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Abstract

A critical aspect in the design of tubular bridges is the fatigue performance of the structural joints.
Economic viability depends on it. Lower fatigue strength for joints with thicker failing members was
observed in welded joints typical to the bridge application. Different approaches to this phenomenon,
called size effect, have been suggested, all based on the thickness correction for welded plate joints
first proposed by Gurney. For the welded tubular joints, few studies on the size effects have been
carried out; most of the existing investigations refer to geometries typical to petroleum industry
offshore structures. In contrast to offshore structures, bridge structures have different absolute sizes
and different member proportions (in particular lower chord radius to thickness ratios, v). Tubular
joints are far more complex than welded plate joints, multiple parameters are needed to describe the
geometry (a, 8,7, 7,{) and there are several load scenarios. For these reasons, the fatigue behaviour
analysis of such joints is a complex task. Current design recommendations combine the use of the
structural (hot-spot) stress at the weld toe with a correction factor to take into account the wall
thickness of the failing member. This approach oversimplifies the problem and can be very penalising,
in particular for joints composed of thicker tubes, as is commonly the case for bridges. Furthermore,
the truss member sizes that result from static design are likely to fall out of the validity range of current
recommendations. This thesis focuses on a case of commonly used tubular joints: welded steel K-joint
made out of circular hollow section (CHS).

The main goals of this research are to understand the fatigue behaviour of as-welded CHS K-joints
and to clarify the influences/effects of the different geometric parameters on their fatigue strength. In
order to carry out a thorough study on the geometric size effects in CHS K-joints for bridges, fatigue
tests were conducted for large-scale specimens with crack depth measurements and an advanced 3-D
crack propagation model was developed.

The first chapters of this thesis provide an introduction and a brief review of the main concepts
in tubular joint fatigue and size effects on fatigue behaviour. The experimental tests of two tubular
trusses under fatigue loading are then outlined. Crack growth in selected truss joints is monitored
using the Alternating Current Potential Drop (ACPD) system.

An advanced 3-D modelling of welded K-joint with surface crack is implemented using the boundary
element method (BEM). A crack propagation model, based on Linear Elastic Fracture Mechanics
(LEFM), is then developed using a step-wise incremental crack growth strategy. This model allows
for fatigue strength and life estimations. Furthermore, it considers the influence of all geometric
parameters that define CHS K-joints in a realistic way. The validation of the crack propagation model
is made by comparisons with experimental data at different levels (i.e. member and joint strains and
stresses, ACPD crack growth data).

A parametric study is then carried out on joint geometries typical for a bridge application (low
chord radius to thickness ratio) considering three basic load cases. Examples of results are shown
and analysed on a "geometry cause"/"effect over the stress intensity factor and fatigue strength" basis.
Parametric study results are then analysed, highlighting the case where the joint is proportionally
scaled. The geometry correction factor, Y, is introduced as a function of the relative crack depth that is
common to homothetic joints. The influence of the absolute size of the joint, also known as thickness
effect, is determined for the three basic load cases.

Parametric results are finally explored bringing to light the effect of non-proportional scaling.
It is shown that size correction factors for fatigue strength can be expressed as a function of the
non-dimensional geometrical parameters 3, y and 7, chord thickness, T, and different load cases. A
new fatigue design method is proposed for welded (CHS) K-joints, based on LEFM and accounting for
geometric size effects.

Keywords: tubular bridges, steel, fatigue, crack propagation, size effect, thickness effect, scale
effect, welded joints, circular hollow section, CHS K-joints, LEFM, boundary element model, large-scale
tests, crack depth measurement, ACPD system.



Résumeé

Lors de la conception de ponts tubulaires, des ingénieurs ont montré que la performance en
fatigue des joints constitue un aspect critique qui peut avoir une influence importante sur la viabilité
économique de ces structures. Au niveau des nceuds soudés, on a pu observer une diminution de la
résistance a la fatigue avec 'augmentation de I'épaisseur du tube fissuré. Afin de tenir compte de
ce phénomene, appelé effet de taille, différentes méthodes de calcul ont été proposées; toutes sont
basées sur la correction d’épaisseur, proposée en premier par Gurney pour les assemblages de plaques.
Dans le cas des nceuds tubulaires soudés, il existe peu d’études sur 'effet de taille et la plupart de
celles effectuées concernent des géométries typiques de l'industrie pétroliere offshore. La structure
porteuse des ponts tubulaires présente des différences par rapport aux structures offshore tant au
niveau de la taille des éléments qu’au niveau des proportions entre les éléments qui la constituent
(en particulier pour le rapport rayon/épaisseur de la membrure). Les nceuds tubulaires sont plus
complexes que les assemblages de plaques: de nombreux parametres sont nécessaires pour définir
la géométrie (a, 3,7, 7,{) et les nceuds peuvent étre chargés de différentes maniéres. Ces raisons
rendent 'analyse du comportement a la fatigue de ces noeuds difficile. Les recommandations actuelles
en fatigue combinent l'utilisation de la contrainte structurale (hot-spot) au pied de cordon avec un
facteur de correction qui tient compte de I’épaisseur du tube qui fissure. Cette approche simplifie de
facon trop importante le probleme et peut se révéler trés pénalisante, en particulier pour les noeuds
composés de tubes a forte épaisseur, fréquemment utilisés pour les ponts. De plus, il est fort possible
que les tailles nécessaires des tubes composant le treillis résultant des calculs statiques se situent hors
des limites de validité des recommandations actuelles. Ce travail de thése se concentre sur le cas
particulier de nceud rencontré le plus couramment dans les structures de pont: les nceuds en K réalisés
a partir de sections creuses circulaires (CHS).

Les principaux objectifs de '’étude présentée ici sont de comprendre le comportement a la fatigue
des nceuds soudés en K composés de tubes a section circulaire, et de clarifier les influences/effets des
différents parametres géométriques sur leur résistance a la fatigue. Afin d’étudier cette problematique,
des essais en grandeur réelle sur des poutres a treillis, équipées d’'un systéme de mesure de la
profondeur de fissure, ainsi que des modeles numériques avec propagation tridimensionnelle de la
fissuration ont été effectués.

Les premiers chapitres de cette thése contiennent une introduction et un bref résumé de I'état des
connaissances concernant les concepts majeurs dans les domaines de la fatigue des nceuds tubulaires
et des effets de taille. Les essais de fatigue sur deux poutres a treillis tubulaires sont ensuite décrits.
Les vitesses de propagation des fissures enregitrées au niveau des noeuds déterminants des treillis
proviennent de mesures effectuées grace a un systéme de chute de potentiel a courant alternatif
(ACPD).

Un modéle numérique tridimensionnel d'un nceud tubulaire soudé en K avec une fissure de surface
a été développé dans un logiciel utilisant la méthode des éléments frontieres (BEM). Un modeéle de
propagation de la fissuration, basé sur la mécanique de la rupture linéaire-élastique (LEFM), a été
ensuite développé en utilisant une procédure de calcul de la fissuration par incréments. Ce modele
permet une estimation de la durée de vie ainsi que de la résistance a la fatigue. De plus, il inclut d'une
maniére réaliste, I'influence de tous les parametres géométriques qui définissent un noeud tubulaire en
K de tubes CHS. La validation du modéle de propagation a été realisée par comparaison avec différents
résultats expérimentaux (déformations et contraintes dans les tubes et les nceuds, mesures de vitesses
de propagation par ACPD).

Une étude paramétrique est ensuite effectuée sur des géométries typiques des nceuds de ponts
(faibles rapports du rayon de la membrure inférieure sur son épaisseur), en considérant trois cas
de charges de base. Les résultats sont ensuite présentés et analysés sur la base du rapport "cause
géométrique"/"effet sur le facteur d’intensité de contrainte et résistance en fatigue". Les résultats de
I'étude paramétrique sont ensuite analysés spécifiquement pour les cas des noeuds homothétiques
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(dimensions augmentées de maniére proportionnelle). Le facteur de correction géométrique, Y,
est introduit comme une fonction de la profondeur relative de la fissure, puisque les noeuds sont
homothétiques. L'influence de la taille absolue du nceud, aussi souvent appelée effet d’épaisseur, est
déterminée pour les trois cas de charges de base.

Les résultats de I'étude paramétrique sont ensuite exploités différemment afin de mettre en lumiere
les effets non-proportionnels de taille. Des facteurs de correction de la résistance en fatigue pour
la taille, exprimés en fonction des parametres géométriques non-dimensionnels 3, y and 7, et de
I'épaisseur de la membrure, T, sont proposés pour les différents cas de charges. Finalement, une
proposition pour une nouvelle méthode de calcul pour les nceuds soudés en K de CHS, basée sur la
LEFM et prenant en compte les effets de la taille et de la géométrie des nceuds, est proposée.

Mots-clés: ponts tubulaires, acier, fatigue, propagation de fissure, effet de taille, effet d’épaisseur,
effet d’échelle, assemblages soudés, sections circulaires creuses (CHS), nceuds tubulaires en K, mé-
canique de la rupture linéaire, modele aux éléments frontieres, essais en vraie grandeur, mesure de
profondeur de fissure, systéme a chute de potentiel.
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Sumario

Um aspecto crucial no dimensionamento de pontes em trelica tubular é o comportamento a
fadiga das ligagoes estruturais. Este comportamento desempenha um papel decisivo em termos da
viabilidade econémica da solucdo escolhida. Uma diminuicdo da resisténcia a fadiga foi observada
em ligacOes entre elementos tubulares de maior espessura. Diferentes abordagens tém sido propostas
para explicar este fendmeno, baseadas no factor de correccdo proposto por Gurney para ligacoes
de placas soldadas. Para as ligacGes tubulares soldadas poucos estudos foram realizados. A maior
parte do trabalho de investigacdo efectuado neste dominio refere-se a geometrias tipicas de estruturas
da industria petrolifera offshore. Comparadas com estas estruturas, as pontes exibem diferentes
dimensdes e esbeltezas dos elementos que constituem as cordas das trelicas. A geometria das ligagbes
tubulares é bastante mais complexa do que a correspondente a ligacdo de duas placas soldadas. Como
consequéncia, sdo necessarios varios parametros para descrever a geometria, adicionalmente existem
varios cendrios de carga possiveis. Por estes motivos, a analise do comportamento a fadiga destas
ligacOes é complexa. As recomendacgdes actuais combinam o uso do conceito de variacdo da tensao
no hot-spot com um factor de correccido que tem em conta a espessura do elemento fissurado. Esta
abordagem simplifica demasiado o problema e pode ser muito penalizadora, especialmente para as
ligacGes compostas de tubos mais espessos como é normalmente o caso das pontes. Além disso, o
resultado de um pré-dimensionamento das sec¢des conduz frequentemente a geometrias que ndo
sdo abrangidas pelo dominio de validade dos guias de dimensionamento actuais a fadiga. Esta tese
concentra-se num caso particular de ligacdo tubular: ligacdo em K de perfis em secc¢do circular oca
(CHS).

Os principais objectivos desta investigacdo sdo: compreender o comportamento a fadiga das
ligacoes tubulares soldadas e investigar as influéncias/efeitos dos diversos parametros geométricos
na resisténcia a fadiga. Tendo em vista a realizacdo de um estudo exaustivo sobre os efeitos de
escala na fadiga, foram realizados ensaios a grande escala com monitorizagéo das fissuras. Foi ainda
desenvolvido um modelo avancado para simular a propagacao das fissuras.

Os primeiros capitulos desta tese fornecem uma introducio e uma breve revisdo dos principais
conceitos relacionados com a fadiga de ligacoes tubulares e os efeitos de escala no comportamento
a fadiga. Os ensaios experimentais de duas trelicas tubulares sujeitas a uma carga de fadiga sdo
de seguida descritos. A propagacdo de fissuras nos nos seleccionados é monitorizada usando um
sistema de medida da variacdo de potencial num campo de corrente alterna (ACPD). Um modelo 3D,
representando um no6 K soldado, com uma fissura de superficie, foi implementado usando o método dos
elementos fronteira (BEM). Foi desenvolvido um modelo de propagacao de fissura, baseado na Teoria
da Mecanica da Fractura Linear Eldstica (MFLE), através da aplicacdo de uma estratégia incremental
da propagacédo da fissura. Este modelo permite estimar a resisténcia a fadiga da ligacdo tendo em
consideracdo a influéncia de todos os pardmetros geométricos que definem uma ligacdo deste tipo. A
validacdo do modelo de propagacéo de fissura € feita por comparacdo com diversos resultados obtidos
experimentalmente (tensbes e extensdes nos membros e ligacdo, dados de propagacdo de fissura
obtidos com o sistema ACPD).

Este trabalho de investigacdo incluiu um estudo paramétrico para geometrias tipicas de pontes
(baixo valor da esbelteza das cordas, y < 12 ) considerando trés casos de carga basicos. Os resultados
foram inicialmente analisados em termos de "causa geométrica"/"efeito nos factores de intensidade
de tensdo e resisténcia a fadiga". Estes resultados foram posteriormente analisados isolando os casos
em que os nos sdo dimensionados de forma proporcional. O factor de correccdo geométrico, Y, é
introduzido como uma funcio da profundidade relativa da fissura e comum a uma familia de nds
homotéticos. A influéncia da dimensdo absoluta do nd, também conhecida como efeito da espessura
(thickness effect) foi determinada para trés casos de carga basicos. Em seguida, os resultados do estudo
paramétrico foram analisados tendo em vista clarificar o efeito de escala para transformacdes nao
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proporcionais. Estes efeitos sdo expressados em funcido dos parametros geométricos adimensionais (3,
Y, T e da espessura da corda T para os trés casos de carga considerados.

Finalmente, um novo método é proposto para o dimensionamento de nds tubulares em K, baseado
na teoria da Mecanica da Fractura Linear Elastica levando em consideracio os efeitos de escala
geométricos.

Palavras-chave: pontes tubulares, aco, fadiga, propagacéo de fissura, efeito de escala, efeito de
espessura, ligacdo soldada, seccéo circular oca, ligacdo K, Mecanica da Fractura Linear Elastica, modelo
de elementos fronteira, ensaio de fadiga, medi¢des de profundidade de fissura, ACPD
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Nomenclature

Latin Letters

crack depth at deepest point in the crack (measured
in the crack plan)

final crack size

initial crack size

crack length

material constant

chord outside diameter

brace outside diameter

crack depth at probe location i

modulus of elasticity

eccentricity between brace and chord axes intersec-
tion

force

thickness correction factor for fatigue life
thickness correction factor for fatigue strength
gap distance

distance between weld toes

truss height

chord length (between two nodes)

material constant

moment

number of load cycles

size effect exponent

number of load cycles to a 15% change in strain
near the crack initiation point

number of load cycles at detection of first crack
number of load cycles to through-thickness cracking
number of load cycles to complete loss of static joint
strength

thickness correction factor exponent for fatigue life
thickness correction factor exponent for fatigue
strength
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XXiV Nomenclature

Nr,,  number of load cycles to half thickness cracking, [—]
a=T/2
Qmax  minimum load [kN]
Qnin ~ minimum load [kN]
R stress ratio [—]
S.ps  hot-spot stress range [N/mm?]
S;nom TNominal stress range [N/mm?]
T chord wall thickness [mm]
t brace wall thickness [mm]
Vi potential difference measured with the probe i [mV]
Y geometry correction factor [—]
Greek Letters
a chord length slenderness, 2-L.;,/D [—]
B brace-to-chord diameter ratio, d/D [—]
Aoy, hot-spot stress range [N/mm?]
Ao,,, nominal stress range [N/mm?]
AK,, stress intensity factor range threshold [N/mm?/2]
o deflection [mm]
A spacing between probe contacts i [mm]
¢crack crack angle [o]
Y chord slenderness, D/(2-T) [—]
v Poisson ratio [—]
Y local dihedral angle [°]
Ohs hot-spot stress [N/mm?]
Omax  Maximum stress [N/mm?]
Omin ~ Minimum stress [N/mm?]
T thickness ratio, t/T [—]
Op, brace angle [—]
a, representative crack depth at which, the geometry [mm)]
correction factor takes a through thickness equiva-
lent value
4 gap to chord diameter ratio [—]
Abbreviations

ACPD alternating current potential drop
BEM  boundary element method

CHS  circular hollow section

FEM finite element method

hs hot-spot

LC load case

LEFM linear elastic fracture mechanics
SCF stress concentration factor

SIF stress intensity factor

Terminology

¢ Tubular connections: connection in the portion of a structure that contains two or more
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Nomenclature XXV

intersecting members, at least one of which is a tubular member; Connection geometry may be
described in terms of the topology of the intersecting members - their size, shape, position, and

orientation (Marshall,1992a).

_______ LA g

¢ Tubular joint: a welded joint at the interface created between members in a tubular connection,
consisting of the weld deposit, heat-affected zone, and immediately adjacent base metal. In the

¢+ Nominal stress: the maximum stress in a cross section calculated on the actual cross section
by simple elastic theory. Nominal stress does not take into account the effect of geometrical
discontinuities.

* Stress range, Ao: the algebraic difference between the maximum stresses,o ., and minimum
stresses, O ,i,, in a stress cycle.

Ao = O max ~ Omin M
The stress range can be based on the nominal stress, o,,,,,, or the hot-spot stresses oy,.

# Stress ratio, R: the ratio between the maximum and the minimum stresses in a stress cycle of
constant amplitude loading and taking account of the sign of the stress values.

+ Hot-spot stress, 0j,: also called geometric stress, is defined as the extrapolated principal stress
at a specified location at the weld toe (see Figureil). The extrapolation must be carried out
from the region outside the influence of the effects of the weld geometry and discontinuities
at the weld toe, but close enough to fall inside the zone of the stress gradient caused by the
global geometrical effects of the joint. The extrapolation is to be carried out on the brace side
and the chord side of each weld. Generally the geometric stress (or the hot-spot stress) can
be determined by considering the stress normal to the weld toe since the orientation of the
maximum principal stress is normal or almost normal to the weld toe.

+ Fatigue strength (of a welded component): a stress range, which causes failure of the component
after a specified number of cycles N, with a given level of safety.

+ Fatigue life: is the number of cycles N to a defined failure criterion. Four failure criteria give
rise to the four definitions of fatigue life that can be found in the literature:

¢ Nj: number of cycles to a 15% change in strain near the crack initiation point;

<

N,: number of cycles at detection of first crack;

b

Nr/o: number of cycles to half thickness cracking, a = T /2.

<

N3: number of cycles to through-thickness cracking (criterion for test end);

¢ N4: number of cycles to complete loss of static joint strength;

¢ Cut off limit: is the stress range below which it is assumed that the stress ranges of a variable
amplitude loading do not contribute to the fatigue damage. For Eurocode 3, for example, this
value corresponds to 0.405 the fatigue strength at 2-10° cycles.

* Fatigue limit: is defined as the stress range below which it is assumed that no fatigue failure
occurs for a constant amplitude loading, is known as the fatigue limit. For Eurocode 3 (EN;

_________________________________

defined as 0.745- Ao, and corresponds to N = 5 x 10° cycles.

EPFL Thesis 4142 ‘Size effects in the fatigue behaviour of tubular bridge joints’
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Nomenclature

Stress concentration factor, SCF,: is the ratio between the hot spot stress, or geometric stress,
excluding local effects, at a particular location in a joint and the nominal stress in the member
due to a basic member load which causes this geometric stress.

Srns — Ny curve or Wohler line gives the relationship between the (hot-spot) stress range at
constant amplitude and the number of cycles to failure.

Stress intensity factor, SIF: is given by K =Y -0/ 71ta.

Size effects: phenomena due to which the nominal strength of a material, and as a consequence,
the specimen made of it, depends on the specimen dimension.

Scaling effect: proposed by Mashiri et al.: (2007), includes complete proportional scaling,

[ Sty g

practical proportional scaling and non-proportional scaling effects.

Complete proportional scaling: stands for the case where all the dimensions affecting fatigue
are scaled proportionally.

Thickness effect (Complete): is frequently associated with the concept of proportional scaling,
when the thickness is the only parameter needed to describe the fatigue life difference between
two joints.

Practical proportional effect: happens when only the important dimensions are scaled propor-
tionally.

hs2 - Brace saddle

hs3-B heel
§ race crown hee hsl1 - Brace crown toe

hs31 - Chord crown heel hsI - Chord crown toe

hs4 - Chord saddle

Hot-spot locations

Figure 1: Hot-spot locations in a K-joint made of CHS.
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Chapter

1

Introduction

1.1 Background and motivation

Tubular sections have been recognised and used for a long time because of their excellent structural
and mechanical properties; one of the first examples of tubular bridge design is the outstanding Firth
of Forth Bridge in Scotland constructed in 1890. This bridge was built up from tubular members
made out of rolled plates riveted together. Following World War II, remarkable progress related to
technological and production methods have emerged ever since, making it possible to roll longer and
thinner walled tubes and allowing for new possibilities and design solutions.

The need for aesthetics and architectural transparency, in particular for improved passage of light,
in urban areas, has impelled engineers and architects to search for innovative solutions. A rational use
of hollow sections leads in general to cleaner and more spacious structures. This is also true for bridge

_____________

Section (CHS) truss bridges presents the designer with new challenges, in particular with respect to
the fatigue design of the CHS joints.

There is a wide variation in existing CHS bridges, from the structural system to the joint fabrication
method. Presently, three main methods of joint fabrication can be found in existing bridges. For directly
welded joints, the braces are cut to fit and welded to the continuous chord. A more conventional
possibility consists of brace-to-chord connections using gusset plates. Cast steel nodes offer a third
alternative whereby castings are employed to provide a smooth transition between the brace and
chord members, which are welded to the casting stubs. Both solutions (directly welded and cast joints)

- Porto (1997) (P), Figure {1.1}, Nesenbach Valley - Stuttgart (1999) (D)) have highlighted specific
concerns about the behaviour of the CHS joints when subjected to fatigue loading.

During the design of the above cited bridges, it was found that existing fatigue specifications for
bridges and tubular structures were not at all or only partially applicable to the types of joints found
in bridges. Based on the static design of the bridge, the required joint dimensions fell out of the

In comparison to offshore structures, bridges exhibit differences in member sizes, tube slenderness,
fabrication techniques, etc. All these differences make the direct application of the current offshore
knowledge to bridge design difficult, and demonstrate that the current behaviour models for welded
joints and cast nodes subjected to fatigue are incomplete.
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Concern over the size effect in fatigue arose from the difference between the welded joint sizes
that were being tested in the laboratory and the much larger joints being used in civil engineering
structures.

Figure 1.1: Cais das Pedras viaduct (1997, Porto - Portugal).

1.2 Statement of the problem

________

parameter influencing the fatigue strength of specimens subjected to bending, due to steeper stress
gradients in thinner specimens compared to thicker specimens.

loading. One main reason is responsible for this phenomenon. It is well known that crack growth rate
is predominantly a function of AK. AK is a function of the crack depth, a, and the stress range at the

a, the stress at the crack tip is larger than that in thinner plates (see FigureiI.2).

Considering proportionally scaled joints under the same nominal stress, Ao ,,,,,, the same hot-spot
stress range, Aoy, is expected (as it is function of the nominal stress, Ao ,,,,,, and the non-dimensional
stress concentration factor (SCF)). Making the reasonable assumption that the initial defect size is
independent of the plate thickness, the crack growth rate is thus higher and, generally, fatigue strength
is lower for thicker joints. This might not be the case for less aggressive details (lower SCF). The more
aggressive the detail, the more pronounced the thickness effect.

For welded tubular joints, the size effect correction is based on a statistical study of a large database

and load cases, and relies on the concept of hot-spot stress to take into consideration these differences.
Similarly to Gurney’s correction factor, the thickness of the failed member was assumed to be the
most important factor influencing the relative fatigue behaviour between different tubular joints. In

thickness other than 16 mm:
Sr,hs,T _ (E)n 1.1

where,

EPFL Thesis 4142
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AGnom AGnom

%‘ Ta=T ><a[ PlateA‘%

Aoca Ao SCF AGnom
(e}
I |

Acnom a Acnom

T s B

Figure 1.2: Simplified representation of geometrical size effect - plates.

Sinst - (hot-spot) fatigue strength for a welded tubular joint of thickness T’
Tref : reference thickness (16 mm);
n . size correction exponent;

The exponent, n, is function of the fatigue life (defined as N,, see terminology), and thus of the
stress range level, but independent of the geometry or load case. It varies from 0.24 (for 10* cycles)
to 0.402 (for 5 x 10° cycles).

As the hot-spot is used, the concept of correction between "proportionally scaled" joints, as in the
original work, is extended to both proportional and non-proportional scaling. The only parameters
determining the fatigue strength of the joint, according to this method, are the hot-spot stress range
and the thickness of the failing member. Compared to plates with a transverse attachment, tubular
joints present more and different parameters defining geometry and load cases.

In order to show how the hot-spot method can oversimplify the problem, consider that, for a given
chord thickness, it is possible to find multiple joints whose combinations of geometry parameters
(7,B,7,e) and load cases conduct to the same surface hot-spot stress as shown in Figure 1.3, However,
the stress gradient through thickness along the crack path will be different, and so will be the fatigue
behaviour of each case. If we now scale up these joints, different correction factors would be expected
for each one.

A major objective of the present work is to investigate how the simplified thickness correction,
based on the hot-spot concept, can be extrapolated to tubular joint geometries typical for bridge
application (y < 12).

EPFL Thesis 4142 ‘Size effects in the fatigue behaviour of tubular bridge joints’



4 CHAPTER 1. INTRODUCTION

f ' stress gradient through thickness . E

T e

load cases

Figure 1.3: Different combinations of joint geometries (though exhibiting the same chord thickness),
load cases and load levels can present the same hot-spot stress, o;.

1.3 Previous research on tubular joints at ICOM/EPFL

The Steel Structures Laboratory (ICOM) at the EPFL has been active in the domain of fatigue of tubular

two specific aspects of fatigue in welded K-joint for CHS bridge application: the joint stresses (hot-spot
stresses and stress concentration factors) at fatigue-critical locations; and the influence of the size
effect on the fatigue resistance of these joints using a statistical and an analytical approach, based
on linear elastic fracture mechanics (LEFM). Schumacher found that the currently used exponent,
n, (Equation:(1.1)) was too conservative in many cases and not adapted for some combinations of
geometry parameters.

Welded tubular joints are susceptible to fatigue problems due to a combination of stress con-
centration due to geometry discontinuity and defects caused by the welding process. Two different
approaches can be taken to improve this situation. These were, recently, object of investigation at

The present research is made in the continuity of the work carried out by Schumacher. It is aimed
at improving the knowledge on the effects of sizing the CHS joints on their fatigue behaviour.

1.4 Objectives and scope of the research work

The main objectives of this thesis are:

1. To define the terms (e.g., size, scale and thickness effects, proportional and non-proportional
scaling) and the different parameters that contribute to the size effect associated with each of
these terms.

2. To observe and measure fatigue crack growth (initiation and propagation) through large scale
testing of two truss beams. The fatigue crack growth is monitored by adopting an Alternating
Current Potential Drop (ACPD) system on the truss beams.

EPFL Thesis 4142
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3. To develop an advanced numerical model in order to predict the fatigue behaviour of tubular
joints.

4. To perform a parametric study on a range of Boundary Element models aiming to investigate in
a deterministic manner the influence of geometry and basic load cases.

5. To understand the effect of size on the fatigue of tubular joints, distinguishing between propor-
tional scaling and non-proportional scaling effects.

This investigation is limited to the study of:

+ Non-overlapping, as-welded K-joints in uniplanar trusses with symmetrical braces;
¢ The most likely crack location in the joint (hot-spot 1);
* Geometry parameters typical to bridge application;

¢ In-phase and constant amplitude in-plane loading.

Crack propagation in an aggressive environment is not considered and neither are the fabrication
effects, as they cannot be realistically accounted for using a deterministic approach. The investigation
of welding residual stresses in CHS joints is out of the scope of this thesis.

Original contributions from this work include:

* Advanced 3-D modelling of cracked tubular K-joints in order to specifically address geometrical
size effects.

* Experimental investigation of crack growth on large scale truss beams using the ACPD system.

* Calculation of geometry correction factors, Y, for K-joint geometries in the bridge application
range and for the three main basic load cases.

+ A new method to estimate fatigue crack propagation in tubular joints of different geometries,
based on the value of the geometry correction factor at a representative crack depth.

1.5 Organisation

The thesis is divided into eight chapters.

Chapter 2 provides an introduction to key concepts and an overview of the current state-of-the-art
in modelling the fatigue behaviour of CHS joints.

Chapter 3 details the experimental investigations carried-out on two large-scale tubular trusses.
A description of the specimens, set-up instrumentation, and test procedures is presented. Results,
especially alternating current potential drop (ACPD) data, are discussed and used to validate the
numerical model developed in chapter 4.

Chapter 4 details the development of a numerical model to predict the fatigue behaviour of welded
CHS joints. A 3-D boundary element model is built up to compute the Stress Intensity Factors (SIF) at
different crack depths. The model is validated and standardised in order to be used in the parametric
study described in Chapter 5.

Chapter 5 presents the parametric study. The principal assumptions and simplifications are justified
and the main results are given. The results are presented in the form of stress intensity factors at
different crack depths, fatigue life and fatigue strength.

Chapter 6 provides an analysis of the parametric study results, focusing specifically on the question
of proportional scaling of the joints. The geometry correction factor Y is introduced and determined
for the geometries in the parametric table and main basic load cases. Thickness correction factors are
then computed for the different geometries and main basic load cases. A comparison between results
obtained for K-joints and results existing in the literature for plates (thickness effect) is done.

EPFL Thesis 4142 ‘Size effects in the fatigue behaviour of tubular bridge joints’
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Chapter 7 explores the parametric study results by bringing to light the effect of non-proportional
scaling. Size correction factors for fatigue strength, as a function of the non-dimensional parameters,
B, v and 7, and chord thickness, T, are suggested for basic load cases 1 and 4. When the combined
load case is considered, a size correction factor is proposed for fatigue life estimation. Ideas for an
alternative design approach and recommendations are proposed.

Chapter 8 synthesises the main results and provides proposals for future work. Additional details
on the work done, such as experimental data and detailed numerical results are presented in appendices
at the end of the document.

The diagram in Figure iT.4: shows how this thesis is organised.

1. Introduction

|

2. Literature review

3. Experimental 4. Numerical
investigation Investigation

/ 5. Parametric study \

7. Non-proportional
sizing

6. Proportional sizing

8. Summary, conclusions
and recommendations

Figure 1.4: Thesis organisation.
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Chapter

2

Background and literature review

2.1 Introduction

The excellent mechanical properties of hollow sections, are greatly illustrated by the many examples
that can be found in the nature, where the millenarian biology evolution corresponds, from an
engineering optic, to a shape optimisation process. In fact, the efficient material distribution for either
bending or buckling, closed shape (reduced area to protect) and lower drag coefficients if exposed to
wind or water (particularly true in the case of circular shapes) make them an attractive profile to build
tubular structures. Hollow sections are competitive and preferred, even though manufacturing costs
are higher than other sections, to create structures in areas as different as architectural, civil (buildings

sections for structural applications are commonly designated as:

¢ structural hollow sections (SHS) - In Canada and the USA it is common to use Hollow Structural
Sections (HSS) instead of (SHS) (HSS can however be confused with High Strength Steel or even
with Hot-Spot Stress and will not be used in this thesis);

# circular hollow sections (CHS);

¢ rectangular hollow sections (RHS).

Detailed information on hollow section structures, is provided in the literature. A description of the
manufacturing process, assembly, properties of sections and applications can be found, for example, in

Tubular structures can be of all different types: beams and columns, trusses, tree shaped structures.
Connections between hollow section members are usually made by welding one member directly to
the others surface, and where possible, without stiffeners or connecting plates. In the structural design
of tubular structures, tubular joints are critical for design both for static and fatigue actions.

The static behaviour of existing tubular joints configurations has been extensively studied and a

of tubular joints have also been made but, due to complexity, less extensively. This is especially the
case for joints with more complex geometry such as X, K, XX, or KK joints.
To date, most of the research work carried out on tubular joint fatigue has concentrated on T-joints

easier experimental setup and load introduction. In practice, however, this type of joint is rarely
found (either in offshore or bridge structures) and the stress concentration at the weld toe was
found to be much higher, when compared to K-joints. These (K-joints), due to the two braces under

7



8 CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

tension, respectively compression, exhibit a different stress state in the weld toe region, reducing stress
concentration. K-joints are frequently preferred for offshore and bridge designs and became the focus
of several fatigue behaviour investigations.

For K-joints made out of CHS, the intersection between the chord and each brace can only be
described by a complex 3-D curve. When the weld profile is also considered, the geometry of the
problem complexifies itself and so does the numerical analysis of the joint behaviour.

The objective of this chapter is to introduce a number of key concepts and to present a brief
overview of the research in the domain of welded tubular joint fatigue - in particular for K-joints made
of CHS.

In Section 2.2} the parameters commonly used to define the geometry of welded, non-overlapped
joints made of CHS are presented. Section 2.3: gives a short introduction on the fatigue behaviour of
weldments and the factors mostly influencing the different fatigue life periods, from crack initiation to
the fatigue behaviour of welded joints. In section2.5ia brief overview on the use of FEM and BEM
methods in Linear Elastic Fracture Mechanics (LEFM) is given and then a description of basic concepts
of the Boundary Elements Method (BEM) and its application to LEFM problems. Within Section 2.6,
definitions on size effects are introduced, brief and non-exhaustive historical review on size effects in
fatigue and the way this topic is covered in current design recommendations are given. Section2.7;
summarises the recent research on the fatigue behaviour of tubular joints. Finally, the main conclusions
are listed in section 2.8,

2.2 Geometric parameters defining CHS-joints

The geometry of a single K-joint can be described by the diameters and thicknesses of chord and
diagonals (respectively D, T, d, t, see Figure 2.1, the brace angle, 6,,, the chord length, L, and the
gap, g, or the eccentricity, e.

|
f*‘<>

|

|

|

| H/2
t—» ﬂf
|

T b= =3 i e
D saddle A La.
- N —
k el ________

Chord member ‘
[

Figure 2.1: Geometric dimensions defining K-joint made of CHS.

Moreover, the following non-dimensional parameters are commonly used to characterise the joint:

2L, D

d
a = D :ﬁ_B:Y_E’T_

;0= 2.1)

g
D

~l -

where,
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2.3. FATIGUE AND FACTORS INFLUENCING THE FATIGUE BEHAVIOUR OF WELDMENTS 9
d brace outside diameter;
D chord outside diameter;
t brace wall thickness;
T chord wall thickness;
g gap distance;
e eccentricity;
L, : distance between two nodes;
H : truss height.

The non-dimensional parameters are commonly referred to as:
¢ v - chord slenderness;

¢ [3 - diameters ratio;

¢ 7 - thickness ratio.

2.3 Fatigue and factors influencing the fatigue behaviour of weldments

2.3.1 Generalities

Fatigue can be defined as a process in which damage accumulates due to the action of repetitive stresses
that may be well below the yield point. Although this process and the many factors that influence it
have been extensively investigated, it remains that the fatigue of materials is a very complex and still

periods: crack nucleation, development and growth of a short crack (stage I) and the propagation of a
dominant (long) crack to a length at which it either stops or causes fracture (stage II). Although the
boundaries between these stages are not clearly defined, it is generally assumed that the total fatigue
life of a weldment, Ny, is the sum of three life periods: fatigue crack nucleation, Ny, short crack (stage
) propagation, Np;, and long crack (stage II) propagation, Np,.

Crack initiation includes the moving dislocations and crack nucleation (Ny), the time it takes for
crack creation and growth to a size longer than the size of several material grains. Crack propagation
is then calculated (Np; + Np,).

Table 2.1i shows the influence parameters controlling the crack initiation and the crack propagation

___________

The relative contribution of each of these periods to fatigue life is seen to depend on the geometry of
the weld profile, size of the weld, nature of the residual stresses and severity of the weld discontinuities
existing in the weldment. Two extreme kinds of weldments can be considered - one, where substantial
weld discontinuities are present, and another, "ideal" weldment, which has blended weld toes and no
weld discontinuity. The fatigue behaviour of these two different welded joints is greatly different.

In the case of "ideal" weldments free of discontinuities or post-weld treatment, the fatigue life of
the welded joint can increase substantially, through increase in any or all of the life periods:

NT:NN +Np1 +Np2 (22)

Stage II crack propagation generally dominates the fatigue life of a weldment, while crack nucleation
and short crack growth periods are generally relatively short. A conservative assumption that

Nr ~ Np, (2.3)

can be made for domains where the failure criteria is a detectable crack (or the failure of the

_________________________________________
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Table 2.1: Influencing parameters controlling each of the crack initiation and crack propagation periods in

__________

Crack initiation Crack propagation
type type
i allo alloy™*
Material . y . y «
grain size grain size
microstructure microstructure®
shape shape
size (technological, size (technological,
Component geometrical, geometrical,
statistical statistical
size effect) size effect)
roughness
hardness .
Surface significance of defects
Ures
significance of defects
) temperature temperature
Environment . .
corrosion corrosion
crack opening mode
. mean stress (+ 0 .q)
Loading type N mean stress
multiaxiality (phase angle) .
multiaxiality
amplitude spectrum amplitude spectrum
. amplitude sequence amplitude sequence
Loading course P d P d
mean value sequence mean value sequence
rest periods* rest periods

crack shape

Crack — .
crack size

* parameter of secondary influence

2.3.2 Residual stresses and mean stress

Welding introduces tensile residual stresses, called short-range, local, residual stresses, which modify
the mean stress in the welded joint under fatigue loading. Long-range, or reaction, residual stresses
will also be introduced when welded members are connected together, due to imperfect fit-up. It is
generally assumed that tensile residual stresses up to the yield strength of the material will be present
in a welded structure. As a result, its fatigue life will be independent of mean stress and depend only

tests were included in the fatigue database used to define them. Recently, more sophisticated methods
for measuring residual stresses (Synchotron and neutron diffraction) have been used to improve the
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that the modelling of the residual stress field effects on crack growth can be made using the concept of
applied this concept in a deterministic model of the crack propagation in specimens with welded
attachments and subjected to different post-weld treatments, i.e. to welded joints with compressive

presented fatigue problems where the observed behaviour and shift of crack location in a welded detail
is explained by the residual stress field, which can also be observed in tubular structures.
For tubular joints, an extensive review of available measured residual stress data in tubular joints

to tubular structures including: T-butt joints, pipe-to-endplate joints, tubular T- and Y-joints. It confirms
that high tensile residual stresses are present in and near the welds, that residual stress distributions
are highly variable, and the need to obtain further information on distributions in welded joints.
Consideration for the uncertainties in the residual stress distributions due to welding can be found in

____________________________________________

crack growth in tubular K-joints and considered uncertainties both in the residual stress distributions
due to welding and post-weld treatment as two statistical variables, one for each stress type.

2.4 Methods for fatigue analysis of welded details

The estimation of the fatigue strength is an especially difficult task highly depending upon the
geometrical or the technological stress raising effects and the resulting high variability in the stresses at

phenomenon which is not simply related to peak values of stresses but also to the mechanical behaviour
of a structure sensible to the effect of a stress gradient.

The crack growth models used in mechanical, offshore and structural engineering domains to
evaluate fatigue life are different as they usually concentrate on one of two main crack growth phases,
namely: crack initiation or stable crack propagation. For crack initiation, most models are based

geometry, material and environmental parameters. They can therefore be used to model size effects,
but cannot account for the stable crack propagation phase.

loading parameters. In addition, they are capable of simulating several important aspects of fatigue
crack propagation such as crack-closure effect (from the applied and residual stress fields), crack tip
plasticity and fatigue threshold. They can therefore be used to model size effects, but cannot account
for some material and microstructural aspects linked with the crack initiation stage. Some parameters
have a large influence on crack initiation and little on stable crack propagation, and vice-versa.

Fatigue life of welded joints is frequently assessed by S—N curve approach, using S—N curves giving
the design fatigue life for constant amplitude loading and using an appropriate damage accumulation
law to consider the effect of variable amplitude loading.

Notches and stress gradients characterise welded structures, where often it is impossible to evaluate
the maximum stress or strain due to geometrical discontinuities when a linear-elastic solution is
adopted. Component S — N data and a stress based approach are often used for design. Strain based
approach is difficult to apply except where welds have well defined geometry and are of very high
quality (free of crack-like defects).

To overcome these difficulties, several methodologies have been proposed (including nominal
stress, hot-spot or structural stress approaches, etc.). Each of these methods suggests that a particular

_____________________________________________________________________________________________
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1. The Classification method, or nominal stress approach, assigns different weld details with
fatigue strength values largely based on experimental fatigue testing. Weld details with similar
fatigue strength are then grouped into classes. The fatigue strength of a specific detail can
be assessed by selecting the S — N curve that represents a given safety or survival probability.
Obvious drawbacks of this approach is that it can only deal with classified details and that it does

2. The Structural or hot-spot stress approaches, sometimes also called geometric stress. Among
the methods proposed in the literature to determine (numerically, experimentally or both) the
structural stress range, the better known are the following:

* Surface stress extrapolation method (hot-spot stress) - based on the stresses along the free
surface. Extrapolation points are located in front of the weld toe, at distances defined

* Through thickness at the weld toe (TTWT) - the structural stress is calculated directly from
the stresses in the cross-section of the weld toe. Although its distribution is non-linear, it
is integrated first and then a linear distribution which produces the same membrane and
bending force components is generated. The value of the linear function at the weld toe is

¢ Dong method - this method combines features of the through thickness and surface
extrapolation procedures. This alternate structural hot-spot computation method is based
on the equilibrium of nodal forces and claims to be a mesh-insensitive structural stress
method. The stress state at a fatigue-critical location, the normal structural stress is
presented in the form of membrane and bending components that satisfy equilibrium

3. The Notch stress approach needs information on the stress or strain distribution in the vicinity
of the weld which can be obtained by FE analysis. The following variants of this approach exist
in the literature:

* Fictitious radius - where weld roots or toes are smoothed using a conventional value of the

+ Implicit gradient - the effective stress, weighted average of the stress, is computed by
solving a second-order differential equation over all the component independently of
its geometric shape. The solution is obtained by assuming the isotropic linear elastic
constitutive law for the material and the maximum principal stress as equivalent stress
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Until now, nominal and hot-spot stresses have been preferred and are the most widely used
approaches due to their simplicity. Due to advances in computer performances and 3-D modelling
software it is likely that in a near future, 3-D solid modelling and methods based on the notch stress,
or automatic crack growth based on LEFM, will be more extensively used in specific industry domains
(automotive, machines,...). Two reasons are to explain for that: the design process is more and
more done using semi-automatic 3-D modelling, thus simplifying structural engineers task to build
solid models; the larger amount of DOFs generated by such models can now be managed by PCs in
acceptable time. Secondly, the efficiency; as they are the only methods able to take into account all the
geometric and loading aspects of the welded joint, they allow for easier identification of the potential
critical crack initiation locations.

An alternative is the use of a Linear Elastic Fracture Mechanics (LEFM) approach based on the
growth of the weld flaws modelled as cracks. This method uses a single parameter to characterise the
stress state at the crack tip, the Stress Intensity Factor (SIF). The LEFM assumes that cracks, or crack
like defects, are present in the structural detail at the very beginning of the fatigue life. Crack growth

The methods that are used or referred to in this thesis work are further described in the following
paragraphs.

2.4.1 Structural stress approaches

Structural stress approaches try to propose a stress solution excluding local effects from weld geometry.

have proposed a new modified structural stress to better capture the stress state for thick plates or
load-carrying welds. The methods from Dong and Marquis have been shown to better predict the size
effect in welded joints than the current surface extrapolation method.

thickness direction for different details under tension in order to separate the global and local stress
concentration effects. On this basis, they have proposed to use the stress 1.0 mm below the surface as
the stress parameter and shown by reanalysing the test results on cruciform joints that this parameter
can predict well the size effect of plotted joints under tensile stress. This method could be promising
but has not been applied to tubular joints yet.

Surface stress extrapolation

Surface extrapolation is based on the stresses along the free surface in the vicinity of the weld toe.
Structural hot-spot surface stress, o, or geometric stress, includes all stress raising effects of a
structural detail excluding all stress concentrations due to the local weld profile itself.

data points in a region close to the weld toe, within the limits of extrapolation. A linear extrapolation
to the weld toe is then carried out from the points corresponding to the fitted curve at extrapolation
limits L, ;i and Ly -
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true stress AGuom

LA

Dist. from weld toe Chord Brace
saddle crown saddle crown
Lr!min 0.4 * T 0.4 . t

Ly max 0.09:D/2 0.4%/D/4-T-d-t 0.65\/d/2t

minimum value for L, ,,;, = 4mm
minimum value for L, 4y = Ly yin + 0.6t

The stress concentration factor (SCF) is defined as the ratio between the hot-spot stress, o, and
the nominal stress, 0, (away from stress rising singularity).

o
SCF =

2.4)

Unom

Through thickness - 1 mm stress method

A new method for evaluating the geometric or structural stress in welded connections was proposed by

in the direction of the expected crack path. It assumes the total stress distribution along the crack
path to be the sum of the geometric stress caused by the structural geometry change and the highly
non-linear local stress produced by the weld itself. This method considers that the stress concentration
at weld toe is composed of two parts: the local peak stress due to weld profile and the geometric stress
or hot-spot stress due to structural geometry change (e.g. a longitudinal attachment) as described by:

K, =K, K, (2.5)
where,
K, : the whole stress concentration at weld toe;
K, : the stress concentration due to weld profile;
K, : the structural geometry change stress.

The whole stress of a small size cruciform joint as represented in Figure 2.3i is thought to be
equivalent to the local stress produced by the weld itself.

EPFL Thesis 4142
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In order to derive the structural stress, Xiao and Yamada propose to calculate the total stress and
the stress produced by the local weld profile (obtained with a cruciform joint with the same weld toe
geometry selected as a reference detail to express the local effect, Figure 2.3. The structural stress is
then approximated by their ratio. At a depth of 1 mm, the following relationship can be written:

K,(1mm) =K, (1 mm)-K;(1 mm) (2.6)

Once the stress concentration due to the weld profile, K,,(1mm), is approximately 1 at this depth,

____________________

propagation life can be established between studied detail and reference detail by using the geometric
stress at a certain point along the crack path line. The following formula can be used to estimate the
fatigue life of a detail based upon its structural stress at 1 mm in depth from the weld toe:

1
N =——"N, 2.7)
P (K,(1mm))™
where,
N, life to propagate a crack from an initial size of 0.1 mm to a size of 10 mm;
Ny, : life to propagate a crack from an initial size of 0.1 mm to a size of 10 mm for the
reference detail;

K,(1mm) : structural stress at 1 mm in depth;
C : material related parameter (Paris Crack Growth Law exponent);
m :  mechanical related parameter (Paris Crack Growth Law exponent dParis'p IL196OD).

Note that the exact depth found was equal 1.3 mm, though, due to the flat stress gradient of
geometric stress the stress at 1 mm in crack path results in a good correlation of fatigue propagation
life. Since the studied detail and the reference detail may have different final or fracture crack length
values the correlation might not be performed through the whole range of crack propagation. However,
since most of the fatigue life is consumed when the crack is still small, the influence of the fracture
value on fatigue life is not so significant.

2.4.2 Fracture Mechanics approach

In fatigue, Linear Elastic Fracture Mechanics (LEFM) is predominantly used. In this method, it is
assumed that cracks or crack-like defects are present at the beginning of the fatigue life. LEFM focuses
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11986), that the stress state very close to the tip of a crack in a ductile material, as well as in a brittle
one, can be described with a unique parameter under certain hypothesis (plane strain state),. This

1960) that the range of this parameter, AK = K, — Kyin» can be used to characterise fatigue crack
propagation. AK can be described by the following general expression:

AK=Y-Aovm-a (2.8)
where,
a . crack depth;
Ao @ stress range;
Y : correction factor to adjust for free surface, finite thickness of the plate and non-uniform

applied stress distribution.

In the case of constant amplitude loading, the applied stress intensity factor range can be related to
the rate of crack growth using, in general, the Paris law:

d_a =C-AK™ (2.9)
dN
where,
a . crack depth;
g—l‘\‘, crack propagation rate;
C,m : constant and exponent of Paris law.

Several modifications to this relation are proposed in literature in order to include effects such as
the crack closure, fatigue threshold, or residual stresses, in the AK parameter.

Integrating Paris law between initial and final crack sizes, permits the calculation of the fatigue life
of a welded detail:

af 1
N = ————da 2.10
f L - Cc(AK)" (2.10)
where,
Ny : number of cycles needed to propagate a crack from a depth of g; to a depth of ay;
a; : initial crack size;
ar final crack size;

The determination of the stress intensity factor ranges, AK, depending on the complexity of the
geometry and the existence, or not, of tables or equations, using numerical methods of structural
analysis such as Finite Elements (FEM) or Boundary Elements (BEM) methods.

2.5 Numerical methods

2.5.1 Finite element method (FEM) and Boundary element method (BEM)

The estimation of a fatigue crack life using the theory of Linear Elastic Fracture Mechanics (LEFM)
involves the calculation of stress intensity factors (SIF) at a number of discrete crack depths.

Different methods can be used to estimate SIFs. Most of them involve the use of expressions
deduced from parametric studies on specific geometry ranges. A more complex way involves advanced
modelling of the crack by finite element or boundary element codes.
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The finite element method has been widely used in fracture mechanics applications. Recent
investigations applied the finite element method to simulate the crack behaviour in CHS joints (Cao|

One disadvantage of this method is that it can only be used for linear elastic problems. However this is
not an issue in modelling fatigue life in the long life region (the opposite from oligocyclic fatigue).
Hybrid approaches, combining both Finite Elements and Boundary Elements may couple the specific
advantages of each method and eliminate disadvantages. They have been the focus of a number of
investigations but are still under development and not available as ready to use packages for 3-D

2.5.2 Boundary element method, BEM

The boundary element method is a solution technique for the well known coupling equation:

K,-u=f+p (2.1D
where,
K, : stiffness matrix;
u : displacements vector;
f : support reactions vector;
p :  negative end fixing forces.

For a three-dimensional boundary element problem the mesh is two-dimensional. Because only the
surface of the domain needs to be discretised, it is easier to use BEM than FEM. However, if interior
data are required, the method becomes computationally costly. Also, for large geometries, as the
matrix is full and unsymmetrical, the BEM is computationally expensive.

Application of the boundary element method to fracture mechanics problems is well described
in literature. The direct solution of a crack problem is not possible using BEM in a single region.

_____________

its features can be summarised as follows:

BEASY uses the Dual Boundary Element Method (DBEM) to predict the stress field for cracked structures
and hence to predict the stress intensity factors along the crack front. The analysis method implemented
is based on the theoretical foundations developed for two-dimensional analysis by Portela, Aliabadi and

_____

elements that allow the stress and displacement fields to be computed on both crack faces without the need
to subdivide the body along the crack boundary. The Dual Boundary element method is a powerful solution
tool for fracture mechanics, because it is a boundary only representation, it is highly accurate, and is able
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The stress intensity factors (SIF) for the three opening modes (K;, K;;, K;;;) are computed using
crack opening displacement (COD) formulas, which are given, at crack front node Q (see Figure 2.4),
by:

K £ ,/ T (Aup?) (2.12)
= - u .
! 4(1—-v2)Vaor =0
£, _E T aun 2.13)
= -~ u .
1 41—v)Vor
K2 E 1/7[(A ") (2.14)
= ——/ —(Au .
m 41+v)V 2r ‘
where,
first node away from the crack front;
r . vector from Q to P;
n : unit normal at the crack front;
Au®? : displacement evaluated at point P;
Aulg :  projections of Au’ on the local binormal coordinate directions at the crack front;
Auf; :  projections of Au” on the local normal coordinate directions at the crack front;
Auf :  projections of Au” on the local tangential coordinate directions at the crack front.

Aliabadi (1999)).

________ R

2.6 Size effects

2.6.1 Size effects in fatigue

Although there is a large amount of literature on "size effects", both related to static or fatigue
behaviour of structures, the fact is that the terminology is confusing, there is a number of terms that

____________________________________

terminology that will be used throughout this thesis work.
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Definitions

¢ General:

¢ Size effect: generic term which deals with the consequences resulting from the modifi-
cation of the dimensions of the sample (specimen) under study. Used in many domains:
physics, engineering, finance, etc.

¢ Structural size effect: It is well-known from experimental evidence that the nominal
strength of a material, and as a consequence the structure made of it, changes as a function
of its dimensional size. Due to this phenomenon, called size effect, strength ceases to be a
material constant. Various theories on size effect give interpretations of this experimental
evidence and different models linking material strength with a characteristic structural

_________________________________________________

¢ Scaling effect: particular case of sizing effect. As defined in Physics, the size modification
is an homothety: all the proportions are conserved.

¢ Steel Tubes:

¢ Scaling effect in tubular joints: This concept was introduced by Mashiri et al. (2007).

It includes, according to the authors, complete proportional, practical proportional and
non-proportional scaling.

— Complete proportional scaling states for the case where all the dimensions affecting
fatigue are scaled proportionally (equivalent to a homothety). Associated with this
concept, the so called "(complete) thickness effect", as the thickness is the only
parameter needed to describe the relative fatigue life of two joints.

— Practical proportional scaling happens when only the important dimensions are
scaled proportionally.

— Non-proportional scaling is the case where important factors influencing fatigue
behaviour are not scaled proportionally.

* Metal fatigue:

¢ Fatigue Size effect: In the specific case of fatigue strength, three basic theoretical argu-
——————————————————————— | o= == = o e -

ments are currently accepted (Dijkstra and van Straalen, 1997, Marshall, 1992b; Orjasater,

technological and geometrical. These effects can be studied by comparing the fatigue
behaviour of welded joints using a scaling effect. They are summarised here based on

Marshall, 1992a):

— statistical The statistical size effect refers to the increased probability of having a
larger variation in material properties and a larger flaw with an increase in stressed
volume. This effect is also called volume effect. As the fatigue is a weakest link
process, in the case for example of transverse attachment or built-up I sections, the
length of the weld toe from which the cracks initiate is an influencing factor for

fatigue strength.

- technological or metallurgical
The technological or metallurgical size effect implies that an increased plate size
(thickness) may result in a different grain structure (coarser), different surface
roughness, lower yield strength, higher residual stresses (caused by welding in
different plate thicknesses), welding processes, weld shape, increased probability of
hydrogen cracking during fabrication and lower notch toughness.
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— geometrical The geometrical size effect refers to the stress gradient that arises at
geometrical discontinuities (e.g. notches, welded details) and/or due to bending
stresses. Due to the presence of a steeper stress gradient, a unit volume of material
at a geometrical discontinuity on or close to the surface of a thin specimen will
experience a lower strain than the same unit volume of a thicker specimen, for the
same stress at the surface. Geometrical size effect can be described as the resultant

_____

the stress along the "plane", i.e. can also be a curved surface, of crack growth; the
number of crack growth cycles needed to go through the steep stress gradient region,
relative to the total number of cycles to failure.

2.6.2 Historical review on size effects in fatigue

The thickness effect phenomenon has been object of numerous investigations from as early as the
1950s to this day. These contributions have led to a better understanding of the influence of plate and
or tube-wall thickness on fatigue strength of welded connections. A brief review is presented based

____________________________

using both fracture mechanics theory and experimental work. This research led to the introduction of
a thickness correction factor in the revised version of the UK Department of Energy Guidance Notes

____________

________

known that plate thickness was likely to be a relevant variable for fatigue strength under bending
stresses, because the stress gradient through the thinner specimen would be steeper and therefore less

____________

theory, that fatigue strength of welded joints could be affected by plate thickness even when they were
subjected to axial loading.

Using S — N data for plate welds and for tubular joints, covering the range of plate thicknesses up
to 50 mm, Gurney proposed an empirical thickness correction for fatigue strength.

Thickness influence is obtained by plotting the relative fatigue strength versus the thickness of the

____________

A thickness correction factor can be used to predict the fatigue strength of wall thicknesses other
than the reference thickness. According to Gurney, it can be described using the following expression:

Trer\"
S=8 . | =L 2.15
ref ( T ) ( )
where,

S . fatigue strength for plate thickness T}
Ser : fatigue strength for reference plate thickness Tef;
T : reference plate thickness up to which the design rules are directly applicable without

penalty;

plate thickness;
n . thickness correction factor exponent (for plates, n = 0.25).
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Figure 2.5: Influence of plate thickness on fatigue strength, normalised to a thickness of 32mm. All

van Wingerde et al. (1997) analysed a large database containing fatigue test results on tubular

| By & C Tty

joints. Through statistical analysis of this database, and taking the thickness of the failed member as

major difference when compared to Gurney, who based the size correction on the nominal stress away
from the welded detail. The use of the hot-spot based S — N design curve configures a size correction
and, again, not anymore a thickness correction factor, since non-proportional scaling is included.

2.6.3 Size effect in existing recommendations for tubular joints

Various design guidelines are available and used around the world for the design of tubular structures.

use of both the classification method (based on nominal stress approach - and, as stated before, not
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_____________________

________________

into the hot-spot stress S —N curves, resulting in shorter fatigue life for thicker walled tubular members
under fatigue loading. The following expressions describe the size effect for the fatigue strength of

CHS joints, as determined by van Wingerde et al.! (1997):

| Sl g Juuffui it Sy | Bt

Sr,hs,T _ (1_6) !
Sr,hs,16 T

n=0.06-logN, for 10> <N, < 5 x 10° (2.16)
n = 0.402 for 5 x 10° < N, < 108
where,

Syns,r - hot-spot stress range for tube thickness T';

S;ns16 : hot-spot stress range for reference tube wall thickness T,.; = 16 mm;

Tref : reference plate thickness up to which the design rules are directly applicable without

penalty;

T : thickness of failed member;

n . size effect exponent;

N, : number of cycles to failure (complete loss of strength).

The determination of the above expression is based on statistical analysis of all S—N data on circular
and rectangular hollow section joint types and loadings. Thus, many effects and joint parameters are
included and fail to be distinguished.

In (HSE, 2001, Lotsberg and Larsen, 2001, Mashiti et al’; 2008), reviews of the existing design

guides for tubular joints are provided. Table 2.3' summarises the values of the thickness effect
correction.

Table 2.3: Thickness effect in existing standards.

EC3 APIRP2A IIW / CIDECT

Standard plate connection T, 25 - 25

n 025 - 0.1,0.2 0r 0.3
Tubular joints T 25 16, 25 16

n 025 0.25 0.06- logN

The thickness correction factor adopted by CIDECT Design Guide No. 8 and IIW has one of the
most severe exponents (n = 0.378 at N = 2 x 10° cycles). This thickness correction factor depends on
the number of cycles to failure (IV); the less the number of cycles, the less pronounced the thickness
effect. Furthermore, these guides are currently limited to tube thicknesses between 4 mm and 50 mm
inclusive (for circular tubes) and chord slenderness, y > 12.
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2.7 Recent research on the fatigue behaviour of tubular K-joints

In 2003, Schumacher, through experimental tests and numerical calculations, investigated the joint
stresses at critical fatigue locations and the size effect on the fatigue resistance of CHS K-joints

(y < 12). Sixteen tubular joint specimens were tested at the Steel Structures Laboratory (EPFL).
The parameters covered by this study included member dimensions, fabrication methods and weld
improvement.

specimens per series. Each test series examines a particular parameter: dimension, fabrication method
or weld improvement. The non-dimensional parameters of the specimens were chosen to reflect actual
CHS truss bridge parameters. Except for the weld-improved specimens, twelve out of the sixteen
welded joints cracked at the same location and in the same manner. Cracks initiated in the chord gap
region at the tension brace weld toe, referred to as Location 1 (Figure 3). This corresponded with the
location of the highest measured hot-spot stress. Crack propagation occurred through the depth of the
chord as well as along the weld toe.

Schumacher found that the measured hot-spot stresses at locations of fatigue cracking were lower
than the hot-spot stresses calculated using current design guides. Different fatigue resistances were
observed for joints of different sizes.

Tables and graphics providing stress concentration factor (SCF) values for the different hot-spot

Concerning the effects of joint size and scale, Schumacher underlines different points related to the
fatigue test results database used as base for size correction definition: the inclusion of many different
parameters and the large degree of scatter in the data and the lack of data for joint thicknesses typical
relevant for bridge design. All these arguments highlight doubts regarding the correction factor for
size effect that was obtained from this database and in particular its applicability to bridge joints.

Furthermore, Schumacher concludes that it does not seem justified to apply a size correction factor

. 1 1 0.25
greater than the factor proposed by Gurney. Gl979D ((%) ), i.e. the size correction factor in current

_______________

fair representation of the actual size effect problem, in particular for bridges.

The work carried out at the Nanyang Technological University, (Singapore) in recent years focused
in tubular joint fatigue behaviour. This research work concentrated principally in numerical simulation
(using FEM), crack meshing technics and has been validated using experimental tests of isolated joints,
loaded in the braces, instrumented with ACPD system. Details can be found in a number of publications

____________________________

uni-planar tubular K-joints containing an arbitrary surface crack located along the chord weld toe.
A FEM mesh generation technique was developed, according to which, the crack is defined first
in a 2-D plane and then mapped onto a 3-D curved surface. The numerical model was validated
by comparisons to two full-scale tubular joints. Shao modelled and analysed the stress intensity
factors of K-joints containing a surface crack. An extensive parametric analysis served as basis for

design. The joint eccentricity was not considered. It included two loading situations: balanced axial
load of the braces and balanced in-plane bending of braces. Shao proposed parametric equations for
the determination of SIF values at different crack depths. He however did not study size effects in his
original work. Afterwards, he studied the geometrical effect (non-dimensional parameters 3,y, T and
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and K- joints), but no correlation between the stress concentration and the fatigue life or strength is
made.

At the Monash University, the effect of thickness and joint type on fatigue performance of welded
thin-walled joints has been studied. This research has concentrated mainly on thin-walled T-joints
(CHS and RHS). Fatigue life for thin T-joins (t < 4mm), tested in laboratory, was found to be below

__________ g
__________ ?
weld toe defects such as undercut on the the crack propagation life is responsible for this phenomenon

which is contrary to the conventionally accepted size correction estimations, according to the authors.

2.8 Summary and conclusions

This chapter gives an introduction on the main concepts related to this thesis work. A brief overview
of the fatigue behaviour of tubular joints is presented, namely: methods for fatigue assessment of
welded joints, existing research on size effects, current design recommendations and recent research
on tubular joint fatigue. This review resulted in the following conclusions:

+ Multiple and sometimes confusing definitions exist in the literature to describe the size effect
phenomenon in fatigue. Three terms are commonly employed to describe the effects under
consideration and not always with the same meaning: scale effect, thickness effect and size
effect. A concept for terminology clarification is presented.

* The Linear Elastic Fracture Mechanics method can be used to describe the fatigue behaviour of
welded joints with complex geometries, taking in account the different dimension parameters by
means of adequate computer simulations.

¢ The Boundary Element Method is an efficient method that can be used to calculate the stress
intensity factors of surface cracks in CHS joints.

+ The range of applicability of current fatigue specifications is limited and does not cover geometries
typical to tubular bridge design. A lack of data for joint thicknesses typical to bridge applications
and the scatter in the data related to the inclusion of many different parameters has been noticed.

+ It does not seem justified, for CHS K-joints, to apply a size correction factor greater than the

____________
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3

Experimental Investigation

3.1 Introduction

Fatigue tests allow for a better understanding of the cracking process and the uncertainties resulting
from the fabrication that may influence the fatigue life of the structure.

In our study, two uniplanar tubular truss beams were tested under fatigue loading. Each beam
comprised 6 nodes are simultaneously tested nodes under different loading conditions resulting in
a possible total of 12 data points. Also, several joints were equipped with a specific crack depth
measuring system (Alternate Current Potential Drop, ACPD system) in order to get more information
out of each test. The test beams were designed to augment the database comprising about 180 test
results worldwide.

In Section 3.2, the test specimens are described regarding their dimensions, fabrication and
material properties. In Section 3.3, the procedure and the instrumentation for static and fatigue
tests are detailed. Measurements obtained during the tests are summarised and the main results are
discussed in Section 3.4t

3.2 Description of test specimens

Two uni-planar CHS welded truss beams were tested under fatigue loading. These beams represent a
fifth series, S5 (S5-1 and S5-2), which follows four series of similar specimens previously tested by

Each one of the trusses consists of nine welded K-joints (see FiguresiA.1liandA.2iin Appendix).
Four of them, namely j1, j2, j5N and j5S (see Figure 3.2) were selected to be studied in detail because
of the respective loading conditions. Compared to the previously tested specimens, the S5 specimens
are fabricated out of CHS tubes only, welded together (see Figure 3.1), while the previous series
had an I-beam as the top chord, bolted onto the tubular joints. Table 3.1ishows the dimensions and

Nussbaumer, :2006). Series S1 to S4 were proportionally scaled, i.e. non-dimensional parameters
remained constant. Series S5 represents a non-proportional scaling of the previous series (lower y and
7). The non-dimensional parameters were: 0;,, = 60°; # =0.53; y =4.21, Tt =0.4 and e/D = 0.13.

These are parameters typical to CHS truss bridges.
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Figure 3.1: Tubular truss fatigue test setup.
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Figure 3.2: Tubular truss and joints nomenclature.

3.2.1 Material properties and dimensions

Truss members are made of steel S355 J2 H conforming to EN10210-1:1994 and EN10210-2:1997.
This refers to a weldable steel with a minimum tensile yield stress, fy, of 355N/mm? (for nominal
thicknesses < 16 mm) or 345N/mm? (for 16 mm < nominal thickness < 40 mm), and a minimum
ultimate tensile stress, f,,, between 490 — 630 N/mm? at 22% elongation. The minimum toughness of
the steel is defined as 27 J at -20°C.

The diameters and thicknesses of the tubular members were measured. All measures meet the
terms of the EN 10210-2:1997 tolerance requirements.

3.2.2 Specimen fabrication

Brace members were cut to fit the contour of the chord using computer controlled technology. Bevels
were prepared at angles ranging from 30° to 45°. Backing-rings were used to facilitate the welder’s
task and make sure complete penetration of the weld is achieved (see Figure3.3). In this way a fully
penetrated weld could be applied continuously around the brace-chord intersection. A MAG cored
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Table 3.1: Fatigue test series tested recently at ICOM.

ID Nom. Dimensions [mm] B Y T e/D  Weld No. joints
Bottom Chord Top Chord Brace [-] [-] [-] [-] [-] [-]

S1* 273 x 20 I-beam 139.7 x12.5 0.51 6.83 0.63 0.09 EB 4

S2* 273 x 20 I-beam 139.7x12.5 0.51 6.83 0.63 0.19 F 4

S3*  168.3 x12.5 I-beam 88.9 x 8 0.53 6.73 0.64 0.20 EB 4

S4* 273 x 20 I-beam 139.7%x12.5 0.51 6.83 0.63 020 EB, W 4

S5 168.3 x 20 168.3 x 20 88.9 x 8 0.53 421 04 0.13 EB 8

* q_SchumacheI‘,, :LZOOBD
F : Full penetration weld
B : Backing ring

W : Weld improved

metal arc welding with active gas shield (process 136) using covered electrodes in accordance with
AWS A5.20:E71 T-1 was used.
Non destructive testing controls of the welds were done by the fabricator following SIA 263/1 code

Figure 3.3: Preparation of joint before welding, backing rings and bevel.

Two plates were welded at the bottom chord extremities so that this tube could be put under air
pressure (2bar) and thus through depth cracks detected by depressurisation, a technique already used
by Schumacher.

3.2.3 Weld geometry

Weld size has an important effect on the stress concentration at the weld toes of tubular joints. In
order to measure the weld size of joints, a mould impression of the welds was done using Rhodorsil

easiness for application (Figure3.4).
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Figure 3.4: Detail of welded joint mould impression.

Real weld dimensions were then compared to the American Welding Society (AWS) recommen-
dations (see Figure3.5). AWS recommendations are globally fulfilled for both joints S5-j1 and S5-j2
and actual weld size is found to be normally much larger than AWS minimum recommendation but
consistent.

3.3 Test procedure and Measurements

3.3.1 Supports and load introduction

The truss beam was simply supported at its extremities (with an eccentricity of about 70 mm to 90 mm)
and the load introduced at mid-span (Figurei3.6). Three steel blocks were machined to fit the top chord
circular shape with the support blocks thus allowing a proper introduction of the load at mid-span.

For the sake of safety, and to prevent possible instability, blocks with a Teflon layer were put in
place on each side of the bottom chord to provide lateral support.

3.3.2 Static tests

Static tests were carried-out in order to: verify the linearity of the loading/unloading response, check
symmetry, verify that the out-of-plane bending remains negligible, determine the nominal stress in the
joints and evaluate the hot-spot stresses (for S5-2). Nominal stresses and hot-spot stresses were then
used to validate the numerical model.

Before the fatigue test started, preliminary static tests were carried out, with the maximum force
being increased stepwise up to approximatively the maximum required in the fatigue test (~ 600 kN)
and unloaded back to the minimum load in the fatigue test (~ 60kN). Static tests were then repeated
about every 60000 cycles. The lateral displacements were not significant.

Deflection and load measurements

The load and deflection of the beam were measured during both static and fatigue tests. They were
taken from the previously calibrated hydraulic jack output. In addition, an external Linear Variable
Displacement Transducer (IVDT) was installed at mid-span under the bottom chord.
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Figure 3.5: Comparison of different weld leg lengths on chord.

Strain measurements on members

Strains were measured on truss members during the static tests using uniaxial electrical resistance
strain gages (HBM LY11-10/120) glued to brace and chord members. Gages were positioned in pairs,
at two or four points around tube cross section following the same procedure taken for similar fatigue

The location of the gages changed from beam S5-1 to S5-2. Figure 3.7 shows strain gages placed
at distances corresponding to 1.9D (chord) and 2.2d (brace) from the joints. FiguresiA.liandiA.2} in
appendix, provide strain gages position drawings.

Strain measurements in joints

Strains in the vicinity of brace-chord welds were measured with uni-axial strip gages (TML FXV-1-11,
5-element 2 mm grid length) on specimen S5-2 for joints j1 and j5N. The strains measured were then
linearly extrapolated to the weld toe to determine the hot-spot strain.

Due to the small gap between diagonals it was not possible to measure in this location, instead two
strip gages were positioned perpendicular to the weld toe and at an angle of 30° with the longitudinal
direction, on each side of the gap (see Figure3.8).
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Figure 3.8: Strip strain gages and ACPD voltage probes in joint 1 - beam S5-2.
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3.3.3 Fatigue tests

Following the preliminary adjustments (actuator and beam aligning, precise determination of minimum
and maximum actuator loads) and verifications (linearity and symmetry of response), the fatigue tests
were then conducted. Constant amplitude load cycles were applied in order to investigate the initiation
and propagation of the fatigue cracks. Several methods for monitoring fatigue cracks in small or large

to monitor crack growth whenever possible, the following techniques were used:

¢ Ink marking;
* Beach-marking by applying a different stress amplitude for a limited number of cycles;

¢ Alternating current potential drop (ACPD) method, indirect method providing continuous
information at discrete points along surface crack.

These techniques do not change the subsequent crack growth in a significative way. However, the
risk exists that the crack starts at probe wires in the case of ACPD. Ink marking may induce corrosion
at crack tip and thus induce subsequent modification in the crack growth rate. Furthermore, it is
normally difficult to distinguish 2 different ink marks in the same crack surface.

Loading

A single Hydrel 1200 kN (static capacity) actuator under load control was used to apply a sinusoidal
fatigue load at a frequency of about 0.7 Hz. The load ratio (R = g’”i” ) was R = 0.1. The prescribed

max

force range, AQ (Qin, = 61kN, Q. = 610kN), was chosen to obtain the same chord nominal stress
range as in previously tested series S3 (AT o, (n=35MPa).

Crack detection

During the early stages of testing the welded joints were closely inspected in order to detect any
initiating fatigue cracks. The inspection was done using a 10x magnifying glass and macro photography.
Dye penetrant and magnetic particles tests were also used to detect cracks and measure their surface
length. Early cracks detected in joints 3N, 3S and 6 of beam S5-2. These joints being without particular
interest, were repaired (needle-peening) so that the fatigue test could continue without affecting the
interesting joints nominal stresses. In addition, joint 3S had to be rewelded so that the fatigue test
could continue.

Number of cycles

In the present investigation, the failure of a tubular joint is defined as the life corresponding to
through-thickness cracking (N3). However, current S, ;; — N design curves use a different definition
of joint failure. According to a study of a large database of fatigue test results carried out by van

____________________

multiplied by a factor of 1.49.

Alternating Current Potential Drop - ACPD

Electrical Current Potential Drop (Direct Current Potential Drop, DCPD and Alternating Current
Potential Drop, ACPD) techniques have been widely used for crack depth monitoring in laboratory
experiments on simple specimens for many years.
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The basic principle is to introduce an alternating current (AC) to flow between two electrodes (field
probes) and measure the local voltage drop over the area adjacent to the weld and over the crack by

Vi Va

-
Field probes A Field probes
7 — 6

Vvd,

________________

Figure 3.9: Alternating current potential drop theory and notation (adapted fromChiew et al.i GZOO4E)).

___________ P

For an infinitely long crack of constant depth, ACPD estimation of the crack depth is given by:

d; = i (E - 1) (3.1
2 \ Vg
where,
d; : crack depth at probe location i;
V,; : potential difference measured with the probe i;
Vi; @ reference potential difference;
A; : spacing between probe contacts;

The reference measure, V;;, was taken as the average of the first 30 measures on the uncracked
joint at location i. Accurate determination of the probe contacts distance is specially hard because of
the irregular geometry across the weld toe. This difficulty can be overcome using ACPD systems with
independent reference measures for each probe site immediately before the weld toe; however, the
complexity of the tubular joint weld toe geometry can lead to other inaccuracies.

This one-dimensional interpretation of the ACPD measurements to give the crack depth is accurate
for low crack aspect ratios (a/2c¢c < 0.1) . As the geometry of the specimen and the weld become more
complex, or the crack aspect ratio higher (a/2c > 0.1), this estimation is likely to be less accurate,
underestimating the crack size. In this case, it is recommended to use a correction factor to calibrate
the final result. In the case of tubular joints, the aspect ratio remains low, and it was demonstrated by

a satisfactory estimation for this type of joints. Another issue with ACPD measurements refers to the
impossibility to determine the instant of through thickness penetration of a crack because the depth
estimation represents the length along the crack faces and the crack inclination remains unknown until
the joint is opened up.

The reported fatigue tests presented two main challenges regarding the use of the ACPD technique:
the size and complex geometry (with multiple current paths) of the tubular truss. In order to keep
the monitored areas as close to the field probes (primary current introduction) as possible to reduce
resistance, only joints j1 and j2 were equipped with voltage probes. The actuator and the supports
were electrically insulated.

Compared to other ACPD equipments described in literature, the AC frequency (5 to 6 Hz) was
found to be about 10000 times lower but compensated by the introduction of higher intensity of 100
to 150 A. During preliminary check-up, the acquisition box was damaged and had to be replaced by
an earlier existing prototype of acquisition box for S5-1 beam tests. For the S5-2 beam, the repaired
system, more precise and with one additional channel, was used. The technical characteristics of both
systems can be found in Table 3.2.
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A_C 120W gene—llra-'tér
Figure 3.10: Alternating current potential drop system - field probe and crack voltage probes (left)
and Acquisition box (up); AC 120W generator (down).

Table 3.2: ACPD systems characteristics.

Intensity Frequency no of channels
[A] [Hz] [-]
S5-1* 100 6.25 7
S5-2 150 5 8

*prototype acquisition box

In total, 8 (7 for S5-1) probes were disposed in potential crack sites corresponding to the crack toe,
near imperfections found after visual inspection (Figurei3.11).

In the current application, one difficulty is the existence of multiple current paths between the field
probes, see figuresiA.liand ‘A. 1.

Ink marking

In order to obtain more information on crack shape and propagation, for beam S5-2, ink was sprayed
into detected cracks and then the test was stopped for one day (drying time). The first ink marking
(with alcoholic blue ink) was made after 30000 cycles in joints 1 and 5N, and after 50000 cycles in
joints 2 and 5S. A second mark (with water based red ink) was made only in joints 1 and 5N after
145000 cycles.

Beach-marks - Changing stress amplitude marking

Moreover, in order to mark the crack front at other depths, another technique was used, based on the
fact that any modification of the fatigue test loading (frequency, amplitude, mean stress) results in
another crack surface aspect, thus called "beach-mark". The beach-mark was produced for beam S5-2

¢ Load amplitude is decreased by half, AQ,,,.-x = AQ +2;

¢ Maximum load is kept at the same level, Q,qx mqrk = const. This ensures that the plastic zone
at crack front is kept approximately constant and thus eliminates possible crack retardation;

+ These loading conditions are applied during 1000 cycles.
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S5-2

Figure 3.11: Alternating current potential drop probe locations for S5-1 and S5-2.

3.4 Main results and discussion

3.4.1 Static tests
Deflection

Deflections were measured using the actuator internal IVDT at the mid-span of the truss beam. Results
are presented in table 3.3, Comparing the rigidity of series S5 with previously tested specimens, which
had the same static height and external chord diameters, no major differences in the overall rigidity
exist although the previous truss was composed of an I-beam top chord.

The overall stiffness of the truss is not affected by fatigue cracking in any of the test since differences
between beginning and end deﬂections are negligible (except for S1(1,2), 18% attributed to a large

Member and joint strain and stress

The static tests showed linear elastic response of the truss beam (Figure 3.12). Axial member strains at
symmetrical positions from the load point have almost equal values, differences being less than 5%. It
can thus be assumed that there is symmetrical behaviour of the truss beam.

Joints jl and j5N of specimen S5-2 (see Figure A2 in appendix) were instrumented with uniaxial
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Table 3.3: Load and deflection results.

Specimen AQ Abpegin  Abeng Ab pegin/ AQ
[kN] [mm] [mm] [mm/kN] x 100

S1(1,2)* 594 11.5 14.0 1.9
S1(3,4)* 594 11.0 11.0 1.9
S2(1,2)* 594 11.0 11.0 1.9
S2(3,4)* 594 10.5 11.0 1.8
S3(1,2)* 396 - - -
S3(3,4)* 396 9.5 9.5 2.4
S4(1,2)* 594 10.5 10.5 1.8
S4(3,4)* 594 10.5 11.0 1.8
S5-1 600 14.8 - 2.5
S5-2 544 12.2 12.3 2.2

Abjpeqin- at beginning of test
Ab,,q- at end of test

* from 'Schumacher (2003)
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Figure 3.12: Comparison of strain measured by gages (j;) placed in symmetrical positions in the truss
beam, static test of S5-2.

sponding 543 kN force range. The strain at the weld toe was not measured but linearly extrapolated
using the measured strain values.

Cracks propagated always at hot-spots 1 (near strip gages ch.1 and ch.2) or Ic¢ (near strip gages
ch.5 and ch.6). The plot shows higher values of A¢ for the uncracked sites when compared to the
cracked sites which is disturbing. This may be due to the following reasons:

¢ inappropriate linear extrapolation of surface strains;

* strip gages for hs 1 and hs 1c make a 30° angle with the tube longitudinal direction due to the
lack of space to place them in the gap;

* the slopes of strains for hs1 and hslc are steeper and more non-linear than those corresponding
to hs11 (strip gages ch.3 and ch.8) or hs3 (strip gages ch.4 and ch.7), possibly due to the
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Figure 3.13: Strip gages installed in joint 1 and joint 5N of specimen S5-2. Strain range at surface
near the weld toe in joints of specimen S5-2.

different weld transition radius;
* poor installation - difficult location;

* local bending of tube wall.

macher, 2003)) for experimental series 1 to 5. Brace nominal stress, 0o, ., is greater than the chord

1
I
| S —— | Ep—

Stress, 0 ,om ch, fOr all the joints. Different load amplitudes in the different series, make it difficult to
compare directly the hot-spot stresses. The total stress concentration factor, SCF,,,,;, introduced by

Ohs,i

SCFtotal,i = (3'2)

Unom,br + Unom,ch
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where,

SCFypq; : total stress concentration factor at joint location i;

Ohs,i . hot-spot stress at joint location i;

O nom,br : scalar value of nominal stress in brace (due to both axial load and bending);

O nom,ch : scalar value of nominal stress in chord (due to both axial load and bending);

Table 3.4: Nominal and hot-spot stresses for test joints.

Joint B Y T Brace Chord Location 1
Onom,br anom,ch Uhs,l SCFtotaZ,l

[-1 [-] [-] [N/mm?] [N/mm?] [N/mm?] [—]
Ss11t 0.51 6.83 0.63 77.9 10.9 114* 1.28
S21t 0.51 6.83 0.63 72.0 15.1 139.6 1.60
s23* 0.51 6.83 0.63 73.5 12.2 138.8 1.62
S43* 0.51 6.83 0.63 76.2 15.1 148.4 1.62
S31t 0.53 6.73 0.64 72.5 35.9 187.0 1.73
S33* 0.53 6.73 0.64 76.7 39.9 195.7 1.68
S§5-2j1 0.53 4.21 0.40 148.0 32.0 211%* 1.17
S§5-2j5N 0.53 4.21 0.40 -149.7 -55.7 -248%** 1.21
¥ from E_Schumacher: C.L2003E)

* Calculated using FE
** Calculated using validated BEM model

When compared, joints j1 and j5N of beam S5-2 show the lowest values of SCF,,,,;- This can be
explained by the lower y and 7 parameters as well as low eccentricity (e/D = 0.13) - see Table i?;_'}:

3.4.2 Fatigue tests

S.ns — N results and comparison with existing data and design lines

results from similar fatigue tests carried out at TU Delft. The TU Delft fatigue tests were conducted
on multi-planar trusses with welded CHS KK-joints (non-dimensional parameters: 68 = 45°, f = 0.40,

Series S5 data shows on the graph as only 2 points, but in fact represent 4 fatigue cracks (joints 1
and 2 cracked simultaneously for S5-1 and S5-2). On both test beams, fatigue cracks were obtained in
joints j1, j2, j5N and j5S. All the cracks occurred at hot-spots 1 or 1c¢ (compression side in the case of
elements in compression). Cracks at hslc are not represented in the S — N plot.

Moreover, the S, ;; — N design curves (Zhao et al., 2000, Zhao and Packer, :_2_0_Q(_)p for a reference
thickness T = 16 mm ) is represented on the same figure.

The derivation of the S, ;; — N design curves was carried out based on a different definition of

joint failure than the one used in the present investigation. In order to compare the results, the same

present investigation) is multiplied by 1.49 to estimate N, (number of cycles to complete loss of joint
strength). This procedure is based on the average of the N,/Nj; ratio in the database used to derive the
design curves. As the failure of the TU Delft joints was also defined at N3, the same adjustment was
made to report the results in terms of Nj.
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Figure 3.14: Comparison of S5 results to previous similar tests.

Figure (3.15) summarises the S-N results obtained for series S5 comparing them to the complete
database on previously tested geometries. As can be noticed, the results from S5 fall below the other
test results. The other test results already showed a size effect (thicker joints, corresponding to bigger
symbol size, show shorter lives). However, due to the amount of parameters (a, 3,y,7,, T) more
tests are needed on truss beams to confirm especial non-proportional scaling effects.
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Figure 3.15: Comparison of ICOM test results to CHS joint database.

S5-1

After 169000 cycles, diagonal 4S was ripped-off the chord. This was due to a hidden crack that
propagated near the support and this ended the test. The cracks at other joints were thereafter opened
and measured. Table3.5ishows the crack dimensions observed for each joint (following the convention
shown in Figure:3.16). A crack depth of a ~# 10mm (joints 1 and 2 of S5-1) was observed.

In order to estimate the number of cycles to through thickness cracking, N5, an average value of
the crack propagation rate (da/dN = 5.3 x 10~*mm/cycle for a between 10 mm and 28 mm (through
N, =203000 x 1.49 = 302500 cycles.

It is interesting to note that joints 5N, 5S and 6 are on the compressed chord and cracked at hslc,
the weld toe between compressed brace-compressed chord, on the chord side.
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vertical

(I)crack

Figure 3.16: 3-D Crack depth (a), length (2¢) and angle convention.

Table 3.5: Fatigue crack dimensions for beam S5-1 (final crack front after 169000 cycles).

Joint a 2c a/c Angle
(hs location) [mm] [mm] [—] [°]
1(1) 10 85 024 44
2 (1) 9 53 034 49
5N (1c) 19 120 0.32 41
5S (1c) 12 63 0.38 37
6 (1c) 15 85 0.35 9

S5-2

The fatigue test of beam S5-2 was stopped after 273000 cycles, when a pressure drop indicated a

opening of the respective joints. In this case, N, = 273000 x 1.49 = 407000 cycles.
Table 3.6 gives the crack dimensions when the test was stopped (through thickness cracking of

joints 1 and 2).
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Figure 3.17: Fatigue cracks for beam S5-2, opened after 273000 cycles.

Table 3.6: Fatigue crack dimensions for beam S5-2 (final crack front after 273000 cycles).

Joint a 2c a/c Angle
(hs location) [mm] [mm] [—] [°]
1(1) 28 136 0.41 45
2 (1) 27 138 0.39 48
5N (1c) 25 157 0.32 37
5S (1c) 20 150 0.27 43
6 (1c) 20 124  0.32 7
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Alternating Current Potential Drop (ACPD) system

(corresponding to a lapse of approximately 6000 cycles) in order to eliminate any noise effects. This
was done at a cost of losing information at the beginning and the end of the test.

computed. Then, the crack growth rate could be obtained for an interval of 2AN = 750 cycles using:

dd  d(N+ AN)—d(N — AN)
dN 2AN

The experimental stress intensity factors were then obtained using the Paris Equationi(3.4)i with

_______ ——

C =2.0x107!3 (mm/cycle)(N/mm~3/2)™ and m = 3 (suggested by:_(‘lqr_r}g_fi 6:_1_9_7_9_:), for ferrite/pearlite
steels).

3.3)

da _ oagm (3.4)
dN '

Values of AK as low as 150 Nmm?®/? could be measured after 5000 cycles, showing the excellent
sensitivity of the system.

Crack depth deduced from ACPD

The measurements analysis is carried out for each location according to the method described in

One can observe that the first signs of cracking were detected by probe P5, which is on the side of
hs1.

The first detectable crack happened after less than 10% of the test fatigue life. All measurements
made were stable and with the good results and comparisons obtained, we can say that the size and
multiple current paths did not disturb the functioning of the ACPD system.

Crack growth rate deduced from ACPD

find the crack propagation rate and plot the results as in Figure{3.20. For joint S5-1,j1, the results from
probe P4 are not shown as no propagation was measured (probe at hs11, see Figure 3.11).
Crack propagation rates from 10~7 to 10~ mm/cycle could be measured and correspond to values

C-Mn steels, the value 10~7 mm/cycle corresponds to stress intensity factor ranges near the threshold
value (see Figure 3.20).

It was observed that crack growth, at least up to half thickness occurred at about the same rate
both in tension or compression joints, with crack shapes (a/c) being also similar.

Stress intensity factor range deduced from ACPD

It should be noted that the evaluated SIF ranges do not correspond to the deepest point along the
crack front but depend on the location of the probe.

Very low AK values, between 100 and 200N/mm?>/? could be evaluated from measurements after
only 5000 fatigue cycles, which is remarkable. For comparison, threshold SIF range values, AK;, for
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ACPD output

MovingAverage filter
(Mathematica)
algorithm with sample 300 points

ACPD output filtered

ACPD estimation formula:
d=Dy2 (V,;/ V;-1)

N

Crack depth

Derivative

Crack growth rate

Paris law
da/dN = C AK™
Cc=20101"
m=23

Stress intensity factor

Figure 3.18: Schematic of the procedure to analyse ACPD results to determine SIFs experimentally.

AK;, =320 x (1 —R) (3.5)
where,
AK,, : stress intensity factor range threshold;
R . stress ratio (gﬂ) ;

This means that we are able to measure threshold values (AK,, ~ 288N/mm?/? for R = 0.1).

3.4.3 Crack initiation

agation corresponds to a growth rate of one lattice spacing per cycle (for metals typically about
4 x 1077 mm/cycle), and comparing this value to the ACPD measures, it can be concluded that:

+ Welded tubular joints exhibit almost no crack initiation phase, cracks propagating from the very
beginning.

¢ After 30000 cycles (~ 10% of fatigue life) crack growth rates of about 4 x 10~7 mm/cycle for
joints S5-2-j1 and S5-2-j2 were measured;
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Figure 3.19: Number of cycles vs. crack depth at probe location for series S5-2 joints - using filtered
results
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Figure 3.20: Crack growth rate vs. number of cycles - S5-1 and S5-2.

* Ink marks showing faster propagation at the beginning for joint S5-2-j5N, previous conclusions
can be extended to the upper joints (j5) cracking under compressive applied loads;

All the cracks initiated at hot-spots 1 and 1c. No crack growth was observed at hs11, hs2, hs3 or
hs4 or from the weld root.

3.4.4 Initial defect size

The cracks were broken-up and cut as illustrated in Figure 3.24. Joint 3N (see Figure3.25), which was
not opened up, was selected to examine the microstructure (the protocol is detailed in Appendix A.3)
and identify the Heat Affected Zone (HAZ) and its influence on the crack growth.

The fact that this procedure was only made on a single cross section makes it impossible to conclude
regarding the initial defect size and the exact initiation site. From Figure:3.26, it may be inferred
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Figure 3.21: Stress intensity factors vs. number of cycles.
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Figure 3.22: Stress intensity factor range AK vs. relative crack depth, d/T.
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Figure 3.23: Comparison of final crack and crack estimations using ACPD system (S5-1 joint 1) .

that the crack started in the HAZ. This might be false since there is no guarantee that the cut plane
corresponds to the initial defect location.

Attempts to measure the initial defect size in uncracked joints by microscopy observation were
unsuccessful. As it is impossible to know the exact crack initiation point before cutting the specimen
and multiple cuts cannot be done it is thus very difficult and time consuming to measure the initial
defect size.

3.4.5 Crack shape

The doubly-curved semielliptical cracks present, after coalescence, a shape ratio a/c in the range from
0.05 to 0.33 for crack depths a < T /2 with an average of 0.2. For a > T /2, the crack shape ratio,
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Uncracked weld toe

Fatigue crack

Figure 3.24: Crack opened-up and cutting planes.

a/c, measured was higher: between 0.25 and 0.45 (see Figure:3.27). The crack surface, can be well
approximated by a conic surface, as can be seen from Figures:3.17and 3.16.

3.4.6 Coalescence

In a welded component, cracks usually initiate at different sites and then link up to form a continuous

early stage of crack propagation (typically cracks depths < 1 mm).

Macro photos, taken after the crack was opened, allowed to observe coalescence blue ink marks at
joint S5-2-j2 after 51000 cycles. Radial lines confirm the coalescence and give an estimation of the size
of small cracks at the moment they are joined together (Figure 3.28).
marks. At least 4 transitions between different textures are identified (marked as A, B, C and D in the
Figure). The "beach-marking" technique was not successful as it is not possible to say which mark
corresponds to the different load amplitude applied during 1000 cycles. Comparing these to ACPD
results (for 147000 cycles, dg = d; = 1.7 mm, see Figure 3.19)), it is admissible that beach-mark A was
produced by the single beach-mark made on purpose. However, it is not conclusive, and, as the other
marks, it could be caused by residual stress field changes or test interruptions.

3.4.7 Residual stresses, compression cracks

The fact that there was fatigue cracking between compressed elements is due to the residual stresses
present in the weld toe region. The measurement of the built-in residual stresses and inclusion in
numerical simulations is out of the scope of this thesis. The crack growth, at least until half of the chord
thickness, occurred at about the same crack growth rate for hslc (between compressed members) and
hs1 (between tension members). This observation permits to say that high tensile residual stresses
from welding are present in these joints and that, for at least most of the cycles amplitude, hslc is
locally in tension. Crack shapes for compression cracks (joints 5N, 5S) are seen to be similar to cracks
in joints 1 and 2, see Tables3.51and 3.61 Angles ¢, ..x seem slightly lower (¢ o < 43°) compared
to cracks in joints 1 and 2 (¢ qcx = 44°).
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\/

S5-1, 3N

Figure 3.25: Cross-section photos after surface was treated with Nital. (CBM) Chord base metal;
(HAZ) Heat affected zone; (WM) Welding material; (DBM) Diagonal base material.

o e

Figure 3.26: Microscopic photo of the crack after Nital etching (S5-2-j5N).
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Figure 3.27: Crack shape evolution using final crack and ink marks when available (a is measured in
the crack plane).

Figure 3.29: Close view of the crack texture - joint S5-2 j2 - with transitions identified as A, B, C and
D.
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3.5

CHAPTER 3. EXPERIMENTAL INVESTIGATION

Summary and conclusions

This chapter presents the laboratory tests of large scale welded CHS K-joints. A description of the
procedure and analysis of the results is presented. From the static and fatigue tests the following
conclusions can be drawn:

L 4

The deflection of the truss, and thus its overall rigidity is not affected by cracking of the test
joints - including through thickness cracks;

All the cracks occurred at locations 1 or 1c (compression side in the case of elements in
compression);

No crack growth was detected at other hot-spots (11, 2, 3, 4) nor at weld root;

Cracks propagate along an approximately conic surface. The crack angles in the beam longitudi-
nal/vertical plane range from 37° to 49° (locations 1 or 1c¢);

Crack shape ratios of the different joints present a considerable scatter. For crack depths
a/T <0.5, a/c values range from 0.05 to 0.35 with an average of 0.2;

Comparing series S5 to previous fatigue tests through S,.,; — N plot (Figure:3.15), size effects
seem to be observed; however, due to the amount of parameters involved and the scatter inherent
to fatigue test results, more tests are needed to confirm and quantify the non-proportional scale
effects and propose improved design rules (compared to Gurney’s or CIDECT);

During the two tests carried out, we were able to successfully apply an ACPD (Alternative Current
Potential Drop) measuring system on a large-scale tubular truss beam with multiple current
paths. Previously, ACPD systems had only been used on isolated joints or small specimens;

Tests confirm that welded joints in fatigue, also tubular welded joints, show mainly crack
propagation because of initial defects. Crack initiation is only approximately 10% of the total
fatigue life;

With regard to the influence of welding residual stresses, fatigue cracks were observed both in
joints with the chord in tension (joints 1 and 2) as well as in joints with the chord in compression
(joints 5N, 5S and 6). Crack growth, at least up to half the chord thickness, occurred at about
the same rate in both cases (similar crack depths a), with crack shapes (a/c) being also similar.
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4

Numerical Investigation

4.1 Introduction

This chapter describes the development of a versatile numerical model to simulate the propagation
of a surface crack in a tubular welded joint under fatigue load. The model includes the calculation
of the stress intensity factors (SIF) for different crack depths using a 3-D Boundary Element Method
(BEM) model. The crack growth rate is computed using the Paris Law, and then, the number of cycles
to failure is obtained by integration.

In Section 4.2i details on the BEM model of the welded joint are given, namely the definitions of
the joint geometry, material properties, boundary conditions, crack modelling and model meshing.
In section |4.3i the fatigue crack propagation model used to compute the fatigue life of the welded
joint, is presented. Section4.4: details the process of creation of a standard model in order to run a
parametric analysis. Model validation, through comparisons to test results is presented in section 4.5\
In section 4.6, the superposition of basic load cases to obtain a combined load case is discussed. The
main conclusions are summarised in Section4.7.

The standard model described herein is used in Chapteri5ito carry out a parametric study on the
fatigue behaviour of different K-joint sizes, geometries and loadings.

4.2 Boundary element model

In order to create a boundary element model that simulates a cracked uniplanar K-joint, different
aspects have to be considered. Firstly, the geometry of the boundaries that define the joint elements
and respective intersections have to be parameterised so that different geometries in the framework of
the parametric study can be modelled.

The crack path, or, in 3-D, the surface defining crack faces, has also to be defined. A number
of zones are created to confine regions of similar mesh density and material properties. The mesh
discretising the boundaries is chosen and the external forces and boundary conditions are applied to
mesh points.

In the current study, the advantage of symmetry was not taken into account. This choice was made
in order to develop a more versatile and valuable model for an extension of the present investigation
to study asymmetrical cracks, multiple crack problems and out-of-plane loading.
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4.2.1 Geometry definition

In order to define the joint model, its boundaries were parametrically defined. The cylinder parametric
equation is first used to define the boundaries of chord and braces (or diagonals). Then the weld and
tubes intersections are defined using the intersection cylinder-cylinder system of equations.

Overlapped joints are not considered in this study as they are usually less used in fatigue critical
structures (except in mining equipment).

Chord and braces

The chord and braces boundaries consist of concentric cylinders of diameters D and (D — 2 x T) for
the chord respectively d and (d — 2 x t) for the braces.
The chord outer boundary is given by:

x = [ “4.1)
D
y= - cos(¢) (4.2)
D |
z = 5 sin(¢) (4.3)
where,
[ : parameter, length of the element, varies in the interval [—L.,/2, L.;/2];
¢ : parameter angle centre, varies in the interval [0, 27];

To obtain the inner boundary equations D is replaced by D —2 x T.
The diagonal outer boundary is defined by the equations:

d
x = 5 cos(¢)sin(6y,.) + L; cos(6y,) (4.4)
d .
y= 3 sin(¢) (4.5)
d
z = [y sin(6y,.) — ) cos(0y,) cos(¢) (4.6)
where,

0, : angle between the diagonal axis and the horizontal chord axis;
Iy : parameter varying in the interval [0, H/2];
¢ : parameter varying [0, 27];

The inner boundary equation is obtained replacing d by (d — 2 x t).

Weld geometry

The weld profile has a big influence on the stress concentration at the weld toe and thus on the
stress intensity factors (SIF) for surface cracks. Therefore the welds should be modelled as close
as possible to the reality. As it is a difficult task to simulate the weld profile realistically, most of

underestimation of the fatigue life up to 20%.
In the present study, the weld is defined using three auxiliary curves for each diagonal-chord weld
(see Figure 4.1):

¢ a. The intersection of the inner boundary of the diagonal with the chord outer boundary;

* b. The intersection of the outer boundary of the diagonal with the chord, shifted by
(Wy - cos(0y,.),0, Wy - sin(0y,));
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¢ c. The intersection of the chord with an imaginary cylinder with the same angle 6, as the
diagonal but diameter equal to d* = d + 2W, and translated of (W3, 0,0);

Figure 4.1: Weld geometry.

Figure /4.2i shows the weld dimensions in two sites around the diagonal-chord intersection: the
weld crown toe and the weld crown heel. L,, is the weld footprint length, 6,, is the weld toe angle, v
is the local dihedral angle. Subscripts "br" and "ch" are added to distinguish between brace-side and
chord-side parameters.

These dimensions can be calculated using the parameters used to geometrically define the weld:
W;, W, and Ws as follows:

, t

L = .
W osin(m —) 4.7)
For weld crown toe (hot-spot sites 1 and 11): 3 = 6,

L L = 2 w.
w,ch,toe — Lty — sin(Qb ) — W3 (48)
r
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For weld crown heel (hot-spot sites 31 and 3): ¢ =7 — 6,

W.
Lw ch,heel — L;; = W3 + = 2 (4.9)
o sin(6y,)

(4.10)

Lypr =Wi + ——
w,br 1 Sin(ebr)

Figure 4.2: Dimensions needed to define weld geometry - left, crown toe and right, weld crown heel.

Figure 4.3 compares the weld toe geometry in the model, obtained following the procedure
described, to the weld profile of the fatigue test joint S5-2-j2. The model of the weld profile closely
represents the real weld profile. Both weld profiles meet the AWS requirements.

Lw,ch [mm]
30

NN 4
20, @%&5\\ i @f‘é’} " L
157 — ”’&%w — = LWioge
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5,
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———————————

model and S5-2 j2 measured.
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Tube intersection

The parametric equations describing the intersection between a cylinder whose axis is the coordinate
axis xx” and a cylinder whose axis belongs to the plane xoz and has an angle 6, with the xx’ axis
(see Figure4.4) are given by:

+e-tan(6;,) (4.11)

(4.12)

(4.13)

(4.14)

where,
¢ : parameter varying in the interval [0, 27];
e : eccentricity of the brace at axis origin;

Figure 4.4: Tube intersection.
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4.2.2 Material properties

The joint material is elastic linear with Young Modulus E = 210 x 10°> N/mm?, poisson ratio, v = 0.3.
Rigid rings are 100 times more rigid and have same Poisson ratio.

The Paris law constants C = 2.0 x 107! (mm/cycle)(N/mm™%/?) and m = 3 were considered for
deterministic fracture mechanics calculations and were used to obtain experimental stress intensity

4.2.3 Boundary conditions

The joint is fixed in the 3 directions at the chord right extremity (see Figure 4.7). External forces
are introduced using rigid rings of length % (D* diameter of the tube to which the rigid ring is
connected) to preserve planar cross-sections.

4.2.4 Crack location and geometry

Stress analysis of the uncracked joint clearly identifies hot-spot site 1 as the point where stress
concentration is higher. Therefore, and supported by previous and current experimental evidence

7

i/

Iy,
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i
I~
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1700664002
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>
]
-
%)
Ee]

]
~
w
=

hot-spot 1¢
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Figure 4.5: Stress concentration in the joint (o,,) - Series S5 fatigue test loading conditions.

Cracks at hs;; were also modelled for a number of geometries to confirm that hs; is critical even
for cases where the geometry might lead to a switch in the crack location.

Also supported by experimental evidence, (see Section 4.2.4) the crack front corresponding to
hot-spot site 1 is obtained by projecting a semi-ellipse over a conic surface. The conic surface directrix
is the weld toe and the apex belongs to the xoz plane at a depth of 1.78 x D (this depth was estimated
as 300 mm for S5 tested joints, D = 168.3 mm - in order to keep it proportional to the absolute size)
(see Figure4.6). The crack angle, ¢ qcr, determines the x coordinate of the apex.

4.2.5 Meshing

The mesh is a key aspect when performing parametric studies on the influence of changing the size
of the structural elements. In the present study, the proportions of the joint elements may change
and it is therefore very important to assure that the results reflect the effect of size changes and not
the effect of mesh being somewhat different. The following paragraphs describe the joint and crack
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¢crack

Figure 4.6: Crack surface geometry.

meshing. A mesh size influence test was carried out to ensure the results remain mesh independent in

For 3-D problems, boundary elements are surfaces. BEASY allows these surfaces to be either quadrilat-
eral or triangular in shape. Each element is used to represent the stress (...) behavior of a small section of
the surface area of the component being analysed. Although all 3-D elements are the same in this respect,
there are a number of different element types which the user can choose (Figure C.2iin appendix). All 3-D
four sided elements have nine mesh points, arranged in a regular 3 x 3 grid. This defines the position and
curvature of the element in a similar way to the 2D and axisymmetric line elements. As there are 9 mesh
points, the geometry is quadratic and so may be curved. This is true even for the lower order (e.g. linear)
elements. Similarly, triangular elements have six mesh points, with one at each vertex and one on each
mid-side. (...) Every element also has a number of nodes. These are the positions where the values of the
problem variables are calculated. The order of the element may be constant, linear, reduced quadratic or

____________

Joint mesh

The boundary elements model includes about 8100 mesh points and 2300 elements (total of about
30000 degrees of freedom) distributed in 8 zones as shown in Figurei4.7, Zones are groups of elements
which can be considered as substructures of the component. Among these 8 zones, Zone 2 (see Figure
:fi_'@, where the crack is located and the stress is highly nonlinear, has a dense mesh; Zones 6, 7 and 8
are rigid rings for the external force introduction.

Even though BEASY has automatic meshing capabilities through its user interface, there is no
programming possibility. For this reason, an Excel Workbook was prepared to calculate the mesh point
coordinates, elements (including the weld profile and crack) and zones definitions. This allowed for
the creation of user controlled, validated model files from the joint geometric parameters in a BEASY
compatible format.

The entire model is meshed with reduced quadratic four-sided elements Q38 (see Figure iC.2iin
appendix) wherever possible and exceptionally with triangular quadratic elements. Reduced quadratic
elements are the default elements defined in BEASY-IMS (user interface). Tests have shown that these
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Restrained
Rigid rings
PR
Figure 4.7: Zoning of the boundary element model.
Crack mesh

As described before, the crack faces belong to the conic surface (see Figure 4.6) and the crack front is
doubly-curved. This complex geometry makes modelling of the crack and of the propagation of such a
crack in a tubular joint a complicated task. The mesh of the crack surface has to be carefully chosen. A
good quality mesh depends on the shape of the elements defining the crack surface.

Although Beasy software provides a crack growth tool allowing for automatic crack propagation
from an initial crack, a manual, stepwise, crack modelling was preferred. The following reasons justify
this option:

L 4

due to the sharp weld toe geometry, automatic crack growth requires a very small step size so
that the crack path remains at the weld toe.

the substantial amount of time spent to automatically grow a crack from a, to T/2 and the
model sizes would have made it impossible to carry-out the parametric study in a reasonable
amount of time;

the need for identical crack path for the different basic load cases to make it possible to
isolate/superpose their influence;

manual crack growth allows the control of the crack shape, a/c, evolution and thus an indirect
inclusion of the coalescence phenomenon;

automatic crack growth adds a new row of crack elements to define the new crack front -
this leads to crack shapes tending to "semicircular" after a few increments depending on the
increments size.

The manual crack growth corresponds to the calculation of a set of models with built-in cracks of
different given shapes and depths. The crack follows the conic surface (Figure4.6). The mesh points
are calculated to suit the curved shape. The number of elements and mesh points remains constant for
the different crack depths. However, Beasy automatically remeshes the area near the crack in order to
optimally adapt the crack mesh within the existing joint mesh (see Figurei4.9).

EPFL Thesis 4142



o

4.2. BOUNDARY ELEMENT MODEL 57

surface crack

Figure 4.8: Zone 2 - refined mesh in zone where the surface crack is located.

4.2.6 Basic load cases and complex load case

A main objective of the present study is to investigate the effect of the different basic load cases on the
fatigue behaviour of tubular K-joints of different sizes. When considering only the in-plane actions, five
basic load cases can be defined (see Table4.1). Several considerations justifying the selected method

The developed boundary element model allows for the application of the five basic cases in an
independent or combined manner (complex load). A constant nominal stress range, Ao, is applied
as external forces at the rigid rings. Complex load results of the simultaneous application of the
selected basic cases, thus giving only in-phase actions in this study. Out of the 5 basic load cases, 3 are
considered predominant in this study: LC1, LC4 and LCS5.

When applying actions to the model, the stress ratio, is equal to zero, R = 0, or 0,4, = A0 is used
for simplicity. Underlying assumption is that there are no crack closure effects.

4.2.7 Stress intensity factors

For mixed-mode problems, the equivalent stress intensity factor, K., is calculated at every mesh-point
along the crack front using equation:

Keg = \/ (K + K] ) + 2Ky (4.15)

where K;, K;;, K;;; are the stress intensity factors for the three crack opening modes calculated

mode I is predominant over modes II and III and this is true for all geometries. Indeed, the equivalent
stress intensity factor, K, is superposing itself with the stress intensity factor for opening mode I, K;.
Schumacher also showed a predominant mode I behaviour even neglecting crack angle. In the present
study, crack angle, ¢.,.qck, is assumed constant and taken as the bisectrix between the weld profile and
the chord wall at the crown weld toe.
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Automatically
remeshed

Surface crack at site 1
Figure 4.9: Detail of auto-remeshed area near the crack.

4.3 Fatigue crack growth model

The crack growth process is simulated using an incremental crack-extension analysis. For each crack
extension, a stress analysis is carried out and the stress intensity factors are computed. SIF values
in-between are linearly interpolated.

sizes:

da m
N = C-AKeq (4.16)

where, C and m are the crack growth rate constants for the material and AK,, is the equivalent
stress intensity factor range.

Crack initiation is not considered in the current crack growth model. This simplification is justified
by the fact that for welded joints without treatment the crack initiation phase represents only a small
fraction of the fatigue crack through thickness propagation (see Section2.3). Results of the fatigue
tests carried out (see Section3.1) support this hypothesis as the initiation phase was about 10% of
the fatigue life at the end of the test (corresponding to N3). It is also assumed that the fatigue load
is clearly above the fatigue limit (stress intensity factor thresholds not considered), and constant
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No External forces Schematic Corresponding nominal stress
~ 's
. F(IX T
LC1 Balanced axial brace Fo br RS Agy = =i
’ br
N2
. . Ml r
LC2 Un-balanced in-plane bending brace = M;pp1 5, 2 Aoy = —=r
? br
N M
LC3  Balanced in-plane bending brace  M;pp by L Aoy = 2
? br
. FﬂX Ci
LC4 Axial chord Foxch L, Ag, = ==t
’ ch
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Figure 4.10: Comparison of the AK for the three different crack opening modes for load case 1
(Ao, pm = 100MPa, 8 =0.53;y =4.2;7 =0.4; T = 20 mm).

amplitude cycles are applied.

4.4 Standard model for fatigue life computation

Information such as the joint geometry (namely the members dimensions and weld size), the crack
geometry (namely the crack site, crack shape, crack angle and crack depths for the different increments)
and the load case (basic load cases or complex load case combining different basic load cases in a
single model) is input. Then, the mesh points coordinates are calculated in Excel for both the joint and
the crack geometry corresponding to each crack depth.

The geometry of the joint is exported in Beasy data format. The crack model is also exported in
Beasy syntax in a separate file. This is repeated sequentially for all the combinations of basic load
cases (or just the complex case) and crack depths. The Beasy crack adder routine is then used to
add the cracks to the joint models and automatically re-mesh the crack vicinity. Models are then run
using Beasy solver. For each load case and crack depth increment there is a results file containing
the stress intensity factors K;, K;;, K;;; along the crack front mesh points. These data are imported

_____________

factors are then calculated. The crack growth rates are computed using the Paris law and the fatigue
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Joint geometry |\ Excel Workbook | | For each a; , For each LC;:
D dTteq W, W, W, [ T | * BEASY K-joint model file
[l * BEASY crack model file
A
Crack geometry BEASY Crack Adder For each a; , For each LCj:
Crack site, a/c, a; T | * BEASY cracked K-joint model
@ files
N/
Load case BEASY Solver For each a; , For each LCj.'
Basic/complex load cases TY| *BEASY K, , K,,, K;;; along crack
front
B
Wolfram For each a; , For each LCj:
Mathematica 6 T * Keq
f ey * Crack growth rate
routines @ * Number of cycles
INPUT ENGINE OUTPUT

Figure 4.11: Schematic of the procedure used to carry-out a crack propagation analysis.
life calculated using Mathematica discrete linear integration algorithm.

4.4.1 |Initial crack size and location, crack increments and failure criterion

As explained in paragraph 4.2.4ithe crack is located at hot-spot hs1 and grows in a predefined conic

surface. The final crack depth, a £, 18 taken as equal to half of the wall thickness of the cracked element,
T /2. Although a final crack depth equal to the wall thickness is more common as failure criterion, it

the "bottom" boundary of the cracked member (the inner boundary of the chord) numerical problems
may arise and an extensive crack remeshing would be needed. Furthermore, since through-thickness
must consider internal forces redistribution, the problem is no more limited to the joint study but must
consider whole structure behaviour.

A constant initial crack size of a; = 0.15mm is considered regardless of the geometry of the

aine = 10.15mm, T /50,T/20,T/8,T/6,T/2}.

4.5 Model validation

The validation of the model was carried out:

¢ by comparing the numerical results to the behaviour of the tested specimen. The comparison
includes the nominal stresses (in the chord and braces), the stress in the joint and the stress
intensity factors for different crack depths;

+ by using the model accuracy evaluation, provided by BEASY,;

+ by carrying out a mesh convergence test to investigate the sensitivity of the model with the mesh
density.

These different comparisons and tests are presented in the following paragraphs.
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4.5.1 Comparison to fatigue test results

In order to compare the numerical results obtained using the standard model described in section
4.4 to the fatigue test results, a model was created with the same nominal dimensions as Series S5
specimens. Tablesi4.2iand 4.3isummarise the geometry parameters used to define the model simulating
joint S5-2-j1.

Table 4.2: Geometric parameters of model used to compare with S5 fatigue test results.

ID D T d t e g L., H W, W, Wi
[mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm]
Cl75 168.3 20. 88.9 8. 22. 19.9 2166. 1800. 15. 10. 5.

Table 4.3: Non-dimensional parameters of model used to compare with S5 fatigue test results.

ID 6 i % T a ¢ e/D
-1 1 01 01 [ [ [
C175 60. 0.53 4.21 0.4 257 0.12 0.13

The nominal stresses introduced at the joint extremities correspond to the values calculated using a
simplified bar-model of the truss beam. In this simplified model, the eccentricity is simulated using an

____________________________

brace moment
b2 calculated here

extremely stiff bar

Figure 4.12: Truss model used to calculate forces and bending moment acting in the joint.

joint.
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M =0.93 kNm
\ N=310kN M= 0.41 kNm
VO =-310kN
N

M=3.5 kNm F

N=330 kN ! E

Figure 4.13: Model representing tested joint S5-2 j1 and the external forces applied.

Member and joint stresses

The stresses obtained numerically (parallel to the longitudinal axis of the members) are compared to
those obtained from the strains measured at the members and near the welds (at hot-spots 11 and
3 locations). In the truss members, where the stress state is predominantly uniaxial, a simple linear
relationship is assumed between stress and strain (o = E x ¢). In the multi-axial stress state regions
near the welds, the generalised Hook law can be used to describe the relationship between strains and

_________________________

_______________________

stresses obtained numerically and those obtained experimentally from strain gages.

In this comparison, it is included the model with complex load case (LC1+LC2+LC3+LC4+LC5)
and the model with only load cases LC1, LC4 and LC5. The calculated stresses appear as a continuous
line for clarity despite the fact they were obtained at discrete mesh-points. The three main basic load
case combined (LC1+4+LC4+LC5) is close to the complex case for chord. For the tension brace the
difference between these load scenarios is more pronounced.
experimental and numerical stresses, both for top and bottom chord extreme fibers.

In the case of the brace in tension, Figure 4.15, differences up to 20% can be seen between
measured and BEM calculated stresses. These differences are believed to be due to the approximations
made in the global truss model, namely the simplified joint rigidity or the eccentricities and the
simplified end conditions. It seems that the bending moment in the brace is slightly underestimated by
the simplified truss model.

Additionally, a comparison was made using speckle interferometry strain measures and strains
results, for this geometry, superpose with results obtained independently both for location 1 (chord)
and location 11 (brace).
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Figure 4.14: Stresses in chord of joint S52-j1, calculated and measured.
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Figure 4.15: Nominal and hot-spot stresses in brace of joint S52-j1, calculated and measured
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Figure 4.16: Comparison of principal strains at Location 1 and 11 of joint S21, between validated
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Stress Intensity Factors

Figure 4.17:compares the stress intensity factor range AK computed using the model described and the
values measured using the Alternating Current Potential Drop system at different locations at the weld
toe crown (P1 to P8). It is important to note that in the early stages of crack propagation (a &~ 1 mm)
the ACPD probes are influenced by multiple cracks that will join together. A good match was found
between both results, less good for 2 to 5mm crack depths.

e P
AK [N mm~372] P2
2000 P3
1500 P4
1000 = Ps
A — e i P6
700 =
500 == § i
P ,‘:%7 P8
300L- 9-=FT® | e  BEASYS5AIILC
7 2 d BEASY S5LCL+LCA4+LC5
200
150
100 d [mm]

0.2 05 10 20 50 100 20.0

Figure 4.17: Comparison of AK values at different crack depths - BEASY and ACPD experimental
measures (beam S5-2) (d is the crack depth at the probe location).

4.5.2 BEASY - Accuracy evaluation

BEASY provides post-processing tools to evaluate the model accuracy such as accuracy reports or the
stress error norm plot which estimate the accuracy of the results of each element. They provide an

_———

norm plot for the model simulating the fatigue test. The stress error norm is higher (11.89%) in zone
5, near zone 2, due to the element grading. For zone 2, where the surface crack is located and accurate
results are needed, the stress error norm is less than 0.1%.

1.17675e+001
1.07085e+001
9.64957¢+000

8.59060e+000
7.53164e+000
6.47267¢+000
I 5.41370e+000
4.35473e+000
3.29577e+000
2.23680e+000
1.17783e+000

1.18864e-001

Stress error norm
Max=11.886
Min=0.0000

bl

Figure 4.18: Stress error norm.
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Table 4.4 shows the result of an accuracy report requested for the same model. This result is
obtained by considering the equilibrium convergence in each zone, by summing the surface forces in
each direction. The zone stress error norms are as low as 0.01% for zone 2 and as high as 5% for zone
6 (rigid ring in the chord).

Table 4.4: Model accuracy report.

Zone stress error norm

[%]
Zone 1 1.18
Zone 2 0.01
Zone 3 0.33
Zone 4 0.35
Zone 5 2.34
Zone 6 5.07
Zone 7 0.57
Zone 8 0.58
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4.5.3 Model mesh convergence

The accuracy of boundary elements model increases with the number and quality of elements used.
In order to check the accuracy and stability of the numerical results, five different mesh densities
were tested and results compared to the standard model. The geometry taken to perform this mesh
sensitivity test is the same as S5, shown in table 4.2}

This test is a thorough task as the model has to be manually defined in BEASY™ interface so that
BEASY-IMS Auto-remesh tool can be utilised to generate the different meshes used to compare models.

Figurei4.19and Table i4.5i show the models and respective mesh qualities near the welds, in the

chord and diagonals and crack.

Table 4.5: Models used for mesh convergence testing.

a. Basic  b. Improved c. Best d. B51 e. C154
Automesh  Automesh  Automesh BEASY,,,499-XIs BEASY,04.104-XIs
Welding 1 2 3 3 3
Chord/Diagonals 3 3 3 1 2
Crack 2 2 2 2 2
1 - coarse
2 - fine
3 - extra fine
Model a. is a coarse model generated using BEASY™ auto-meshing without special care for the

weld and near-crack area. Model b. results from model a. by improving the mesh quality near the
welds and cracked area and model c. has the finest mesh in both the weld and the joined elements.
Models d. and e. are generated using EXCEL macros created on purpose. The later results from model
d. refining the mesh of the chord and diagonals. The cracks imposed at different depths have always
the same mesh as described in Section4.2.5. The mesh of model e. is the standard mesh used in the
parametric study:.

crack depth, a = 0.15mm and load cases LC1, LC4 and LC5. For load case LC1 and LC4, the five
sets of results converge convincingly, specially if we compare the deepest point (y = Omm). For load
case LC5, the standard model (C154) and the automatically meshed model differ of about 30% at the
deepest point.

Figure 4.21ishows the values of mode I stress intensity factors, K;, along the crack front, for a crack
depth a = 10mm, and load cases LC1, LC4 and LC5. This crack depth (T/2) represents the bigger
crack modelled. As the number of boundary elements is constant regardless of the crack size, it is
the crack size in which the mesh of the crack can most influence the results. Again, for LC1 and LC4
the mesh convergence is achieved convincingly. For LC5, the difference between the most refined
automatic mesh and the standard model (C154) is about 30%.

Results put in evidence the influence of the mesh quality on the stress intensity factor values. It is
therefore very important to assure the quality of the mesh in the range of parameters studied.

Load case LC5 is the load case that presents bigger influence of the meshing (specially members
mesh) on the results. This is because of the predominance of bending in the chord and the relatively
thin tube walls. A special caution is thus due when analysing parametric results involving load case
LC5, as they may include, an eventual "mesh effect" added to the effect of sizing joint elements.
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Figure 4.19: Models used for mesh convergence testing.
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Figure 4.20: Convergence of K; values along the crack front (a = 0.15mm) for load cases LC1, LC4
and LCS5.
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Figure 4.21: Convergence of K; values along crack front (a = 10 mm) for load cases LC1, LC4 and
LC5.
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4.6 Combining basic load cases

The possibility of combining the results of basic load cases is very useful as it allows the modelling of
various real loading conditions without having to rerun crack propagation simulations (to obtain SIF)
each time.

Combination is possible, as the superposition principle is valid since:

* a linear elastic fracture mechanics (LEFM) analysis is carried out on linear elastic material;
* the crack path is established a priori and remains constant for the different basic load cases;
# crack closure is not considered;

* proportional basic load cases are considered to be acting in-phase;

The stress intensity factors for the different opening modes are combined, K, compined and then the
------ 1

combined equivalent stress intensity factor, K. combined 1 calculated according to Equation}(4.15). The
resulting equations are:

len
Kincombined = |, Kmyrci»where m = {I,IL, 1T} (4.17)
LCi=1
2
Keq,combined = \/(Kl,combined + |KIII,Combined|) + 2KII,f:ombined (418)

_———

separately and combined (Keq1c1, Keg s> Kegrcss Kegcombined) @and the result for the model with
complex load case where all the five basic load cases were introduced simultaneously (Keq complex)-
Resulting SIF ranges compare well, showing that the use of the three main basic load cases (LC1, LC4
and LC5) is a good approximation of the complex load case (K.q combined @Nd Keg complex SUPEIPOSE).
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——— |
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Figure 4.22: Stress intensity factor results obtained for the basic load cases acting isolated and
combined and corresponding complex load case
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4.7

CHAPTER 4. NUMERICAL INVESTIGATION

Summary and conclusions

This chapter presents the description and validation of a CHS K-joint crack propagation model. The
3-Dimensional boundary element model is solved using BEASY™ software. The model was validated
through comparisons between calculated stresses with measured stresses (strains) and between
calculated stress intensity factors with experimentally measured stress intensity factors. A convergence
test on the mesh density was done to validate results obtained for different-sized joints. A standard
model for fatigue life computation is defined to be used in the parametric study.

The following conclusions can be drawn:

L 4

The boundary element method can be used to calculate the stress intensity factors of surface
cracks in CHS joints. Within this study specific tools were developed to model this complex crack
shape in the double curved weld toe.

To date, BEASY automatic crack growth calculation is not effective in the particular case of
surface cracks at the weld toe due to the double curved crack geometry. The needed small
increments make it too costly in time and computer resources to propagate a crack in the weld
toe.

Crack opening mode I is predominant for all geometries and for the three load cases considered.

Results from the numerical model compare generally well with the measurements made during
the tests, or computed from them (nominal stresses, hot-spot strains and stress intensity factors).

The convergence of results for different meshes was checked. For load cases L.C1 and LC4, the
convergence is achieved convincingly. For LC5, results show some mesh effect affecting the
results (differences up to 30%); thus, attention must be paid when analysing parametric results
for this load case.

For truss loading, typical complex load cases, can be well approximated by combining only three
of the five main basic load cases, namely:

¢ LCI1- Balanced axial brace loading;

¢ LC4- Axial chord loading;

¢ LC5- In-plane bending chord loading.
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5

Parametric study

5.1 Introduction

In this chapter, the numerical model validated and standardised in chapteri4 is used to analyse the
fatigue behaviour for a range of welded CHS K-joints. Through comparisons between different joint
models, the influences of a set of parameters defining the joint geometry and basic load cases are
discussed. Results of the parametric study are compared in the form of stress intensity factors, fatigue
life and fatigue strength.

Section j5.2i describes the scope of the parametric study, namely the geometries and load cases
considered. The assumptions made, regarding the parameters assumed constant in this parametric
analysis, are detailed in Section 5.3. A preliminary study on the influence of parameters assumed
constant is presented. Results of the parametric study in terms of stress intensity factors and fatigue
strength are presented and discussed in Section 5.4

5.2 Scope of parametric study

This parametric study is limited to:

* Non-overlapping, as-welded, K-joints in uniplanar trusses with identical brace dimensions and
6 =60°;

Previous investigations focused on the determination of stress concentration factors at specific
locations, correlated these results to the fatigue behaviour and finally made comparisons using either
life or strength. Although this procedure is widely accepted and used, it assumes the fatigue behaviour
of a joint is fully determined by the surface stress in the uncracked joint, regardless of the stress
gradient through the thickness. In order to study in depth the effect of sizes of the connected elements,
this hypothesis is not made here and results are shown in the form of stress intensity factors, fatigue
life and fatigue strength.
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5.2.1 Geometries

The procedure described in Section 4.4: to build and calculate the numerical models is time and
resource consuming. Due to the amount of parameters describing the geometry of a CHS K-joint (see
figure2.1), choices had to be made regarding which parameters to consider. Three non-dimensional
parameters were selected as main parametric variables: 3, y and 7. These are the parameters that
define the relative geometry of the joint elements. For each set of non-dimensional parameters, at least
two geometries corresponding to different absolute sizes were studied. This allows for a result checking
and provides additional points to proportional sizing and to characterise the geometry correction factor,
Y, introduced in the next chapter.

A number of other parameters such as the slenderness a, normalised gap ¢, and normalised
eccentricity e/D, are kept constant. Although their effect on fatigue behaviour is recognised, it is
believed to be less significant. To confirm this belief, some of these effects are evaluated in a preliminary
study (Section'5.3).

Table 5.1 shows the list of geometries covered in the parametric study recalling here the non-
dimensional parameters definitions:

5 d D t 2L, (8 5.1
=—, =—;T=—’a= ; = — .
D' Tt TT D D

where,

d outside diameter of the brace;

D outside diameter of the chord;

t thickness of the brace;

T thickness of the chord;

g gap size;

L., : distance between two nodes.

The study of fatigue crack propagation of a single geometry requires the computation of 3 X 6 = 18

TableD.2! (in Appendix) lists the details for each of the geometries created for the current investiga-
tion. The parametric study covers only cracks at hot-spot site 1. Equivalent Stress Intensity factors

5.2.2 Varying f3, v, T to resize the CHS joint

Figure5.1iillustrates the joints resizing by changing each of the non-dimensional parameters f3, v, T,
the assumptions and the resulting constraints are illustrated in Figure 5.1 and can be summarised as
follows:

¢ Thickness ratio, T
¢ Eccentricity, e, and gap, g, are kept constant;
¢ Diameters of braces and chord as well as the thickness of chord remain constant;

© Thickness of the diagonals and welds are scaled proportionally;

* Diameters ratio, f3
¢ Chord diameter, D, thicknesses of both the chord (T) and the brace (t) are kept constant;

¢ The non-dimensional gap, {, remains constant (and so does the gap for constant chord
diameters);

¢ The eccentricity, e, increases when f3 increases;
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Table 5.1: Summary of the parametric table ( = 0.53)

ID T B Y T
- [mm] (-1 =] [-]
180 10
169 20
181 40 0.53 421 04
168 60
129 20
178 30 0.53 4.21 0.5
106 60
107 60
130 20 0.53 421 0.6
108 60
131 20 0.53 4.21 0.7
109 36
132 12 0.53 7.01 04
110 36
133 192 0.53 7.01 0.5
111 36
134 12 0.53 7.01 0.6
112 36
135 12 0.53 7.01 0.7
113 29.7
136 99 0.53 85 04
114 29.7
137 9.9 0.53 85 0.5
115 29.7
138 99 0.53 85 0.6
116 29.7
139 99 0.53 85 0.7

¢ Chord slenderness, y

¢ The thicknesses of both the chord (T) and the brace (t) remain constant;

¢ The diameter of the chord (D) is scaled;

¢ The ratios e/D and g/D remain constant;

75
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Table 5.2: Summary of the parametric table (ff = 0.65)

EPFL Thesis 4142

CHAPTER 5. PARAMETRIC STUDY

D T P 5 .
C fmm] 2] (][]
14113 38 0.65 421 0.4
1;3 gg 0.65 4.21 0.5
14112 gg 0.65 4.21 0.6
38 38 0.65 4.21 0.7
1:5 ;:2; 0.65 7.01 0.4
1421421 :1))2 0.65 7.01 0.5
14212 ?S 0.65 7.01 0.6
142146‘ :1%2 0.65 7.01 0.7
142; 299.;97 0.65 85 0.4
120 297 065 85 o0
1421; 299.57 0.65 85 0.6
122 199'.98 065 85 071
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e/D = const.

g/D = const.

-

Figure 5.1: Non-dimensional parameters changing: 7, f3, y.
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5.2.3 Load cases

The basic load cases acting in the plane of the tubular truss are listed in Table 4.1, Load cases:
Balanced axial brace, Axial chord and In plane bending chord (see Table5.3), were selected as they are
predominant (see Section4.5) for the geometries in bridge application. Calculations were done for
nominal stress range, Ao, equal to 100 MPa (in the case of bending o ,,,,, = 100 MPa corresponds to
the absolute values of the stress at extreme fibers of the tube % =-1).

min

Table 5.3: Basic load cases selected for the parametric study.

Load case Schematic Nominal stress range
N v

LC1  Balanced axial brace e Aoy

LC4 Axial chord - Aoy

LC5 In-plane bending chord (s Aoy

5.3 Assumptions defining the parameters and estimation of effects

5.3.1 Eccentricity and gap size

The gap (the distance between the outer brace walls at chord crown toe) and the eccentricity are
related and influence the stress concentration in the connection.

chose the gap as the maximum of two values: 4 X t (minimum space required between the braces
for the welding) and 1.6 X T + 2Wp, crownroe (€Nsuring sufficient space for the extrapolation of the
stresses according to established rules). In the present work, different assumptions are made. As it is
the case in many bridge designs, the outer diameters of tubular members remain unchanged while the
thicknesses of tubes vary according to the position and stresses along the bridge span. An aesthetic
criterion, relating the gap and the eccentricity to the nominal diameter of the chord was preferred. The
requirement for space between the braces is generally observed (g > 4 x t) but does not determine
the size of the gap in the present parametric study. As the calculation of the hot-spot stresses is not
envisaged as a main result, the extrapolation region was not always "preserved" between the braces.
The gap size for standard model is considered related to the chord diameter, D. The ratio { = % =0.23
is kept constant. This makes the % ratio of 0.23 for joints with a # = 0.5 and 0.36 for joints with
B =0.6.

One shall emphasise that, in this study, when the T parameter is being increased while keeping the
other non-dimensional parameters constant, the gap, g, remains constant. However, as the brace wall
thickness increases the weld size is proportionally increased. The consequence is that the free gap, g’,
is decreased for higher 7 even if the eccentricity and the gap remain constant (see Figure 5.5).

Figure 5.2 shows the influence of the joint eccentricity and gap size, for the three basic cases
considered, on the number of cycles to failure expressed as fatigue strength for geometric parameters
B = 0.53; y = 4.2; T = 0.4;. Values are computed using SIF range values determined with BEM,
see graphics in Appendix D, and Paris law, Equation;(3.4). For load case LC;, balanced axial load in
diagonals, the higher the gap and eccentricity the higher the stress intensity factors and lower fatigue
strength. In other words, longer gaps (and eccentricities) increase the secondary bending at the weld
toe, and thus, the eccentricity is unfavourable. This effect is contrary to the one occurring for load
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Shom, 2x10°6 cycles [N/mmz]
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Figure 5.2: Influence of the gap/eccentricity ( f = 0.53; y =4.2; 1 = 0.4; for { = 0.38,{ =0.23, ¢
=0.17 and { = 0.12).

cases LC4 and LCs. For the bending and axial load in the chord, the stress concentration decreases as
the gap increases, thus the fatigue strength increases.

Eccentricity/gap effect seems to be more pronounced for { = 1% < 0.23. More studies covering
different joint geometries should be carried out in order to generalise this conclusion.

5.3.2 Chord length between joints, L, and truss height, H and diagonal angle, 0

In the parametric matrix, a@ = 2L_;,/D is kept constant, a = 25.7. With 6 = 60° also being a constant,
the ratio LHL’I = 1.2 is also a constant. These ratios, together with 5 = d /D, define the transparency of
the bridge.

Figure 5.3 shows that the chord length, L, has little influence over the fatigue strength, for load
cases LC1 (balanced axial load in diagonals ) and L.C4 (axial load in chord). For load case LC5, the
fatigue strength decreases as the chord length, L, increases and logically the stress intensity factor
range values are clearly increasing (see Figure:D.1iin Appendix) and

The truss height, H, seems to have no significant influence neither on the fatigue strength nor on
the stress intensity factors for the load cases considered (see Figurei5.41and Figure:D.2).
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Figure 5.3: Influence of chord length L, (8 = 0.53; y =4.2; 1 = 0.4; for a = 38.6, a = 25.7, a =
12.9).
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Figure 5.4: Influence of truss height, H (f = 0.53; y = 4.2; 7 = 0.4; T = 20 mm; for H = 900 mm,
H =1800mm, H = 2700 mm).
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5.3.3 Weld size

The weld profile is defined assuming the following hypotheses. The weld footprint lengths (defined
according to Figure4.2) are calculated with the following relations:

* Ly chheel =0.627 X t +2.25 X Smf( 5

® L, cherown = —0.627 X t 4 2.25 X sze)

T

sin(6)

These relations respect the AWS principles of weld size being proportional to the thickness of the
connected elements. When doing a non-proportional sizing of a model, by changing the v parameter,
the weld is resized as shown in Figure 5.5. In this case, although the gap, g, and the eccentricity, e,
remain constant, the distance between the weld toes, g’, varies.

® L, =1.88xt+

Figure 5.5: Side view of the diagonal to chord wall joint, definition of weld size.

The effect of the weld size depends on the load case analysed. Figure 5.6i shows, for LC1 and LC5,
that an increase in the weld size (all the other parameters kept constant, f3,y,T,e,a,t, T) leads to
a decrease in the calculated stress intensity factors. For LC4, an opposite effect is true. For LC1, an
increase in the load carrying weld cross section decreases the stress concentration factor in the weld
toe and, as the gap, g, is kept constant (not the distance between weld toes g’), the secondary bending
is also reduced for bigger welds. For LC4, an increase in the weld size increases the "stiffener" effect
and so do the stress concentration in the weld toe and the stress intensity factor ranges. In terms of
fatigue strength, as can be observed in Figure 5.7, an increase in the weld size is favourable, i.e. it
increases the fatigue strength, for load case 1 and 5 but unfavourable for load case 4.

5.3.4 Initial crack size, a;, and final crack depth, a,

joint’s size: a; = 0.15mm. The final crack depth, ay, is considered as half the thickness of the chord,
af = % .

Figure 5.8 shows the influence of the initial crack size on the fatigue strength for the different
basic load cases. As the initial crack size increases, the fatigue life obviously decreases. In the specific
case of K-joints, the load case for which the influence of the initial crack size on fatigue life is higher
is LC4: from 74N/mm? when a; = 0.05mm down to 66 N/mm? when a, = 0.5mm (Note: Linear
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Figure 5.6: Influence of weld size, W; (f = 0.53; y =4.2; 1 = 0.4; T = 20mm; for W1 = 7.5mm
and W1 = 15mm).

interpolation between 0 and SIF for a = 0.15mm, the first crack increment calculated, is done to
determine the SIFs for a; < 0.15mm).

Figure 5. 9. shows the fatigue strength, S, 5« 10¢, variation with the relative crack depth. There is
little influence of small variations of the final crack size on the number of cycles to failure beyond a
crack depth of half of the thickness.

5.3.5 Paris-Erdogan constant, C

The Paris- Erdogan constant hasa A very high inﬂuence on the calculation of the number of cycles to failure

the C constant and the relative number of cycles to fa1lur-e_ancl the fat1g-1le_ -strength. It has the same influ-
ence on each of the basic cases. The constant, C, is considered as 2.0 x 10~'3 (mm/cycle)(N/mm™3/?)
for all cases run.
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Figure 5.7: Influence of weld size, W;.(8 = 0.53; y = 4.2; 7 = 0.4; T = 20mm; for W1 = 7.5mm,
W1l=15mm).
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Figure 5.8: Influence of initial defect size, a,, on the number of cycles to failure or on the fatigue
strength - S5 geometry (f = 0.53; vy = 4.2; 7 = 0.4; T = 20mm).

5.3.6 Crack shape, a/c

At early crack growth stage, the coalescence phenomenon determines the crack shape. According to
experimental evidence (see Section 13.4.5), it seems reasonable to estlmate £ =0.20, in the interval
a=0.15mm to a = T /2. This smrphﬁcatron allows for formal superposmon of results for different
load cases. To investigate the influence of crack shape on the crack propagation process, three different
a/c ratios (0.15 and 0.2 and 0.3, in the range of values found experimentally for a < T/2) were
considered The ratios are kept constant over the crack propagation and the results then compared

about 15% is observed when a/c changes frorn 0.15 to 0.3. This trend is 1ndependent from the load
case considered. Stress intensity factor ranges, AK, corresponding to these geometries, are given in

appendix El-)_-_il SIF ranges vary generally less than 10%, with a maximum of 28% for LC1 at a = T /2.

5.3.7 Crack angle

The bisectrix between the weld and the chord outer wall (in the vertical longitudinal plane) is used to
define the conic shape along which the crack propagates (see Figure 4.6). The crack angle (¢, qcx)
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Figure 5.9: Influence of the final crack size, ay, in the fatigue strength, considering ag = 0.15mm - S5
geometry (f = 0.53; y =4.2; 7 = 0.4; T =20mm).
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Figure 5.10: Influence of Paris-Erdogan constant C, for m=3, on fatigue life or on the fatigue strength
- S5 geometry (8 = 0.53; y =4.2; 7 = 0.4; T = 20mm).

_————

angle (angle measured in the longitudinal mean plane with the vertical) on fatigue strength (the
corresponding stress intensity factor ranges, AK can be found in Figure D.4). For load case LC1, a
crack angle of 40° leads to higher values of stress intensity factors than an angle of 10°. For load cases
LC4 and LC5 the effect is the opposite. Magnitudes of this effect can reach up to 30% in the case of
SIFs for a = T'/2 for load case LC1 and 20% in terms of fatigue strength for the three basic load cases.
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Figure 5.11: Influence of crack shape.
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Figure 5.12: Influence of crack angle, ¢, qcx-
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5.4 Results and discussion of Parametric Study

5.4.1 Introduction

_————

table (D.2) as a function of the parameters 7, y, # and thickness, T, considering the three basic load
cases acting independently. The dispersion shown does not allow for immediate conclusions to be
drawn on the influence of parameters as no trend seems to be present.
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Figure 5.13: Fatigue strength at 2 x 10° cycles function of 7, f3, 1.

The fatigue strength in terms of hot-spot stress, Sy, is obtained by multiplying the fatigue strength,
Snom» Dy the stress concentration factors, SCF, corresponding to the load case and joint geometry. The

EPFL Thesis 4142



5.4. RESULTS AND DISCUSSION OF PARAMETRIC STUDY 87

as a function of the thickness of the chord for the different load cases. It looks like the hot-spot
based fatigue strength concept results in a definitive trend for the load case 4. For this load case, the
fatigue behaviour seems to be dependent on two parameters: the hot-spot stress range, Aoy, and
the thickness of the chord, T. The load conditions (axial chord load) are similar to the "plate with
non-load-carrying transversal attachment" under axial load. Results for load case 1 and 5 show the
influence of the chord thickness in case of proportional scaling of the joints. However, the hot-spot
stress and the thickness, T, seem to be not enough to show a trend and to permit to calculate the
fatigue strength. More parameters are needed for that.
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Figure 5.14: Fatigue strength in terms of hot-spot stress function of the chord thickness, T, for the
three basic load cases.

In a first attempt to analyse the results, a comparison between the fatigue strength and stress
intensity factor range values at different crack depths is carried-out by changing each one of the
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parameters (3, y, T) at a time, for the three basic load cases studied: balanced axial brace load, LC1,
chord axial load, 1.C4, and chord in-plane bending, LC5. This comparison gives the general trends for
the effects of each of these parameters.

By default, the crack depths are the increments considered in the standard model: a; = { 0.15mm ,
T/50, T/20, T/8, T/6, T/2 }. When the automatic remesher around the crack produces distorted
elements, the model cannot be solved. The solution adopted was to change slightly the crack size so
that the elements shape are corrected.

5.4.2 7 - Thicknesses ratio

Balanced axial brace loading

_————

and different 7 values under basic load case LC1. Increases in 7, keeping the other parameters constant
and the same chord thickness for all the cases, have the effect of increasing the value of the SIF for
crack propagating at location 1. At a first glance, this result is not surprising. In fact, as an increase
in the brace thickness means an increased force (because the same nominal stress is applied on all
geometries), and thus, an increase in the stress acting in the cracked chord. However there are
some effects such as the weld being scaled up proportionally to the thickness of the diagonal while
keeping constant the gap, g, and the eccentricity, e, that might, for some cases, compensate the effect
mentioned before.
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Figure 5.15: Stress intensity factor (SIF) ranges due to balanced axial brace load.

Axial chord loading

_____

from 0.4 to 0.7. As T increases, the stress concentration is higher due to a thicker, stiffer brace.

In-plane chord bending

For load case LC5, as shown in Figurei5.17y it is difficult to extract a trend since T = 0.4 and 0.5 give
the extreme curves and 7 = 0.6 and 0.7 the average ones.

Fatigue strength

Figure 5.18i shows the fatigue strength as a function of 7, for the three load cases. As can be inferred

awkward. The fatigue strength decreases when the thickness ratio, T, increases.
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Figure 5.16: Stress intensity factors (SIF) due to balanced axial chord load.
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Figure 5.17: Stress intensity factors (SIF) due to in-plane chord bending.
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Figure 5.18: Thickness ratio effect in terms of nominal fatigue strength, S,,,,, (8 =0.53; y =4.2; T =

60.0mm).
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5.4.3 7y -Chord slenderness
Balanced axial brace loading

Figure 5.19:shows that when the chord slenderness, y, increases, keeping the other main parameters
(B, T, T) constant, the stress intensity factor ranges increase for basic load case 1.
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Figure 5.19: Stress intensity factors (SIF) due to balanced axial brace load.

Axial chord loading

seems to be due to the relative rigidity of the attached brace.
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Figure 5.20: Stress intensity factors (SIF) due to balanced axial chord load.

In-plane chord bending

_———

this load case.

Fatigue strength

Figure 5.21ishows the fatigue strength as a function of y. For load case 1, the fatigue strength decreases
with y. For load case 4, the fatigue strength increases slightly with y. For load case 5 it looks like there
is no linear trend between the fatigue strength and the y parameter.
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Figure 5.21: Stress intensity factors (SIF) due to in-plane chord bending.
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Figure 5.22: Effect of chord slenderness in terms of nominal fatigue strength, S,,,,,, f = 0.53; 7 =
0.5, T=30;,-y=4.2;y =7.;y =8.5.
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5.4.4 [3 - Diameters ratio

Balanced axial brace loading

_————

range values at the considered crack depths. This result appears to contradict the argument used to
justify higher SIFs for higher values of 7, since the increase in brace diameter means relative higher
force being imposed in the chord. This is, however, balanced by the fact that a higher d /D ratio means
also a different flow of stresses in the weld toe region. The higher f means less local bending effect.
As the brace diameter gets closer to the chord diameter the transfer vertical component of the brace
solicitation is more efficient (see Figure 5.24). Or, in other words, as f3 increases, the section resisting
the brace action passes from a behaviour similar to a supported plate of thickness T to an "effective"
circular section.
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Figure 5.23: Stress intensity factors (SIF) due to balanced axial brace load.
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Figure 5.25: Stress intensity factors (SIF) due to balanced axial brace load.

Axial chord loading

For the basic load case 1.C4, the stress intensity factor ranges show higher SIFs for lower 8 values. (see
Figurei5.25). This effect (comparable to the effect of an attachment) seems to be dependent on the
relative rigidity of the brace. When 3 is lower, the brace (attachment) is more rigid since 7 is constant,
thus leading to a higher stress concentration at the weld toe.

In-plane chord bending

Apparently, the same arguments as LC4 apply for this basic load case.
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Figure 5.26: Stress intensity factors (SIF) due to in-plane chord bending.

Fatigue strength

An increase in 3 leads to minor changes in terms of fatigue strength for LC1 and LC4. For LC5,
apparently, the fatigue strength increases about 35% when 8 changes from 0.53 to 0.65.
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Figure 5.27: Effect of  in terms of nominal fatigue strength, S,
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5.4.5 T - Thickness effect

Balanced axial brace loading

_————

proportionally scaled joints. This effect has been extensively studied for the case of plates (see sections
1.21and 2.6): In thicker plates, for a similar crack depth, a, the stress at the crack tip is larger than in
thinner plates (see Figure 1.2).
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Figure 5.28: Stress intensity factors (SIF) due to balanced axial brace load.

Axial chord loading

A parallel can be established between this case and the thickness effect for plates with transversal
attachments. As T increases, keeping all the non-dimensional parameters constant, the stress intensity
factor ranges are higher for thicker plates at the same relative crack depths (a/T) (see Figurei5.29).
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Figure 5.29: Stress intensity factors (SIF) due to balanced axial chord load.

In-plane chord bending

Figure 5.30: shows, for load case 5, the same trend as for load case 1 and 4.
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Figure 5.30: Stress intensity factors (SIF) due to in-plane chord bending.

Fatigue strength

considered. The effect is more pronounced for load case 5, for the selected geometry, but other
geometries show, for this load case, that the effect is not always the same (and can be inverted). For
LC1 and LC4, the effect seems to be the same for the different geometries studied and constant for
both load cases.
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Figure 5.31: Thickness effect in terms of nominal fatigue strength, S,,,,.
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5.5 Summary and comparison with previous studies

Due to the amount of parameters involved in this parametric study, it is not straight forward to analyse
the results. By changing the dimensions and geometry parameters of a tubular joint, assuming a
constant nominal stress, different effects are seen. On one hand, there is the the effect of the load
being different for different geometries. On the other hand, there are effects that superpose or balance
in some cases.

From the parametric results three categories of geometry related effects were identified:

* The load effect - for the load case braces in balanced axial stress (LC1, LC4). Assuming a constant
nominal stress in the braces, varying the f or T parameters, thus doing a non-proportional
scaling, leads to different forces being applied into the same cracked cross-section. Effects for
LC5 show some incoherence, the source not being identifiable clearly.

* The attachment effect - as in the previous case, T and 8 play an important role as they compare
the brace and the chord flexibilities. For the basic load cases 4 and 5, the effect of the unloaded
brace attached to the chord can be compared to an attachment on a plate. Both T and [ influence
the stress concentration in the connection.

* Thickness effect - When proportional scaling is done, the effect of thickness is present for the
three load cases considered. The stress concentration factor, SCF, remains constant, however,
the gradient through depth is steeper for thinner joints.

In Table 5.5, the trends observed on stress intensity factor ranges are compared with those observed

________________

(2003) for the stress concentration factors, SCF, and by Shao and Tjhen
"non-dimensional" stress intensity factors, F (in this study, results are available only for balanced axial
brace load case).

A strong influence of 7 (increase of T leads to an increase of SIF values) for the three load cases is
observed. Only a minor influence of the geometric parameter [ is observed. Finally, an increase in the
geometric parameter y leads to significantly lower stress intensity factors for axial in the chord load
case; this is not surprising since an increase in y means a stronger, thicker chord and consequently less
influence on the stress field from the unloaded brace attached onto it. For load case 1, balanced axial in
the brace, an increase in y leads to higher stress intensity factors values since, with the braces loaded,
the "hard point" effect of the brace attached onto the more stiff chord increases. These results are only
general trends. In Chapters 6 and 7, different result analysis focusing respectively in proportional and
non-proportional joint scaling are carried out.

5.6 Conclusions

A parametric study of a range of K-joint BEM models has been carried out. All the joints are non-
overlapping welded joints and the braces angle is 60° for all the models. The parameters investigated
in the study are shown in Table 5.5

The three basic load cases studied are: balanced axial brace load, axial chord load, and in-plane
bending in the chord. Trends in SIF are summarised in Table 5.4

In addition, a preliminary analysis is carried-out to examine the effects of the weld size, crack angle,
crack shape eccentricity/gap size and chord length and initial and final crack sizes.

Table 5.7 summarises the results from the sensitivity analysis. The Paris law parameter C has the
strongest effect, but always in the same direction (it can be taken out when comparing different joint
geometries). Only two cases result in having a major effect on the stress intensity factor and thus
fatigue strength: a change in eccentricity under load case 1 and a change in chord length under load
case 5. These effects are mitigated by the way the sizing of the joints is made, keeping for example a
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______________

Load case Increasein SCF(Y SIF F®

" T Sl SIS
N B — NN

Y // S

T /7 /7 NJ/A

N\, B N* < N/A
Y NN\ N/A

T I/ >  NJ/A

¢ ALH ﬁ N A N/A
Y N N N/A

** variation increases with 7
* minor effect

Table 5.5: Range of parameters f3, y, T and T used in parametric study.

B[-1 0.53 0.65

r[-] 42 7 85

T[] 04 05 06 0.7
T[mm] 10 20 40 60

Table 5.6: Effects of changing 3, y and 7 on the stress intensity factor.

= 's

o NN N

< S S /
BN - -
y NN \

/" \\: minor effects
/" /" major effects

sufficient gap for welding, and can be viewed as inherent technological effects when doing practical
proportional scaling.
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Table 5.7: Trends in the fatigue strength obtained from the sensitivity analysis.

N NA N

Increase in

eccentricity, e, gap, g NN\ /! /
chord length, L, — — NN
truss height, H > — —
weld size, W / N /
crack shape, a/c / /
crack angle, ¢, qck NN\ / /
Paris law constant C NN\ NN\ NN\

/", \\: minor effects
/" /" major effects
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Chapter

6

Proportional scaling

6.1 Introduction

In the previous chapter, three categories of effects related to joint geometry were identified: load
effects, attachment effects, thickness effects. The case in which thickness is the only parameter
needed to describe the relative fatigue life of two joints is called thickness effect and corresponds to a
complete proportional scaling. In practice, complete proportional scaling of a connection is difficult to
achieve. This difficulty increases with the joint complexity. In fact the more the number of dimensions
intervening in the connection, the harder it is to scale all of them in the same proportions.

For tubular K-joints, complete proportional scaling is hardly achieved in practice, due to the
multiplicity of parameters and technological issues. Practical proportional scaling can be achieved if,
say as a logical assumption, the non dimensional parameters (3, T, y) remain constant. Thickness is,
then, one of the parameters needed to describe the differences between two joints.

In order to analyse purely the effect of the thickness, in this chapter, differences between homothetic
joints of different absolute sizes will be studied. The parametric results given in chapteri5iare reanalysed
focusing on proportional scaling. In Section 6.2, distinction between proportional joint geometry
and non-proportional crack size problem is made using LEFM concepts. In Sectioni6.3} the geometry
(joint and crack) factor, Y, is introduced. Values of Y, characterising the geometries in the parametric
table, are provided for the three basic load cases considered. A procedure to determine the number of
cycles to failure of a CHS joint subjected to basic load case is provided in Sectioni6.4. This assumes a
joint geometry being proportionally scaled and the fatigue life comes out as a function of the chord
thickness, T. As a result, thickness based correction factors are issued to estimate the effect of thickness
on the fatigue life of the CHS joint (Section 6.5). Thickness correction factors, based on nominal
fatigue strength, are compared to the classical correction factors derived for plates. The procedure
proposed for calculation of fatigue life of joints under basic load cases is extended to the combined
load case. A graphical solution, allowing for calculation of the number of cycles for a given geometry
and combined load case, is illustrated in Sectioni6.6. Finally, in Section6.7, a brief discussion on the
efficiency of proportionally scaled K-joints is presented.

6.2 Separation between Proportional geometry and Non-proportional
crack size

Two questions that may arise when scaling proportionally a K-joint submitted to fatigue loading:
What happens to the weld size?
What happens to the crack size?
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For the weld size, it is reasonably assumed in the present study that the welds are full-proportionally

say, the final crack size, ay, defined here as equal to the half thickness, T /2, is sized proportionally,
while the initial crack size is constant and equal to a; = 0.15 mm, independently of the elements size.
The fact that the initial crack size is an absolute value conFigures an exception in the otherwise fully
proportional scaled problem. How does this fact influence the thickness effect?

In order to quantify this influence, consider, as mentioned before, that the fatigue life of a welded
specimen consists wholly of stable crack propagation. The number of cycles to failure can, thus, be

calculated using the Equationi(2.10); repeated below:

[ Byptepping4

af 1
Ny = —d 6.1
f L NN 6.1
where,
a; : Iinitial crack size;
ag final crack size (ap=T /2).

In order to isolate a complete proportional problem, this integral can be separated into two parts:

“a a 1
N =N N, = —d —d 6.2
nP+ p L. C(AK)m a+J;1 C(AK)m a ( )

the first part contains the "non-proportional" effect of the crack in which the lower limit is considered
constant and equal to ag = 0.15mm, and the higher limit is taken as a; = T/50. The second part is
limited with a; = T/50 and a; = T/2, it is the "full proportional integral part".

In order to solve this integral, AK, has to be expressed as a function of a. This is done by introducing
a geometry factor, function of the relative crack depth, and common to a set of proportionally scaled
joints.

6.3 Defining Y, the geometry correction factor

_____
_____________________

_________________

difficulties in modelling cracks in complex details.

For a given set of homothetic joints (same non-dimensional parameters), the same Y factor should
apply. The factor, Y, is function of crack shape, a/c, and relative crack depth, a/T, Y(a/c,a/T).
Setting a/c = 0.2, Y becomes only function of a/T, Y (a/T). This is an important result as it allows for
the calculation of fatigue life of different absolute sized joints based on curves valid for the homothetic
joints.

As an example, consider for instance, the geometry of series S5 (y = 4.2; 8 =0.5;7 = 0.4;a =
the stress intensity factor ranges, AK, of proportionally scaled joints as a function of the relative
crack depth, a/T, for the three load cases. It can be observed that the stress intensity factor ranges
corresponding to thicker joints are higher.
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The stress intensity factor range, AK, is divided by Ao - 4/7a, to obtain the geometry correction
factor:
AK

It can be seen in Figure i6.1i that the discrete Y values superpose approximately in a single curve.
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Figure 6.1: Geometry factor Y equation for different crack depths and basic load cases in proportionally
sized joints.

The curve representing Y, was found to be well fitted using the following relationship

(5= (@) (7 ©4)
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where p and q are parameters that depend on the geometry and basic load case.

Tables6.3ishow p and q values, obtained for the different geometries and load cases. Parameters p
and q are obtained from fitting the discrete Y points corresponding to, at least, two different absolute
joint dimensions (see Table:D.1).

The R? parameter is also given, so that the goodness of fit can be checked for every geometry in the
parameter range. When R? < 0.85, it is generally because the results of Y for two homothetic joints do
not converge and not because of the inability of the function to fit Y values. If this is the the case, the
results are not considered in analysis (results marked with * in Table6.3). This is an indirect means of
testing the results for mesh effects.

A global inspection of R? results seems to tell that the poor results (6/72 of the total) concentrate
in the most slender chords (higher y) and for chord bending (LC5) load case. For these cases, a finer
mesh (specially at the joined members level) would be needed to guarantee the accuracy of results.

Table 6.1: Y regression parameter p, for different geometries and load cases.

T LC B
0.53 0.65

Y Y
4.2 7 8.5 4.2 7 8.5

04 LC1 042 0.73 080 040 0.65 0.66
LC4 051 043 0.38 0.49 037 0.36
LC5 0.65 0.42 0.19° 0.58 0.66" 0.73"

0.5 LC1 046 0.79 0.85 0.38 0.66 0.80
LC4 058 048 041 059 043 0.38
LC5 1.01 046 0.71 1.15 0.58 0.48"

0.6 LC1 055 092 1.03 050 066 0.73
LC4 0.66 0.54 047 0.60 0.44 0.42
LC5 0.86 0.89 0.38 0.60 0.61 1.47*

0.7 LC1 056 099 1.17 048 082 0.77
LC4 0.70 055 0.52 0.64 0.50 0.44
LC5 0.89 0.67 0.82" 0.74 0.68 0.57

* values corresponding to R? < 0.85, should not be considered

To illustrate the variability of the geometry factor, Figure |6.2i shows the Y function for § = 0.53
and the three basic load cases. It can be seen the variability is higher for load cases 1 and 5 than for
load case 4.

6.4 Number of cycles to failure to homothetic joints

T/2 1 T/2 1
N = m da = - d
LO C-(Ao-Y(a/T)-vTa) ‘ Jo,ls C- (AO. (p, (%)(q—1)+(%)q) \/ﬁ) ‘
(6.5)
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Table 6.2: Y regression parameter g, for different geometries and load cases.

T LC B
0.53 0.65

Y Y
4.2 7 8.5 4.2 7 8.5

0.4 LC1 0.60 0.64 063 0.63 0.62 0.60
LC4 0.65 0.65 0.64 0.67 0.64 0.63
LC5 0.65 0.64 0.64" 0.66 0.71" 0.82"

0.5 LC1 0.62 0.63 0.62 064 066 0.63
LC4 0.65 0.65 0.62 0.67 0.64 0.63
LC5 0.64 0.65 0.65 0.66 0.60 0.70

0.6 LC1 0.63 0.64 0.64 063 062 0.64
LC4 0.66 0.65 0.64 0.66 0.63 0.62
LC5 0.66 0.70 0.60 0.65 0.62 0.76"

0.7 LC1 0.63 0.62 0.64 062 063 0.62
LC4 0.65 0.63 0.64 065 0.63 0.62
LC5 0.65 0.66 0.70° 0.65 0.68 0.62

* values corresponding to R? < 0.85, should not be considered

Solving the integral analytically, the following expression is obtained:

N=1{(T,p,q)=
—2.54-1012-89-A+4.64-1012-¢56% . T3+31. (6.6)
B (1.0 + 6.09) VT Ac3
where,

‘ 1 3
A = Hypergeometric2F1 [3, 3 + 3q, 3 + 3q, —Zp} (6.7)

. 1 3
B = Hypergeometric2F1 [3, 3 + 3q, 2 +3q,—6.67p T} (6.8)

Figure 6.3iillustrates the effect of thickness resulting from Equation:(6.6)!in terms of number of

cycles to failure. The relatively small contribution of the non-proportional initial defect size is also put

6.5 Thickness correction factor

The effect of the chord thickness on the number of cycles to failure can be described using a correction
factor. To this end, the fatigue life for given joint geometry (corresponding to chord thickness T) and

homothetic joint of different absolute dimensions and chord thickness T,.s under the same basic load
case. For simplification, this is done in a first step by considering any of the basic load cases, acting
independently.
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Table 6.3: Y regression goodness of fit R?, for different geometries and load cases.

T LC B
0.53 0.65

Y Y
4.2 7 8.5 4.2 7 8.5

04 LC1 098 098 099 098 099 0.96
LC4 098 099 099 1.00 1.00 0.99
LC5 0.98 0.99 0.38" 1.00 0.67° 0.03"

0.5 LC1 097 099 099 0.88 093 0.99
LC4 1.00 1.00 0.99 097 099 1.00
LC5 0.93 090 0.93 098 093 0.74"

0.6 LC1 099 099 0.99 099 098 0.93
LC4 1.00 1.00 1.00 1.00 1.00 0.99
LC5 1.00 0.87 099 0.99 098 0.33"

0.7 LC1 099 1.00 1.00 0.99 099 0.98
LC4 1.00 1.00 0.99 1.00 1.00 1.00
LC5 1.00 0.90 0.79* 0.99 0.92 0.99

* values corresponding to R? < 0.85, should not be considered

N, (6.9)

Ny Tref (—2-54 x 1012894 + 4.64 x 10125694 73+34 B)
fn= =
ref

li3
/T (—2.54 x 1012894 + 4.64 x 1012¢5:6%4T 2 qB)

In this expression, 4/ % reflects the effect of complete proportional sizing (including crack size
full problem (see Figure6.3). The rest of the expression accounts for the absolute initial crack size and
depends on the (non-dimensional) geometry and load case.

The thickness correction factor can be expressed in terms of fatigue strength:

S r,nom,T N T Hm
Ny =Cp-Ao,M = fg = —om =( ) = fa/m (6.10)
’ Sr,nom, Tref NTref
where,
Nr :  number of cycles for a joint of chord thickness T’
Nr, : number of cycles for a joint of chord thickness, T,.;
Cr : constant for the detail with chord thickness T’
m . Paris law constant (m = 3);
ACpomr ¢ nominal stress range for a joint of chord thickness T
St nom,T . fatigue strength for a joint of chord thickness T (based on the nominal stress range)
at 2 x 10° cycles
Srnom,T, - fatigue strength for a joint of chord thickness T (based on the nominal stress range)
at 2 x 10° cycles;
fs : thickness correction factor in terms of strength;
n . thickness correction factor in terms of fatigue life.
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6.5.1 Analogy with plates thickness effect

The correction factors obtained for proportionally scaled joints, can be compared to the classical

(6.11)

fo= Sr,nom,TXSCF _ Sr,hs,T N(Tref)ns
s = ~

Sr,nom,T,ef X SCF Sr,hs,Tref T
where, ng is the thickness correction factor exponent (for plates, Gurney used T, = 25mm and
ng = 0.25). As can be seen, the connection factor for proportionally scaled joints remains the same
regardless of being based on nominal or hot-spot stress.

The thickness correction factor can also be expressed in function of N. In this case it comes as

Tre f W
fn~
T (6.12)
Ny =nNg- m
where,
ny : thickness correction factor exponent, dependent on the (non-dimensional) geometry
and load case;
m : S —N curve slope (m = 3).

Tables |6.4:and |6.5: show the exponents found for the different geometries and basic load cases,
when considering the correction factors in terms of number of cycles to failure, fy, or the correction
factors in terms of the fatigue resistance (nominal) for a specific number of cycles to failure (here
taken as 2 x 10° cycles), fs.

Regarding tables, the following remarks can be made:

* Size effect exponents for proportional scaling range from 0.37 to 0.43, in terms of fatigue life.

* Size effect exponents for proportional scaling range from 0.12 to 0.14, in terms of fatigue
strength.

+ Size effect is generally slightly more pronounced for load cases LC1 and LC5 than for LC4.

joint geometries (f = 0.51; y = 6.9; (1 = 0.3,7 = 0.5,7 = 0.7)) and increased the thickness from
20mm to 40 mm. The values obtained compare well for LC1 but for LC4 the values found in our study
are about the double (see Table|6.6). For LC1 and LC4, this study confirms that:

* for proportional scaled joints CIDECT thickness correction is too conservative, as was shown by

* even Gurney correction factor for plated joints (exponent n = 0.25) is too conservative;
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Figure 6.2: Geometry factor, Y, function of crack depth, for = 0.53 and basic load cases LC1, LC4
and LC5.
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B=0.53;y=4.2;7=0.4 — Load Case 1

N [-]
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Figure 6.3: Number of cycles to failure function of the thickness of the chord in proportionally scaled
joints for load case 1 (and specific geometry f = 0.53;y =4.2;7 = 0.4).

Table 6.4: Thickness correction factor exponents ny, for CHS joint geometries proportionally sized and differ-
ent basic load cases, in terms of number of fatigue life (fy) (T,.; = 16 mm)

T LC B
0.53 0.65

Y Y
4.2 7 8.5 4.2 7 8.5

04 LC1 0.41 0.42 042 039 042 043
LC4 039 038 0.39 037 038 0.38
LC5 0.40 0.39 0.33" 0.39 0.35° 0.217

0.5 LC1 041 0.42 043 038 040 042
LC4 039 039 040 038 0.39 0.39
LC5 042 039 040 041 043 0.35"

0.6 LC1 041 0.42 042 041 042 041
LC4 0.40 039 040 0.39 040 0.40
LC5 0.41 037 041 040 0.42 0.33"

0.7 LC1 041 043 042 041 042 0.42
LC4 040 041 040 040 040 0.40
LC5 0.41 0.39 0.37° 041 0.38 0.42

* values corresponding to R? < 0.85, should not be considered
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Table 6.5: Thickness correction factor exponents ng, for CHS joint geometries proportionally sized and differ-
ent basic load cases, in terms of number of fatigue resistance (f5) (T,.; = 16 mm)

T LC B
0.53 0.65

Y Y
4.2 7 8.5 4.2 7 8.5

04 LC1 0.14 0.14 0.14 0.13 0.14 0.14
LC4 0.13 0.13 0.13 0.12 0.13 0.13
LC5 0.13 0.13 0.11* 0.13 0.12* 0.07*

0.5 LC1 0.14 0.14 0.14 0.13 0.13 0.14
LC4 0.13 0.13 0.13 0.13 0.13 0.13
LC5 0.14 0.13 0.13 0.14 0.14 0.12*

0.6 LC1 0.14 0.14 0.14 0.14 0.14 0.14
Lc4 0.13 0.13 0.13 0.13 0.13 0.13
LC5 0.14 0.12 0.14 0.13 0.14 0.11"

0.7 LC1 0.14 0.14 0.14 0.14 0.14 0.14
LC4 0.13 0.14 0.13 0.13 0.13 0.13
LC5 0.14 0.13 0.12* 0.14 0.13 0.14

* values corresponding to R? < 0.85, should not be considered

Table 6.6: Comparison of thickness correction factor exponents for proportional scaling, using o ,,,-

hN '
Geometry ns  ng (Schumacher,:2003) | ng  ng (Schumacher, 2003)
B=05y=71=0.5; | 0.14 0.143 0.13 0.059
B=05y=71=0.7 | 0.14 0.124 0.13 0.061
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6.6 Generalisation for combined load case / Load case interaction

In Section 6.4, a procedure to estimate the number of cycles to failure for a joint under single basic
load cases is detailed. The situation, in which a single basic case acts isolated in a joint, is, however,
not common in practice. Therefore, it is important to extend this result to combined load cases. As
presented in paragraph 4.6, the stress intensity factors for a combined load case can be obtained from
the basic load cases.

As the crack opening mode I is predominant for the load cases considered (see Figure4.10), the
equivalent stress intensity factor, K,g, is replaced by K; in order to simplify the superposition of effects
of the three basic load cases.

AK; combined =AKrc1 + AKpcs + AKprcs

=001 Yc1(a/T) vra+ AcpcsYics(a/T) vVma+ Acpcs Yies(a/T) v/ ma
(6.13)

Replacing AK = AKJ .ompineq in €xpressioni(2.10):

Jaf 1

N, = da=
f m

a; C (AKI,combined) (6 14)

(lf 1
:J —da
q C (AKI,LCI +AKjrcs + AKI,LCS)

6.6.1 Graphical solution

Some hypothesis have to be made so that the integral can be solved. Regarding the stress ranges from
the load cases, LC, and LCjs are considered as fractions of LC;.

AO—LCl == k1 Ao
AO—LC‘]— == %LC4 X AO—LCl (6.15)

A0 cs =%rcs X A0 e

af 1
Nf = da=
! Jai C (Ao c1Yic1(a/T)VTa+ Ao caYicala/T)VTa + A0 csYics(a/T)vVRa)™

af 1
—(ky -Aa)_mf _da
o C(Yier(@/T)vma+%caYicala/TIVRa+ % csYies(a/T)v/ma)

(6.16)

100 MPa. Figure 6.4 illustrates the result for joint geometry: = 0.53;y = 4.2;7 = 0.4; T = 20. The
number of cycles to failure is obtained entering %; -4 (horizontal axis) and %; s (vertical axis) and
then multiplying the value found by k; ™™ to take in account the magnitude of the stress ranges.

6.6.2 Comparison with fatigue test results

As an example, the procedure to estimate the number of cycles to failure is applied to fatigue test joint
(series S5 joint 1).
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N x 10%cycles (B=0.53;y=4.2;1=0.4; T=20mm;)

%LC5[ T T T T T [ T T T [ T T T [ T T T [ T T T ]

40 ; B

120 %LCA
Figure 6.4: Reference number of cycles to half thickness crack depth, N7 5, function of the combination
of the three basic load cases, for Ac = 100 N/mm?.

AULC] = 152MPa — (k]_ = 1.52)
A0 cq =33MPa — (%04 = 33/1.52 =21.7%) (6.17)
Ao pcs = —11MPa — (%p¢s = —11/1.52 = —7.2%)

The reference number of cycles to half thickness crack depth is obtained from the Figure with %LCy
and %L Cs and leads to 0.63x 10° cycles. The predicted number of cycles is then obtained by multiplying
0.63 x 10° by k;™=1.5272=0.285 (Ao, = 152MPa). The result is, Ngsj1 = 179000 cycles, which is
very close to the test result (N = 169000 cycles for crack depth a = T/2 = 10 mm).

This procedure is repeated for S1, S2 and S3 (Schumacher, (2003) proportionally scaled series)
and results compare well (see Figure6.5).

6.7 Efficiency of proportionally scaled joints

For the designer, the presentation of the size effects in terms of fatigue strength, S, ,,,, as a function
of the chord thickness, T, does not give an indication on the admissible force range, AF. In fact, an
increase in the chord thickness is associated with a decrease in fatigue strength of the joint. However,
the cross-section increases, and thus, the force range, AF, it can resist. It is interesting to analyse these
results in terms of cross-sectional area and force range, AF. This is made in Figure 6.6 for a given joint
geometry (f = 0.53;y = 4.2; 7 = 0.4), whose scale is represented by the chord thickness, T, under
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Figure 6.5: Comparison between experimental results and estimations obtained using procedure

LC1 with:

¢ Fic1 = Ay, X f, - the admissible force in the brace, when considering the cross-section static
resistance;

¢ AFfqtigue - the admissible force range in the braces, for a fatigue life of 2 X 10° cycles;

¢ AFfqtigueT16xa - the admissible force range in the braces, obtained by multiplying the fatigue
strength at 2 x 10° cycles, for a 16 mm thick chord, by the surface of the joint’s brace without
any thickness correction factor;

¢ AFfqtigueCIDECTcorrection - the admissible force range in the braces, obtained by multiplying the
fatigue strength at 2 x 10° cycles, for a 16 mm thick chord, by the corresponding brace surface
and CIDECT thickness correction factor (16/T.po-q)°>"%;

LC 1;B=0.53;y=4.2;t=0.4
Ficl,AFc1[kN]

bridges
[ >
25001
2000}
1500 ;
[ > Fuatic
1000} o AFnige
E ©®  AFpiigueTiommx4
50&77 @®  AFpiigue CIDECT correction
P . e e e T. rd 1M
20 30 40 50 go 1chord (mm]

Figure 6.6: Comparison of static admissible force to admissible fatigue force range, calculated
according to different hypotheses for proportionally scaled geometries.

Figure 6.6 highlights the fact that simple extrapolation of CIDECT recommendations for geometries
typical of bridge design (y < 12 and T > 20mm) can be too conservative. Note that conservatism
increases with increasing thickness of chord.
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6.8 Summary and conclusions

In this chapter, the effect of chord thickness on fatigue of welded tubular joints was isolated by
proportionally scaling the joints. This procedure was repeated for the relevant geometries from the
parametric study presented in the previous chapter.

The geometry correction factor, Y, accounts for the stress concentration through the thickness along
the crack path. This geometry factor is calculated at a set of discrete points for the non-dimensional
joint geometries in the parametric matrix, including, at least, two absolute joint sizes and was made
for the three main basic load cases. The geometry correction factor is best approximated as a function

of the relative crack depth (a/T) namely, Y (%) =p- (%)(q_l) + (%)q and remains constant for
homothetic joints.

Curve fitting is then used to determine a function representing the Y for each joint geometry. By
introducing the Y factor, a methodology is suggested to calculate the fatigue life for a specific geometry
and basic load case. Correction factors to account for reduction of fatigue life/strength are deduced
for proportional scaling. Then, this procedure is generalised for the combined load case.

Based on the work presented in this chapter, the following conclusions can be drawn:

¢ The Y factor coefficients p and q depend on the load case and geometry of the joint. The
thickness correction factor exponents (ng and ny) are not dependent on the geometry and only
slightly dependent on the load case.

¢ Geometry factor, Y, scatter band is more pronounced for load cases 1 and 5 than for load case 4.
¢ Thickness effect is slightly more pronounced for load cases LC1 and LC5 than for LC4.

¢ When proportional scaling is done, the thickness correction factor remains the same regardless
of being based on nominal or hot-spot stress range (as the SCF remains the same for homothetic
joints).

+ The thickness correction factor exponent (accounting for proportional scaling), can be expressed

T
fatigue strength, and 0.37 to 0.43 when referring to fatigue life. The lowest values correspond to

LC1 and the highest to LC4. These values confirm that it is not justified to use exponent as high
as CIDECT, and even exponents lower than Gurney can be used safely.

n
as the classical form for plates (h) . The exponents vary from 0.12 to 0.14, when referring to

¢ The use of thickness correction factors is recommended for proportional scaling, when based on

the fatigue behaviour for a reference homothetic joint is needed.
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7

Non-proportional scaling

7.1 Introduction

Proportional scaling is a reasonable scenario in applications where the entire size of the detail or joint
will increase relatively with an increase in the applied load. In tubular bridges, however; it is common to
see that along the length of a span, the outside diameters of the tubular truss members are much more
likely to remain constant, while the thicknesses of the brace and chord members will be adjusted to account
for the changes in load at different span locations. This is an example of non-proportional scaling, a
scenario where not only the changing wall thickness of the fatigue-critical member; but also the size of the

In the previous chapter, the effect of chord thickness was isolated from the effects of the non-
dimensional parameters considered (f3,y, 7). This was done through comparisons of fatigue behaviour
of proportionally scaled joints. In this chapter, the discussion is focused on load and attachment effects.

Basic load case LC5, bending of the chord, is not considered in this chapter because the indepen-
dence of results on the mesh could not be assured. Moreover, for a loaded truss, load case 5 is normally
less important, negative and tending to close the weld toe crack at position 1.

In Section 7.2y the effects of the non-dimensional parameters on the geometry correction factor,
Y, are shown qualitatively. An alternative approach to assess the fatigue behaviour of CHS-joints is
proposed in section E7:;3: This method, based on the geometry correction factor, Y, relies on a scalar
to represent the local stress state, and thus to estimate the fatigue behaviour as in the case of the
hot-spot stress method. However, in this case, the scalar contains information on the through depth
stress gradient and not only on the structural stress at a surface single point, as it is the case for the
hot-spot method. The Y, method is applied to the series tested at ICOM and results are compared.
A comparison between the values obtained for Y, and SCF values is presented and discussed in
Section7.4. Finally, in Sectioni7.5; considerations are issued on geometries efficiency towards fatigue
resistance.

7.2 Effect on the geometry correction factor, Y

In Section {6.3; the geometry correction factor was introduced as a property for homothetic joints
independently of their absolute dimension. For this reason, it is an interesting function to use when
comparing the influence of the relative dimensions on the fatigue behaviour.

Furthermore, results in terms of Y for different basic load cases can be superposed. That is an
advantage when compared to representing the results in terms of fatigue strength, S, ., or the
number of cycles to failure, N. For this cases the results remain dependent on the basic load case and
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are not possible to combine.

7.2.1 Influence of thickness ratio, 7

Varying the thickness ratio, 7, has a double effect: attachment when unloaded, or, when the brace
is loaded, loading effect. The attachment effect, for load case 4, is influenced by 7 as this parameter
relates the rigidity of the brace (attachment) to the chord cross-section. When load case 1 is considered,
comparing joints with the same nominal stress in the braces but different brace thicknesses, a load
effect exists, the thicker brace transmits a higher force to the same chord cross-section. The crack is,
thus, subjected to a higher stress amplitude.

Figure7.1ishows that when the thickness ratio increases, the geometry correction factor, Y, also
increases. For load case 1, the load effect, as defined in Section (5.5, is the main responsible for
the increase of Y as the 7 increases. For load case 4, the "attachment" size determines the stress
concentration and, thus, the geometry correction factor. Attachment size and load effects vary in the
same way and are "added" if load cases 1 and 4 are combined.

LC1 LC4
IO[—] IO[—]
CIRN 8
N
| \\\\
6 N ‘\ N 6F =053y=7.7=04
N B=053y=7.7=05
4 b : § NN 47:\\ o ®  p=053y=7.71=06
‘\::=~_~ \\;:::\ ° B=053;y=7..7=0.7
2 — 2 =S
=
. I T,
0.001 0.0050.010 0.0500.100 0.50 0.001 0.0050.010 0.0500.100 0.

Figure 7.1: Geometry correction factor, influence of the thickness ratio, 7.

7.2.2 Influence of chord slenderness, v

Figure7.2ishows the influence of the chord slenderness, y, over the geometry correction factor. For
load case 1, as y increases the correction factor Y increases. For load case 4, the effect is the opposite,
Y decreases as the y increases. The variation is less pronounced for load case 4 than for load case 1.

For a combination of load cases 1 and 4, the effects may cancel depending on the relative importance

of each load case.

LC1 LC4
Y [-] Y[-]
10 10
8 8
6 N N 6
\\\ B=0.65;y=4.2,7=0.5
™
4 ! N 4 A< p=065,y=7.7=05
‘ \\\\~ N \L\\ ®  p-065y-857-05
2 r 5 : 2 T~
[ [ -] e T " -
0.001 0.005 0.010 0.050 0.100 O.SOg-r 0.001 0.005 0.010 0.0500.100 0.50%

Figure 7.2: Geometry correction factor, influence of the chord slenderness, y.
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7.2.3 Influence of diameters ratio 3

The effect of 8 on the geometry correction factor Y is shown in Figure7.3. As the 3 increases, the Y
decreases for both load case 1 and load case 4. When f increases, the brace is more flexible and leads

more efficient when 3 increases, thus leading to lower Y values.

LC1 LC4

Y [-] Y [-]

101 10

8 8

6H— 6

‘ * 4 [ *® B=0.53;y=4.2;7=0.4
TR N 3:0.65;1:4 27=04
2 i 2 T
] mal o T \HaT[_]
09001 0.005 0.010 0.050 0.100 0-502(1)/'1" 0.001 0.0050.010 0.050 0.100 0.500/

Figure 7.3: Geometry correction factor, influence of the diameters ratio 3.

Although qualitative comparisons can be made using the Y function concerning the fatigue be-
haviour, it is not straight forward to use the function in practice. In fact, the p and g values defining

is complicated to conclude on the fatigue behaviour just based on each of these values. An alternative
approach is proposed and detailed in the next section.

7.3 Alternative approach for fatigue assessment of CHS joints

7.3.1 Principle

As already discussed in chaptersiliand:2i of this thesis, recently, the most widely used design methods
for fatigue of tubular joints is based on the hot-spot structural stress at the weld toe. This method relies
on a scalar to estimate the fatigue strength of the joint. It assumes the surface stresses on a structural
member provide an indication of the stress state at a potential fatigue crack location. However, as
the hot-spot stress is extrapolated from measures or calculations at the surface, it does not account
for cases with the same surface stress but different stress gradients through the thickness. These may
occur for different load cases (with different degree of bending) or different geometries. For the latter,
a correction factor is prescribed to account for the effect of the thickness of the cracked plate.

One of the advantages that can be associated with the hot-spot stress method, besides the amount
of existing formulas for SCF calculation and the experience in applying this method, is the fact that
all the problem complexity (load cases, eccentricity and stress gradient) is reduced to a single scalar

____________________

value. This is common to other local stress approaches (e.g. 1-mm stress (Xiao and Yamada, :2004)).
In addition, the fact that the structural stress is considered (excluding local stress raisers such as the
weld profile) keeps it less dependent on the random (as dependent on the weld shape and angle),
highly non-linear and mesh-dependent stress in the weld toe.

Although the advantages are evident, the methods relying on surface stress arouse many questions
when the stress gradient along the potential crack path has a different shape, for instance, due to a
predominance of bending.

Xiao and Yamada (2004) proposed the 1 — mm stress method to assess the fatigue behaviour of
welded joints. This method possesses the ability of predicting size effect including thickness effect
"to a certain extent" at least. They explored the fact that correlation of crack propagation life can be

established between an object detail and the reference detail with an equivalent geometric stress at a
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certain point in the crack path. For in-plane gusset, it was found that the equivalent geometric stress
proposes a new approach to assess the fatigue behaviour and highlights advantages of considering the
stress over the crack depth, it is not completely satisfactory, namely for details with a high degree of

Ac

Achs

Figure 7.4: Schematic comparing 1-D hot-spot approach to 2-D Y approach.

In order to find a parameter that could solely estimate the fatigue behaviour of tubular joints,
consider the geometry correction factor, Y, as defined in section 6.3. Recalling the integral that
allows for the calculation of the number of cycles for crack propagation from an initial crack depth,
a; = 0.15mm, to a final crack depth, ay = T /2:

(lf 1
. f C (AGom Y (a/T)- y7a@)" (7.1)

for integrals is applied. There is a crack depth, a,, in the 1nterva1 [al, ay ], for which the following
relation is valid:

1 1
= —d 2
N C(AouomY(a,/TN™ ), (vVEa)™ . 72
= ! (0 927075 — %) (7.3)
- C (A0 omY (a,/T))™ U VT '

The representative crack depth, a,., allows for a reduction of the geometry correction factor function
to an equivalent single value over the crack depth Y(a,/T) or Y, for simplicity. Figure .7 41 compares
schematically the hot-spot approach with the Y, approach. If the hot-spot method “elies on the
extrapolated structural stress at a single weld toe location. The Y, method takes a value that is
equivalent to the stress gradient through depth (between q; and ay), adding one dimension to the
information provided. From reporting on a single point structural stress (1-D), as the hot-spot approach,
to reporting the effect equivalent to the stress gradient through depth.
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Another difference between hot-spot approach and Y, approach is the use of the total stress instead
of structural stress. Although the local stress concentrations due to weld geometry and irregularities at
the weld toe have influence on fatigue strength, the use of the structural stress can be justified when
the comparison stress is measured or calculated at the weld toe. In fact, as it is well known, the stress
raising due to the weld profile is highly dependent, on physical models, on the local weld profile and in
numerical analysis on the mesh refinement. By taking the structural stress, these sources of uncertainty
and imprecisions are mitigated. The structural stress is then directly correlated to fatigue life of details.

The Y, approach proposed herein takes the value of the geometry correction factor at some
distance from the weld-toe, in the through thickness direction. As defined in Section 6.3} the geometry
correction factor includes the stress raising due to the weld profile (defined according to the hypotheses
stated in Section5.3.3). Although the stress raising due to the weld profile is highly dependent, in

numerical analysis, on the mesh refinement, Xiao and Yamada: (2004) found a convergence of the
stress gradients due to different weld toe geometries (radius and angle) and using different mesh
grades, at less than 1 mm away from the weld toe, in the thickness direction. It is therefore not likely
that the inclusion of the nonlinear gradient due to the weld profile introduces a significant change in
the Y function mean value nor in the representative distance a, due to different weld toe geometries
or mesh grading. This assumption should be confirmed in future investigations.

An advantage of the Y, approach is the use of a single S, — N resistance line. The S, — N line

7.5, Sa, — N resistance lines for thicknesses T = 16mm and T = 60mm almost superpose. Line
corresponding to thickness 16 can thus be used as representative for thicknesses up to 60 mm.

D S om Y(ar/T)
[N/mm?]
1000

500

200 o

100 - T=16mm

50 —  T=60 mm

20

10 Nlcycles]
1710° 2710° 17106 2710° 571 17 107

Figure 7.5: S, — N lines resulting from plotting the Equation E(-7-i55 as a function of Ao -Y(a,/T) for
chord thicknesses T = 16 mm and T = 60 mm. o

7.3.2 Single basic load cases

Representative depth, a,

and the resultant Equation is solved for the different geometries (from the parametric table) and
the chord thicknesses: 16 mm, 20 mm, 30 mm, 50 mm. The results are presented in Table 57::1- The
representative crack depth, a,, i.e. at which the geometry correction factor assumes its equivalent
value, ranges from 0.64 mm to 1.5 mm, depending, as would be expected, on the geometry of the joint
and the load case. This dependency is mainly on the load case and the chord thickness, and only then,
on the non-dimensional parameters (see Figure7.7 for T = 16 mm).
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Table 7.1: Representative coordinate a,.[mm] for load cases LC1 and LC4, considering joints of three different
absolute sizes.

= 's

o, [mm] A, N\

Joint geometry T=16 T=20 T=30 T=50|T=16 T=20 T=30 T=50

B=053;y=42;7=04| 0.71 0.80 0.98 1.30 0.69 0.77 0.93 1.20
B =0.53;y=42;7=0.5| 0.71 0.79 0.96 1.20 0.72 0.80 0.96 1.20
B=053;y=42;7=0.6 | 0.74 0.82 1.00 1.30 0.74 0.82 0.99 1.30
B =0.53;y=42;71=0.7 | 0.74 0.82 1.00 1.30 0.76 0.84 1.00 1.30

B=053;y=7;71=04 0.80 0.89 1.10 1.40 0.64 0.71 0.86 1.10
B=053y=7;1=0.5 0.82 0.91 1.10 1.40 0.68 0.75 0.91 1.20
B=053;y=7;1=0.6 0.84 0.93 1.10 1.50 0.70 0.77 0.94 1.20
B=0.53y=7;1=0.7 0.88 0.99 1.20 1.60 0.74 0.82 1.00 1.30

B =0.53;y=851=04| 0.83 0.92 1.10 1.50 0.64 0.71 0.86 1.10
B =0.53;y=8.5;7=0.5 0.86 0.96 1.20 1.50 0.67 0.75 0.91 1.20
B =0.53;y=857=0.6 | 0.86 0.96 1.20 1.50 0.69 0.77 0.93 1.20
B =0.53;y=8.5;7=0.7 | 0.88 0.98 1.20 1.50 0.71 0.79 0.95 1.20

B =0.65y=42;7=04| 0.66 0.73 0.89 1.10 0.66 0.73 0.88 1.10
B =0.65y=4.2;71=0.5 0.63 0.70 0.85 1.10 0.69 0.77 0.93 1.20
B =0.65y=42;1=0.6 | 0.72 0.80 0.98 1.30 0.72 0.80 0.97 1.20
B=0.65y=42;7=0.7 | 0.71 0.79 0.97 1.20 0.74 0.83 1.00 1.30

p=0.65y=7;1=04 0.80 0.89 1.10 1.40 0.63 0.70 0.85 1.10
B=0.65y=7;1=0.5 0.74 0.82 0.99 1.30 0.66 0.73 0.89 1.10
B=0.65y=7;1=0.6 0.79 0.88 1.10 1.40 0.69 0.77 0.93 1.20
B =0.65y=7;1=0.7 0.84 0.93 1.10 1.50 0.71 0.78 0.95 1.20

B =0.65y=8571=04| 0.83 0.93 1.10 1.50 0.63 0.69 0.84 1.10
B =0.65y=8.5;7=0.5 0.82 0.92 1.10 1.50 0.65 0.72 0.87 1.10
B =0.65y=8571=0.6| 0.79 0.88 1.10 1.40 0.68 0.76 0.92 1.20
B =0.65y=8.5;71=0.7 | 0.83 0.92 1.10 1.50 0.70 0.78 0.95 1.20

Fmean.; 0.78 0.87 1.06 1.38 0.69 0.77 0.93 1.19
Standard Deviation 0.070 0.079 0.096 0.137 0.037 0.042 0.049 0.068

e 0.78 0.78 0.78 0.78 0.69 0.68 0.68 0.67

a
T'mean T;
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The reference geometry is considered as:
To =16mm; 8, = 0.53;y9 =4.2; 79 =0.4

and is used in the next sections.
Analysing Table 7.1} it was found that the mean representative depth can be expressed as

[T

armean,corrected, LC1 = 0'78 T_O (7'4)
[T

armean,corrected, LC4 = 069 T_O (75)

for load case 4. At these depths, the Y function is considerably steep, it is therefore important to
investigate the error introduced when considering the mean value a,  (for the chord thickness
considered) instead of the value obtained for each specific geometry.

for load case 1 and

respective thickness, a, ., is used instead of the determined a,., is calculated for each geometry in
the parametric table, as follows:

1 fT/Z L g fT/2 1
C(AaY(a,i/T))m @ (vra)" C(AUY(armean/T)) (‘/ﬁ)

1 me/Z 1 _da

rel. error(%) =

1 C(lAUY(a”/T)) R (7.6)
(Y(ari/T))m B (Y(armean/T))m
- 1
(v(a, /)
where,
Y geometry correction factor;
T chord thickness;
m constant for Paris law (m = 3);
a. :  value calculated for the considered joint geometry;
a, mean value of the a, values for the same thickness;

Figure 7.6: shows the relative errors for load cases 1 and 4.
The error values, disposed in the same order as table [7.1} indicate that the a, value should be
further corrected (major inﬂuences of y for LC1 and 7 for LC4)

an expression of a, as a function of the non-dimensional parameters and the joint absolute size
represented by the chord thickness, T. Tablei7.1iwas used as input data and the model was chosen in
the form

a-(B/Bo)"(r/vo) - (v/T)* (T /To)* (7.7)

The following enhancements on the formulas improve the results:
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LC1; T=16mm; T=50mm LC4; T=16mm; T=50mm
rel. err. [%] rel. err. [%]
40¢ 40r
201 201
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
1] L] L L]
,,,,,,,,,,, s B . o5+ O . 1B, 20
-20t c -20t
—40t —40t

Figure 7.6: Relative error on the fatigue life when using the a, . (obtained using expressionsi(7.4)i
andi(7.5)) for the geometries in the parametric table, considering two absolute dimensions for each

T 0.49 [5 —0.26 Y 0.26 T 0.098
“rm:"”(ﬁ) '(%) '(%) '(?0) 7:8)
T 0.48 —-0.13 —0.083 0.21
0 :O.67(—) (E) (l) (—) 7.9)
bes Ty Bo Yo Ty

for load case 4. They are valid within the parametric matrix limits defined in Section5.2. The
relative error drops under 9% and 5%, for load cases 1 and 4 respectively (see Figurei7.8). Figure 7.7
shows the representative crack depth as a function of the non-dimensional parameters y and 7 for the
basic load cases 1 and 4.

Generally the representative crack depth a, < 1mm and it is found to be deeper for load case 1
than for load case 4. For load case 1, # and y are the most influencing non-dimensional parameters.
The a, increases with y and decreases with 3. For load case 4, 7 is the parameter influencing the
representative crack depth the most.

for load case 1 and

Equivalent geometry correction value Y (a,/T)

The fatigue behaviour of a CHS joint under basic load cases 1 or 4 can be estimated by determining
the value of Y at the respective representative crack depths. The equivalent correction factor values,
Y(a,/T), were computed for the geometries in the parametric matrix and the absolute sizes corre-
sponding to thicknesses: 16 mm, 20 mm, 30 mm, 50 mm. The results are shown in table 7.1i for load
cases 1 and 4.

0.16 ~0.86 0.70 0.39
YLCla B,y,7,T)=1.62 1 . E T (X (7.10)
' Ty Bo Yo To

0.15 ~0.34 ~0.32 0.44
YLC4a (ﬂ, Y, T, T) =1.68 1 . E . l . l (7.1D)
' Ty Bo Yo To
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LC1 (T=16mm) LCA4 (T=16mm)

Figure 7.7: Representative crack depth, a,, for basic load cases 1 and 4, as a function of non-
dimensional parameters y and T (Dark red surface: § = 0.53; Blue surface: 8 = 0.63). The absolute
size corresponds to a chord thickness of T = 16 mm.

LC1; T=16mm; T=50mm LC4; T=16mm; T=50mm
rel. err. [%] rel. err. [%]

401 401
20- 20r

e e

] L L ? L] I L]

,,,,, o8 w0ttt 18200t - T R T
-20r -20r
,407 740,

Figure 7.8: Relative error on the fatigue life when using the representative depth a

r.p (ODtained

the load case 1, the Y, increases with y and 7. For load case 4, the Y, decreases with the chord
slenderness, y, and increases with the thickness ratio, 7. The influence of the non-dimensional
parameters over Y, parameter is more pronounced for load case 1 than for load case 4. For both load
cases the Y, decreases as the 3 parameter increases.

The relative error introduced using these expressions was calculated using Equation(7.12). Figure

and T = 50mm. It can be noticed that the relative error remains negligible, below 10% for load case 1
and below 5% for load case 4.

Y(a,/T) =Y, /m(B>7,7,T)

rel. error(%) = (7.12)
Y(a,/T)
where,
Yo,/ 1)(B,7,7, T) = Igc_ly_i\_ze_llent g_qgr_qe_try correction factor value calculated using Equations
i(7.10);and i(7.10)} N
Y(a,/T) : equivalent geometry correction factor value from Table :7.25;
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Table 7.2: Equivalent geometry correction value Y (a,/T) for load cases LC1 and LC4, considering joints of
three different absolute sizes.

AN I'4

Y(a,/T)[-] L s

Joint geometry T=16 T=20 T=30 T=50|T=16 T=20 T=30 T=50

B =053y =42;7=04 1.60 1.70 1.80 1.90 1.70 1.70 1.80 2.00
B =0.53;y =4.2;7=0.5 1.60 1.70 1.80 2.00 1.80 1.90 2.00 2.20
B =0.53;y=4.2;7=0.6 1.90 1.90 2.10 2.20 2.00 2.10 2.20 2.40
B =0.53;y=4.2;7=0.7 1.90 1.90 2.10 2.30 2.20 2.20 2.40 2.60

B=053;y=7;71=04 2.30 2.40 2.60 2.80 1.40 1.50 1.60 1.70
B=053y=7;1=0.5 2.50 2.60 2.80 3.00 1.60 1.60 1.70 1.90
B=053;y=7;71=0.6 2.80 2.90 3.10 3.40 1.70 1.80 1.90 2.00
B=053;y=7;1=0.7 3.10 3.20 3.40 3.70 1.80 1.90 2.00 2.20

B =0.53;y=851=04| 2.60 2.60 2.80 3.10 1.40 1.40 1.50 1.60
B =0.53;y=8.5;71=0.5 2.70 2.80 3.00 3.30 1.50 1.50 1.60 1.80
B =0.53;y=857=0.6 | 3.10 3.20 3.40 3.70 1.60 1.70 1.80 1.90
B =0.53;y=8.5;71=0.7 | 3.40 3.60 3.80 4.10 1.70 1.80 1.90 2.10

B =0.65y=42;71=04 1.40 1.50 1.60 1.70 1.50 1.60 1.70 1.80
B =0.65y=4.2;7=0.5 1.30 1.40 1.50 1.60 1.80 1.80 2.00 2.10
B =0.651y=42;,7=0.6 1.70 1.80 1.90 2.10 1.90 1.90 2.10 2.20
B =0.65y=4.2;7=0.7 1.70 1.70 1.90 2.00 2.00 2.10 2.20 2.40

B =0.65y=7;1=04 2.20 2.30 2.40 2.60 1.30 1.40 1.50 1.60
B =0.65y=7;1=0.5 2.00 2.10 2.20 2.40 1.50 1.50 1.60 1.70
B =0.65y=7;71=0.6 2.20 2.30 2.40 2.60 1.60 1.60 1.70 1.90
B=0.65y=7;1=0.7 2.60 2.70 2.90 3.10 1.70 1.70 1.90 2.00

B =0.65y=8571=04| 230 2.40 2.60 2.80 1.30 1.30 1.40 1.50
B =0.65y =8.5;7=0.5 2.50 2.60 2.80 3.00 1.40 1.40 1.50 1.60
B =0.65y=8571=0.6| 230 2.40 2.60 2.80 1.50 1.60 1.70 1.80
B =0.65y=8.5;71=0.7 | 250 2.60 2.70 3.00 1.60 1.70 1.80 1.90

Mean | 226 235 251 272 | 165 170 181  1.95

Standard Deviation | 0.556  0.573  0.603  0.664 | 0.230 0.239 0.256  0.283
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LC4 (T=16mm)

LC1 (T=16mm)

YEMI-1
2

Figure 7.9: Equivalent correction factor, Y, , for basic load cases 1 and 4, as a function of non-
dimensional parameters y and T (Dark red surface: § = 0.53; Blue surface: 8 = 0.63). The absolute
size corresponds to a chord thickness of T = 16 mm.

LC1;T={16, 50} LC4;T={16, 50}

rel. err. [%] rel. err. [%]
401 401

20+ 20+

—20}+

—20}+

—40-
Figure 7.10: Relative error of expressions obtained from regression.

as follows:
Snom,LCl(/g: YT, T) B ( Ty ) 0-16 ([50 ) —086 (YO ) 0.70 ( To ) 0.39 (7.13)
Snom,c1(Bos Y0, Tos To) T B Y T ’
Snom,LC4(/5: Y, T, T) . (TO)O'IS (ﬁo)_0'34 (')/0)_0'32 (T0)0'44 (7 14)
Snom,.c4(Bo> Yo, o, To) T B Y T '
where,
Snomci(B,7,7,T) : nominal fatigue strength of the joint with geometric parameters
B, v, T and chord thickness T for load case LCi;
Snom,1.ci(Bos Y0, To,To) @ reference fatigue strength (or reference S, — N curve) for a joint with

reference geometric parameters for load case LCi;
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. . . . . . T,
Figure 57.115 illustrates the variation of the correction factors as a function of 70, %, Y—;, % for the

Ref. geometry
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Figure 7.11: Fatigue strength size correction factor as a function of the chord thickness and the
non-dimensional parameters for LC1 and LC4.

(0.13 and 0.14) for proportionally scaled joints. Since proportional scaling is a particular case of

non-proportional scaling, Equationsi(7.13)i can be used with 8 = B,y =y, and 7 = 7.

[ Bpiphepmpg4

7.3.3 Combined load case

For a load case resulting of combining the basic load cases, LC1 and LC4, the fatigue life can be

T/2
N = J 1 —da (7.15)
o C((Aopcr Yici(a/T)+ AcpcsYicsla/T))VTa)

1
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In order to simplify the integral in Equationi(7.15)} it is formally not possible to apply the Second
Mean Value Theorem as above and combine both basic load cases conserving the values a, for the
respective basic load cases as if they were acting alone. A different a, would result for each combination
of the basic load cases. This is not practical to use. In an attempt to use the same S, — N curve, as
for the isolated basic load case, the following equation was solved for the various geometries in the
parametric matrix and load cases corresponding to different Ao, /Ao, ratios. The error introduced by
adding Ao -Yi(a,, /T)+ Acys-Y4(a,,/T) (the representative depths found for individual basic load

cases) was found, for each case, solving the following equation:

T/2 1
J —da=(1+Error)x
o C (AUL(Jl'Y1(ar1/T)+AULC4'Y4(ar4/T)\/ na)

1

» (7.16)
x f ! 4
C (AULC1‘Yl(arl/T)+A0Lc4'Y4(ar4/T))m o (Wma)"

a

For the geometries and stress range ratios mentioned above, Figure 7.12ishows the envelope of the

simplified formulation gives unconservative fatigue lives. However, the simplified superposition in the
form Aoy -Yi(a, /T)+ Acy-Y4(a,,/T) is admissible as the error, for the combined case considered as
a simple superposition, remains low (less than 2%) and can be neglected.

o

0.
Ac1/(Dsl+Acd) [-]

Figure 7.12: Envelope of the relative error over the parametric matrix geometries for the combined
case, considering different absolute sizes (represented by the chord thickness, T) and different
g1

.. A
combination ratios —t
Aoy

Since strength using nominal stress cannot be represented by a single parameter anymore, for
combined load case 1 and 4, it is represented by a size correction factor given with respect to the
fatigue life, N:

N(LC,B,7,7,T)
N(LC7 /‘30; Yo, To> TO)

162 ° AGLCl + 168 N AULC4

162 (%)0416 (%)—0‘86 (7;_0)0.70 (%)0.39 AO-LCl 4 1.68 (%)0_15 (%)—0.34 (Y_YO)

—0.32 0.44
)0
( . ) A0y

(7.17)
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where,
N(LC,B,v,7,T) : fatigue life of the joint with geometric parameters f3, v, T and
chord thickness T for combined load case (Ao -1 + A0 c4);
N(LC, By, v0,7T9,Tg) : reference fatigue life for a joint with reference geometric parameters

for combined load case (Ao c1 + A0 c4);

As it can be observed, the correction factor for non-proportional sizing depends upon the different
geometric parameters y, 3, T and T but the parameters have different influences, in good agreement
with the trends given in Table 5.6.

7.3.4 Validation/Example

The procedure described in the previous paragraphs was applied to the tested series S1, S2, S3 and S5.
Table ::7:3: shows the calculation steps needed to compute the Ao, Y (a,/T) value and the ratios
between predicted fatigue life and experimental number of cycles (a = T /2 in both cases). A good
prediction (when speaking about fatigue lives) was found, ratios being between 0.5 and 1.53.

Figurei7.13;shows the S, — N plot of the fatigue tests carried out at ICOM and the results obtained
for the geometries in the parametric matrix considering two absolute sizes (represented by chord
thicknesses T = 16 mm and T = 50 mm) and three load cases (100% LC1, 50%LC1 + 50% LC4, 100%
LC5).

Results for the geometries in the parametric matrix superpose with the S, — N resistance line
both for isolated and combined load cases. For the experimental tests, some scatter is still present,
although the points are narrower than in the S, — N plot (see Figure 3.14). This is due to the number
of random processes that may influence fatigue crack propagation but are not accounted for in the
numerical models.

Table 7.4 details the parameters used to model the tested series S1, S2, S3 and S5 and case C100
from the parametric study. The effect of the eccentricity can be shown by analysing the results obtained
for the tested series, with e/D ratios different from parametric geometries (e/D = 0.23) for instance
between S5 test and C100 case. For these cases, although the main non-dimensional parameters (3, v,

Table 7.3: Example of application of the procedure to the fatigue tested joints.

: ar ar r N, red.

Series T, a, Y (Tl) a, Y, (T4) Aoy Ao, TAoY (“7) R
[mm] [mm] [-] [mm] [-] [N/mm?] [N/mm?] [N/mm?] [-]

S11 20 086 241 077 167 47.7 22.9 153.2 0.82
s12 20 086 241 077 167 48.1 22.9 154.2 0.54
S13 20 086 241 077 167 42.6 21.8 139.3 1.21
S14 20 086 241 077 167 50.6 22.5 159.6 1.03
s21 20 097 332 077 138 43.3 25.6 179.2 0.64
S22 20 097 332 077 138 42.2 25.4 175.4 0.50
s23 20 097 332 077 138 42.4 21.2 170.3 1.14
s31 125 077  3.08 061  1.29 50.2 37.8 203.2 0.84
s32 125 077  3.08 0.6l  1.29 48.5 38.2 198.6 0.54
$33 125 077  3.08 061  1.29 49.6 38.9 202.6 0.59
$34 125 077  3.08 061  1.29 51.0 39.1 207.4 0.50
S5 20 070 123 079  1.89 152.0 33.3 250.5 1.53

Ac-Y (&) =A0,Y, (2) + Aoy, (22
T, 141 T 414 T;
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Figure 7.13: Application of the procedure described in Section7.3.3 to fatigue tested series and
geometries in parametric matrix. For the parametric table geometries two chord thicknesses (T =
16mm and T = 50mm) and three load cases are considered (100% LC1, 50%LC1 + 50% LC4, 100%

LC5).

7) are the same, by changing the e/D ratio, differences of about 35% for load case 1 and 10% for load
case 4 are found. This highlights the importance of the eccentricity, e. Attention should be paid when
using the expressions deduced in this thesis for K-joints exhibiting a different e/D ratio, as the results
may vary significatively.

The Y, approach proposed herein covers geometrical size effects due to thickness and relative tube
sizes. However, uncertainties and inevitable variables influencing the fatigue behaviour include:

* Specimen preparation and fabrication;
* Location and conditions of tests (labs, set-ups, machines, procedures...);
* Type of loading: axial in the chord, braces or both, in-plane and out-of-plane bending;

+ Technological size effects (welding procedure, residual stresses, etc.);

Table 7.4: Influence of the eccentricity/gap in the determination of representative crack depth Y (a,/T).

Id geometry e/D Wi/t a, Y(a,/T) a, Y(a,/T)

S1 B =0.51;y=6.8,7=0.63;T =20mm 0.08* 1.20 0.86 2.41 0.84 1.63
S2 p=0.51;y=6.8;7=0.63; T =20mm 0.20° 1.20 0.97 3.32 0.79 1.48
S3 f=051;y=6.8;7=0.63; T =12.5mm 0.20° 1.20 0.77 3.08 0.62 1.37
S5 B =0.53;y=42;7=040;T =20mm 0.13* 1.88 0.70 1.23 0.79 1.89
Cl100 B =0.53;y=4.2;7=040;T=20mm 0.23 1.88 0.80 1.65 0.75 1.73

* mean values
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7.4 Comparison Y(a,/T)and SCF

Figure 7.14ishows the comparison between the SCF values and Y (a,/T) values for the geometries in
the parametric matrix for basic load cases 1 and 4. The SCF were obtained from interpolation of SCF

values are generally higher than the SCF values. This may be explained by the fact that they include
the stress raising due to the weld profile. Values for load case 4 seem to present some correlation while
for load case 1 the scatter seems to indicate no relation between SCF and Y, . The reason for this fact
may be searched analysing Figuresi7.7. For load case 4 the representative depth plot is flatter then for
load case 1. It means the representative depth is more sensitive to non-dimensional parameters and
might explain why for load case 4, the correlation between surface structural stress and total stress at
an "almost" constant through thickness depth is more pronounced.

LC1 LC4
SCF[-] SCF[-] > f-0837-427-04
30 3.0 o p=053y=427=05
J .
°
>
25 25 o
g} o
5 b N y
2.0 B 2.0 o p=053y=857=05
4 ®  p=053y=857=06
oo ®  j=053y=857=07
» b > B=0.65; 2;7=04
15 D> 15 o p=065y=42;
D. > ’ DB > ® ° B=0.65; 7=0.
> - B=0.65,y=4.2,7=0.7
% D@%ﬁ"ﬂg :
1.0 > 1.0 °
°
o
> p=065y=857=04
05 05 o p=065y=857=05
©  p=065y=857=06
©  p=065y=857=071
0.0 Y@/Mi-1 00 Y(a/m-
0.0 0.5 1.0 15 20 25 3.0 0.0 05 1.0 15 20 25 3.0

Figure 7.14: Comparison of SCF values and Y (T = 16 mm).

7.5 Efficiency of joint geometries

For the designer, the presentation of the size effects in terms of fatigue strength, S, ,,,, as a function
of B, v, T does not provide immediate help regarding the choice of tubes dimensions. In fact, an
increase in the chord thickness is associated with a decrease in fatigue strength of the joint. However
the cross-section increases as well, and thus, the force range it can resist. It is therefore interesting
to analyse these results in terms of cross-sectional area of joined elements and force range the joint
would resist, AF (see Figure7.15).

The joint efficiency to resist fatigue loading (force range per area of joined elements cross sectional
area) depends on the load case and geometric parameters. It is higher for lower y and 7 values when
the joint is under load case 1. Joint efficiency is higher for higher y and lower 7 values for load case 4.
predominant, comparing the fatigue efficiency of different sections.

Figurei7.16ishows the force range admissible in the brace (AF;¢;) or in the chord (AF;,), but,
this time, assuming a distribution of stresses typical to bridge truss loading (30% Ao, + 70%A0 ).
The same trends as for isolated basic load cases except for the effect of y in the AF;4: for combined
load case an increase of y reduces the admissible axial force range in the chord.
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Figure 7.15: Force range the joint would resist, AF, against cross-sectional area of joined elements,
Achord+diagonal> considering basic load cases acting alone.
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Figure 7.16: Force range the joint would resist, AF, against cross-sectional area of joined elements,
Achord+diagonal> considering a combined load case typical to bridge truss.

7.6 Conclusions

In this chapter, in order to uncover the non-proportional scaling effect, the parametric results were
analysed focusing on the geometry correction factor, Y. Based on LEFM, a representative crack
depth, a,, at which the geometry correction factor takes an equivalent through depth value Y, was
determined for each geometry in the parametric matrix. The stress range is calculated at a depth
depending on the joint geometry, and load case considered. Thickness effects as well as other geometric
size effects (attachment and load effects) are encapsulated in both the geometry correction factor and
the representative distance at which the stress should be calculated. As a disadvantage to this method
it can be pointed that the stress values can be numerically calculated but not experimentally measured
through depth. An alternative approach for fatigue assessment of CHS joints is suggested based on
the equivalent geometry correction factor value, Y, . This method proposes, basically, one S, — N
resistance line valid for all geometries and joint thicknesses in the parametric range. Based on the
work presented in this chapter, the following conclusions are made on the following topics:

* Representative crack depth a,:
¢ Depends on the thickness, the non-dimensional parameters and load case;
¢ Generally a, < 1mm and it is deeper for load case 1 than for load case 4;
& Varies approximately with +/T.

¢ For load case 1, 3 and y are the most influencing non-dimensional parameters. For load
case 4, T and 3 are the parameters influencing the representative crack depth the most.

¢ Expressions are proposed to estimate the representative crack depth as a function of of f3,
v, T, T. They are valid within the parametric matrix limits defined in section5.2;

¢ Equivalent geometry correction factor values, Y,
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© Depends on T at a great extent (exponent of about 0.15 similar for both load cases 1 and
4);

© Depends also on f3,y, T parameters;

¢ Formulas to compute the equivalent geometry correction factor are proposed - valid within
the parametric limits;

¢ Attention should be paid to the importance of the eccentricity. The blind use of formulas
for the same tube dimensions but different joint eccentricities can lead to bad estimations,
this being dependent on the acting load case;

© Compared to SCF values, Y(a,/T) values are generally higher for the same geometry.
This would be expected since the Y(a,/T) includes not only the structural stress but also
the stress peak due to the weld profile. It seems to exist a correlation between SCF and
Y, values, at least for basic load case 4;

¢ Two expressions, describing the equivalent correction factor values, for the geometries in
the parametric range as a function of the non-dimensional parameters and chord thickness
are proposed for load case 1 and 4. More parametric studies are needed, specially to
include the effect of joint eccentricity and thus provide a more general expression.

¢ Equivalent geometry correction factor method:

© Approach accounts for the thickness, attachment and load effects;

Lo

Applicable for basic and combined load cases;
¢ Single S, — N is needed;

¢ Provided a good estimation of fatigue life for the fatigue tests on CHS K-joints carried out
at ICOM.

¢ Extensive validation using fatigue tests is needed before it can be safely used in design
practice and establish design factors.

¢ The use of the proposed method is extensible to other welded details. Its application
requires the knowledge of the equivalent geometry correction factor, Y(a,/T), or the
geometry correction factor function, Y;

© Size correction factors, function of f3,v, 7, T, were determined for basic load cases (in

* Efficiency of the joint geometry

© Joint geometry efficiency is higher for lower y and 7 values for load case 1.

¢ Joint geometry efficiency is higher for higher y and lower 7 values for load case 4.
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8

Summary, conclusions and future work

This chapter summarises the work outlined in the previous chapters and presents the main conclusions
as a synthesis of the conclusions found at the end of each chapter. In the course of this research work,
scientific issues were raised that could not be resolved. The most important ones are presented here as
recommendations for future work.

8.1 Summary

At the experimental level, two large-scale S355 steel trusses made of welded CHS were tested. These
fatigue tests were aimed at augmenting the existing database and follow the investigation previously
carried out at ICOM on proportionally scaled joints. As a novelty, an Alternating Current Potential
Drop (ACPD) system was used to monitor the fatigue crack growth in a large scale truss specimen and
thus to allow for more thorough numerical model validation.

At the analytical level, a numerical model was developed to simulate fatigue crack propagation.
The isolated K-joint geometry was modelled using BEM Beasy software. Weld profiles were realistically
modelled and the possibility to introduce an initial surface crack at hot-spot locations 1 and 11 was
implemented. The crack propagation was simulated in a step wise way by incrementally increasing the
crack size.

Non-dimensional geometrical parameters and different absolute sizes, typical to bridge designs
but currently not covered by static and fatigue design specifications, were studied in a parametric
study. The main parameters of interest in this investigation were: the brace-to-chord diameter ratio
(), the chord slenderness (y), thickness ratio (7) and chord thickness (T). A number of assumptions
regarding other parameters and dimensions were made in order to define a standard geometry and to
ensure uniformity in the models created for the parametric study. A preliminary study was carried out
to qualitatively investigate the effect of eccentricity (e), chord length (L), truss height (H), weld size
(W), crack shape (a/c) and crack angle (¢,.4.x)- Results of the parametric study were discussed in
terms of stress intensity factor at different crack depths and in terms of fatigue strength.

Parametric study results were then used to determine the geometry correction factor, Y, as a
function of the relative crack depth, a/T, for the different geometries and main basic load cases under
investigation. This geometry correction factor is common to a set of homothetic joints and was used to
investigate how proportional scaling of a joint can affect its fatigue behaviour - that is to evaluate what
is commonly known as the thickness effect. As the result of this analysis, thickness correction factors
were determined for the geometries in the parametric matrix.

Non-proportional scaling is often the dominant scenario for tubular bridge applications. This occurs
when the members’ relative dimensions change with respect to one another. A new approach to assess
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fatigue behaviour of non-proportionally scaled tubular joints was proposed. It is based on Linear
Elastic Fracture Mechanics (LEFM) and makes use of the geometry correction factor, Y, that accounts
for geometric size effects. According to this approach, there is, for each geometry and load case, a
representative crack depth, a,, at which the geometry correction factor function equals a through
thickness equivalent value. This equivalent value can be correlated to fatigue life using a specific
Sa, — N resistance line, valid for thicknesses in the range of 16 mm to 60 mm. The chord thickness as
well as other geometric and loading parameters effects are encapsulated in the geometry correction
factor, Y, calculated at the representative crack depth, Y(a,/T). Based on this approach, it is shown
that size correction factors, for main basic load cases (balanced axial load in the braces: LC1, or axial
load in the chord: LC4), can be expressed as a function of the chord thickness, and the non-dimensional
parameters defining the joint geometry.

8.2 Conclusions

The main goals of this thesis work were to understand the fatigue behaviour of as-welded CHS K-joints
and clarify the geometrical size effects involved. Other principal objectives are listed in Section 1.4
The most significant conclusion of this investigation regarding the understanding of size effects is that
the fatigue behaviour of welded tubular joints is highly influenced by the members dimensions, not
only by the failing member wall thickness, and the applied load cases. It is shown that a size correction
factor describing these influences can be found for the principal basic load cases, and for a load case
resultant of combining these. Simultaneously, a new local stress approach, deduced using LEFM, is
proposed in order to predict the fatigue life of welded tubular K-joints made out of CHS, taking into
account both the joint geometry and the loading scenario. The other main conclusions include:

+ Terms and parameters associated with size effects have been clearly defined (see Section2.6.1);

* The range of applicability of current fatigue specifications is limited and does not cover geometries
typical to tubular bridge design. There is a lack of data for joint thicknesses common to bridge
applications and scatter in the data related to the inclusion of many different parameters;

+ ACPD (Alternative Current Potential Drop) measuring system can be applied on a large-scale
tubular truss beam with multiple current paths;

¢ Fatigue tests confirm that welded tubular joints show crack propagation mainly because of initial
weld toe defects. Crack initiation accounted for only approximately 10% of the fatigue life;

+ High tensile welding residual stresses are present within the tubular joints. With regard to the
influence of welding residual stresses, fatigue cracks were observed both at hot-spot 1 of joints
with the chord in tension as well as at hot-spot 1c of joints with the chord in compression;

¢ Results from the numerical model compare well with the experimental measurements (nominal
strains, hot-spot strains and stress intensity factors), thus giving a good estimation of the fatigue
life of the joints;

* When proportional scaling is done, the thickness correction factor remains the same regardless
of whether it is based on nominal or hot-spot stress (as the SCF remains the same for homothetic
joints);

¢ The thickness correction factor exponent (accounting for proportional scaling), can be expressed

n
using the classical form for plates (%) . The exponent values (n) found from the parametric

study vary from 0.12 to 0.14, when referring to fatigue strength, and 0.37 to 0.43 when referring
to fatigue life, for the basic load cases LC1 and LC4 respectively;

+ Advantages of the LEFM equivalent geometry correction factor value method include:
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¢ Accounts for the thickness, the non-dimensional parameters and the load effects.
¢ Applicable for basic and combined load cases.
¢ Single S, — N line is able to account for thickness, attached tubes and load effects.

¢ Provides a good estimation of fatigue life for the fatigue tests on CHS K-joints carried out
at ICOM.

¢ Can be generalised to other welded details. However, its application requires the knowledge
of the geometry correction factor in the form of a function.

+ Two functions describing the size effect correction factors are proposed for load cases LC1 and
LC4. These are valid for the geometries within the parametric range and are expressed as
functions of the non-dimensional parameters and chord thickness. The effect of joint eccentricity
is not included and thus the expressions do not have a general applicability.

* The size effect (non-proportional scaling) correction factors:

¢ Depend on chord thickness, T, at a great extent (exponent of about 0.15 similar for both
load cases LC1 and LC4).

© Were shown to also depend on f3,y, T parameters.

* Attention should be paid to the importance of the eccentricity. The blind use of formulas for the
same tube dimensions but different joint eccentricities can lead to bad estimations, this being
dependent on the acting load case.

* The efficiency of the joint geometry:
¢ Is higher for lower y and 7 values under load case LC1.
¢ Is higher for higher y and lower 7 values under load case LC4.

¢ For a load scenario typical to bridge truss loading (30%Aoc,4 + 70%A0 ), the same trends
as for isolated basic load cases exist, except that an increase in y reduces the admissible
axial force range in the chord.

8.3 Future work

The current investigation scope is limited to non-overlapping welded K-joints made out of CHS. A
natural and valuable follow-up of this thesis would be to extend the domain of validity of these results
to different joint types and geometries. In particular, it would be of interest to study the behaviour of
to multi-planar KK-joints. Another specific aspect that was briefly discussed and requires further work,
is the effect of joint eccentricity. The joint eccentricity should be included in future parametric studies
in order to find expressions of general applicability.

In Sectioni7, the basis for a new method to assess fatigue life of tubular joints are presented. More
validation work and broad discussions are needed in order to include it in recommendations for the
fatigue design of tubular joints.

A future step related to the work presented here is the study of post-weld improvement techniques
and how these affect the size effect findings for as-welded joints. This requires the inclusion of residual
stresses (tension resulting from welding and compression from post-weld treatment) in the numerical
modelling. This step is necessary to better simulate crack growth under different stress ratios and
under variable amplitude loading.

The inclusion of post-weld improvement implies, simultaneously, that the model becomes much
more complex. In fact, as the crack initiation period becomes non-negligible and cracks are more likely
to initiate at other joint locations along the weld toe/root (whose resistances were not improved).
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A probabilistic study that includes multiple crack sites, which simulates both crack initiation and
crack propagation, as well as the uncertainties involved in residual stresses and technological size
effects, is desirable. It would allow to establish the reliability of welded K-joints of different sizes under
different loadings. This effort will be a major step towards efficient design of tubular bridges and make

them truly economically competitive.
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A.1 Map of gages - S5-1
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A.1. MAP OF GAGES - S5-1
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Tubular truss strain gages and displacement transducers map (S5-1).

Figure A.1
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A.2 Map of gages - S5-2
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A.2. MAP OF GAGES - S§5-2
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Figure A.2: Tubular truss strain gages and displacement transducers map (S5-2).
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A.3 Metallography procedure

¢ Cutting of the specimen: area near the weld toe;

L 4

Section to look in detail: longitudinal symmetry plan;

¢ Specimen polishing (mirror polishing): using sand paper with decreasing granulometry (250-
500-1000-2400 grains per inch?) and then with diamond powder (6 um-1 pm)

*

Nital etching (acid nitric 2% - ethanol): attack for 10 sec and then neutralization by washing
with ethanol;

L 4

Naked eye and microscopic observation up to 50x (see Figure3.25);
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B.1 Simplified bar model
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Figure B.1: Simplified bar model - Axial force.

14.469 kNm

0.586 m

Max M-2: 16.01, Min M-2: -4.94 kKNm

Figure B.2: Simplified bar model - Bending moment.
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B.2 ACPD results

B.2.1 ACPD results

147
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Figure B.3: ACPD results, S5-1, unfiltered.
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Figure B.4: ACPD results, S5-1, filtered.
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B.2.2 ACPD results - Crack depth against number of cycles
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Figure B.7: Number of cycles vs. crack depth at probe location for series S5-1 joints.

S5-1 Jointl S5- 1 Joint2
d [mm]
10
o
o " ~ vs
1 1
I P2 ~
= I - — o
>
0.1 == o 0.1 — =
] > 4
Y _" andl P8
P
0.01 0.01 r L
< =
0.001 - N leyclesl 0.001 — —- N leyclesl
10000 15000 20000 30000 50000 70000 100000 150000 10000 15000 20000 30000 50000 70000 100000 150000

Figure B.8: Number of cycles vs. crack depth at probe location for series S5-1 joints - using filtered
results.
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B.2.3 ACPD results - Crack growth against number of cycles
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Figure B.10: Crack growth rate vs. number of cycles - S5-1.

B.2.4 ACPD results - SIF against number of cycles

S5-1 Joint 1

AK [N mm~3?]
2000

1500

1000

700 P

500 - esoeenc® WP

300 - “ o

200
150

100 N [cycles]
10000 15000 20000 30000 50000 70000 100000 150000

S5-1

AK [N mm3?]
2000

Joint 2

1500

1000

700

500

300

200

150

100
10000

15000 20000 30000

N [cycles]
50000 70000 100000 150000

Figure B.11: Stress intensity factors vs. number of cycles.
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B.2.5 ACPD results - Crack growth against number of cycles
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Figure B.12: Stress intensity factor range AK vs. relative thickness (d/T).
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C

Numerical model
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Figure C.1: Comparison of the AK for the three different crack opening modes for load cases 4 and 5
(Ao, pm = 100MPa, 8 =0.53;y =4.2;7 =0.4; T = 20mm).

Looking at the amplified deformation of the joint (Load case 1), one can identify the different
potential crack sites.
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Figure C.2: Available boundary elements in BEASY (from :BEASY:: GZOOBD).
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Figure C.3: Joint deformation mode (Load case 1).
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D

Parametric study

D.1 Parametric table

Table D.1: Parametric cases ID.

T B
0.53 0.65
Y Y
4.2 7 8.5 4.2 7 8.5

0.4 180, 169, 181, 168 109, 132 113,136 117,140 143,183 125,147
0.5 129,178,106 110,133,179 114,137 171,172 122,144 126,148
0.6 107, 130 111,134 115,138 119,142 123,145 127, 149
0.7 108, 131 112, 135 116,139 120,170 124,146 150,184
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Table D.2: Parametric table.

Parametric table

ID D T d t e 6 B v T a { g e/D Ly H Wl W2 W3
[mm] [mm] [mm] [mm] [mm] - - - - - - [mm] - [mm] [mm] [mm] [mm] [mm]
C87 1683 100 889 7.0 220 60 0.538.420.7025.80.1219.9  0.13 2167.0 1800.0 9.5 63 3.2
C88168.3 200 889 80 220 60 0.534.210.4025.70.1219.9  0.13 2166.0 1800.0 15.0 10.0 5.0
C89 168.3 200 889 80 38.0 60 0.534.210.4025.70.2338.4  0.23 2166.0 1800.0 150 100 5.0
C90 842 10.0 445 40 19.0 60 0.534.210.4025.70.2319.2  0.23 1083.0 900.0 75 50 25
C91336.6 40.0 1778 16.0 76.0 60 0.534.210.4025.70.2376.8  0.23 4332.0 3600.0 30.0 20.0 10.0
C92 504.9 60.0 266.7 24.0 1140 60 0.534.210.4025.70.23115.2 0.23 6498.0 5400.0 45.0 30.0 15.0
€93 2525 30.0 1334 12.0 57.0 60 0.534.210.4025.70.2357.6  0.23 3249.0 2700.0 22.5 150 7.5
C94 168.3 10.0 889 40 380 60 0.538.420.4025.70.2338.4  0.23 2166.0 1800.0 9.5 6.3 3.2
C95168.3 100 889 50 38.0 60 0.538.420.5025.70.2338.4  0.23 2166.0 1800.0 9.5 63 3.2
C96 168.3 10.0 889 7.0 38.0 60 0.538.420.7025.70.2338.4  0.23 2166.0 1800.0 9.5 63 3.2
C97 169.3 10.0 889 80 38.0 60 0.538.470.8025.60.23 39.  0.22 2166.0 1801.0 9.5 63 3.2
C98 842 100 445 40 19.0 60 0.534.210.4025.70.2319.2  0.23 1083.0 9000 7.5 50 25
C99 168.3 200 889 80 38.0 60 0.534.210.4025.70.2338.4  0.23 2166.0 1800.0 150 100 5.0
C100168.3 20.0 889 80 380 60 0.534.210.4025.70.2338.4  0.23 2166.0 1800.0 150 10.0 5.0
C101168.3 20.0 889 80 220 60 0.534.210.4025.70.1219.9  0.13 2166.0 1800.0 150 10.0 5.0
C102336.6 40.0 2150 28.0 120.0 60 0.644.210.7025.70.2584.6  0.36 4332.0 3600.0 52.5 350 17.5
C103508.0 60.0 325.0 42.0 180.0 60 0.644.230.7025.20.25125.9 0.35 6400.0 5000.0 78.8 52.5  26.3
C104168.3 20.0 108.0 140 60.0 60 0.644.210.7025.70.2541.7  0.36 2166.0 1800.0 26.3 17.5 8.8
C105273.0 320 1750 225 98.0 60 0.644.270.7025.60.2568.7  0.36 3500.0 2900.0 42.3 282 14.1
C106504.9 60.0 266.7 30.0 116.1 60 0.534.210.5025.70.23117.6 0.23 6488.0 5406.6 56.4 37.6 18.8
C107504.9 60.0 266.7 360 1161 60 0.534.210.6025.70.23117.6 0.23 6488.0 5406.6 67.7 451 22.6
C108504.9 60.0 266.7 420 1161 60 0.534.210.7025.70.23117.6  0.23 6488.0 5406.6 79.0 52.6  26.3
C109504.9 36.0 266.7 145 1161 60 0.537.010.4025.70.23117.6 0.23 6488.0 5406.6 27.3 182 9.1
C110504.9 36.0 266.7 18.0 1161 60 0.537.010.5025.70.23117.6 0.23 6488.0 5406.6 33.8 22.6 11.3
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... continued

ID D T d t e 6 B v © a ¢ g e/D L, H W1 W2 W3
C111504.9 36.0 266.7 21.5 116.1 60 0.537.010.6025.70.23117.6 0.23 6488.0 5406.6 40.4 26.9 13.5
C112504.9 36.0 266.7 25.3 116.1 60 0.537.010.7025.70.23117.6  0.23 6488.0 5406.6 47.6 31.7 15.9
C113504.9 29.7 266.7 12.0 116.1 60 0.538.500.4025.70.23117.6  0.23 6488.0 5406.6 22.6 15.0 7.5
C114504.9 29.7 266.7 14.8 116.1 60 0.538.500.5025.70.23117.6 0.23 6488.0 5406.6 27.8 18.5 9.3
C115504.9 29.7 266.7 179 116.1 60 0.538.500.6025.70.23117.6 0.23 6488.0 5406.6 33.7 224 11.2
C116504.9 29.7 266.7 20.7 116.1 60 0.538.500.7025.70.23117.6  0.23 6488.0 5406.6 38.9 259 13.0
C117504.9 60.0 330.0 24.0 180.0 60 0.654.210.4025.70.23118.3 0.36 6488.0 5406.6 45.1 30.1 15.0
C118504.9 60.0 330.0 30.0 180.0 60 0.654.210.5025.70.23118.3 0.36 6488.0 5406.6 56.4 37.6 18.8
C119504.9 60.0 330.0 36.0 180.0 60 0.654.210.6025.70.23118.3 0.36 6488.0 5406.6 67.7 45.1 22.6
C120504.9 60.0 330.0 42.0 180.0 60 0.654.210.7025.70.23118.3 0.36 6488.0 5406.6 79.0 52.6 26.3
C121504.9 36.0 330.0 14.5 180.0 60 0.657.010.4025.70.23118.3 0.36 6488.0 5406.6 27.3 18.2 9.1
C122504.9 36.0 330.0 18.0 180.0 60 0.657.010.5025.70.23118.3 0.36 6488.0 5406.6 33.8 22.6 11.3
C123504.9 36.0 330.0 21.5 180.0 60 0.657.010.6025.70.23118.3 0.36 6488.0 5406.6 40.4 26.9 13.5
C124504.9 36.0 330.0 25.3 180.0 60 0.657.010.7025.70.23118.3 0.36 6488.0 5406.6 47.6 31.7 15.9
C125504.9 29.7 330.0 12.0 180.0 60 0.658.500.4025.70.23118.3 0.36 6488.0 5406.6 22.6 15.0 7.5
C126504.9 29.7 330.0 14.8 180.0 60 0.658.500.5025.70.23118.3 0.36 6488.0 5406.6 27.8 18.5 9.3
C127504.9 29.7 330.0 17.9 180.0 60 0.658.500.6025.70.23118.3 0.36 6488.0 5406.6 33.7 224 11.2
C128504.9 29.7 330.0 20.7 180.0 60 0.658.500.7025.70.23118.3 0.36 6488.0 5406.6 38.9 259 13.0
C129168.3 20.0 88.9 10.0 39.0 60 0.534.210.5025.70.23 39.5 0.23 2162.7 1802.2 18.8 12.5 6.3
C130168.3 20.0 88.9 12.0 39.0 60 0.534.210.6025.70.23 39.5 0.23 2162.7 1802.2 22.6 15.0 7.5
C131168.3 20.0 88.9 14.0 39.0 60 0.534.210.7025.70.23 39.5 0.23 2162.7 1802.2 26.3 17.5 8.8
C132168.3 12.0 88.9 4.8 39.0 60 0.537.010.4025.70.23 39.5 0.23 2162.7 1802.2 9.0 6.0 3.0
C133168.3 12.0 88.9 6.0 39.0 60 0.537.010.5025.70.23 39.5 0.23 2162.7 1802.2 11.3 7.5 3.8
C134168.3 12.0 88.9 7.2 39.0 60 0.537.010.6025.70.23 39.5 0.23 2162.7 1802.2 13.5 9.0 4.5
C135168.3 12.0 88.9 8.4 39.0 60 0.537.010.7025.70.23 39.5 0.23 2162.7 1802.2 15.8 10.5 5.3
C136168.3 9.9 88.9 4.0 39.0 60 0.538.500.4025.70.23 39.5 0.23 2162.7 1802.2 7.5 5.0 2.5
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... continued

ID D T d t e 6 B v 1T a ( g e/D Ly H w1 W2 W3
C137168.3 9.9 88.9 5.0 39.0 60 0.538.500.5125.70.23 39.5 0.23 2162.7 1802.2 9.4 6.3 3.1
C138168.3 9.9 88.9 6.0 39.0 60 0.538.500.6125.70.23 39.5 0.23 2162.7 1802.2 11.3 7.5 3.8
C139168.3 9.9 88.9 7.0 39.0 60 0.538.500.7125.70.23 39.5 0.23 2162.7 1802.2 13.2 8.8 4.4
C140168.3 20.0 110.0 8.0 60.0 60 0.654.210.4025.70.23 39.4  0.36 2162.7 1802.2 15.0 10.0 5.0
C141168.3 20.0 110.0 10.0 60.0 60 0.654.210.5025.70.23 39.4  0.36 2162.7 1802.2 188 12.5 6.3
C142168.3 20.0 110.0 12.0 60.0 60 0.654.210.6025.70.23 39.4  0.36 2162.7 1802.2 22.6 15.0 7.5
C143168.3 12.0 110.0 4.8 60.0 60 0.657.010.4025.70.23 39.4  0.36 2162.7 1802.2 9.0 6.0 3.0
C144168.3 12.0 110.0 6.0 60.0 60 0.657.010.5025.70.23 39.4  0.36 2162.7 1802.2 11.3 7.5 3.8
C145168.3 12.0 110.0 7.2 60.0 60 0.657.010.6025.70.23 39.4  0.36 2162.7 1802.2 13.5 9.0 4.5
C146168.3 12.0 110.0 8.4 60.0 60 0.657.010.7025.70.23 39.4  0.36 2162.7 1802.2 15.8 10.5 5.3
C147168.3 9.9 110.0 4.0 60.0 60 0.658.500.4025.70.23 39.4  0.36 2162.7 1802.2 7.5 5.0 2.5
C148168.3 9.9 110.0 5.0 60.0 60 0.658.500.5125.70.23 39.4  0.36 2162.7 1802.2 9.4 6.3 3.1
C149168.3 9.9 110.0 6.0 60.0 60 0.658.500.6125.70.23 39.4  0.36 2162.7 1802.2 11.3 7.5 3.8
C150168.3 9.9 110.0 7.0 60.0 60 0.658.500.7125.70.23 39.4  0.36 2162.7 1802.2 13.2 8.8 4.4
C151168.3 20.0 88.9 8.0 60.0 60 0.534.210.4025.70.38 63.8 0.36 2166.0 1800.0 15.0 10.0 5.0
C152168.3 20.0 88.9 8.0 39.0 60 0.534.210.4025.70.23 39.5 0.23 2166.0 1800.0 15.0 10.0 5.0
C153168.3 20.0 88.9 8.0 30.0 60 0.534.210.4025.70.17 29.2 0.18 2166.0 1800.0 15.0 10.0 5.0
C154168.3 20.0 88.9 8.0 22.0 60 0.534.210.4025.70.12 19.9 0.13 2166.0 1800.0 15.0 10.0 5.0
C155168.3  20.0 88.9 8.0 22.0 60 0.534.210.4025.70.12 19.9 0.13 2166.0 1800.0 15.0 10.0 5.0
C156168.3 20.0 88.9 8.0 22.0 60 0.534.210.4025.70.12 19.9 0.13 2166.0 1800.0 15.0 10.0 5.0
C157168.3  20.0 88.9 8.0 22.0 60 0.534.210.4025.70.12 19.9 0.13 2166.0 1800.0 15.0 10.0 5.0
C158168.3 20.0 88.9 8.0 22.0 60 0.534.210.4025.70.12 19.9 0.13 2166.0 1800.0 15.0 10.0 5.0
C159168.3  20.0 88.9 8.0 22.0 60 0.534.210.4025.70.12 19.9 0.13 2166.0 1800.0 15.0 10.0 5.0
C160168.3  20.0 88.9 8.0 39.0 60 0.534.210.4038.60.23 39.5 0.23 3249.0 1800.0 15.0 10.0 5.0
C161168.3 20.0 88.9 8.0 39.0 60 0.534.210.4012.90.23 39.5 0.23 1083.0 1800.0 15.0 10.0 5.0
C162168.3 20.0 88.9 8.0 39.0 60 0.534.210.4025.70.23 39.5 0.23 2166.0 2700.0 15.0 10.0 5.0
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... continued

ID D T d t e 6 B v © a ¢ g e/D L, H W1 W2 W3
C163168.3 20.0 88.9 8.0 39.0 60 0.534.210.4025.70.23 39.5 0.23 2166.0 900.0 15.0 10.0 5.0
C164168.3 20.0 88.9 8.0 39.0 60 0.534.210.4025.70.23 39.5 0.23 2166.0 1800.0 22.5 15.0 7.5
C165168.3 20.0 88.9 8.0 39.0 60 0.534.210.4025.70.23 39.5 0.23 2166.0 1800.0 7.5 5.0 2.5
C166168.3 20.0 88.9 8.0 22.0 60 0.534.210.4025.70.12 19.9 0.13 2166.0 1800.0 15.0 10.0 5.0
C167168.3 20.0 88.9 8.0 22.0 60 0.534.210.4025.80.12 19.9 0.13 2167.0 1801.0 15.0 10.0 5.0
C168504.9 60.0 266.7 24.0 116.1 60 0.534.210.4025.70.23117.6  0.23 6488.0 5406.6 45.1 30.1 15.0
C169168.3 20.0 88.9 8.0 38.7 60 0.534.210.4025.70.23 39.2 0.23 2162.7 1802.2 15.0 10.0 5.0
C170168.3 20.0 110.0 14.0 60.0 60 0.654.210.7025.70.23 39.4  0.36 2162.7 1802.2 26.3 17.5 8.8
C171504.9 60.0 330.0 30.0 180.0 60 0.654.210.5025.70.23118.3 0.36 6488.0 5406.6 56.4 37.6 18.8
C172168.3 20.0 110.0 10.0 60.0 60 0.654.210.5025.70.23 39.4  0.36 2162.7 1802.2 18.8 12.5 6.3
C173168.3 20.0 88.9 8.0 22.0 60 0.534.210.4025.70.12 19.9 0.13 2166.0 1800.0 15.0 10.0 5.0
C174168.3 20.0 88.9 8.0 38.0 60 0.534.210.4025.70.23 38.4  0.23 2166.0 1800.0 15.0 10.0 5.0
C175168.3 20.0 88.9 8.0 22.0 60 0.534.210.4025.70.12 19.9 0.13 2166.0 1800.0 15.0 10.0 5.0
C176273.0 20.0 139.7 12,5 54.0 60 0.516.830.6315.40.21 58.7 0.2 2100.0 1781.0 15.0 12.0 8.0
C177504.9 36.0 330.0 14.5 180.0 60 0.657.010.4025.70.23118.3 0.36 6488.0 5406.6 27.3 18.2 9.1
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Table D.3: Parametric results.

Parametric results

ID T e B Y T a { e/D ag T /50 T/20 T/8 T/6 T/2
[(] [mm] [mm] [-] [-] [] [] [] [] SIF(a) LCuygs Nmm~
C106 60 116.1 0.53 4.2 0.50 25.7 0.23 0.23 0.15 1.20 3.00 7.50 10.00 30.00
291 411 485 580 622 952
320 456 549 694 765 1356
658 937 1123 1397 1522 2439
C107 60 116.1 0.53 4.2 0.60 25.7 0.23 0.23 0.15 1.20 3.00 7.50 10.00 30.00
335 488 566 683 728 1168
347 509 599 758 825 1456
455 666 781 973 1049 1677
C108 60 116.1 0.53 4.2 0.70 25.7 0.23 0.23 0.15 1.20 3.00 7.50 10.00 30.00
342 494 575 692 738 1177
381 554 654 811 877 1451
490 711 837 1023 1096 1639
C109 36 116.1 053 7.0 0.40 25.7 0.23 0.23 0.15 0.72 1.80 4.50 6.00 18.00
356 484 565 680 720 1007
196 268 321 417 464 908
209 284 341 440 488 925
C110 36 116.1 0.53 7.0 0.50 25.7 0.23 0.23 0.15 0.72 1.80 4.50 6.00 18.00
393 522 616 733 780 1101
224 300 361 459 508 955
200 267 319 402 442 791
Cl111 36 116.1 0.53 7.0 0.60 25.7 0.23 0.23 0.12 0.72 1.80 4.50 6.00 18.00
429 599 703 818 883 1224
236 332 397 490 548 979
279 391 466 569 632 1067
Cl12 36 116.1 053 7.0 0.70 25.7 0.23 0.23 0.15 0.72 1.80 4.50 6.00 20.00

S17NS34H OIH1INWvHYd ¢d

191



1 SISOUL TddAd

... continued
ID T e B Y T a { e/D a, T/50 T/20 T/8 T/6 T/2
[] [mm] [mm] [] [ [1 [[1 [1 [] SIF(a) LCuus [Nmm *?]
527 663 782 931 983 1451
284 359 430 538 588 1117
271 343 410 508 551 980
C113 29.7 116.1 0.53 85 0.40 25.7 0.23 0.23 0.15 0.59 1.49 3.71 4.95 14.85
381 499 588 701 730 1011
180 236 285 365 398 784
75 99 122 165 186 439
Cl14 29.7 116.1 0.53 8.5 0.50 25.7 0.23 0.23 0.20 0.59 1.49 3.71 4.95 14.85
440 543 630 748 789 1048
209 259 307 388 427 784
343 423 504 638 702 1288
C115 29.7 1161 0.53 8.5 0.60 25.7 0.23 0.23 0.15 0.59 1.49 3.71 4.95 14.85
464 594 697 826 872 1203
220 284 339 423 463 842
214 276 328 407 444 774
cl16 29.7 116.1 0.53 85 0.70 25.7 0.23 0.23 0.15 0.59 1.49 3.71 4.95 13.50
521 671 790 931 970 1351
236 305 364 451 485 843
254 328 391 480 512 856
Cl117 60 180.0 0.65 4.2 0.40 25.7 0.23 0.36 0.10 1.20 3.00 7.50 10.00 30.00
238 373 447 529 576 914
233 369 452 573 646 1309
278 440 534 663 738 1334
C119 60 180.0 0.65 4.2 0.60 25.7 0.23 0.36 0.15 1.20 3.00 7.50 10.00 30.00
317 460 541 642 698 1118
323 470 557 695 771 1373
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... continued
ID T e B Y T a { e/D ap T/50 T/20 T/8 T/6 T/2
[] [mm] [mm] [] [ [1 [[1 [1 [ SIF(a) LCuas [Nmm *?]
332 482 566 698 764 1214
C120 60 180.0 0.65 4.2 0.70 25.7 0.23 0.36 0.15 1.20 3.00 7.50 10.00 30.00
307 442 521 620 666 1109
354 514 613 748 809 1388
406 589 698 838 895 1373
Cc122 36 180.0 0.65 7.0 0.50 25.7 0.23 0.36 0.10 0.72 1.80 4.50 6.00 18.00
263 379 433 518 537 794
195 282 329 420 453 903
348 501 581 721 764 1327
C123 36 180.0 0.65 7.0 0.60 25.7 0.23 0.36 0.15 0.72 1.80 4.50 6.00 18.00
348 450 530 626 643 921
235 305 366 456 485 907
351 454 542 666 703 1227
Cl124 36 180.0 0.65 7.0 0.70 25.7 0.23 0.36 0.15 0.72 1.80 4.50 6.00 18.00
427 561 657 776 819 1160
251 331 393 489 532 942
269 354 419 514 555 920
C125 29.7 180.0 0.65 8.5 0.40 25.7 0.23 0.36 0.15 0.59 1.49 3.71 4.95 14.85
380 494 580 688 739 1050
170 223 266 339 381 783
57 75 95 145 179 575
Cl26 29.7 180.0 0.65 8.5 0.50 25.7 0.23 0.36 0.15 0.59 1.49 3.71 4.95 14.85
381 488 576 685 734 1023
185 239 287 362 403 768
165 213 255 317 351 628
C127 29.7 180.0 0.65 8.5 0.60 25.7 0.23 0.36 0.15 0.59 1.49 3.71 4.95 14.85
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... continued
ID T e B Y T a { e/D a, T/50 T/20 T/8 T/6 T/2
[] [mm] [mm] [] [ [1 [[1 [1 [] SIF(a) LCuus [Nmm *?]
316 409 474 556 585 803
207 269 317 394 430 805
265 342 402 493 533 929
C129 20 39.0 0.53 4.2 0.50 25.7 0.23 0.23 0.15 0.40 1.00 2.50 3.33 10.00
222 265 308 368 394 589
223 267 318 402 443 776
330 396 467 582 634 1006
C130 20 39.0 0.53 4.2 0.60 25.7 0.23 0.23 0.11 0.40 1.00 2.50 3.33 10.00
233 288 335 398 427 680
238 296 351 437 477 841
304 378 446 546 589 943
C131 20 39.0 0.53 4.2 0.70 25.7 0.23 0.23 0.15 0.40 1.00 2.50 3.33 10.00
247 292 336 403 430 676
272 323 378 468 506 832
343 409 476 580 622 924
C132 12 39.0 0.53 7.0 0.40 25.7 0.23 0.23 0.15 0.24 0.60 1.50 2.00 6.00
263 284 333 393 417 585
144 156 188 240 267 524
144 156 187 238 264 504
C133 12 39.0 0.53 7.0 0.50 25.7 0.23 0.23 0.15 0.24 0.60 1.50 2.00 6.00
276 303 359 421 446 630
159 174 211 264 291 549
150 165 198 246 269 480
Cl134 12 39.0 0.53 7.0 0.60 25.7 0.23 0.23 0.15 0.24 0.60 1.50 2.00 6.00
317 343 403 464 498 696
179 195 232 284 316 570
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... continued
ID T e B Y T a { e/D ap T/50 T/20 T/8 T/6 T/2
[] [mm] [mm] [] [ [1 [[1 [1 [ SIF(a) LCuas [Nmm *?]
275 299 355 430 475 809
C135 12 39.0 0.53 7.0 0.70 25.7 0.23 0.23 0.15 0.24 0.60 1.50 2.00 6.00
359 380 445 523 548 776
198 210 250 309 334 593
241 256 304 371 399 666
C136 9.9 39.0 0.53 8.5 0.40 25.7 0.23 0.23 0.15 0.20 0.50 1.24 1.65 4.95
266 280 331 394 411 566
128 134 163 208 227 446
87 92 112 145 159 326
C137 9.9 39.0 0.53 8.5 0.51 25.7 0.23 0.23 0.15 0.20 0.49 1.24 1.65 4.95
294 311 360 426 451 601
144 152 180 227 250 455
194 205 243 305 336 605
C138 9.9 39.0 0.53 8.5 0.61 25.7 0.23 0.23 0.15 0.20 0.50 1.24 1.65 4.95
329 348 411 482 509 701
156 166 199 246 269 486
141 149 179 219 238 409
C139 9.9 39.0 0.53 8.5 0.71 25.7 0.23 0.23 0.15 0.20 0.50 1.24 1.65 5.20
362 382 452 530 551 785
170 179 215 265 285 530
249 262 314 384 409 725
C140 20 60.0 0.65 4.2 0.40 25.7 0.23 0.36 - 0.40 1.00 2.50 3.33 10.00
— 218 256 306 333 528
— 214 259 330 373 756
— 256 308 384 428 774
Cl42 20 60.0 0.65 4.2 0.60 25.7 0.23 0.36 0.15 0.40 1.00 2.50 3.33 10.00
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... continued
ID T e B Y T a { e/D a, T/50 T/20 T/8 T/6 T/2
[ (om] [mm] [] (] (1 (1 [ [ SF@) LCiss [Nmm 7]
221 266 312 367 399 636
227 274 326 402 445 787
242 292 344 418 457 721
Cl44 12 60.0 0.65 7.0 0.50 25.7 0.23 0.36 0.15 0.24 0.60 1.50 2.00 -
240 262 303 358 373 -
151 165 194 245 266 —
193 211 248 308 332 -
Cl145 12 60.0 0.65 7.0 0.60 25.7 0.23 0.36 - 0.24 0.60 1.50 2.00 6.00
— 281 325 389 402 577
- 178 209 265 283 526
- 227 266 332 353 609
Cl46 12 60.0 0.65 7.0 0.70 25.7 0.23 0.36 - 0.24 0.60 1.50 2.00 6.00
— 318 377 440 461 658
— 192 231 283 306 548
— 256 307 371 399 666
C147 9.9 60.0 0.65 8.5 040 25.7 0.23 0.36 0.15 0.20 0.50 1.24 1.65 4.95
227 239 277 332 352 507
122 128 152 196 218 452
213 223 263 332 365 684
C148 9.9 60.0 0.65 85 051 25.7 0.23 036 - - 0.50 1.24 1.65 4.95
— — 331 390 417 588
— — 168 210 233 448
— — 218 269 296 533
C149 9.9 60.0 0.65 85 0.61 25.7 0.23 0.36 0.15 0.20 0.50 1.24 1.65 4.95
262 278 322 376 395 550
148 157 184 228 248 462
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... continued
ID T e B Y T a { e/D ap T/50 T/20 T/8 T/6 T/2
[] [mm] [mm] [] [ [1 [[1 [1 [ SIF(a) LCuas [Nmm *?]
420 446 521 635 686 1193
c168 60 116.1 0.53 4.2 040 25.7 0.23 0.23 0.15 1.20 3.00 7.50 10.00 30.00
293 424 496 592 639 1037
277 405 487 625 702 1389
353 515 616 779 864 1553
C169 20 38.7 0.53 4.2 040 25.7 0.23 0.23 0.15 0.40 1.00 2.50 3.33 10.00
204 245 287 342 370 598
193 233 280 360 406 799
242 292 348 441 489 874
C170 20 60.0 0.65 4.2 0.70 25.7 0.23 0.36 0.15 0.40 1.00 2.50 3.33 10.00
217 254 296 352 380 633
255 299 353 432 468 801
300 351 413 497 532 814
C171 60 180.0 0.65 4.2 0.50 25.7 0.23 0.36 0.12 1.00 3.00 7.50 10.00 30.00
199 314 356 432 465 763
272 430 502 640 706 1322
581 913 1064 1328 1450 2416
C172 20 60.0 0.65 4.2 0.50 25.7 0.23 0.36 0.20 0.33 1.00 2.50 3.33 10.00
207 208 236 284 304 490
250 251 291 371 408 764
441 445 516 642 699 1163
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D.3 Other effects

D.3.1
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Figure D.1: Influence of chord length L, (8 = 0.53; vy =4.2; 1 =0.4; a =38.6); ( =0.53; vy =

APPENDIX D. PARAMETRIC STUDY

Chord length between joints, L, and truss height, H and crack angle, 0
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D.3.2 Truss height, H
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Figure D.2: Influence of truss height, H.
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D.3.3 Crack shape, a/c
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Figure D.3: Influence of crack shape.
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D.3.4 Cl’ack angles d)crack
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Figure D.4: Influence of crack angle, ¢ qck-
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Appendix

E

Proportional scaling

E.1 Behaviour of function p (%)q_l + (%)q
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Figure E.1: Behaviour of function p (%)q + (

~|a
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E.2 Fatigue life function of load case

EPFL Thesis 4142



E.2. FATIGUE LIFE FUNCTION OF LOAD CASE
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Figure E.2: Fatigue life function of load case and geometry.
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Figure E.3: Fatigue life function of load case and geometry.
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E.2. FATIGUE LIFE FUNCTION OF LOAD CASE
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Figure E.4: Fatigue life function of load case and geometry.
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Fatigue life function of load case and geometry.



E.2. FATIGUE LIFE FUNCTION OF LOAD CASE
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Figure E.6: Fatigue life function of load case and geometry.
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Figure E.7:

Fatigue life function of load case and geometry.
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F

Non-proportional scaling

F.1 Effect over fatigue strength, S

F.1.1 Influence of thickness ratio, T
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F.1.2 Influence of diameters ratio, 3
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Figure E2: Fatigue strength, influence of the diameters ratio, 3.
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F.1.3 Influence of chord slenderness, v
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Figure E3: Fatigue strength, influence of the chord slenderness, 7.
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