conference on Digital Audio Effects, DAFx-00, Verona,

Italy, 2000. NOTE: Pitch estimation on one time frame from chords com-

prising 1 to 6 distincts notes.

Carol M. Krumhansl. The psychological representation of musical pitch in a

tonal context. Cognitive Psychology, 11(3):346–374, July 1979.

T. Kuusi. Set-Class and Chord: Examining Connection Between Theoretical

Ressemblance and Perceived Closeness. Number 12 in Studia Musica. Sibelius

Academy, 2001.

S. L. Lauritzen. Graphical Models. Oxford University Press, 1996.

V. Lavrenko and J. Pickens. Polyphonic music modeling with random fields.

In Proceedings of ACM Multimedia, pages 120–129, Berkeley, CA, November

2-8 2003.

citeseer.ist.psu.edu/kirkpatrick83optimization.html

Bibliography 111

Mark Levine. The Jazz Piano Book. Sher Music Co./Advance Music, 1990.

Thomas Lidy, Andreas Rauber, Antonio Pertusa, and José Manuel Iñesta. Im-

proving genre classification by combination of audio and symbolic descrip-

tors using a transcription system. In Proceedings of the 8th International

Conference on Music Information Retrieval, pages 23–27, Vienna, Austria,

September 2007.

Keith D. Martin. Automatic transcription of simple polyphonic music. In

Third Joint Meeting of the Acoustical Societies of America and Japan, 1996.

NOTE: A transcription system based on the log-lag correlogram.

B.C.J. Moore. An Introduction to the Psychology of Hearing. Academic Press,

1982.

Eugene Narmour. The Analysis and Cognition of Basic Melodic Structures:

The Implication-Realization Model. Univeristy of Chicago Press, Chicago,

1990.

Eugene Narmour. The Analysis and Cognition of Melodic Complexity: The

Implication-Realization Model. University of Chicago Press, 1992.

F. J. Och and H. Ney. The alignment template approach to statistical machine

translation. Computational Linguistics, 30(4):417–449, 2004.

F. Pachet. The continuator: Musical interaction with style. Journal of New

Music Research, 32(3):333–341, September 2003.

F. Pachet and A. Zils. Evolving automatically high-level music descriptors

from acoustic signals. Springer Verlag LNCS, 2771, 2003. NOTE: Genetic

algorithms used to extract descriptors from audio signals.

François Pachet and Daniel Cazaly. A taxonomy of musical genres. In Proceed-

ings of Content-Based Multimedia Information Access (RIAO) Conference,

Paris, France, 2000. NOTE: Analysis of existing taxonomies of musical genre

and description of a new one.

François Pachet, Gert Westermann, and Damien Laigre. Musical data mining

for electronic music distribution. In Proceedings of the 1st WedelMusic Con-

ference, 2001. NOTE: Classical data-mining techniques such as co-occurence

and correlation analysis for classification of music titles.

J.-F. Paiement, D. Eck, and S. Bengio. A probabilistic model for chord pro-

gressions. In Proceedings of the 6th International Conference on Music In-

formation Retrieval, 2005a.

112 Bibliography

J.-F. Paiement, D. Eck, S. Bengio, and D. Barber. A graphical model for chord

progressions embedded in a psychoacoustic space. In Proceedings of the 22nd

International Conference on Machine Learning, 2005b.

J.-F. Paiement, D. Eck, and S. Bengio. Probabilistic melodic harmonization.

In Proceedings of the 19th Canadian Conference on Artificial Intelligence,

pages 218–229. Springer, 2006.

J.-F. Paiement, Samy Bengio, and Douglas Eck. Probabilistic models for

melodic prediction. IDIAP-RR 08-50, Idiap Research Institute, 2008a. Cur-

rently under revision in Artificial Intelligence.

J.-F. Paiement, Y. Grandvalet, and S. Bengio. Predictive models for music.

IDIAP-RR 08-51, Idiap Research Institute, 2008b. Currently under revision

in Connection Science.

J.-F. Paiement, Y. Grandvalet, S. Bengio, and D. Eck. A distance model for

rhythms. In Proceedings of the 25th International Conference on Machine

Learning (ICML), 2008c.

Lucas Parra and Uday Jain. Approximate kalman filtering for the harmonic

plus noise model. In IEEE Workshop on Applications of Signal Processing

to Audio and Acoustics, pages 75–78, 2001. NOTE: Probabilistic description

of the harmonic plus noise model that permits the development of a Kalman

filter that tracks pitch.

Geoffroy Peeters and Xavier Rodet. Automatically selecting signal descriptors

for sound classification. In ICMC 2002, Goteborg, Sweden, september 2002.

NOTE: Design of the CUIDADO classifier based on discriminant analysis

and mutual information.

S. Della Pietra, V. Della Pietra, and J. Lafferty. Inducing features of random

fields. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19:

380–393, 1997.

L. R. Rabiner. A tutorial on hidden Markov models and selected applications in

speech recognition. Proceedings of the IEEE, 77(2):257–285, February 1989.

Lawrence R. Rabiner and Ronald W. Schafer. Digital Processing of Speech

Signals. Prentice Hall, 1978.

C. Raphael and J. Stoddard. Harmonic analysis with probabilistic graphical

models. Computer Music Journal, 28(3):45–52, 2004.

Bibliography 113

Douglas A. Reynolds, Thomas F. Quatieri, and Robert B. Dunn. Speaker ver-

ification using adapted gaussian mixture models. Digital Signal Processing,

10(1-3):19–41, Januray 2000.

D. Rizo, J.M. Inesta, and P.J. Ponce de León. Tree model of symbolic music

for tonality guessing. In Proc. of the Int. Conf. on Artificial Intelligence and

Applications, AIA 2006, pages 299–304, Innsbruck, Austria, 2006. IASTED,

Acta Press. ISBN 0-88986-404-7.

Douglas L. T. Rohde. Methods for binary multidimensional scaling. Neural

Comput., 14(5):1195–1232, 2002. ISSN 0899-7667. doi: http://dx.doi.org/

10.1162/089976602753633457.

D. Ron, Y. Singer, and N. Tishby. The power of amnesia: Learning probabilistic

automata with variable memory length. Machine Learning, 25(2-3):117–149,

1996.

F. Rosenblatt. The perceptron: A probabilistic model for information storage

and organization in the brain. Psychological Review, 65(6):386–408, 1958.

Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach.

Prentice Hall Series in Artificial Intelligence. Prentice Hall, 2nd edition edi-

tion, 2002.

S. Sadie, editor. The New Grove Dictionary of Music and Musicians. St.

Martin’s Press, 1980.

Lawrence K. Saul, Daniel D. Lee, Charles L. Isbell, and Yann LeCun. Real time

voice processing with audiovisual feedback: toward autonomous agents with

perfect pitch. In S. Becker, S. Thrun, and K. Obermayer, editors, Advances

in Neural Information Processing Systems 15, pages 1205–1212, Cambridge,

MA, 2003. MIT Press. NOTE: Real time front end for detecting voiced

speech and estimating its fundamental frequency.

E. Scheirer. Tempo and beat analysis of acoustic musical signals. Journal

of the Acoustical Society of America, 103(1):588–601, 1998. URL http:

//web.media.mit.edu/∼eds/beat.pdf.

Eric D. Scheirer. Music-Listening Systems. PhD thesis, Massachusetts Institute

of Technology (MIT), June 2000.

E. Schellenberg. Simplifying the implication-realization model of musical ex-

pectancy. Music Perception, 14(3):295–318, 1997.

http://web.media.mit.edu/~eds/beat.pdf
http://web.media.mit.edu/~eds/beat.pdf

114 Bibliography

Paul Schmeling. Berklee Music Theory Book 1. Berklee Press, pap/com edition

edition, 2005.

J. F. Schouten. The perception of timbre. In Reports of the 6th International

Congress on Acoustics, pages 35–44, Tokyo, 1968.

A. Sheh and D. P. Ellis. Chord segmentation and recognition using EM-trained

Hidden Markov Models. In Proceedings of the 4th ISMIR, pages 183–189,

Baltimore, Maryland, October 2003.

Chuck Sher, editor. The New Real Book, volume 1-3. Sher Music Co., 1988.

Malcolm Slaney. Mixtures of probability experts for audio retrieval and index-

ing. In Proceedings of the IEEE International Conference on Multimedia and

Expo, Lausanne, Switzerland, August 2002. NOTE: Two different mixture-

of-probability-expert models are trained to learn the association between

acoustic queries and the corresponding semantic explanation, and visa versa.

Malcolm Slaney and Richard F. Lyon. A perceptual pitch detector. In Pro-

ceedings of the International Conference on Acoustics, Speech and Signal

Processing, volume 1, pages 357–360, 1990. NOTE: Pitch detector based on

Licklider’s “Duplex Theory” of pitch perception.

Hagen Soltau, Tanja Schultz, Martin Westphal, and Alex Waibel. Recognition

of music types. In Proceedings of the IEEE International Conference on

Acoustics, Speech and Signal Processing, ICASSP, 1998. NOTE: Explicit

Time Modelling with Neural Networks.

Andrew D. Sterian. Model-Based Segmentation of Time-Frequency Images for

Musical Transcription. PhD thesis, University of Michigan, 1999.

B. Thom. Predicting chords in jazz: the good, the bad, and the ugly. In

IJCAI-95, Music and AI Workshop, Montreal, Canada, 1995.

D. M. Titterington, A. F. M. Smith, and U. E. Makov. Statistical Analysis of

Finite Mixture Distributions. Wiley, 1985.

George Tzanetakis and Perry Cook. Musical genre classification of audio sig-

nals. IEEE Transactions on Speech and Audio Processing, 10(5), July 2002.

NOTE: Results comparable to those obtain with humans are obtained using

different features as inputs to classifiers.

George Tzanetakis, Georg Essl, and Perry Cook. Automatic musical genre clas-

sification of audio signals. In Proceedings of the International Symposium on

Bibliography 115

Music Information Retrieval (ISMIR), Bloomington, Indiana, 2001. NOTE:

Describing a set of features for representing texture, instrumentation, ry-

thmic structure and strength. Evaluation of these features for classification

purposes.

George Tzanetakis, Georg Essl, and Perry Cook. Human perception and com-

puter extraction of beat strength. In Proceedings of the Conference on Digital

Audio Effects (DAFX), Hamburg, Germany, September 2002. Description of

automatic beat strength measures.

V. Valimaki, J. Huopaniemi, Karjaleinen, and Z. Janosy. Physical modeling of

plucked string instruments with application to real-time sound synthesis. J.

Audio Eng. Society, 44(5):331–353, 1996.

V. Vapnik. Statistical Learning Theory. Wiley-Interscience, 1998.

P. Vassilakis. Chords as spectra, harmony as timbre. J. Acoust. Soc. Am., 106

(4/2):2286, 1999. (paper presented at the 138th meeting of the Acoustical

Society of America).

Paul Joseph Walmsley. Signal Separation of Musical Instruments. PhD the-

sis, Department of Engineering, University of Cambridge, September 2000.

NOTE: Simulation methods for musical signal decomposition and transcrip-

tion.

Patrick Zanon and Gerhard Widmer. Recognition of famous pianists using

machine learning algorithms: First experimental results. Technical Report

OEFAI-TR-2003-01, ÖEFAI, 2003. NOTE: A very interesting application of

musical genre recognition.

J. Ziv and A. Lempel. Compression of individual sequences via variable rate

coding. IEEE Trans. Inf. Theory, 24(5):530–536, 1978.

116 Bibliography

Jean-François Paiement
941, rue de Monaco

Mont Saint-Hilaire, QC
Canada, J3H 4N4

Home : 1 (450) 464-3963
paiement@idiap.ch

www.idiap.ch/~paiement

E D U C A T I O N
Doctorate: Ph. D. in Computer Science, Ecole Polytechnique de Lausanne ; Switzerland —
2004-2008
Probabilistic Models for Music Analysis and Generation. Supervised by Samy Bengio.

Master: M. Sc. in Computer Science, Université de Montréal ; Canada — 2002-2003
Out-of-Sample Extensions For Dimensionality Reduction Algorithms. Supervised by Yoshua Bengio. CGPA 4.2/4.3.

Diploma: B. Sc. in Mathematics and Computer Science, Université de Montréal ; Canada —
1999-2002
Graduated with Honors. CGPA 3.8/4.3. Last year in Université Joseph-Fourier, Grenoble, France, in an exchange
program.

P R O F E S S I O N A L E X P E R I E N C E
Research Intern, Google ; USA — August 2007- March 2008
Image Ranking using the PAMIR model. Supervised by Samy Bengio.

Research Assistant, IDIAP Research Institute ; Switzerland — 2004-2007
Probabilistic Models for Music Analysis and Generation. Supervised by Samy Bengio.

Research Assistant, LISA, Université de Montréal ; Canada — 2001-2003
Neural Networks for Data-Mining in a Marketing Application, with Bell Canada.

Teaching Assistant, Université de Montréal ; Canada — 2000-2001
Advanced Programming in C.

Summer Intern, RALI, Université de Montréal ; Canada — 2000
Music Generation Using Functional Programming. Supervised by Guy Lapalme.

Musical Director, Ozias-Leduc High School Big Band ; Canada — 1996-1999

Private Piano Teacher ; Canada — 1993-2003

AWA R D S A N D S C H O L A R S H I P S
Doctoral Research Scholarship, FQRNT ; Canada — 2004-2007

Masters Research Scholarship, FQRNT ; Canada — 2002-2003

Exchange Program Scholarship, Agence Universitaire de la Francophonie ; France — 2001-2002
This scholarship was given to only one student in North America.

Undergraduate Research Award, NSERC ; Canada — 2000

Grant for Specialized Music Sound Recording, Canada Council for the Arts — 2000-2001

Most Outstanding Student Award, Saint-Laurent College ; Canada — 1997

S K I L L S
Programming in C++, Matlab, C, Objective-C, Java, and Haskell.

Mathematical skills in machine learning, information retrieval, statistics, probability theory, analysis,
and algebra.

Strong pedagogical experience in both collective and individual teaching.

Piano mastering.

P U B L I C A T I O N S
1. J.-F. Paiement, Y. Grandvalet, S. Bengio, and D. Eck. A Distance Model for Rhythms. Proceedings

of the 25th International Conference on Machine Learning (ICML), to appear, 2008.
2. J.-F. Paiement, Y. Grandvalet, S. Bengio, and D. Eck. A Generative Model for Rhythms. Procee-

dings of the Music, Brain, and Cognition Workshop, Advances in Neural Information Processing
Systems (NIPS), 2007.

3. J.-F. Paiement, D. Eck, and S. Bengio. Probabilistic Melodic Harmonization. Proceedings of the
19th Canadian Conference on Artificial Intelligence, 2006.

4. J.-F. Paiement, D. Eck, and S. Bengio. A Probabilistic Model for Chord Progressions. Proceedings
of the 6th International Conference on Music Information Retrieval (ISMIR), 2005.

5. J.-F. Paiement, D. Eck, S. Bengio, and D. Barber. A Graphical Model for Chord Progressions Em-
bedded in a Psychoacoustic Space. Proceedings of the 22nd International Conference on Machine
Learning (ICML), 2005.

6. J.-F. Paiement, Master thesis (in French): Généralisation d'algorithmes de réduction de dimension.
Université de Montréal, 2004.

7. Y. Bengio, O. Delalleau, N. Le Roux, J-F. Paiement, P. Vincent, and M. Ouimet. Learning Eigen-
functions Links Spectral Embedding and Kernel PCA. Neural Computation,16(10):2197-2219, 2004.

8. Y. Bengio, J.-F. Paiement, P. Vincent, O. Delalleau, N. Le Roux, and M. Ouimet. Out-of-Sample
Extensions for LLE, Isomap, MDS, Eigenmaps, and Spectral Clustering. Advances in Neural Infor-
mation Processing Systems 16 (NIPS), 2004.

9. Y. Bengio, P. Vincent, J.-F. Paiement, O. Delalleau, M. Ouimet, and N. Le Roux. Spectral Clustering
and Kernel PCA are Learning Eigenfunctions. Technical Report 1239, Département d'informatique et
recherche opérationnelle, Université de Montréal, 2003.

10. Y. Bengio, J.-F. Paiement, P. Vincent. Out-of-Sample Extensions for LLE, Isomap, MDS, Ei-
genmaps, and Spectral Clustering. Technical Report 1238, Département d'informatique et recherche
opérationnelle, Université de Montréal, 2003.

11. Y. Bengio, P. Vincent, and J.-F. Paiement. Learning Eigenfunctions of Similarity: Linking Spectral
Clustering and Kernel PCA. Technical Report 1232, Département d'informatique et recherche opéra-
tionnelle, Université de Montréal, 2003.

	Title
	Introduction
	Statistical Modeling of Music
	The Nature of Music
	Elements of Machine Learning
	Motivation

	Chord Progressions
	Previous Work on Chord Progressions Models
	A Distributed Representation for Chords
	A Probabilistic Model of Chord Substitutions
	Conclusion

	Comparing Chord Representations
	Interactions Between Chords and Melodies
	Melodic Prediction Models
	Experiments
	Conclusion

	Harmonization
	Previous Work on Harmonization
	Melodic Representation
	Modeling Root Note Progressions
	Decomposing the Naive Representation
	Chord Model given Root Note Progression and Melody
	Conclusion

	Rhythms
	HMMs for Rhythms
	Distance Model
	Rhythm Prediction Experiments
	Conclusion

	Melodies
	Previous Work
	Melodic Model
	Melodic Prediction Experiments
	Conclusion

	Conclusion
	Motivation
	Chord models
	Rhythms and Melodies

