Sharing of Probabilistically Correlated Data in
Peer-to-Peer Networks

THESE N° 4133 (2008)

PRESENTEE LE 15 AOUT 2008

A LA FACULTE INFORMATIQUE ET COMMUNICATIONS
LABORATOIRE DE SYSTEMES D'INFORMATION REPARTIS
PROGRAMME DOCTORAL EN INFORMATIQUE, COMMUNICATIONS ET INFORMATION

ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE

POUR L'OBTENTION DU GRADE DE DOCTEUR ES SCIENCES

PAR

Roman SCHMIDT

Dipl.-Ing., Vienna University of Technology, Autriche
et de nationalité autrichienne

acceptée sur proposition du jury:

Prof. A. Schiper, président du jury
Prof. K. Aberer, directeur de these
Prof. S. Decker, rapporteur
Prof. B. Faltings, rapporteur
Prof. A. Montresor, rapporteur

ECOLE POLYTECHNIQUE

FEDERALE DE LAUSANNE

Suisse
2008

Dedicated to my mother Annemarie,
and my father Franz.

Résumé

L’impact des réseaux Pair-a-Pair (i.e., Peer-to-Peer ou P2P) sur I'ensemble
de I'Internet est indiscutable. Ces systémes ont engendré une série de
nouvelles applications, par exemple au sein du nouvellement nommé Web
2.0. Le glissement du modele classique client-serveur de 'Internet, avec
sa distinction marquée entre fournisseurs de contenu et consommateurs,
vers un paradigme d’échange d’information entre consommateurs aboutit
a avenement du paradigme P2P. Les environnements distribués perme-
ttent aux utilisateurs de partager leur contenu de maniére autonome et
locale, i.e., leurs informations restent stockées sur des ordinateurs en pé-
riphérie de I'Internet, plutot que d’étre rassemblées et organisées sur des
serveurs centraux. Les réseaux structurés logiques (structured overlay
networks) furent créés dans le but d’organiser I’énorme masse de données
partagées dans les réseaux P2P en construisant un index global, quoique
distribué. Bien que le but initial de ces systemes fat de fournir des mé-
canismes de recherche par mot-clé, le besoin de supporter des opérations
plus complexes émergea rapidement. Les systemes de gestion de données
pair-a-pair (Peer Data Management Systems ou PDMS) représentent un
bon exemple d’applications construites sur des réseaux logiques structurés
et supportant des mécanismes d’intégration de données et de traitement
de requétes complexes, similaires & ceux offerts par les bases de données
distribuées.

Les requétes complexes requierent typiquement des acces conjoints
a de multiples données, alors que les recherches par mot-clé n’affectent
habituellement qu’une seule entrée. Le partitionnement de I'index réparti
des réseaux logiques structurés est optimisé pour les recherches de clés
uniques, alors que les acces conjoints comme ceux requis par les PDMS
ont été négligés jusqu’ici. Les bases de données distribuées ont démontré
par le passé que le support d’acces conjoints a de multiples données est
nécessaire et crucial afin de permettre des traitements de données efficaces
minimisant les ressources réseau. Notre but est d’appliquer cette idée aux
réseaux logiques structurés en regroupant les données utilisées conjointe-
ment par les applications, notamment pour les PDMS mais aussi pour
d’autres types d’applications.

Les corrélations entre données peuvent étre dérivées a partir de di-
verses sources de données, de processus, d’utilisateurs ou d’applications.

iii

Nous présentons dans cette these des solutions pour trois types de corréla-
tions différentes, et ce dans divers contextes : (i) pour les requétes & inter-
valle, ou I'exploitation de 'ordonnancement des données est fondamental
pour tout traitement de données ; (ii) pour l'inférence probabilistique
distribuée, ou I'exploitation de corrélations complexes entre les données
provenant de différents utilisateurs gagne en importance dans le contexte
du Web 2.0 ; (iii) pour les requétes multi-termes, ou 'exploitation des
corrélations entre données, dérivées des statistiques d’acces, fournit aux
utilisateurs des mécanismes de recherches par mot-clé simples mais ef-
ficaces. Notre approche exploite différentes propriétés intrinséques aux
réseaux logiques structurés, comme les techniques de hachage préservant
I’ordonnancement afin de supporter efficacement les requétes a intervalle.
De plus, nous introduisons un algorithme de clusterisation distribué basé
sur des techniques de relaxation de ressorts pour regrouper les données
fortement corrélées autour d’un seul nceud. Les acces conjoints sont ainsi
résolus sur un seul noceud, ou sur un faible nombre de noeuds, afin de réduire
I'utilisation de la bande passante et de ce fait accroitre les performances
du systeme.

Notre approche a été implémentée dans le réseau logique structuré
P-Grid, bien qu’elle soit suffisamment générique pour étre appliquée a
d’autres réseaux P2P jouissant de propriétés similaires. Cette these in-
clut une description détaillée de I'implémentation Java de P-Grid, de son
architecture, et de son évaluation utilisant PlanetLab, la plateforme de
tests devenue standard pour les systemes P2P. Enfin, 'implémentation
Java de P-Grid nous permet de construire un systéme PDMS se basant
sur les résolutions de requétes optimisées de P-Grid. Nous présentons
UniStore, un systeme de gestion de données distribué orienté vers la ges-
tion de données publiques et supportant des opérations sur des bases de
données hétérogenes, ainsi que son évaluation sur PlanetLab.

Mots-clés: Systemes pair-a-pair, réseaux logiques structurés, corréla-
tions de données, systemes de gestion de données pair-a-pair.

v

Abstract

The impact of Peer-to-Peer (P2P) networks on the Internet landscape is
undisputed. It has led to a series of new applications, e.g., as part of the so-
called Web 2.0. The shift from the classical client-server based paradigm
of the Internet, with a clear distinction between information providers and
consumers, towards consumers sharing information among each other led
to the rise of the P2P paradigm. The distributed setting enables users
to share their content autonomously and locally, i.e, information remains
at computers at the edge of the Internet and is not gathered and orga-
nized at central servers. Structured overlay networks were designed to
organize the huge quantity of data shared in P2P networks by building
a global, though distributed, index of shared information. Whereas the
initial aim of these systems was to provide efficient lookup operations for
single keyword operations, the need for more complex operations emerged
very quickly. Peer Data Management Systems (PDMS) is one such ex-
ample of application that enables data integration and complex query
processing similar to (distributed) database systems on top of structured
overlays.

Complex query operators usually require joint access to multiple data
entries whereas single key lookups usually only affect a single data entry.
The partitioning of the distributed index of standard structured overlays is
optimized towards single key lookups and joint data access as required by
PDMS was neglected so far. (Distributed) databases have already shown
that (index-)data organization supporting correlated data access is nec-
essary and crucial for efficient processing, as network usage is minimized.
We aim at applying this insight to structured overlays by clustering cor-
related data frequently accessed jointly by applications, including PDMS
but also other types of applications.

Data correlations can be derived from different sources, data proper-
ties, processing properties, users and applications. We study and present
solutions for three different types of correlations in the context of different
applications: (i) range queries where exploiting the order relationship of
data is a fundamental basis for any database-like system; (ii) distributed
probabilistic inference where exploiting user-defined complex data corre-
lations gains importance through the Web 2.0; (iii) multi-term queries
where exploiting data correlations derived from data access statistics en-

ables simple but powerful keyword search to users. Our approach exploits
properties of structured overlays, such as order-preserving hashing, to re-
alize efficient range query processing. We further introduce a distributed
clustering algorithm based on the spring relaxation technique to cluster
strongly correlated data entries at one node respectively in its proximity.
Joint data access is thus performed on a single or few nodes to reduce
network bandwidth consumption and therefore to increase system perfor-
mance.

Our approaches are realized on top of the structured overlay network
P-Grid although they are generic enough to be applied to other P2P net-
works with similar properties. This thesis presents details about the Java
implementation of P-Grid, its architectural design and its evaluation on
PlanetLab, today’s standard testbed for P2P systems. The implementa-
tion of P-Grid in a Java application finally enabled us to build a PDMS
system on top relying on P-Grid’s efficient query processing. We present
the UniStore system, a distributed data management system aiming at
public data management and support for database-like query operators
on heterogeneous data, and its evaluation on PlanetLab.

Keywords: peer-to-peer systems, structured overlay networks, data cor-
relations, peer data management systems.

vi

Acknowledgements

I wish to first thank my advisor, Prof. Karl Aberer, for giving me the
opportunity to conduct a PhD under his supervision. I will always be
grateful to him for introducing me to this exciting research topic and
his guidance throughout my stay in his lab. I have enjoyed our numerous
scientific discussions and I am thankful for all his advice, both scientifically
and personally.

I am also very grateful to all members of the LSIR lab, for provid-
ing a collaborative and enjoyable working environment. Specials thanks
to Prof. Manfred Hauswirth, Dr. Anwitaman Datta and Dr. Philippe
Cudré-Mauroux for all scientific discussions and their friendship through-
out my PhD, within and outside the lab. Further, Sarunas Girdzijauskas,
Oana Jurca, Dr. Fabius Klemm and Gleb Skobeltsyn with whom I had
the pleasure to share most of my time at EPFL. I also want to thank
Renault John for his help in implementing some of the approaches de-
scribed hereafter, and Dr. Andreas Wombacher for his short but inspiring
company as my office mate. Finally, thanks to Chantal Francgois for all
the administrative support and pleasant and diversified chats.

I wish to express my gratitude to Prof. Kai-Uwe Sattler and Mar-
cel Karnstedt at TU Ilmenau for their fruitful collaboration during the
course of my PhD and also for permitting me to present their work on the
UniStore system.

On a personal side, I like to express my gratitude to all friends I have
gained during the last years at EPFL and in Lausanne. To mention only a
few of them, I would like to thank Tyler and Edouard for their craziness,
James and Sai for becoming famous professors so one day I can say I knew
you from the start, Ricarrdo for his uniqueness, and Alice, Catharina,
Dimana, Eleonora, Rikki, Tatiana, and Veronica for their friendship over
the last view years. Together with my friends back in Austria, they kept
me grounded over all these years and have provided a balance to my
scientific world.

I feel greatly indebted to my girlfriend Lisa for all her support and
encouragement especially at the end of my PhD and while writing this
thesis.

Finally, my gratitude goes to my family for love, support and encour-
agement during all my studies.

vii

viii

Contents

Résumé

Abstract

Acknowledgements

1 Introduction

1.1
1.2
1.3
1.4

Data Oriented P2P Systems
On Correlated Data
Scope of Research
Outline of the Thesis and Contributions

I Fundamentals

2 Peer-to-Peer Systems

2.1
2.2

2.3

24

2.5
2.6

3 The
3.1
3.2
3.3
3.4

3.5

A Short History
The Concept of Data Fragmentation
2.2.1 Design Findings for P2P Systems
Unstructured Overlays
231 Gnutella.
Structured Overlays
2.4.1 Distributed Hash Tables
2.4.2 Structured Overlays with Order-Preserving Hashing
PlanetLab
Conclusions e

P-Grid Overlay

Distributed Search Structure
Basic Search Operation
Order-Preserving Hash Function
Overlay Construction
3.4.1 Divide and Conquer
3.4.2 Unstructured Backbone
Data Correlations in P-Grid

ix

iii

vii

oo 00 Oy W =

13

15
15
16
18
19
19
21
23
29
33
35

II

3.5.1 Multi-Dimensional Correlations
3.6 Conclusions

Access of Correlated Data

Range Queries

4.1 Algorithms and Complexity Analysis
4.1.1 Min-Max Traversal Algorithm
4.1.2 Shower Algorithm

4.2 Related Work

4.3 Evaluation.
4.3.1 Message Latency and Cost
4.3.2 Query Latency
4.3.3 Success Rate L.

4.4 Completeness Estimation
4.4.1 Completeness on Data vs. Peer Level
4.4.2 Estimating Completeness
4.4.3 Usability in other Overlay Systems
444 Evaluation

4.5 Conclusions

Distributed Inference
5.1 Motivation
5.2 Belief Propagation
5.2.1 The Message Passing Algorithm
5.3 The Inference Architecture
5.4 The Relaxation Algorithm
5.5 Evaluation.,
5.5.1 Network Topologies
5.5.2 Message Reduction
5.5.3 Load Balancing
5.5.4 Reduction Effort
5.5.5 Discussion
5.6 Related Work
5.7 Conclusions e

Multi-Term Queries

6.1 Motivation

6.2 Related Work,

6.3 Query-Driven Clustering
6.3.1 Architecture

6.4 Evaluation.
6.4.1 Probabilistic Networks
6.4.2 Term Posting Lists
6.4.3 Lookup Costs

49

51
52
52
o4
56
o7
99
62
64
65
66
66
69
70
76

77
78
79
81
82
83
86
87
88
93
93
99
100
100

6.4.4 Relaxation Effort 114

6.4.5 Load Balancing 116
6.4.6 Discussion 117

6.5 Conclusions 119
IIT From Theory to Practice 121
7 Architecture 125
7.1 OVerview e 125
7.2 Routing Layer and APT 126
7.2.1 Routing Layer Components 127

7.2.2 Routing Layer Services. 128

7.3 Indexing Layer and API 130
7.3.1 Indexing Layer Components 130

7.3.2 Indexing Layer Services 131

7.3.3 Data Type Handlers 131

7.4 Interaction Diagrams 132
7.4.1 Data Insertion 132

7.4.2 Query Resolution 132

7.5 Conclusions e 134
8 Implementation 135
8.1 Overview e 135
82 CorePackage 136
8.2.1 Index Sub-Package 136
8.2.2 Maintenance Sub-Package 137
8.2.3 Search Sub-Package 138

8.3 Interfaces Package 138
8.3.1 P-Grid’s Routing Interface 138
8.3.2 P-Grid’s Indexing Interface 141

8.4 Network Package 144
8.4.1 Generic Sub-Package 145
8.4.2 Lookup Sub-Package 145
8.4.3 Protocol Sub-Package 145
8.4.4 Router Sub-Package 146

85 Utilpackage 147
8.6 Evaluation of P-Grid’s Bootstrapping 147
8.7 Load-Aware Message Routing 150
8.7.1 Routing Strategies 151
8.7.2 Evaluation 152

8.8 Conclusions oL 156

xi

9 UniStore 157

9.1 Motivation 158
9.2 Challenges oL 159
9.3 Architecture 161
9.3.1 Distributed Storage Layer 162
9.3.2 Triple Storage Layer 162
9.3.3 Schema Mapping 164

9.4 Similarity Queries 165
9.4.1 The Query Language VQL 166
9.4.2 Similarity Measures and Processing 167

9.5 Physical Operators 168
9.5.1 Similarity Selection 169
9.5.2 Similarity Join, 171
9.5.3 Ranking Operators 172

9.6 Similarity Operator Costs 173
9.7 Evaluation., 175
9.7.1 Experimental results 176

9.8 Related Worko 178
9.9 Conclusions 181
10 Conclusions 183
List of Frequently Used Symbols and Abbreviations 187
Bibliography 188
Curriculum Vitae 204

xii

Chapter 1

Introduction

The Internet is nowadays part of our daily life and omnipresent at business
and free time. We use it to communicate with friends and colleagues via
email, we read the daily news on websites of our favorite newspapers
and we inquire about products we consider to buy, compare prices and
functionalities on company websites. These services basically represent
the core Internet as it was established at its foundation, following the
classical client-server paradigm where institutions provide information and
services on servers and consumers act as clients. In the last years, this
rigid regime was broken up by new technologies and service providers
bringing users into the role of information providers. This evolution of the
Internet is often referred as part of the “Web 2.0”. Web 2.0 includes other
important developments such as the Semantic Web aiming at meaningful
access to Web data.

The most important new technology in the era of the Web 2.0 are
Peer-to-Peer (P2P) systems. This is highlighted by the fact that P2P sys-
tems are the leader of overall bandwidth consumption on the Internet for
several years already, consuming approximately 74% percent last year!.
P2P systems enable users to directly share data with other users overcom-
ing the need of expensive central infrastructure for services. The second
big advantage of the P2P technology is that these systems do not have
and require an administrator, meaning that any content can be shared by
any user at all time. This freedom has to be paid by P2P system users as
they have to remain online to share their resources with the community
and to build and maintain the system. The P2P system itself is respon-
sible to organize the shared data and provide the required functionalities
to discover and download shared content. First-generation P2P systems
formed loosely coupled unstructured networks of peers where queries by
users were resolved by simple message broadcasts. This approach was as
successful as simple and used by the first well-know P2P systems such as

http://www.ipoque.com/news_&_events/internet_studies/internet_study_
2007

2 Chapter 1: Introduction

Gnutella. Technical problems emerged with a growing number of peers
and users in the P2P population unveiling scalability limitations in terms
of bandwidth consumption, network maintenance and query processing
capabilities. The second generation P2P systems introduced the concept
of structured overlay networks and addressed these limitiations by intro-
ducing distributed search structures. The basic idea in structured overlay
networks is to organize the shared data in a distributed index. The index
itself is maintained by peers in the P2P system and enables efficient lookup
of all shared data. Maintenance algorithms ensure the consistency of the
index and thus reliable data access independent of peer availabilities. In a
structured overlay network a hash function is used to map resources and
peer IP addresses into a common application-specific identifier space and
to bind resources to peers such that peers are responsible for data items
with similar hash keys. The hash keys are randomly generated in a way
that guarantees that two different data items are mapped to the same
hash key only with very small probability.

Distributed Hash Tables (DHT) are one variant of structured overlay
networks implementing this idea using a uniform random hash function.
The use of a uniform random hash function implies that in general data
items are relatively uniformly distributed over peers. A drawback is that
relationships among data items are not maintained by the hash function,
i.e., related data items are in general mapped to non-similar hash keys.
This implies in a distributed setting that related data items are in gen-
eral not stored at the same or nearby peers as peers are responsible for a
short range of similar keys in the hashed key space. As a result any lookup
operation beyond single key lookups will therefore lead to potentially inef-
ficient multiple lookup operations involving multiple peers. Thus, a DHT
is a solution tailored towards efficient exact key lookups.

Exact key lookups as provided by DHTs are an important way to
quickly and efficiently access data in a data management system. But
also more complex search predicates are required and provided by such
systems. This requires additional access structures depending on the sup-
ported query types. For example, range queries are frequently required
for structured data access. Obviously a hash table is not an efficient data
structure for this type of query as data from a given range is scattered over
potentially many peers. Therefore, as alternative, some structured over-
lay networks consider the use of order-preserving hash functions to build
the distributed index. As a result the order of data items is maintained by
the hash function and can be exploited during lookups to support more
complex search predicates, e.g., range queries. On the downside such an
overlay network has to take care of storage load balancing as large data
sets can be mapped to a relatively small key range possibly overloading
peers in this region, a problem that is avoided when using uniform random
hash functions. P2P systems using order-preserving hashing require there-
fore additional mechanisms to balance the peer distribution with respect

1.1. Data Oriented P2P Systems 3

to the distribution of keys generated from data items. In the following
section we will provide an overview of the issues and solution strategies
that have been explored to enable more complex data access functionali-
ties in data-oriented P2P systems, starting from a historical overview of
related works in database systems.

1.1 Data Oriented P2P Systems

A database is a collection of structured information organized in such a
way that a computer program can quickly select desired pieces of data.
The data is stored in a persistent way, e.g., on a hard disk. A database
management system (DBMS) is a complex set of software programs that
controls the organization, storage, management, and retrieval of data in
a database. A DBMS allows users to create new databases and spec-
ify their schema (logical structure of data), using a data-definition lan-
guage (DDL) [UGMWO1]. Additionally, a Data Manipulation Language
(DML) can then be used to retrieve, insert, delete and update data in
a database. The database query language supports users with various
operators to access and retrieve data in the database. To speedup data
retrieval, databases index stored data and restructure the physical store
accordingly. A query optimizer is then responsible for choosing the best
access path to access requested data on the disk. An access path refers to
the data structures and the algorithms that are used to access the data.
Indexes can be used in essentially two different ways. First, they can
be used for sequential access to the indexed file — here sequential means
Sin the sequence defined by values of the indexed field. Second, indexes
can be used for direct access to individual records in the indexed file on
the basis of a given value for the indexed field [Dat91]. Indexes can be
implemented using a variety of data structures, the most popular ones
are B-trees [BM72] and hash indexes. A B-tree is a particular type of
tree-structured index storing sorted data for efficient retrieval in a block-
oriented storage context. B-trees are therefore efficient for sequential data
access as, for example, required by range queries and scans. Hash index
is a technique for providing fast direct access to a specific record on the
basis of a given value for some field. Therefore, the primary operation it
supports efficiently is a lookup: given a key (e.g., a person’s name), find
the corresponding value (e.g. that person’s telephone number).

[OV91] defines a distributed database as a collection of multiple, logi-
cally interrelated databases distributed over a computer network. To form
a DDBS, files should not only be logically related but there should also
be structure among the files, and access should be via a common inter-
face. A distributed database management system (distributed DBMS)
is then defined as the software system that permits the management of
the distributed database and makes the distribution transparent to the
users. In a distributed DBMS, the relations in a database schema are

4 Chapter 1: Introduction

usually decomposed into smaller fragments which might be allocated to
different sites. There are two alternatives for this fragmentation, hori-
zontally [CNP82] and vertically [NCWD84] (and using both in a hybrid
fashion). In both cases user applications are analyzed for, at least, their
most important query predicates ([Wie83] has shown that the most active
20% of user queries account for 80% of the total data access). The dis-
tributed DBMS therefore maintains joint access statistics of attributes and
their frequencies by user queries. For example, vertical partitioning uses
an attribute affinity matrix to represent joint access. This matrix is fur-
ther used for the fragmentation process by clustering together attributes
with high affinity. This process is usually done by a central control unit
administering the distributed database and having complete knowledge
on the system, or this knowledge is globally available at all nodes, i.e., the
DBMS is aware of the partitioning schema and can access the partitioned
data directly at successive requests (user queries).

Attempts to overcome the limitation of centralized maintenance were
presented in [NDLROO] introducing Scalable Distributed Data Structures
(SDDS). The data of an SDDS are partitioned for storage over several
servers and SDDS scales transparently for the application to potentially
any number of sites. Data access does not require any centralized direc-
tory but information on the location of data partitions is eventually dis-
tributed over all servers. The partitioning and access scheme depends on
the used SDDS. The LH* scheme [LNS93] provides a scalable distributed
linear hash partitioning for direct access while the RP* scheme [LNS94]
provides scalable distributed range partitioning for parallel range scans.
Structured overlay networks go one step further and provide a fully dis-
tributed access structure to shared resources using a distributed index
without requiring global knowledge at nodes on data partitions in or-
der to maintain scalability with very large numbers of peers. Structured
overlays partition data horizontally based on hashed resource identifiers
derived from data item properties. Furthermore they deal with the un-
reliability of peers by providing sophisticated maintenance algorithms.
Data partitioning and load balancing are performed in structured overlay
networks without exploiting global knowledge on the network and statis-
tical information on data distribution and query access as it is typically
exploited in distributed databases. Structured overlay networks can be
classified in two types of approaches: distributed hash tables and order
preserving structured overlay networks. A Distributed Hash Table (DHT)
such as Chord [SMK™'01], Pastry [RD01] and CAN [RFH'01] is analogous
to an hash index in a database system enabling efficient exact key lookups
as known from databases. Overlay networks using order-preserving hash-
ing such as Mercury [BAS04], SkipNet [HJST03] and P-Grid [Abe01] are
analogous to a tree-structured index such as a B-tree supporting efficient
range scans.

The first works considering more complex database functionalities for

1.1. Data Oriented P2P Systems 5

P2P systems were[GHIT01] and [BGKT02]. [GHI*01] focuses on the prob-
lem of data placement, i.e., how to distribute data and workload so that
cost is optimized under the existing resource and bandwidth constraints.
[BGK™02] on the other hand focuses on the problem of data integration,
i.e., supporting mappings between P2P databases using different vocabu-
laries to express the same real-world concepts in order to enable query re-
formulation and answering. Both works have initiated many further works
on Peer Data Management Systems (PDMS) such as Piazza [HIM™04]
(initiated by [GHIT01]), Hyperion [AKKT03] (initiated by [BGK™02]),
PIER [HHH*02, HHL 03] and GridVine [ACMHP04, CMAAO07].

Today the notion of PDMS relates mainly to distributed data inte-
gration systems providing transparent access to heterogeneous databases
without resorting to a centralized logical schema and focus on the problem
of data integration, schema mappings and query reformulation. PDMS are
composed by autonomous databases using local schemas which have to be
mapped to each other to enable distributed query processing. This further
has to be achieved in a distributed fashion as no central coordination and
knowledge is assumed to be available. GridVine [ACMHP04, CMAAO07],
for example, uses pair-wise schema mappings and query reformulation to
form a semantic mediation layer on top of a structured overlay connecting
heterogeneous databases. User defined schema mappings are validated by
a distributed message passing scheme to automatically detect erroneous
mappings [CMAF06]. Piazza [HIMT04] has similar goals as GridVine. It
uses a mapping language for mapping between sets of XML source nodes
with different document structures (including those with XML serializa-
tions of RDF). The system uses the transitive closure of mappings to
answer queries and is able to follow mappings in both forward and reverse
directions. RDFPeers [CF04] is a scalable and distributed RDF triple
repository and self-organizes peers into a multi-attribute addressable net-
work (MAAN) which extends Chord to efficiently answer multi-attribute
and range queries. The system’s query processing capabilities are very
similar to the ones of GridVine as it supports triple pattern queries, dis-
junctive and range queries and conjunctive multi-predicate queries using
RDQL. The recent rise of triple-based data models such as RDF [W3C]
led to several examples where structured overlays support vertical parti-
tioning of databases [CF04, KSHS06]. Proper partitioning strategies for
triple-based data are also the focus of research for Semantic Web data
management with centralized DBMS [AMMHO7].

PIER [HHH'02, HHL" 03] has a slightly different focus on P2P data
management supporting Internet-scale querying. It is built on top of the
Bamboo DHT [RGRKO04], aiming for large-scale data and peer distribu-
tion beyond the usual scale of distributed databases. It supports mas-
sively distributed, database-style data-flows for snapshot and continuous
queries as known from distributed DBMS. PIER provides a full degree of
data independence, including a relational data model, and a full suite of

6 Chapter 1: Introduction

relational query operators and indexing facilities that can manipulate data
without regard to its location on the network. PIER maintains several
different index structures to speedup query operations executed by query
plans passed along peers in the system. PIER’s query operators are very
similar to those offered by traditional (distributed) database systems.

Other approaches to P2P query processing are PeerDB [NOTZ03,
OTZ703] and IrisNet [GKKT03]. PeerDB is a database application im-
plemented on top of BestPeer [NOT02] enabling SQL query processing on
heterogeneous databases. Schema relations are annotated with descrip-
tions and keywords used during a two-phase query processing strategy
to select candidate relations in the first phase, before a query is finally
submitted to promising peers. BestPeer can be reconfigured accordingly
to keep promising peers in the proximity to reduce network costs. The
IrisNet system uses a hierarchical data model (XML) and a hierarchical
network overlay (DNS) to route queries and data. As a result, IrisNet
shares the characteristics of traditional hierarchical databases: it is best
used in scenarios where the hierarchy changes infrequently, and the queries
match the hierarchy.

P2P data management systems such as PIER and GridVine rely heav-
ily on the availability of structured overlay networks to achieve Internet
scalability. As we have further seen, structured overlay networks, in par-
ticular DHT's, were mainly designed for supporting efficient exact key
lookups. Efficient range scans are supported by those structured overlay
networks using order-preserving hashing. Beyond that, little attention
has been devoted so far to the implications of the data access patterns in
structured overlay networks induced by P2P data management systems
and the influence on data processing performance. In particular different
forms of correlations among data items implied by data access patterns
have so far not been considered in the design and use of structured overlay
networks. This thesis studies the problem of considering joint data access
on correlated data in structured overlays and provides novel solutions for
optimizing fragmentation/partitioning of the distributed access structure
and algorithms using the distributed access structure to reduce network
utilization. We therefore discuss now in more detail the issues on accessing
correlated data in structured overlay networks.

1.2 On Correlated Data

P2P applications, such as peer data management systems, frequently use
structured overlay networks as distributed index to efficiently access data.
Access is not only limited to single data entries, e.g., for retrieving an
entry by its identifier, but can involve a set of data entries. Joint access
to data entries induces a correlation relationship among data entries. The
strength of the correlation among a set of data entries corresponds to the
probability that those data entries are accessed jointly by an application.

1.2. On Correlated Data 7

In a distributed system data is distributed over different nodes and
data access implies consumption of network resources to retrieve data en-
tries. Joint data access to a set of data entries can therefore require to
access multiple nodes to retrieve them all. The number of nodes required
to access depends on the distribution of the data in the network. Net-
work access is still the most expensive resource in distributed systems
and an important design goal in distributed systems is thus to minimize
bandwidth consumption and reduce communication latency. In the case
of joint data access this implies in particular that the number of nodes
accessed when retrieving a set of data entries should be minimized. This
can in particular be achieved if correlated data, i.e., data that is pro-
cessed frequently jointly, is stored at the same or nearby nodes. In order
to achieve this goal existing data correlations to estimate joint data access
of applications need to be exploited when partitioning data among nodes.

Data correlations can be obtained in several ways. First, correlations
can be derived from inherent properties of the data domains, in particular
from known relationships among different data values. The knowledge of
the nature of the relationship and the possible types of queries allows to
derive that certain sets of data entries are more likely to be jointly accessed
than others. A simple example of such a data value property is the order
relationship among data values in an ordered domain. Since structured
query languages support range queries, neighboring data values are likely
to be jointly accessed and therefore should be stored together. Another
example of this type are similarity relationships among text data values.
Since queries typically retrieve the most similar text values to a given
query text it is advantageous to jointly store similar text values.

Secondly, data correlations can be derived from relationships among
data entries which are explicitly represented in the database. Such re-
lationships are particularly rich in PDMS as data is provided and main-
tained by a community of users integrating and relating heterogeneous
information to common knowledge. Examples of such relationships are
schema mappings in PDMS, relating a local schema to other schemas in
the system, and Friend-of-a-Friend (FOAF) networks relating persons and
documents in the Semantic Web. The Semantic Web and itOs modeling
languages enable to define a variety of relationships with the aim to sup-
port their automated processing. In this context we find new types of
relationships which go beyond standard structured data representation,
for example distributed probabilistic inference networks. For performing
probabilistic inference, inference algorithms require access to the inference
network. Due to the nature of these algorithms neighboring data entries
in the probabilistic inference network have a higher probability to be ac-
cessed jointly during inference inducing higher correlation of data access
amongst them.

Finally, joint access statistics can be used to obtain data correlations
between data entries. A system can monitor queries and their predicates

8 Chapter 1: Introduction

to identify access patterns of applications. These can be maintained in
access statistics which are used to derive data correlations for frequently
jointly accessed data entries. An example for such a correlated data access
are multi-term queries, i.e., queries for multiple keywords. Multi-term
queries access all data entries matching all/any keywords and therefore
induce a data correlation among frequently jointly queried keywords and
their corresponding data entries.

Different sources of information on data correlation can also be com-
bined. For example, joint access statistics can be further refined with data
correlations derived from the order relationship of data values. While the
order relationship enables to estimate joint access, statistics can highlight
frequently queried ranges and therefore refine data placement.

1.3 Scope of Research

In this thesis, we investigate the problem of optimizing joint data ac-
cess in structured overlay networks. We present algorithms to partition
the distributed index of overlay networks among nodes exploiting data
correlations. We derive and use data correlations from data properties,
properties of data processing algorithms and joint access statistics of ap-
plications. We present for each of these cases a concrete example of a
problem based on a data processing problem in structured overlay net-
works. The common objective of all solutions is to cluster correlated data
on nodes to reduce communication cost for joint access as required by the
specific applications.

For concrete description of our solutions and implementation we rely
on P-Grid, a structured overlay network using order-preserving hashing,
although our findings can be generalized to other systems with similar
properties as discussed for each presented solution in the correspond-
ing chapter. We describe the implementation and evaluation of our ap-
proaches into the P-Grid system, and show how a peer data management
system can be built on top of our work.

1.4 Outline of the Thesis and Contributions

This document is divided into three parts. The first part, Fundamentals,
provides an overview of P2P systems and a more detailed description of
P-Grid basics we use in the remainder of this thesis. Access of Correlated
Data, the second part, presents algorithms to efficiently partition the dis-
tributed index of correlated data to improve joint access to it. The third
part, From Theory to Practice, shows how some of these algorithms are
realized in a Java application and finally used by a peer data management
system to ensure scalability, reliability and efficiency.

1.4. Outline of the Thesis and Contributions 9

Part I: Fundamentals

This thesis starts with an overview of the best-known P2P systems in
Chapter 2. In our overview we focus on structured overlay networks and
their way of data placement, i.e., how data is partitioned among peers
and how data correlations are considered during this process. We further
present PlanetLab, a distributed P2P system testbed which is used to
evaluate some of our approaches and implementations. The first part
finishes with a more detailed description of the structured overlay network
P-Grid in Chapter 3. The algorithms we present in the second part of this
thesis are based on P-Grid.
The main contributions of this part are:

e a detailed survey of the most popular structured overlay networks
and a discussion of their way to consider data correlations

e a precise overview of P-Grid basics including its structure, search
algorithm, hash function and construction

Part II: Access of Correlated Data

Chapter 4 presents two algorithms suitable for P-Grid to efficiently re-
solve range queries in a structured overlay. Range queries rely on the
order relationship which can be derived from data properties. Although
the algorithms were designed for P-Grid, they are also suitable for other
structured overlays with similar properties. The next chapter, Chapter 5
targets the problem of more complex data correlations provided by users
and /or applications. We consider data correlations derived from proba-
bilistic inference networks, e.g., to perform reasoning in the domain of the
Semantic Web. While range queries are naturally supported by P-Grid,
this type of data correlations requires an additional index re-partitioning
algorithm to improve joint data access. Our approach is based on the
spring relaxation technique enabling distributed clustering by autonomous
peers. The last Chapter 6 tackles the problem of data correlations de-
rived from access statistics induced by applications. Structured overlay
networks were originally designed for efficient single-term lookups given a
single key. We propose to apply our spring relaxation algorithm already
used in Chapter 5 to improve lookup efficiency in case more than one key-
word is present. Our aim is to cluster frequently jointly queried keywords
together to reduce network communication and thereby joint data access.
The main contributions of this part are:

e an approach for range query processing in structured overlay net-
works

e an algorithm to estimate the number of replies by range queries
together with a completeness estimation during range query pro-
cessing

10 Chapter 1: Introduction

e a decentralized clustering algorithm for multi-dimensional correla-
tion graphs on top of structured overlay networks

e an architecture for distributed inference on Bayesian networks on
top of structured overlay networks

e an approach to efficiently support multi-term queries in structured
overlay networks

Part III: From Theory to Practice

The previous part presented algorithms and their analytical and practical
evaluation based on simulations and an implementation of the P-Grid sys-
tem. This part presents details about the P-Grid system itself. Chapter 7
presents the architectural design and provides a high-level overview of
our system. P-Grid’s implementation is divided into two parts, a routing
layer and an indexing layer, which both have a defined API for applica-
tions. Our intention was to provide a P-Grid independent API for P2P
systems which can be used by other P2P system developers at will. In-
teraction diagrams show how these two layers interact and how data can
be inserted and queried by applications. Chapter 8 provides details about
the Java implementation following the architectural design. The code is
divided into several packages and sub-packages of which the most impor-
tant classes are described briefly. Finally, we present an evaluation of
P-Grid’s unique bootstrapping capabilities and a query load balancing
solution representative for the enhancements implemented in the course
of this thesis. The last chapter of this thesis presents an application based
on P-Grid and benefiting from the designed and implemented algorithms
in P-Grid. Chapter 9 presents UniStore a large-scaled but still light-
weight distributed data management system on top of P-Grid. The main
motivation for UniStore is the idea of public data management, where a
large amount of independent users provide and/or look for information
structured in any conceivable way. The focus of UniStore lies on efficient
query processing, which involves the choice of distributed indexes, cost-
based optimizations and the application of Multiple Mutating Query Plans
(M2QP). We present UniStore’s approach to efficiently process similarity
queries on top of P-Grid and provide a PlanetLab evaluation of various
similarity operators.
The main contributions of this part are:

e an extensible two-layered architecture for P-Grid enabling applica-
tions to tailor P-Grid’s behavior towards application-specific needs

e a high-level overview of P-Grid’s implementation, its main compo-
nents and services and their internal interaction

e a stable API for P2P systems enabling applications to interchange
the underlying P2P system implementation at will

1.4. Outline of the Thesis and Contributions 11

e an overview of P-Grid’s Java implementation listing all packages
and their core classes and functionalities

e a simple though effective way of query load balancing implemented
and tested on PlanetLab

e an overview of the UniStore application based on P-Grid including
its architecture and query language

e an approach to efficiently process string similarity queries in struc-
tured overlays

12

Chapter 1: Introduction

Part 1

Fundamentals

13

Chapter 2

Peer-to-Peer Systems

The concept of Peer-to-Peer (P2P) systems is to share resources such as
data, storage, CPU and bandwidth in a cooperative way. Peers provide
a small fraction of their resources to build a distributed system of larger
capacity than any of the peers alone would be able to provide. As a result,
the system is able to provide better scalability for their services than a
centralized solution. All peers are treated equally and autonomously, i.e.,
no central coordinator is in control of other peers.

The most common service provided by current P2P systems is the dis-
tributed management of large sets of files. Examples are the well-known
file-sharing networks where individual autonomous users collaborate to
share their files. The data is provided by the users and remains under
their control. This paradigm is recently more and more adopted by so-
called peer data management systems aiming at providing Internet-scale
database systems supported by autonomous users. The functionalities of-
fered by these new P2P systems go beyond simple file-sharing applications
and aim at advanced services like distributed query processing and data
integration.

This chapter briefly presents the history of P2P systems and their
evolution over the last years resulting in a variety of systems adjusted for
different needs of applications. We then present the most well-known P2P
systems and discuss their differences with a focus on how these systems
organize shared data and exploit data correlations.

2.1 A Short History

The history of P2P systems in the Internet is not even 10 years old but
their impact was noticeable from the beginning on and their success is
nowadays undisputed. The development started with the Napster [Nap]
system released June 1, 1999 and used by millions of users all over the
world to share music files. The concept was so simple and the system so
easy to use that its success caused its shutdown already two years later

15

16 Chapter 2: Peer-to-Peer Systems

by injunction for facilitating the transfer of copyrighted material. From
that point on, P2P was mainly associated by the public with pirate-to-
pirate although P2P systems were used in earlier days by the scientific
community, e.g., Seti@Home [ACK102], almost unnoticed by the public
though. But the financial impact of Napster on the music industry and
its attention in the global news caused the breakthrough for P2P on the
Internet leading to a variety of P2P applications nowadays used by almost
every Internet user.

The variety of applications also strongly influenced the evolution of
P2P systems as new applications had new requirements on data process-
ing leading to new infrastructures and designs. Napster had a central
server to index all shared files which was soon recognized as single-point
of failure and bottleneck for P2P systems as data was only processed at
the central server. Later systems were aiming at complete decentralization
of data processing lacking any central coordination. These fully decentral-
ized networks can be categorized in unstructured and structured overlay
networks. The most successful unstructured overlay is the file-sharing net-
work Gnutella [Gnua]. Its decentralization and simplicity still guarantees
its survival although several protocol revisions have already been imple-
mented. For example, Gnutella introduced the concept of SuperPeers, a
hierarchical overlay of inter-connected peers (SuperPeers) responsible for
query routing and “normal” peers connecting to SuperPeers. This hierar-
chical architecture was later adopted by many other overlay systems, e.g.,
KaZaA [KaZ]. Nowadays, P2P systems are omnipresent in our daily life
and responsible for almost three-fourths of todays’ Internet traffic!. Most
modern systems are based on structured and /or hierarchical overlays. The
most popular P2P systems nowadays are BitTorrent [Bit] and Skype [Sky].
BitTorrent is a file-sharing network enabling fast downloads of large files
by splitting files in smaller chunks and downloading them from multiple
nodes in parallel. Skype is a distributed Voice over IP (VoIP) application
allowing users to communicate (audio-visually) over the Internet. Skype
currently counts approximately 276 million users with already 100 billion
call-minutes, according to Skype.

2.2 The Concept of Data Fragmentation

The idea of partitioning data and distributing it among several peers
is not new and was already introduced in the area of distributed
databases [OV91]. The main difference between distributed database sys-
tems and P2P systems is the autonomy of peers. Nodes in a distributed
database are under the control of a central database management system
(DBMS) organizing the storage devices located in the same physical

"http://www.ipoque.com/news_&_events/internet_studies/internet_study_
2007

2.2. The Concept of Data Fragmentation 17

location or distributed over a network of interconnected computers. The
data stored in the database is fragmented/partitioned and distributed
across the multiple physical locations in the network, while under the
control of the central coordinator. Database nodes get assigned a
partition of the data they are responsible for. Like in P2P systems, data
can be replicated to increase reliability and fault-tolerance, depending on
business needs, and the distribution of data is transparent to users, i.e.,
a user does not have to know where data is stored or retrieved from.

An interesting problem in both distributed databases and P2P sys-
tems is how to partition and fragment data among peers. An approach
used by some of the early structured overlay networks is random uni-
form distribution using a hash function such as SHA-1. Data fragments
are randomly assigned to peers and an index has to be kept to retrieve
them later. While this achieves good storage load-balancing, one of the
important criteria for distributed systems, it lacks performance for more
complex distributed data processing operations beyond simple lookups re-
trieving a single data fragment. Two approaches to tackle this problem
in distributed database systems, where more complex data processing is
common, are horizontal [CNP82] and vertical [NCWD84]| fragmentation.
Both have the aim to partition data into smaller fragments of correlated
data which can then be stored at different physical locations.

Horizontal partitioning partitions a relation in a database into sub-
sets of tuples. This is useful if certain value ranges are often processed
together. For example, students with ZIP codes less than 5000 are stored
in Students_South, while students with ZIP codes greater than or equal
to 5000 are stored in Students_North. The two partition tables are then
Students_South and Students_North, while a view with a union might be
created over both of them to provide a complete view of all students.

Vertical partitioning partitions a relation in a database by partition-
ing the attribute sets and projecting the tables onto the attribute set
partitions. Normalization is a process that inherently involves vertical
partitioning. A common form of vertical partitioning is to split (slow to
find) dynamic data from (fast to find) static data in a table where the dy-
namic data is not used as often as the static. Creating a view across the
two newly created tables restores the original table with a performance
penalty, however performance will increase when accessing the static data,
e.g., for statistical analysis.

A hybrid approach combines both horizontal and vertical partitioning.
Which method is used in the end mainly depends on the queries posed
against the database and the performance requirements. Horizontal parti-
tioning is advisable if mainly all or most columns of a table are requested
for certain parts of a table, e.g., for all students with a ZIP code lower
than 5000. On the other hand, if two attributes are frequently processed

18 Chapter 2: Peer-to-Peer Systems

together, not requiring other attributes of a table, then vertical partition-
ing provides better performance. To choose a partitioning schema, the
query history can be analyzed to identify dependencies between data en-
tries if they are not already known in advance. The partitioning aims at
storing highly correlated data at the same physical device to provide the
best performance.

2.2.1 Design Findings for P2P Systems

The previous section has shown that the idea of data partitioning is not
new and has been studied for a long time in the field of distributed
databases. P2P systems implement the same concept of data sharing and
data partitioning as distributed databases but without central control and
with autonomous peers. Nevertheless, data has to be organized in a cer-
tain way to provide efficient lookup and database-like lookup guarantees
for performance and completeness. Structured overlay networks achieve
this by building a decentralized index of all data shared in their system.
The index is fragmented and partitioned among participating peers similar
to horizontal data fragmentation in distributed databases. An important
question that remains is which peer holds which index entries.

Section 2.4 will present some of the most prominent structured over-
lays with a specific focus on their strategies of data respectively index
partitioning. We distinguish between two types of systems: (i) systems
using a uniform hash function and (ii) systems using a order-preserving
hash-function. Why is this an important criterion for us? Distributed
databases have shown that data partitioning according to data correla-
tions is important to achieve good performance. They therefore store
correlated data on the same physical location. We think that this is also
an important requirement for P2P systems if they are supposed to perform
efficiently for more complex operations beyond single key lookups.

For completeness before discussing structured overlay networks, we
will present the concept of unstructured overlays as they are currently
very widespread for P2P file-sharing applications and well-known. Their
design is usually very simple to provide stable large-scale networks with
best-effort lookup operations. These networks are very well suited for
file-sharing applications as highly requested files are usually also strongly
replicated in the network and therefore very likely be found. Rare content
is however more difficult to find and no guarantees can be given that it will
be found at all. Some unstructured networks therefore already consider a
hybrid approach to overcome this shortcoming by combining the benefits
of structured and unstructured networks [HK07]. The next section will
present the basic concept of unstructured networks and in more details
the most prominent representative, Gnutella.

2.3. Unstructured Overlays 19

2.3 Unstructured Overlays

Unstructured overlays organize peers in a random graph and use flood-
ing, random walks or expanding-ring Time-To-Live (TTL) search, etc.
to query content stored at overlay peers. Using an unstructured topol-
ogy implies to involve all peers in data processing if the processing has
to be complete. As both data and index items remain locally at peers
each query is only evaluated against the local index. Data is therefore
not reorganized in the network and no global structure is maintained.
No central coordinator has knowledge of all the shared data. Therefore
no data correlations can be exploited as peers are not aware of other
peers’ data respectively index. Thus, unstructured networks are of mi-
nor interest for us as we aim at reducing lookup costs (the number of
involved peers) by exploiting data correlations between data items shared
in a P2P system. We will nevertheless present the first and probably
most famous unstructured P2P system Gnutella for completeness. Other
prominent systems are FastTrack [Fas|, eDonkey [eDo], BitTorrent [Bit],
and Freenet [CSWHO00]. A detailed description of them and a discussion
can be found in [LCPT04].

2.3.1 Gnutella

Gnutella [Gnua] is a decentralized protocol for distributed search on a
flat unstructured network of so-called servents (peers). Peers are called
servents as they act as servers (serv-) and clients (-ents) at the same time
according to the P2P paradigm that all peers are equal and share their re-
sources among each other. The original Gnutella protocol supported only
a flat hierarchy-less topology soon leading to performance and scalability
problems as described in [Rit01]. The scalability problem arises from the
flooding based resource location algorithm as shown in Figure 2.1.

All communication is entirely pair-wise between two servents and peers
only know their shared content, their neighbors and a set of recently
received peer addresses. Gnutella is therefore purely P2P as there is no
central coordination or control and peers only interact locally with their
environment. Peers further only decide based on local information and
do not have influence on other peers as others can refuse connections and
ignore messages at will. These properties enable peers to create ad-hoc
networks in a fast way and to remain operational even in very dynamic
environments with frequent peer joins and leaves. The simple protocol
consists of only 5 messages: ping, pong, query, query response, and push
on top of TCP/IP connections. Ping and pong are required to maintain
the network structure, query and query response to locate content and
announce matching items, and push is used for downloads from firewalled
servents. Peers not behind a firewall wishing to download content using
the standard HTTP protocol [HTT] can request to “push” a file from a

20 Chapter 2: Peer-to-Peer Systems

Figure 2.1: Gnutella architecture and content location

firewalled peer to them by sending a push message to these peers. The
firewalled peer in response opens a TCP/IP connection to the requesting
peer which can now initiate the standard HTTP download protocol.
Queries are flooded by peers to all their neighbors in a certain radius
defined by a Time-To-Live (TTL) of a query. The usual TTL is 7 meaning
that a query is forwarded 7 times to all neighbors a peer has, i.e., generat-
ing multiple queries with the same T'TL. This design is extremely resilient
against peers leaving and joining at any time but can generate high net-
work traffic reducing the overall performance of the system or even cause
its breakdown. Each peer receiving a query evaluates its shared content
against the query and returns all matching items to the peer it received
the query from. Thus, a query reply traverses the same path back a query
came from. Downloads are afterwards handled directly between two peers.
The network structure to locate content is maintained in a similar way
as query resolution. Peers periodically send out so-called ping messages to
all their neighbors which are then again flooded to all their neighbors, of
course reducing the TTL by one. Peers receiving a ping message respond
with a pong message containing addresses of overlay peers. In this way,
peers get to know more and more peers in the network enabling them
to open further connections if desired or repairing broken connections to
other peers. The simplicity of this protocol makes Gnutella networks very
stable against node churn, i.e., peers joining and leaving the network at
any time, and they remain operational even if a large number of overlay
peers become unavailable. New peers willing to join the network require
only to know one peer of the network, usually a so-called bootstrap peer
provided by the network administrator. A new peer simply sends a ping

2.4. Structured Overlays 21

message to the bootstrap peer or any other peer in the network and it
receives as response a list of participating overlay peers it can connect
subsequently.

Due to the aforementioned scalability problems, the latest proto-
col [Gnub] includes support for a two-layered SuperPeer architecture.
SuperPeers are called UltraPeers in the Gnutella network and improve
the scalability of the network as messages are only broadcasted in the
UltraPeer network and “normal” peers only connect to (one or more)
UltraPeers to advertise their shared content and issue queries. UltraPeers
perform query processing on behalf of their leaf peers shielding them
from most of the network traffic. As the bandwidth and processing
requirements are higher for UltraPeers, only peers meeting certain
requirements can become UltraPeers, e.g., fast peers with a good network
connection remaining online for most of the time. The two-layered
architecture therefore also increases the fault-tolerance against node
failures and communication errors as only reliable peers can become
SuperPeers to form a stable network backbone more dynamic nodes can
connect to at will. Figure 2.2 shows a two-layered P2P infrastructure
using SuperPeers.

&g\"v ; SuperPeer

Figure 2.2: SuperPeer architecture

2.4 Structured Overlays

Structured overlays provide a distributed index structure across multiple
physical devices for efficient location of resources, avoiding some of the
scalability problems of unstructured overlay networks. The efficient re-
source location service enables applications to realize different application
services on top such as data management (search, insert, update, etc.).
Application specific identifiers are used on top of the physical networking

22 Chapter 2: Peer-to-Peer Systems

layer for managing resources and addressing peers in the overlay network.
While applications could also use physical identifiers of peers directly,
e.g., the IP address, application specific identifiers enable semantic rout-
ing and generic services for network maintenance, authentication, trust,
etc., which would be difficult to integrate into and support at the network-
ing layer. Additionally, the independence of application specific identifiers
of peers from their physical identifier (IP address) enables peers to change
their physical address while remaining addressable and reachable in the
overlay network.

In any structured overlay network, a set of peers provides access to a
set of resources. Both, peers and resources, are mapped to an (application-
specific) identifier space using a hash function, associating resources and
peers with application specific identifiers, so-called keys. Resources are
assigned to peers using a closeness metric on the identifier space, e.g.,
resources are assigned to the peer with the closest identifier to the resource
identifier. To enable access from any peer to any resource a logical network
is built, i.e., a graph is embedded into the identifier space. The structure
of the graph depends on the type of overlay network and peer identifiers
determine the position of peers within the structure, e.g., on a ring, in a
tree, etc..

We classify in the following structured overlays by the hash function
used to map peers and resources into an identifier space. Initially, struc-
tured overlays were designed for efficient single key lookups, i.e., retrieving
resources based on their application specific identifier. Chord [SMK™01]
uses uniform hashing to map peers and resources on a ring, i.e., the iden-
tifier space. The uniform hashing produces random keys on the identifier
space for peers and resources, leading to a uniform distribution of re-
sources on peers. Structured overlays using uniform hashing are also called
Distributed Hash Tables (DHT') and we will present their most prominent
representatives, Chord, Pastry [RD01] and Tapestry [ZHST04]. We will
finally present the initial design of CAN [RFH'01] originally using uni-
form hashing of which today variants exist using order-preserving hash
functions.

Structured overlays with order-preserving hashing represent our sec-
ond category. The difference to DHTs is that they preserve the semantic
relations of resources in the identifier space, e.g., if a resource ry is “smaller
than” resource 79 in an ordered domain then the identifier of the resource
key(ry) is also “smaller than” key(ry) in the identifier space. Preserv-
ing semantic relations of resources enables the implementation of efficient
lookup services relying on these correlations, e.g., range queries exploit-
ing the order relationship of resources. Examples of systems exploiting
this feature are Mercury [BAS04] and SkipNet [HJST03], which we will
present in the following, and P-Grid [Abe01] which will be presented in
more detail in Chapter 3.

2.4. Structured Overlays 23

2.4.1 Distributed Hash Tables

Distributed Hash Tables (DHT) are structured overlay networks using
uniform hashing to map peers and resources uniformly and randomly on
the identifier space. As a consequence, resource identifiers are uniformly
assigned to peers. Peers are responsible for resource identifiers close to
their own identifier in the identifier space. The uniform distribution of
resource identifiers on peers leads theoretically to a uniform storage load
for peers, i.e., all peers are responsible for approximately the same number
of resource identifiers. Even in the case of a homogeneous system where
all nodes have the same capacity, DHTs can exhibit a substantial load
imbalance due to a natural variance of the randomized hashing [SMK*01].
[GS05, BKadH05] have presented approaches to tackle this problem as
load balancing is one of the main objectives of structured overlay networks
and was the main incentive for early systems to apply uniform hashing.
The disadvantage of uniform hash functions is that they do not preserve
semantic relationships of resources, as illustrated by Figure 2.3. The data
fragments a — z are mapped to the key space 0 — 9. The figure shows
how the hash function approximately uniformly distributes data fragments
on the key space while destroying the lexicographical order of the data
fragments. In the end, all fragments are spread out on the key space and
each peer A— D holds approximately the same amount of data falling into
the key range it is responsible for. In the following we will present several
systems using such a uniform hash function in more details.

e e e ke o

Uniform Hash Function

099@@

Key Space [O- 9]
@ - @ @

Figure 2.3: Uniform Hashing

Chord

Chord [SMK™01] is a ring-based DHT using consistent uniform hash-
ing [KLLT97] to assign peers and resources an m-bit identifier, using
SHA-1 as the base hash function. The peer identifier defines the peer’s
position on the ring and is obtained by hashing the peer’s IP address. A
resource identifier, also called key, is obtained by hashing a data value
of the resource. The length of the identifier m must be large enough to
make the probability of peers and resources hashing to the same identifier

24 Chapter 2: Peer-to-Peer Systems

negligible. Identifiers are ordered on an identifier circle modulo 2™. The
key k of a resource is assigned to the first peer whose identifier is equal
to or follows k in the identifier space. This peer is called the successor
peer of key k, denoted by successor(k). If identifiers are represented as
a circle of numbers from 0 to 2™ — 1, then successor(k) is the first peer
clockwise from k. The identifier circle is called the Chord ring. To main-
tain consistent hashing mapping when a peer n joins the network, certain
keys previously assigned to n’s successor now need to be reassigned to n.
When peer n leaves the Chord system, all of its assigned keys are reas-
signed to n’s successor. Therefore, peers join and leave the system with
(logN)? performance, where N is the number of peers in the system. No
other changes of key assignments to peers need to occur. In Figure 2.4
the Chord ring is depicted with m = 6. This particular ring has ten peers
and stores five keys. The successor of the resource identifier 10 is peer
14, so key 10 will be located at peer 14. Similarly, if a peer were to join
with identifier 26, it would store the key with identifier 24 from the peer
32. Each peer in the Chord ring needs to know how to contact its current
successor peer on the identifier circle. Each peer n further maintains a
routing table with up to m entries, called the finger table. The i** entry in
the table at peer n contains the identity of the first peer s that succeeds n
by at least 2°~1 on the identifier circle, i.e., s = successor(n+2~1), where
1 <i < m. Peer s is the i finger of peer n (n.finger[i]). A finger table
entry includes both the Chord identifier and the IP address (and port
number) of the relevant peer. Figure 2.4 shows the finger table of peer 8.
The first finger entry for this peer points to peer 14, as it is the first peer
that succeeds (8+41) mod 26 = 9. Similarly, the last finger of peer 8 points
to peer 42, i.e., the first peer that succeeds (8 + 32) mod 64 = 40. In this
way, peers store information about only a small number of other peers,
and know more about peers closely following it on the identifier circle than
other peers. Such networks are also called Small-World networks [Kl1e99].
Also, a peer’s finger table does not contain enough information to directly
determine the successor of an arbitrary key k. For example, peer 8 cannot
determine the successor of key 34 by itself, as successor of this key (peer
38) is not present in peer 8’s finger table. Queries are therefore resolved
in multiple hops using always the longest finger possible reaching a peer
with a smaller or equal identifier. For example a query lookup at peer 8
for the identifier 34 would be forwarded first to peer 32 present in peer
8’s routing table and closest to the destination. Peer 32 will then be able
to forward the query to the responsible peer 38 holding key 34.

As the fingers are only shortcuts to route messages in less hops to
a destination, the successor pointers are essential for the Chord network
to remain operational. Therefore the Chord protocol periodically runs a
stabilization protocol in the background to update these pointers. The
frequency of these corrections depends on the frequency of peers joining
and leaving the network, invalidating pointers in peers’ routing tables.

2.4. Structured Overlays 25

Finger Table
P8+1 P14
P8+2 P14
P4 P8+4 P14
P8+8 P21
P8 +16 P32
P8 + 32 P42

Figure 2.4: A Chord ring

The correctness of the Chord protocol relies on the fact that each peer is
aware of its successor, otherwise lookup operations cannot be guaranteed.
When peers fail, it is possible that a peer does not know its new successor,
and that it has no chance to learn about it. To avoid this situation,
peers maintain a successor list of size r, which contains the peer’s first r
successors. When the successor peer does not respond, the peer simply
contacts the next peer on its successor list. Assuming that peer failures
occur with a probability p, the probability that every peer on the successor
list will fail is p”. Increasing r makes the system more robust. By tuning
this parameter, any degree of robustness with good reliability and fault
resiliency may be achieved though at the cost of maintaining more pointers
in the routing table.

Pastry

Pastry [RDO01] is a DHT similar to Chord. Although the functionality
of Pastry is almost identical to other DHTs, what sets it apart is the
proximity-based routing built into the DHT concept. This allows Pastry
to realize the scalability and fault tolerance of other DHT's, while reducing
the overall cost of routing a packet by choosing the “nearest” node from
where the message originates, in terms of the proximity metric. The
proximity metric is supplied by an external program based on the IP
address of the target node and can be easily switched to shortest hop
count, lowest latency, highest bandwidth, or even a general combination
of metrics. This proximity-based routing has the advantage that messages
are forwarded to close neighbors or well connected peers reducing routing
latency. In other DHTs not considering this aspect, messages can travel
around the globe several times before the destination peer is hit though
it could be very close to the original sender. This is avoided in Pastry.
As mentioned already before, Pastry is very similar to Chord using

26 Chapter 2: Peer-to-Peer Systems

uniform hashing to distribute peers and resources uniformly on a circular
index space. It therefore shares the same properties as discussed earlier
for Chord. Additionally to the ring structure known from Chord, Pastry
nodes further maintain a routing table forming a tree. The binary tree
structure is probably the first routing geometry that had been proposed for
DHTs [PRR97]. In the tree approach, the leaf nodes of the tree correspond
to the node identifiers that store the keys to be searched. The height of
the tree is log(n), where n is the number of nodes in the tree. The search
proceeds down the tree by doing a longest prefix match at each of the
intermediate nodes until the target node is found. Therefore, in this case,
matching can be thought of as correcting bit values from left-to-right at
each successive hop on the tree.

Tapestry

Tapestry [ZHST04] resembles Pastry by its hybrid ring and tree struc-
ture and proximity-aware routing using the same uniform hash function
SHA-1 mapping peers and resources uniformly on an identifier space. The
difference between Pastry and Tapestry is the handling of network local-
ity and data object replication. Tapestry’s architecture uses a variant of
the Plaxton [PRR97] distributed search technique, with additional mech-
anisms to provide availability, scalability, and adaptation in the presence
of failures and attacks. Plaxton [PRR97] proposes a distributed data
structure, known as the Plaxton mesh, optimized to support a network
overlay for locating named data objects which are connected to one root
peer. Tapestry uses multiple roots for each data object to avoid single
points of failure. It uses local routing maps at each peer, to incrementally
route overlay messages to the destination ID digit by digit, for instance,
x% %7 = %97 = %297 = 3297, where "*’ is the wildcard. The lookup and
routing mechanisms of Tapestry are based on matching the suffix in peer
identifiers as described above. Routing maps are organized into routing
levels, where each level contains entries that point to a set of peers closest
in distance that matches the suffix for that level. Also, each peer holds
a list of pointers to peers referred to as neighbors. Tapestry stores the
locations of all resource replicas to increase semantic flexibility and allow-
ing the application level to choose from a set of resource replicas based on
some selection criteria, such as date. Each shared resource may include an
optional application-specific metric in addition to a distance metric; e.g.
OceanStore [KBCT00] global storage architecture finds the closest cached
document replica which satisfies the closest distance metric. These queries
deviate from the simple “find first” semantics, and Tapestry will route the
message to the closest k distinct resources.

2.4. Structured Overlays 27

CAN

The Content Addressable Network (CAN) [RFHT01] uses a hyper-
dimensional Cartesian coordinate space on a multi-torus to organize
peers and map resources onto peers and partitions. This d-dimensional
coordinate space is dynamically partitioned among all peers in the
system such that every peer possesses its individual, distinct zone within
the overall space. A CAN peer maintains a routing table that holds
the IP address and virtual coordinate zone of each of its neighbor
coordinates. A peer routes a message towards its destination using a
simple greedy forwarding to the neighbor peer that is closest to the
destination coordinates. Figure 2.5 shows a 2-dimensional CAN network
and illustrates the query routing among neighbors till the destination
area respectively peer is reached. The query is initiated at peer X
and peer X’s coordinate neighbor set contains the peers A, B, C, D.
CAN’s greedy routing algorithm aims at selecting the neighbor closest
to the destination coordinate of a query. Therefore peers compare the
coordinates of their neighbors with the destination coordinate and select
the peer which is closest to the destination. This is done till the query
hits the peer responsible for the destination coordinate. In our example,
peer X first forwards its query to peer D which is the closest neighbor to
peer E, the destination coordinate. CAN has a routing performance of
o(d - Né), N being the number of peers, and its routing state is of 2 - d
bound.

A
B
)l(C
|
D
\
\
\

Figure 2.5: Query routing in CAN

The virtual coordinate space is used to store {key,value} pairs by
applying a uniform hash function to the content to obtain a key mapped
deterministically onto a point P. The {key, value} pair is then maintained
by the peer responsible for point P. To retrieve a certain value, a peer
applies the same hashing function to obtain the destination coordinates

28 Chapter 2: Peer-to-Peer Systems

of the key. These coordinates are included into a query and routed along
neighbors till the responsible peer is reached.

Peers partition the virtual space during the join process. A new peer
first contacts one of the well-know bootstrap peers to obtain an IP address
of a random peer of the CAN network. The new peer further choses a
random point P in the CAN coordinate space and requests the route to
this point from the random peer retrieved before. Using CAN’s routing
technique, the new peer will eventually get in contact with the peer re-
sponsible for the point P. The current peer in zone P will then split the
zone in two equal halves and hand over one half to the new peer. In a
2-dimensional space, zones are first split along the X dimension, then the
Y, and so on. The new peer takes over the neighbors from the previous
peer of point P and both peers add each other to their neighbors. Fur-
ther all {key,value} pairs falling in the zone of the new peer are handed
over by the previous peer. A takeover algorithm handles peers leaving the
network and ensures that all areas of the coordinate space are covered by
peers. If a peer leaves the network, its neighbor takes over its half and
informs all neighbors about the change to update their neighboring sets.

CAN is able to route messages even if several peers are temporar-
ily unavailable by picking the next closest peer in the neighbor set. To
improve data availability, CAN can maintain multiple independent co-
ordinate spaces with peers being assigned different zones in each space,
so called reality. For a CAN with r realities, a single peer is assigned
r coordinate zones, one on each reality available, and this peer holds r
independent neighbor sets. The contents of the hash table are replicated
on every reality, thus improving data availability. For further data avail-
ability improvement, CAN could use k different hash functions to map
a given key onto k points in the coordinate space. This results in the
replication of a single {key,value} pair at k distinct peers in the sys-
tem. A {key,value} pair is then unavailable only when all the k replicas
are simultaneously unavailable. Thus, queries for a particular hash table
entry could be forwarded to all k peers in parallel thereby reducing the
average query latency, and reliability and fault resiliency properties are
enhanced [LCPT04].

Discussion

All structured overlay networks using uniform hashing resemble the hash
table concept and are therefore so-called Distributed Hash Tables (DHTS).
DHTs further resemble the hash index known from databases to efficiently
lookup resources given their identifier. Independent of the used network
topology, resources are hashed to random identifiers which are scattered
uniformly around the network. Although this leads to good load balanc-
ing, i.e., all peers hold approximately the same number of resource identi-
fiers, it does not preserve semantic relations. DHTs are therefore mainly

2.4. Structured Overlays 29

suitable for exact-key lookup operations, retrieving resources based on
their identifiers, as their counterparts in database systems.

Tapestry provides semantic flexibility to applications to select resource
replicas based on application-specific metrics, e.g., the freshest copy. To
support more complex lookup services, DHTs were adopted to meet ac-
cording requirements. For example, [GAE03, SGAE04] use CAN with an
order-preserving hash function to hash ranges of values and to support
range queries in CAN. We will discuss this approach in more details in
Chapter 4 and now present structured overlays based on order-preserving
hashing.

2.4.2 Structured Overlays with Order-Preserving Hashing

Structured overlays with order-preserving hash functions preserve the or-
der relationship of resources while mapping them onto the identifier space,
i.e., the generated identifiers of neighboring resources in a set of ordered
resources are also neighbors in the identifier space. The order relationship
is the natural relationship to be preserved as one-dimensional key spaces
are predominant in structured overlay networks. Peer identifiers have to
be distributed according to the distribution of resource identifiers to meet
the load balancing requirement, i.e., that all peers are responsible for ap-
proximately the same number of resource identifiers. The partitioning
of the identifier space depends on the distribution of resource identifiers
respectively the distribution of resources.

Figure 2.6 shows how data fragments are mapped on a key space us-
ing order-preserving hashing. The hash keys of lexicographically ordered
data fragments are in the same order as the original data fragments. This
leads to the same distribution in the key space as in the data domain pos-
sibly leading to a load-imbalance among peers responsible for partitions.
The advantage is that similar content is now stored at the same peer,
or at least in the proximity, e.g., data fragments a and b are mapped to
key 0 respectively 1 and therefore maintained by the same peer A. The
remainder of this chapter will present two structured overlays based on
order-preserving hashing. Chapter 3 will present P-Grid, also using an
order-preserving hash-function, in more details.

Mercury

The design focus of Mercury [BAS04] was to support multiple-attribute
range queries. Peers are organized in multiple routing hubs, one for each
indexed attribute. A routing hub is a circular overlay of peers and places
data contiguously on this ring, i.e, each node is responsible for a range
of values of a particular attribute. In contrast to DHTs distributing data
randomly and uniformly on the ring, Mercury’s order-preservation causes
the data being populated contiguously on the ring. A range query can
therefore simply be answered by finding the lower or upper bound and

30 Chapter 2: Peer-to-Peer Systems

el e e ke o

Order-Preserving Hash Function

65 b6 o

Key Space [0- 9]
@ - @ @

Figure 2.6: Order-Preserving Hashing

traversing all peers along the ring until the other bound is reached. Exact
lookup operations for a single key are of course further supported with
logarithmic effort as know from other DHTs.

Figure 2.7 illustrates an example Mercury network consisting of two
routing hubs H, and H, (also called attribute hubs) indexing values of
x and y coordinates of objects. The minimum and maximum values for
the x and y attributes are 0 and 320 respectively. Accordingly, the ranges
are distributed to various nodes. The data-item with z-coordinate 100
and y-coordinate 200 is sent to both H, and H,, where it is stored at
nodes b and e, respectively, as node b is responsible for all z-coordinates
between 80 and 160. A query as shown in Figure 2.7 is first routed to the
more selective routing hub, in this example hub H,, and then forwarded
along neighbors till the queried range is covered. As this can lead to high
query latencies, long-distance links, so-called fingers in Chord, are used
to provide a more efficient routing mechanism.

€ [0,80)

query B [80,160)

intx <= 150 data item

int x >= 50 int x 100

inty <= 250 it y 200

inty >= 150 T y

[240,320) E [200,320)
[160,240)
D
[0,100) F
[100,200)

Figure 2.7: A Mercury network

Since there are likely to be particular ranges of an attribute that are
more popular for queries and data-records, nodes responsible for these

2.4. Structured Overlays 31

ranges will be unfairly overloaded with both routing and computation
tasks. Mercury performs explicit load balancing by moving around nodes
and changing their responsibilities according to the loads. This enables
the combination of good load-balancing with support for range predicates.
However, one important side effect is that the distribution of range sizes
is no longer guaranteed to be uniform. Peers in popular areas are respon-
sible for smaller ranges than peers in less popular areas. Range queries
with equal range size will therefore involve more peers in popular areas
than in less popular areas, leading to higher lookup costs/delays in the
first case as more peers are involved. Load balancing is performed by a
join-leave protocol populating overloaded areas of a routing hub and re-
questing peers in lightly loaded areas to leave the network and re-join it.
Over time these leaves and re-joins cause a shift in the peer distribution.
The load distribution is sampled periodically by peers and represented by
approximate histograms.

SkipNet

SkipNet [HJS103] is a scalable overlay network that supports traditional
overlay functionality as well as content locality and path locality based on
Skip Lists [Pug90]. Content locality refers to the ability to either explicitly
place data on specific overlay nodes or distribute it across nodes within
a given organization. Path locality refers to the ability to guarantee that
message traffic between two overlay nodes within the same organization is
routed within that organization only. Content and path locality provide a
number of advantages for data retrieval, including improved availability,
performance, manageability, and security. For example, nodes can store
important data within their organization (content locality) and nodes will
be able to reach their data through the overlay even if the organization
becomes disconnected from the rest of the Internet (path locality). Storing
data near the clients that use it also yields to performance benefits.

SkipNet supports efficient message routing between overlay nodes, con-
tent placement, path locality, and constrained load balancing. It does so
by employing two separate, but related address spaces: a string name ID
space as well as a numeric ID space. Node names and content identifier
strings are mapped directly into the name ID space, while hashes of the
node names and content identifiers are mapped into the numeric ID space.
A single set of routing pointers on each overlay node enables efficient rout-
ing in either address space and a combination of routing in both address
spaces provides the ability to do constrained load balancing.

Figure 2.8 shows the routing infrastructure for a 8 node system labeled
A, D, M, O, T, V, X, and Z. The nodes are organized in a ring structure
ordered by their name, their name ID. All nodes are connected by the
root ring formed by each node’s pointers at level 0. The pointers at level
1 point to nodes that are 2 nodes away and hence the overlay nodes are

32 Chapter 2: Peer-to-Peer Systems

implicitly divided into two disjoint rings. Similarly, pointers at level 2
form four disjoint rings of nodes, and so forth. Note that rings at level
h+ 1 are obtained by splitting a ring at level h into two disjoint sets, each
ring containing every second member of the level h ring.

Ring Ring Ring Ring Ring Ring Ring Ring
000 001 010 011 100 101 110 1

Dﬁ@@’@@ﬁw

% Level 1
o M—09]
Root Ring

Figure 2.8: The SkipNet network structure

Level 0

Each node can randomly choose a ring membership encoded as unique
binary number, the node’s numeric ID. As illustrated in Figure 2.8, the
first h bits of the number determine ring membership at level h. For
example, node X’s numeric ID is 011 and its membership at level 2 is
determined by taking the first 2 bits of 011, which designate Ring 01. As
described in [SMK™101], there are advantages to using a collision-resistant
hash (such as SHA-1) of the node’s DNS name as the numeric ID. The
SkipNet design does not require the use of hashing to generate nodes’
numeric IDs; they only require to be random and unique. Because the
numeric IDs of nodes are unique they can be thought of as a second address
space that is maintained by the same SkipNet data structure. Whereas
SkipNet’s string address space is populated by node name IDs that are not
uniformly distributed throughout the space, SkipNet’s numeric address
space is populated by node numeric IDs that are uniformly distributed.
The uniform distribution of numeric IDs in the numeric space is what
ensures that the routing table construction yields routing table entries
that skip over the appropriate number of nodes.

SkipNet supports Constrained Load Balancing (CLB). To implement
CLB, a data object’s name is divided into two parts: a part that specifies
the set of nodes over which load balancing should be performed (the CLB
domain) and a part that is used as input to the hash function (the CLB
suffix). In SkipNet the special character ’!" is used as a delimiter between
the two parts of the name. For example, suppose the document using the
name msn.com/DataCenter!TopStories.html is stored. The CLB domain
indicates that load balancing should occur over all nodes whose names

2.5. PlanetLab 33

begin with the prefix msn.com/DataCenter. The CLB suffix, TopSto-
ries.html, is used as input to the hash function, and this determines the
specific node within msn.com/DataCenter on which the document will
be placed. Storing a document with CLB results in the document being
placed on precisely one node within the CLB domain (although it would
be possible to store replicas on other nodes). If numerous other docu-
ments were also stored in the msn.com/DataCenter CLB domain, then
the documents would be uniformly distributed across all nodes in that
domain. To search for a data object that has been stored using CLB, we
first search for any node within the CLLB domain using search by name ID.
To find the specific node within the domain that stores the data object,
we perform a search by numeric ID within the CLB domain for the hash
of the CLB suffix.

Discussion

The aim of structured overlay networks with a order-preserving hash func-
tions is to retain the order relationship among resources. These systems
resemble, independent of their network structure, the idea of B-trees used
in databases to support efficient range scans on the index. Range queries
are therefore only supported by structured overlays with order-preserving
hashing. DHTSs, such as Chord, using uniform hashing were extended
with, for example, a Prefix Hash Tree (PHT) [RRHS04] to support simi-
lar functionality. This system implements multiple indexes optimized for
different lookup operations as also used in centralized databases.

The real advantage of traditionally using a hash index/table in main
memory is the constant time of lookup, insert, and delete operations. But
to facilitate this, a hash table sacrifices the order-relationship of the keys.
However, over a network, where only parts of the hash table are stored at
each location, these operations need multiple overlay hops anyway. For
most conventional DHT's the number of hops is logarithmic in the network
size. Thus the main advantage of constant time access no longer exists
in DHTs. This makes overlay networks with order-preserving hashing a
natural choice since they provide normal key search for the same order of
message complexity as a DHT and efficiently support range queries.

2.5 PlanetLab

PlanetLab is a global platform for deploying and evaluating Internet-scale
network services such as overlay networks. It was launched in 2002 with
100 machines distributed to 40 sites. Currently, about 800 nodes spread
over around 400 sites form an Internet-scale testbed used by researchers all
over the world to evaluate their developments. Further, a longer-term goal
of PlanetLab is to support continuously running services that potentially
serve a client community. In other words, PlanetLab is not only designed

34 Chapter 2: Peer-to-Peer Systems

as testbed but also to support the seamless migration of an application
from early prototype, through multiple prototype design iterations, to a
popular service that continues to evolve. In the long term, PlanetLab
could serve as a microcosm for the next generation Internet [PACRO02].
We use PlanetLab as testbed for evaluating most of our algorithms we
will present in the remaining of this thesis. This section therefore briefly
describes the architecture and use of PlanetLab.

The centerpiece of the PlanetLab architecture is a slice (a horizontal
cut of global PlanetLab resources). Each service (a set of distributed and
cooperating programs delivering some higher-level functionality) runs in
a slice of PlanetLab. A slice encompasses some amount of processing,
memory, storage, and network resources across a set of individual Plan-
etLab nodes distributed over the network. A slice is therefore more than
just the sum of the distributed resources, it is more a network of wvirtual
machines with a set of local resources bound to each virtual machine.

A virtual machine is the environment where the program that im-
plements some aspects of a service runs. Each virtual machine runs on
a single node and is allowed to consume some fraction of that node’s re-
sources. In addition to being bound to a set of resources, a virtual machine
also defines the execution environment for which programs are written.
Multiple virtual machines run on each PlanetLab node, where a virtual
machine monitor arbitrates the node’s resources among them [CCR™03].

From a users point of view, PlanetLab provides a large set of servers
distributed all over the world available any time for testing developments.
All nodes can be accessed by SSH connections using a private/public key
pair created during user registration. This allows users to use scripts
accessing hosts to deploy and start their prototypes as well as monitoring
application status or retrieving log files for later local analysis.

The popularity of PlanetLab in the last years had led to several prob-
lems making evaluations on it sometimes difficult and not reproducible.
As resources are shared among all slices at a node and users cannot reserve
resources nor time slots for their experiments, the behavior of PlanetLab
can be unpredictable sometimes, especially at high seasons of conference
deadlines. As a consequence less resources are available for each user and
node and network failures are more likely. The high load at some nodes
further leads to higher response times as somebody would expect from
“normal” computers as multiple processes share one or two CPUs at the
same time.

Nevertheless, PlanetLab is the state-of-the-art evaluation platform for
real Internet-scale developments all implemented system have to be tested
on. Even though its performance may be unpredictable it just reflects the
real-world distributed systems have to be able to deal with anyway. We
therefore evaluated most of our algorithms on PlanetLab using a Java
implementation of P-Grid we will present in more details in Chapter 7
and Chapter 8.

2.6. Conclusions 35

2.6 Conclusions

This chapter introduced various types of P2P systems with a focus on
structured overlay networks. Structured overlay networks provide access
to shared resources through a distributed index structure. Peers stor-
ing a fraction of the distributed index maintain routing information to
other peers to enable efficient lookups for any resource identifier. We cat-
egorized structured overlay networks by their hashing function. DHTs
use uniform hashing to achieve load balancing and are mainly suitable
for exact key lookups, i.e., retrieval of resources by their identifier only.
Structured overlay networks with order-preserving hashing retain the or-
der relationship among resources to additionally support efficient range
queries.

36

Chapter 2: Peer-to-Peer Systems

Chapter 3

The P-Grid Overlay

The overview of P2P systems presented in the previous chapter has shown
that structured overlay networks using order-preserving hashing are the
natural choice if both, single key lookups and range queries, should be
supported efficiently. This chapter will present P-Grid, a trie-based struc-
tured overlay using order-preserving hashing, in more details. As the
advantage of constant time for lookup, insert and delete operations in a
classical hash index does no longer exist in DHTSs, a distributed trie struc-
ture can provide the same logarithmic access guarantees as DHTs while
retaining the order relationship of data.

We will present P-Grid’s distributed virtual binary trie to partition
peers and to assign them a small portion of the distributed index. The
lookup operation based on greedy prefix-routing implements single key
lookups on top of this access structure. Its construction and required
load balancing is further briefly described although not the focus of this
chapter. These functionalities are the base for the remainder of this thesis.
An evaluation of P-Grid’s construction and single-key lookup mechanism
will be presented in Chapter 8. At the end of this chapter, we discuss
P-Grid’s extensions for sharing correlated data.

3.1 Distributed Search Structure

P-Grid’s virtual binary trie is used to partition peers and to assign them
a small portion of the distributed index. The index is mapped onto a
key space represented by binary strings. Without constraining general
applicability P-Grid uses binary keys. This is not a fundamental limitation
as a generalization of the P-Grid system to k-ary structures is natural,
and exists [AP03]. Each peer is associated with a leaf of the tree and
a so-called path. Each leaf corresponds to a binary string, the so-called
key-space partition.

Each peer p € P is associated with a leaf of the binary trie, i.e., a key
space partition, which corresponds to a binary string 7(p) € II called the

37

38 Chapter 3: The P-Grid Overlay

peer’s path. For search, the peer stores for each prefix 7(p,!) of 7(p) of
length [a set of references p(p,) to peers g with property 7(p,l) = 7(q,1),
where 7 is the binary string m with the last bit inverted. This means
that at each level of the trie the peer has references to some other peers
that do not pertain to the peer’s sub-trie at that level which enables the
implementation of prefix routing. The cost for storing the references and
the associated maintenance cost scale as they are bounded by the depth
of the underlying binary tree. More details and an example of the search
algorithm are presented in Section 3.2.

Each peer stores a set of data keys 6(p). Binary keys are calculated
using an order-preserving hash function presented in Section 3.3. For
d € §(p) key(d) has 7(p) as prefix but it is not excluded that temporarily
also other data keys are stored at a peer, that is, the set §(p, 7(p)) of data
keys whose key matches 7(p) can be a proper subset of §(p). Moreover,
for fault-tolerance, query load-balancing, and hot-spot handling, multiple
peers are associated with the same key-space partition (structural repli-
cation), and peers additionally also maintain multiple references o(p) to
peers with the same path (data replication), i.e., their replicas, and use
epidemic algorithms to maintain replica consistency [DHAO03].

Figure 3.1 shows a simple example of a P-Grid tree consisting of 6
peers (peer A - F) responsible for 4 partitions (00, 01, 10, 11), e.g., peer
F is responsible for the partition 00 and therefore peer F’s path is 00. As
mentioned before, peers have to maintain references at multiple levels to
other parts of the tree. The number of references is equal to the length of
a peer’s path. As the path of peer F is 00, its routing table consists of two
levels. Level 0 holds references to peers of the right side of the tree with
no common path prefix, e.g., peer E with path 11. Level 1 holds references
to peers of the neighboring sub-tree 1 with peers having the first bit in
common, e.g., peer B with path 01. The example shows that peers have
to maintain at least one reference per level to be able to route to all parts
of the tree, i.e., to all sub-trees seen by a peer, but it is not necessary to
maintain references to all partitions of the key space. Further, as multiple
peers are assigned to partitions they also maintain multiple references per
level for the same reasons, i.e., fault-tolerance, query load-balancing and
hot-spot handling. Finally, each peer stores keys having a prefix with a
peer’s path, e.g., peer B maintains all data keys with prefix 01.

There are several other structured overlays which topologically re-
semble P-Grid and use prefix-based routing variants, for example, Pas-
try [RDO01] and particularly Kademlia [MMO02] whose XOR distance metric
results in the same tree abstraction and choice of routes from all peers in
complementary sub-trees as in P-Grid. Important distinguishing features
of P-Grid include the bootstrapping algorithms for the P-Grid network
based on randomized algorithms, support for substring queries, and the
adaptive, structural replication (multi-faceted load-balancing of storage
and query load) [ADHS05].

3.2. Basic Search Operation 39

00* 01* 10* 11*
* :C,D| [1* :E 1* :C,D 0* :A,B| [0* :AF 0* :B,F
01* :B 01* :B 00* : F 11* :E 11* 1 E 10* : D
Stores data) (Stores data Stores data Stores data) (Stores data Stores data
with key with key with key with key with key with key
prefix 00 prefix 00 prefix 01 prefix 10 prefix 10 prefix 11

Figure. 1: An examplary P-Grid overlay network

)

There is another motivation for having a trie-structured overlay net-
work instead of a standard distributed hash table: The real advantage of
traditionally using a hash table in main memory is the constant time of
lookup, insert, and delete operations. But to facilitate this, a hash table
sacrifices the order-relationship of the keys. However, over a network,
where only parts of the hash table are stored at each location, we need
multiple overlay hops anyway. For most conventional DHTs the number
of hops is logarithmic in the network size. Thus the main advantage of
constant-time access no longer exists in DHTs. P-Grid provides normal
key search for same order of message complexity as a DHT, but in addi-
tion can be naturally extended to support more complex queries such as
range queries.

3.2 Basic Search Operation

The virtual binary trie of P-Grid now allows us to route queries to respon-
sible peers to resolve user queries. This is achieved by an eager prefix-
routing algorithm presented in Algorithm 3.1. The algorithm recursively
resolves the query for the given key k whereas p denotes the peer that
currently processes the request. The key is a binary string created by
hashing the keyword s with the same hash function used to index data
at insertion. The key is only used to identify the peer responsible for the
query, i.e., the peer whose path is a prefix of the query key. Once the
responsible peer is reached, the keyword is used to find and return all
matching index items. If the current peer is not responsible for the query,
i.e., its path is not a prefix of the query key, it forwards the query to one
peer of its routing table for further processing. The query is therefore
forwarded to a peer with the longest prefix match. For example, if the
current peer has two bits in common with the query key, it will select
randomly a peer of the routing table level two. Any peer at this level has
to have at least three bits in common with the query key. Therefore a
query is resolved bit-wise till the responsible peer is reached. Since P-Grid
uses a binary tree, its basic search operation is of complexity O(log|II|),
measured in messages required to resolve search requests, in a balanced

40 Chapter 3: The P-Grid Overlay

tree, i.e., all paths associated with peers are of equal length. Skewed data
distributions may imbalance the tree, so that it may seem that search
cost may become non-logarithmic in the number of messages. However,
in [Abe02b, Abe02a] it is shown that due to the randomized choice of
routing references from the complimentary sub-tree, the expected search
cost remains logarithmic (0.5logn), independently of how the P-Grid is
structured. The intuition why this works is that in search operations keys
are not resolved bit-wise but in larger blocks thus the search costs remain
logarithmic in terms of messages. This is important as P-Grid uses order-
preserving hashing to compute keys which may lead to non-uniform key
distributions.

Algorithm 3.1 Basic search in P-Grid: Retrieve(p, k, s)
1. if w(p) C k then
return(d € 0(p) | key(d) =k, w C d);
. else

2
3
4: determine [such that 7(k,l) = 7(p,1);
5. r = randomly selected element from p(p,1);
6: Retrieve(r, k, s);

7. end if

The algorithm always terminates successfully, if the P-Grid is com-
plete (ensured by the construction algorithm) and at least one peer in
each partition is reachable (ensured through redundant routing table en-
tries and replication). Due to the definition of the routing table and
the search algorithm it will always find the location of a peer at which
the search can continue (use of completeness). With each invocation of
Retrieve(p, k, s) the length of the common prefix of a peer’s path and the
query key increases at least by one and therefore the algorithm always
terminates. Note that, while the network has a tree/trie abstraction, the
system is hierarchy-less, and all peers reside at the leaf nodes.

The search algorithm presented in Algorithm 3.1 resolves queries by
first determining the peer responsible for the query and then matching
all index items against a given keyword. The query key is generated by
the same hash function used to index data. Therefore a query will locate
the same peer for a given key that has been located while storing the key.
Substring search can be supported by simply indexing not only the full
string but also the substrings and by adding them to the index. P-Grid
is therefore able to support any sort of substring search depending on
the granularity of indexing, which can be chosen by the application/user
using P-Grid.

3.3. Order-Preserving Hash Function 41

3.3 Order-Preserving Hash Function

P-Grid’s hash function maps application data to binary strings. In the
reference implementation we assume application data to be strings for
simplicity, but in fact any data type can be used. The hash function
is order-preserving, i.e., it satisfies the following property for two input
strings s; and sa:

s1C s2 = key(s1) C key(s2)

where C means is-prefiz-of. To enable this mapping, a balanced trie
is constructed from a sample string database consisting of unique, lex-
icographically sorted strings of equal length (sample string databases
can be provided by the user for different applications). Providing an
application-specific sample database enables applications to perform an
implicit load balancing, independent of P-Grid’s load balancing mecha-
nism, as application-specific knowledge about expected data distribution
is used to achieve a preferably uniform key distribution. The database
is recursively bisected into equally-sized partitions until each partition is
smaller than a threshold. The keys P-Grid uses are then calculated by us-
ing the application data to “navigate” character-wise through this trie and
appending ’0’ to the generated key for each “left-turn” or '1’ otherwise.
Algorithm 3.2 illustrates the hashing of a string representing application
data. The function requires the trie root as initial input to recursively
build the binary hash string.

Algorithm 3.2 Hashing in P-Grid: Hash(trie_node, data_string, key)

1: if trie_node == null or data_string is prefix or equal to trie_node
then

2: return key;

3: else

4: if data_string is lexicographically smaller than trie_node then

5: return Hash(trie_node.left, data_string, key + ’0’);

6: else

T: return Hash(trie_node.right, data_string, key + ’1’);

8: end if

9: end if

3.4 Overlay Construction

So far we were assuming a constructed binary trie to route queries to
responsible peers partitioned according to the load present in the sys-
tem. The construction of an Internet-scale overlay network requires an
algorithm to partition the key space by local interactions between au-
tonomous peers. In principle a construction of an overlay network can

42 Chapter 3: The P-Grid Overlay

also be achieved by the standard maintenance model of sequential node
joins and leaves. However, this approach encounters two serious problems:

e The peer community will have to decide on a serialization of the
process, e.g., electing a peer to initiate the network. Thus in prin-
ciple the peer community has to solve the leader election problem,
which might turn out to be impossible to solve for very large peer
populations without making strong assumptions on coordination or
limiting peer autonomy.

e Since the process is performed essentially in a serialized manner
it incurs a substantial latency. In particular it does not take any
advantage of potential parallelization, which would be a natural
approach.

The need for an efficient and fast bootstrapping algorithm for struc-
tured overlay networks emerged with their increasing adoption for data-
oriented applications. Resources in such networks are identified by dynam-
ically changing predicates. Many different overlay networks can be used
simultaneously, each of them indexing a specific attribute value of shared
resources. Creating a distributed index for an attribute value requires
to build a new structured overlay network from scratch. The insertion
of large document sets can further lead to a reconstruction of an overlay
network, considering the new distribution of resources leading to better
load balancing in the system. Due to catastrophic network failures the
standard maintenance mechanisms no longer can reconstruct a consistent
overlay network. Thus the overlay networks needs to be constructed from
scratch. This scenario applies of course generally in any application, but
becomes more probable when multiple overlay networks are deployed in
parallel.

P-Grid uses a fully parallel approach involving all peers simultane-
ously. In data-oriented applications there exists an additional factor that
adds to the difficulty of finding a solution to the construction problem:
load balancing. When using overlay networks for semantic processing of
keys (range queries being a popular example) the canonical method of
uniform hashing of keys to remove skew in the key distribution is no more
applicable. This has led to substantial research on including load bal-
ancing features into overlay networks [ADH05, GBGM04, Man04]. Dur-
ing construction this has to be taken into account, thus the construction
approach has also to solve load balancing problems. In fact, P-Grid ad-
dresses two types of load balancing problems simultaneously, the balanc-
ing of storage load among peers under skewed key distributions and the
balancing of the number of replica peers across key space partitions. The
first is important in order to balance workload among peers and is solved
by adapting the overlay network structure to the key distribution. The

3.4. Overlay Construction 43

second is important to guarantee comparable availability of keys in un-
reliable networks where peers have potentially low availability. This is a
classical Sballs into binsT load balancing problem. P-Grid’s approach is
based on a key-space bisection process which is a completely decentral-
ized, parallel and randomized algorithm for assigning peers to key space
partitions in proportion to the key distributions of the partitions. By re-
cursively applying key-space bisection, peers can incrementally construct
the overlay network while maintaining load balance. More details about
load-balancing aspects in the process of the overlay construction can be
found in [ADHSO05].

3.4.1 Divide and Conquer

The process of constructing an overlay network from scratch should re-
quire low latency, i.e., be highly parallel and require minimal bandwidth
consumption. At the same time the following load balancing criteria
should be achieved:

1. The partitioning of the key space should be such that each parti-
tion holds a constant number of data keys, i.e., the load of peers is
approximately the same.

2. Each resulting partition should be associated with a constant num-
ber of peers such that the availability of the different data keys is
approximately the same.

In a decentralized process peers do not have precise information on the
number of peers and keys present in a partition and cannot know which
decision the other peers in a partition take with respect to associating
themselves with a partition. The only available information is on the set
of locally stored data keys and information gathered from local interac-
tions with other peers. The decentralized process of P-Grid is based on
random peer encounters and a set of basic local interactions. The random
encounters can be initiated by performing random walks on a pre-existing
unstructured overlay network. The interactions peers can perform in their
encounters can be classified in three categories, as shown in Figure 3.2.

If peers belong to the same partition they can either repartition the
present partition (a divide-and-conquer strategy) or replicate the data
keys they currently hold. If they do not belong to the same partition,
they can refer each other to other peers using their routing table entries
and thus route to a peer that belongs to the same partition. If peers
from the same partition meet, they may decide to repartition in case the
current partition contains a sufficient number of data keys to justify a
further split, i.e., the partition is overloaded. They can coordinate locally
their decision. In addition, peers keep a reference to the peer encountered
after a split, and thus incrementally construct their routing tables.

44 Chapter 3: The P-Grid Overlay

Simple autonomous actions give an evolving routing network

Divide & Conquer Replicate Refer
00 0::0 00
l . ‘ l i ‘ l) ‘ l o ‘ l - ‘ l 0:2 ‘

[000,010,100} [101,001} 0001,0011} [0000 [} [J

Interact with 3
—_—

Possibility 3:

Peers can update their routing table
entries (to add redundancy and
izati apart from i
the peers to meet some other peers (with
1.3 1:5 better match of path). This induces the
: : l 01: 2 ‘ 01: 2 @ndom interactions.

0000,0001, [oooo,oooLJ
0011 0011

[000,010,001} [101,100 J Peers from different partitions meet

Possibility 1: Possibility 2:
Exchange content, Split the key space, Become replicas, and reconsile content d Legend
and update routing table Should also have a partial list of replicas
(not shown here) for reconciling content (can have multiple entries for each level)
later, using, e.g. anti-entropy algorithm. [Rioilins
\ndex data | ©" Partof the prefixis shown)
Peers from same partition (or one’s path is the prefix of other) meet

Figure 3.2: Network evolution

We will present an evaluation of P-Grid’s bootstrapping algorithm
in Section 8.6, showing the required bandwidth consumption to build a
P-Grid network from scratch for about 300 PlanetLab nodes.

3.4.2 Unstructured Backbone

P-Grid is known as structured overlay network based on a binary trie
to route messages with logarithmic effort to responsible peers. But P-
Grid also maintains an unstructured network for maintenance and fault-
tolerance reasons. The two networks thereby do not co-exist next to each
other with individual maintenance strategies but both are tightly coupled
and maintained at the same time. P-Grid’s construction and maintenance
algorithm of divide and conquer requires a random subset of peers to meet
randomly and on a periodic basis. This subset is called fidget list in P-Grid
and basically resembles the host cache in Gnutella keeping recently met
or received hosts in cache. Fidget lists are exchanged frequently between
P-Grid peers and peers select a random subset to keep in cache locally.
The frequent exchange guarantees that these lists are fresh and mainly
contain online peers.

The unstructured network is not only used for fault-tolerance reasons
but is also used to resolve queries at the beginning of P-Grid’s lifetime or
if P-Grid is restructured and its trie is temporarily not usable for lookups.
This allows P-Grid to be operational and resolve queries from the begin-
ning on, even if no structured overlay has been formed yet. Since this
as a short period at the beginning of the overall lifetime of a P-Grid
network, broadcasting as presented for Gnutella is a tolerable approach
for searching. The same holds for situations where the P-Grid structure

3.5. Data Correlations in P-Grid 45

might collapse if a large population of peers leaves at the same moment
and a complete restructuring is necessary.

Apart from these scenarios, P-Grid’s unstructured backbone offers
support for more ad-hoc networks which are formed for a shorter time
and probably do not require a structured overlay as they likely be of
smaller nature. Again, their short lifetime and limited number of nodes
makes a flooding based lookup approach tolerable as building a structured
overlay for such a short period might exceed overall search efforts.

3.5 Data Correlations in P-Grid

So far we have introduced the basic concepts of P-Grid and its support
for simple key lookups as also provided by other structured overlay net-
works. Further, P-Grid uses a order-preserving hash function to map
data keys to binary index keys distributed among participating peers to
retain the order relationship among hashed keys. Figure 3.3 illustrates
how such one-dimensional correlations can be mapped onto a P-Grid net-
work of peers by P-Grid’s order-preserving hash function. The network
layer at the bottom reflects the P-Grid structure seen from a networking
side, i.e., how peers are connected physically. Each peer requires at least
three connections for the given P-Grid example to resolve queries. The
data layer shows data fragments indexed in P-Grid and their static order
correlations, i.e., lexicographical correlations. Their order retains while
assigned to peers in the P-Grid network. Therefore P-Grid naturally sup-
ports range queries on the same distributed index already used for single
key lookups. Even though P-Grid naturally supports range queries by
its hash function, the algorithmic realization of query resolution is still
non-trivial and several solutions are feasible. We present two approaches
and their comparison in Chapter 4. We further provide an approach for
completeness estimation during range query processing. Range queries
exploit the order relationship of shared data and their induced data cor-
relations. These data correlations can be seen as one-dimensional as they
can be represented by an ordered list.

3.5.1 Multi-Dimensional Correlations

More complex data correlations can be modeled with probabilistic
networks forming random graphs in multiple dimensions. Such
multi-dimensional correlation graphs can usually not simply be mapped
by a hash function to a one dimensional key space. Further, such data
correlations can change over time and require an adaption of the data
mapping. Order relationships and their mapping are static and cannot
change over time. Therefore, structured overlays using order-preserving
hashing require explicit load-balancing mechanism to compensate
possible imbalances.

46 Chapter 3: The P-Grid Overlay

Data layer

P-Grid
Network

Network layer

Figure 3.3: One-dimensional correlations in P-Grid

This thesis shows how data with multi-dimensional correlations can be
mapped on structured overlays using a one-dimensional key space, such
as P-Grid. The mapping should cluster correlated data on one peer, or if
this is not possible, in the proximity to improve joint data access imposed
by applications. Figure 3.4 illustrates the problem based on the example
already used in Figure 3.3. Again, we have the organization of peers in the
P-Grid structure and some data fragments on the data level. Unlike for
one-dimensional correlations, these data fragments are now correlated in a
multi-dimensional probabilistic network which can be defined by users or
gathered by observations. A relation between two fragments indicates that
these two fragments are likely to be accessed together, e.g., be returned
by a query. It is therefore beneficial if strongly correlated fragments are
maintained close to each other to reduce processing costs.

Network layer

Figure 3.4: Probabilistic Correlations in P-Grid

3.6. Conclusions 47

We already introduced two examples of multi-dimensional data cor-
relations and outlined their solution in Section 1.2. The concrete and
detailed description for distributed inference is presented in Chapter 5
whereas an extension of P-Grid for multi-term queries can be found in
Chapter 6.

3.6 Conclusions

P-Grid is a structured overlay network using an order-preserving hash
function enabling efficient exact key lookups based on prefix-based greedy
routing. P-Grid’s overlay construction is based on pair-wise autonomous
interactions between peers which can be performed in parallel leading to
an efficient and fast construction algorithm. The algorithm has shown to
achieve good load balancing even for skewed data distributions.

The design of P-Grid further allows efficient support for more complex
lookup operations benefiting from data correlations in the shared data set.
One-dimensional data correlations, e.g., derived from order relationships,
are supported by design and only require an efficient algorithm to execute
range queries on top of them.

Multi-dimensional data correlations are less straightforward to be sup-
ported by P-Grid. The problem of mapping them in a similar manner onto
the one-dimensional key space of P-Grid, and other structured overlay net-
works, will be shown in the following chapters of this thesis. The aim is to
use an additional overlay network on top of P-Grid which clusters these
probabilistically correlated data on peers and in the proximity to increase
processing efficiency.

48

Chapter 3: The P-Grid Overlay

Part 11

Access of Correlated Data

49

Chapter 4

Range QQueries

Range queries are a common lookup operation to retrieve all matching
data in a given range and are supported by most (distributed) informa-
tion systems. The processing of range queries causes a joint data ac-
cess on data items in the range. To improve the performance of such
lookups, systems exploit the order relationship among data entries and
arrange them according to their lexicographical order. Range queries are
therefore an example application for distributed systems to exploit data
properties for correlated data access. We can estimate data correlations
based on existing data relationships derived from data properties, such as
the order relationship. Related data items, i.e., neighboring data items in
lexicographical order, have a higher probability to be jointly accessed and
therefore also a stronger data correlation. Preserving the lexicographical
order of data entries in a structured overlay exploits these data correlation
and enables efficient range query lookups in such systems.

P-Grid’s data access structure, a virtual binary trie, and its order-
preserving hash function fulfill this requirement and therefore naturally
support the execution of range queries. A trie is a standard database struc-
ture to support range queries and was adapted by P-Grid for structured
overlay networks to efficiently support exact lookups and range queries
in the same overlay topology. This chapter shows how range queries can
be efficiently executed on top of the P-Grid structure, respectively any
other structured overlay resembling P-Grid. We present two approaches
and compare their performance analytically, and additionally present their
evaluation on PlanetLab. The first algorithm is the simple approach of
traversing all neighbors along the queried range starting from the lower,
respectively the upper, bound. This approach is easy to implement in
most structured overlay networks but has several drawbacks such as high
latency and poor fault-tolerance. The second approach, a shower algo-
rithm, uses the tree structure of P-Grid to resolve a range query in par-
allel leading to low query latencies and higher fault-tolerance against lost
messages for the cost of more messages sent.

As the shower algorithm is executed in parallel involving possibly mul-

o1

52 Chapter 4: Range Queries

tiple messages, a requesting peer will also receive multiple query replies
containing partial result sets. Detecting the completeness of a query is
therefore non-trivial as the number of messages to expect as result is not
known a-priori to a query initiating peer. We present an approach at
the end of this chapter to estimate the completeness of a range query
executing the shower algorithm. We are able to recognize completeness
when the last reply message was received. This information can be used
to start post-processing of the final result set or to simply notify the user
respectively an application.

4.1 Algorithms and Complexity Analysis

A range query retrieves all data items within a given range R defined by
a lower and upper bound b; and b,. Assuming all data items are ordered
according to the desired criteria, the simplest approach is to skip to the
lower respectively upper bound of the range query and then proceed and
return all data items till the upper respectively lower bound is reached.
P-Grid’s order-preserving hash function guarantees that all data items are
ordered and distributed among neighboring peers, i.e., a correlated data
item is either on the same peer or a neighboring peer. The sequential
min-maz traversal we will present and discuss next uses these properties
whereas the following parallel shower algorithm makes additional use of
P-Grid’s trie structure which parallelizes the execution of range queries.

4.1.1 Min-Max Traversal Algorithm

Range queries can be processed sequentially by starting from a peer hold-
ing data items belonging to one bound of the range and forwarding the
query to a peer responsible for the next partition of the key space, until
a peer responsible for the other bound of the range is encountered. This
strategy is called min-max traversal. The underlying data structure itself
does not always have the information about peers belonging to the next
neighboring key space partitions. However, such routes can be established
either during the construction of the P-Grid overlay structure (algorith-
mically trivial), or at run-time using the existing routing information at
the peers. Figure 4.1 shows the min-max traversal algorithm graphically.

First peer A initiates the range query by querying P-Grid for the lower
bound of the range which is peer C' in this example. Steps (1) and (2)
denote standard P-Grid routing and in step (3) the result is returned
to peer A, i.e., peer C. Then in step (4) peer A sends the range query
request to peer C' and peer C sends its data pertaining to the interval to
peer A (in the implementation steps (3), (4), and (5) are actually done
in one step). Concurrently the range query is forwarded to peer D using
the “next” pointer. Peer D checks whether it is in the queried range, and
if yes, peer D sends its data pertaining to the interval to peer A, and

4.1. Algorithms and Complexity Analysis 53

—pp Range query message
— < Lookup peer message
®—® Static next link

— % Result set

@ Sequence of messages

Figure 4.1: Min-max traversal range query strategy

concurrently forwards the range query to peer E which repeats the same
operations as peer D except that it does not forward the query to another
peer as it has checked that it is a peer responsible for the other bound of
the queried range. Algorithm 4.3 shows this algorithm in pseudo code.

Algorithm 4.3 Sequential range queries: minmax(R, p)
1. if 7(p) C R then
2: return(d € §(p) | key(d) € R);
3: determine a peer r responsible for the next key space partition;
4: minmax(R,1);
5: end if

For simplifying the analysis we assume that the algorithm starts at the
lower bound of the range R (the routing of the query to the lower bound
is not shown here, but is algorithmically trivial in P-Grid). It is assumed
that the neighbor links are cached at each peer during the construction of
the trie (this is also algorithmically trivial). In the complexity analysis of
this algorithm we can assume storage load-balancing (which is achieved
stochastically by the P-Grid base system) and that on average there exist
M data items per key space partition. Then, if there is a range query
for the range R, such that there are D data items in the given range,
search cost and latency using min-max traversal (assuming “next” links
have been established during construction) is O(logy |I1])+ |[IIg|— 1, where
[TIz| is the number of partitions over which the whole range is stored in

54 Chapter 4: Range Queries

P-Grid and |II| is the total number of leaf-nodes in the complete P-Grid
tree (total number of key space partitions). The search cost and latency
using min-max traversal is dependent on the size of the answer set D for
the range query, but independent of the size of the range R of the query.
This is because |IIg| has an expected value of D/M, and in particular,
using Markov's inequality, Pr{|Ilg| > ¢D/M] < % for any positive ¢ thus
giving a weak bound on the deviation. We do not consider the trivial case
D < M as this would only affect 1 or 2 peers and concentrate on the more
general case of D > M.

As already mentioned, establishing and maintaining “next” pointers
in P-Grid is algorithmically trivial and most other DHTs pro-actively
maintain it as well. Without them, an additional small overhead of
ITIr|O(logs |TT|) would have to be included. Note that this is an upper
bound, as part of the routing does not have to be repeated for the peers
in the interval.

4.1.2 Shower Algorithm

The other variant for processing range queries is to do them concurrently.
Here, the range query is first forwarded to an arbitrary peer responsible
for any of the key space partitions within the range, and then the query is
forwarded to the other partitions in the interval using this peer’s routing
table. The process is recursive, and since the query is split in multiple
queries which appear to trickle down to all the key-space partitions in the
range, we call it the shower algorithm. The intuition of the algorithm is
shown graphically in Figure 4.2.

In the course of forwarding, it is possible that the query is forwarded
to a peer responsible for keys outside the range. However, it is guaranteed
that this peer will forward the range query back to a key-space partition
within the range. Moreover, the P-Grid routing ensures that no key space
partition will get duplicates of the range queries. Algorithm 4.4 gives the
pseudo code for the shower algorithm.

The search cost (in terms of messages) of this variant is lower bounded
by O(z) + |IIg| — 1. Since every message created in the range sub-space
reaches a different leaf node (since the sub-spaces are exclusive), and
there are expected D/M such sub-spaces, the upper bound is O(x) +
min(20(|TIg|), 2P¢P"=*) where Depth is the maximum path length of
any partition in the range. Thus the complexity of the shower algorithm
is again dependent only on the size of the answer set D for the range
query, but independent of the size of the range R of the query.

The upper bound for latency is O(z) + O(Depth — z). In particular,
unlike in the sequential variant, the latency of the parallelized shower
algorithm is independent of the number of data items in the range R,
but depends on the distribution of the data items (which determines the
Depth). Note that the issuer of the query will start getting responses for

4.1. Algorithms and Complexity Analysis

55

— Range query
message

@ n: Sequence in time
— # Result set

Figure 4.2: Shower range query strategy

Algorithm 4.4 Parallel range queries: shower(R, leyrrent, D)

1: if m(p) € R then

2. return(d € (p) | key(d) € R);

3: end if

4: determine [; such that 7(min(R),l;) = (p 1);
5: determine I, such that w(maz(R),1,) = 7(p,l);
6: lmin = maw(lcurrent, mZ’I’L(ll,))7

7 ez = maz(ly, 1,);

8 if loyrrent < lmaz then

9 for | = l,,in t0 lee dO

10: r = randomly selected element from p(p,1);
11: shower(R, 1+1, 1);

12: end for

13: end if

56 Chapter 4: Range Queries

part of the range with a minimum latency of O(z), since it will already
encounter some peer responsible for part of the range.

The expected value of x is 0.5log (nM /D). The intuition for the value
of x is that, if we increase the average memory of each logical partition to
D instead of M, there will be D/LM key space partitions in total, otherwise
retaining the routing network’s properties, and since first the query needs
to reach any arbitrary peer within the range, this translates into reaching
this virtual partition of average size D, and hence x is the expected search
cost in this new network, which has the same topological properties, but
fewer (nM /D) partitions.

4.2 Related Work

Traditional database research has shown that tries are among the most
practical data structures to support range queries. The work on pre-
fix hash trees (PHT) superimposes a P-Grid-like trie onto an arbitrary
structured overlay network [RRHS04]. The advantage of PHT is thus its
universal usability on top of any DHT, however, it is considerably less
efficient. Using a native trie structure as is done in P-Grid makes range
queries more efficient in terms of both message cost and latency. Note
that the analysis we showed before gives the costs in terms of the to-
tal number of overlay network messages. The analysis of PHT provides
the number of DHT searches for answering a range query, and each of
these DHT searches for a typical DHT (like Chord [SMK'01]) involves
logarithmic number of messages in terms of the key space partitions (al-
ternatively peer population). This is due to the fact that semantically
close data items are not necessarily stored close to each other in the over-
lay network (high fragmentation), and hence, multiple overlay network
queries are required to locate all the content. In contrast, tries cluster
semantically close data items which in turn enable efficient range access.
Another recent approach [LNST04] uses a hierarchical tree structure but
because of the hierarchy, it inherently has poor fault-tolerance and poor
query load-balancing characteristics.

To support approximate range queries, locality-preserving hashing to
hash ranges instead of keywords is used in [GAEO03]. An improvement of
this approach to support exact range queries is proposed in [SGAE04].
The fundamental problem of these approaches is that the ranges them-
selves are hashed, and hence, simple key search operations are not sup-
ported or are highly inefficient. Since both key and range queries are
needed, it is desirable to have one mechanism supporting both, instead
of maintaining separate hash tables for keys, and separate hash tables for
ranges, because such a strategy fails to reuse the resources of the peers.
These approaches [GAE03, SGAEO04] lead to very bad fragmentation even
for related ranges, and can result in either poor storage-load balancing or
inefficient access. Moreover, since they use CAN as the underlying net-

4.3. Evaluation 57

work, the search efficiency guarantees hold only for uniform partitioning
of the space, which conflicts with storage load which is arbitrarily dis-
tributed, as will be the case for caching range queries, more so because
queries will also be non-uniformly distributed.

In terms of key search efficiency, support for range queries and stor-
age load-balancing, there are some interesting novel structured overlay
network abstractions which exhibit performance comparable to our trie-
structured proposal: Skip Graphs [AKKO04, AS03] which are based on
skip lists [Pug90], and Mercury [BAS04] which is based on small-world
routing. Skip Graphs can be viewed as a trie of skip lists that share their
lower levels. As Skip Graphs preserve the ordering relation among keys
they also support range queries. Similar to the shower variant of P-Grid,
range queries are resolved by finding any node in the interval (O(logn)
messages) and then broadcasting the query through the m nodes in the
interval which requires O(mlogn) messages. In total this is still of log-
arithmic complexity but quite a bit higher than the effort (in terms of
messages) incurred by our approach. Mercury, on the other hand, retains
the data sequentially, dynamically assigns the range for which individual
peers are responsible in order to provide good load-balancing, and uses
small-world routing among the peers. Multiple-attribute range queries by
using an individual index for each attribute as proposed in Mercury can
be done based on any indexing scheme, including ours. The important
and unaddressed issue in all existing literature on multiple-attribute range
queries is the issue of efficient joins. Though Skip Graphs and Mercury
offer comparable complexity characteristics in terms of search and range
queries as our approach, these systems have so far only been evaluated
with simulations, and no real implementations or experimental evaluations
in a real-world networking scenario exist. For our approach, however, we
do not only provide the theoretical study of the performance, but also re-
port on deployment and experimentation of a fully implemented overlay
network.

There exist many other range query proposals, which are of lesser
relevance than the approaches discussed above. A detailed survey of
search mechanisms in P2P systems, including range queries can be found
in [RMO04].

4.3 Evaluation

The two range query algorithms were implemented on top of the Java-
based P-Grid implementation and we performed a number of large-scale
experiments on PlanetLab to validate the analytical results presented in
Section 4.1 in a practical setting.

Experimental setup In the experiments we used a network of 250
peers each running on a dedicated physical PlanetLab node. We inserted

58 Chapter 4: Range Queries

2500 unique data items into the system and required an average replication
factor of 5 which is necessary in any overlay network to compensate for
node and communication failures. Thus initially we would have a total
of 5% 2500 = 12500 data items in the system and each peer would be
responsible for 5% = 50 data items. The real number of data items in
the system in fact was higher as for load-balancing each peer was required
to manage a minimum of 50 and a maximum of 100 data items, and given
the randomized construction approach of P-Grid, each peer would thus
hold on average 75 data items, i.e., the total number of data items in the
system was 250 * 75 = 18750.

To show that the algorithms basically work for any data distribution,
we used two different data sets, one uniformly distributed and one Pareto
distributed (with a probability density function of % and parameters
k=1 and a = 2.0) as shown in Figure 4.3.

‘Uniform‘ data dis‘tribution‘ Pareto data distribution

250

250 |
2000

1500

occurence
=
@
S
occurence

1000
100

500

1 . . 15 2 25 0 1000 2000 3000 4000 5000
data item index x 10" data item index

Figure 4.3: Data set distributions

Pareto is a typical long-tail distribution which occurs frequently. We
will see in the experiments that P-Grid is insensible to such distributions
due to the efficiency of the underlying load-balancing algorithm which
balances both storage and replication load. We can thus safely infer that
if the results are good for a Pareto distribution, the system will perform
equally well for other frequent long-tail distributions, e.g., Zipf.

In the experiments each peer selected randomly 10 data items of a
global data set according to one of these distributions. The peers then
constructed a P-Grid which had an average height of log, %ggg = 5.6.
Then range queries which affected data from all partitions of the data
sets were issued. The queries were started from randomly chosen peers
with random lower range bounds, and were constructed in a way, such
that they would return 50, 100, 150, 200, 400, and 800 data items. For
each of the six answer set sizes, each of the two distributions, and each of
the two algorithms, one query was issued by each of the 250 peers, i.e., a
total of 6% 2% 2% 250 = 6000 queries resulting in 250 values per data point
in Figures 4.4-4.7.

4.3. Evaluation 59

Experimental results There are several performance metrics of inter-
est to evaluate the system as well as the algorithms for their suitability to
support range queries. This includes load-balance characteristics (storage,
replication, and query load), data fragmentation, as well as message costs
and latency for various data distributions. Chapter 3 and [ADHS05] have
shown P-Grid’s efficient multi-faceted load-balancing characteristics and
that the use of order-preserving hashing ensures low data fragmentation,
while the dynamic construction of the trie structures ensures storage-load
balancing.

The main objectives of our experiments in this section were to demon-
strate the cost/latency trade-off of the range query algorithms, and to
show that because of the use of a load-balanced trie-structured overlay
network, the cost of range queries is independent of the data distribution
and the size of the range, but only dependent on the used algorithm and
the size of the answer set which we expected from the theoretical analysis
of Section 4.1. From the experimental results presented in the follow-
ing, we can observe that the cost and latencies are indeed independent of
the distribution and indirectly prove that the overlay network has good
storage-load balancing characteristics.

4.3.1 Message Latency and Cost

Figure 4.4 shows the costs incurred by range queries in terms of mes-
sage latency (hops), i.e., the maximum number of messages required to
hit each sub-partition of the range, i.e., one peer in each sub-partition.
Figure 4.4(a) shows a direct comparison of the experimental results and
Figure 4.4(b) gives the standard deviations of each of the four types of
experiments as error bars.

On average we need 3 hops to reach a responsible peer for both types
of algorithms, but the min-max algorithm then suffers from the sequential
traversal of the range to reach all sub-partitions after reaching the lower
bound. This leads to increasing hop counts with increasing range sizes
whereas for the shower algorithm the number of hops remains constant,
i.e., it is rather insensitive to the size of the answer set as an increase in
the number of hops for this algorithm basically means that the range has
exceeded one level in the tree and an additional hop is necessary as the
“shower” has to start at the next higher level. However, this benefit comes
at the cost of an increase in the overall messages as shown in Figure 4.5.
Figure 4.5(a) shows a direct comparison of the experimental results and
Figure 4.5(b) gives the standard deviations of each of the four types of
experiments as error bars.

The shower algorithm requires a slightly higher number of messages
but improves latency as it sends them to the responsible peers in parallel.
Therefore all peers responsible for a range section are reached after 3 hops
(in the experiment’s setup) independent of the range size. Range queries

60

Chapter 4: Range Queries

*
X
12 e
-
-
-
-
-
101 - g
-
-
8r -
-
-
—B— - shower, uniform
a8 - —6— shower, pareto
2 6L P # -~ min max, uniform
e — % —min max, pareto
4k
2l
0 L L L L L L L I}
0 100 200 300 400 500 600 700 800
size of answer set
(a) Comparison
shower, uniform shower, pareto
15 15
10 10
[%] 1%
o o
o o
= £
5 5
o - =
0 0
0 200 400 600 800 0 200 400 600 800
size of answer set size of answer set
min max, uniform min max, pareto
20 15
15 P
10 -7
-~
2 2 -7
o 10 19
= % < -
5 } -
|11t f
0 o
0 200 400 600 800 0 200 400 600 800

size of answer set

(b) Standard deviation

size of answer set

Figure 4.4: Message latency (hops)

4.3. Evaluation

61

messages

messages

messages

18
16 o
14
12
101
sk
6L _ —O— - shower, uniform
- —©&— shower, pareto
- min max, uniform
-0 — % —min max, pareto
4r ¥
¥
2l
0 Il Il Il Il Il Il Il J
0 100 200 300 400 500 600 700 800
size of answer set
(a) Comparison
shower, uniform shower, pareto
30 30
25 25
20 » 20
Q
g
15 e o 15
~ a
- g
10 - 10
5 ,% 5
0
0 200 400 600 800 200 400 600 800
size of answer set size of answer set
min max, uniform min max, pareto
20 15
15 -
» 10 -
i} ~
< ~
10 a % -
u -
f : i
5 ~
iER: it f t
0 0
0 200 400 600 800 200 400 600 800

size of answer set

size of answer set

(b) Standard deviation

Figure 4.5: Message cost

62 Chapter 4: Range Queries

with an answer set size of 50 are answered mostly by one peer because
peers on average are responsible for 75 data items. It can further be seen
that both algorithms perform equally well for both data distributions and
scale well as expected. An increase of the answer set size by a multiplica-
tive factor of the average peer storage size yields an additional message on
average which is the best possible result achievable with limited storage
available at the peers and again indirectly proves the optimal behavior of
the underlying load-balancing algorithm.

Figure 4.5 also shows the total number of peers involved in a range
query, i.e., the number of peers forwarding or replying to a range query.
For the min-max algorithm this number is equal to the number of messages
because only one message is first routed to the lower bound and then
forwarded to the higher bound. Therefore the number of peers forwarding
a query to a peer of the desired range is smaller than for the shower
algorithm. More peers are involved during the shower algorithm because
messages are sent in parallel to reach desired peers (partitions).

4.3.2 Query Latency

In terms of query latency, it is interesting to see that the shower algorithm
is almost insensible towards answer set sizes. As can be seen in Figure 4.6
the latency is nearly constant.

This can be explained by the fact that a considerable number of data
items would have to be added before the trie increases its height which is
the major contribution to the latency for this algorithm. For the min-max
case the latency increases for obvious reasons as messages are forwarded
sequentially which increases the latency. Here an increase of the height
of the trie has a much more dramatic influence as the min-max algorithm
heavily depends on the width of the interval. While increasing the height
of the trie means only an additional hop for the shower-algorithm which
is processed largely in parallel, for the min-max algorithm the number of
sequential messages increases by a factor of 2 on average. Note that this
is expected from theory, since the height of the tree will increase by 1 only
if approximately twice the data items are in the same range, and in the
min-max algorithm, both latency and message cost is proportional to the
number of data-items in the answer-set.

A side result which can be inferred from these plots is that the small-
est range queries involving 3-5 peers take approximately 10-20 seconds
on average. Larger range queries using the min-max algorithm take a
multiple of that. This can be explained by the success of PlanetLab as
an experimental test-bed, since a large number of experiments are con-
ducted concurrently which considerably slows down PlanetLab’s overall
performance.

4.3. Evaluation

63

time [seconds]

time [seconds]

time [seconds]

90
—0— shower, uniform
—=o— shower, pareto *
80 * - min max, uniform
— * —min max, pareto
70
x
60 -7
50 e
- * 2
40+ e
30
20
101
0 Il Il Il Il Il Il Il J
0 100 200 300 400 500 600 700 800
size of answer set
(a) Comparison
shower, uniform shower, pareto
100 100
80 80
oy
T°
60 S 60
o
Q
9,
40 o 40
o £
20 - 20
0 0
0 200 400 600 800 0 200 400 600 800
size of answer set size of answer set
min max, uniform min max, pareto
150 150
100 2 100
<
o
o
@
2
s -
50 E 50 _ -
! AL
0 200 400 600 800 0 200 400 600 800

size of answer set

(b) Standard deviation

size of answer set

Figure 4.6: Query latency (time)

64 Chapter 4: Range Queries

4.3.3 Success Rate

Finally, in Figure 4.7 we show what level of result completeness we could
achieve by our range queries.

95+

—0— - shower, uniform
—o— shower, pareto
* - min max, uniform
B-g — * —min max, pareto
93f / !

94t

success rate [%]

o] © © ©o
© o = N
T T T T

©
®
T

®
2
T

86

85 I I I I I I I]
0 100 200 300 400 500 600 700 800

size of answer set

Figure 4.7: Result completeness

This measure represents the percentage of received data items as an-
swers to a range query with respect to the actual number of data items
inserted (present) in the specific range. The result completeness is around
90% and is mainly independent of the range sizes and the data distribu-
tions. We observed several problems during our experiments in respect
to the PlanetLab environment, for example, communication problems and
crashes of PlanetLab nodes (not of the tested P-Grid system but the phys-
ical PlanetLab nodes), which explain the non-exhaustive results. Note
that, while it is an issue that is beyond the scope of this evaluation (such
failures because of unreliable peers are characteristic of any deployed P2P
system, the relatively high success rate in fact demonstrates the robustness
of P-Grid under churn. Smaller scale experiments in a local environment
with lower numbers of nodes and node failures have proved the functional
correctness of our implementation and provided a 100% success rate. To
increase the success rate on PlanetLab we could increase the replication
factor, i.e., data is replicated more often, and thus node failures could be
possibly compensated better. This will increase the maintenance overhead
but should provide better results. However, due to the duration of the
experiments and the lack of possibility to assess the conditions on Plan-
etLab that caused a certain experimental result and behavior, we have no
experimental evaluation of this strategy yet. In the experiments discussed
above we used a replication factor of 5 on average (in fact, each data item

4.4. Completeness Estimation 65

was replicated between 1 and 10 times). Taking this into account and the
very dynamic situation on PlanetLab a success rate of 90% seems reason-
able. In future work, we will explore the possibility to adapt replication
to the dynamic situation on the physical network to improve on the result
completeness.

4.4 Completeness Estimation

Section 4.1 presented range query algorithms for the P-Grid overlay using
parallel multi-cast protocols. A main challenge remaining is to estimate
the progress of query processing, i.e., to answer the question which fraction
of the total query result is already received. The difficulties are due to the
purely decentralized nature of the structured overlay, the lack of global
knowledge (no peer knows how many peers are responsible for the queried
key range), the dynamics of the network (peers may leave the network
during processing a query), as well as the often used best-effort strategy
for query routing and answering.

However, estimating the completeness of a query result is not only a
helpful information for the user issuing the query, but it is also needed for
processing complex queries. For instance, query operators like aggregation
or ranking-based queries (e.g., skyline queries [BKS01, KMS07]) require
to know when all input data is arrived in order to calculate the aggregate
value or to sort the input.

The objective of this section is to estimate the completeness of range
queries as a fundamental operator for more complex query operators and
to give guarantees on the quality of this estimation. The idea is to map
the completeness on data level to a completeness on peer level, thus,
estimating a number of replies expected for each query. Though it is
guaranteed by the shower algorithm that all peers receive exactly one
range query message, it is currently not possible for the initiating peer to
estimate the number of peers concerned by a range query, i.e., estimating
the number of response messages it has to expect. For keyword based
queries, a peer receives only one query response by one peer in a structured
overlay network as only one peer (or any of its replicas) is responsible for
the given keyword. A peer is therefore able to determine when a query
finished and when it received all matching items to either inform a user,
start post-processing or initiate subsequent queries. This is currently not
possible for range queries in structured overlay networks as the number
of response messages depends on the number of peers in the target range,
which is usually not known for a peer. We will present an approach
to estimate this number based on the local information available in a
peer’s routing table and corrected by intermediate peers forwarding range
queries or peers responding to range queries. We thereby assume a load-
balanced system where each peer holds approximately the same amount
of data as shown for P-Grid in [ADHS05]. Hence estimating the number

66 Chapter 4: Range Queries

of responding peers is equivalent to estimating the number of query hits
expected to be retrieved by a range query.

4.4.1 Completeness on Data vs. Peer Level

Estimating the completeness of queries should intuitively be bound to the
data level: the user is interested in what fraction of all expected result hits
she/he already received. This also holds for subsequent processing steps
following the execution of range queries. As briefly mentioned in the last
section, predicting completeness on data level is almost impossible with-
out enormous costs. Fortunately, in a load-balanced overlay system this
completeness can be mapped to completeness on reply level, because each
reply should deliver approximately the same number of results. This is
especially true for range queries, because no filtering steps are applied —
if a peer is responsible for a part of the range, it will return all of its local
data items. Moreover, we will show that we are able to guarantee to iden-
tify the last query reply when actually receiving it. Thus, a completeness
of 100% on reply level corresponds to a guaranteed completeness of 100%
on data level. So, for subsequent operations that rely on complete range
query replies estimation on reply level is absolutely satisfying. In order to
show its applicability for other situations, in Section 4.4.4 we show that
completeness on data level and reply level almost match. Note that, due
to the characteristics of sophisticated overlays, the majority of queries will
be answered completely.

4.4.2 Estimating Completeness

We focus on the shower algorithm implemented in P-Grid. In Section 4.4.3
we discuss the possibilities for other systems to provide completeness es-
timation for range queries and the applicability of our approach to them.

A peer initiating a range query starts this query by providing the
interval bounds of the desired range. Afterwards, each intermediate peer
responsible for routing the query, forwards it to one or more sub-trees,
depending on its own path, the paths of peers from its routing table, and
the paths of the queried range. Thus, the crucial point is to estimate the
number of peers responsible for a certain key range. But, due to load-
balancing aspects, this is quite difficult. The idea is to use all available
path information in order to build an estimated P-Grid trie. Based on
this tree, we can determine a minimal number of replies expected.

In the following we will explain, how we can determine the minimal
number of replies from an estimated P-Grid trie. Let

bibabs ... by

denote the x bits that form the binary path of such a peer. From this
path, we can deduce the existence of at least x other peers: Let b; denote
the inverted bit b;. For each path

4.4. Completeness Estimation 67

1: by
2: biby

3: bibobs

X: b1b2 e bm—lgx

there must exist at least one responsible peer. Knowing about several
paths from peers in a range, the initiator can deduce a minimal number
of peers in that range. In order to achieve this, the initiator builds a tree
from those paths and reflects to the minimal number of peers.

00100 queried range 1101

Figure 4.8: Estimating the P-Grid trie

Figure 4.8 illustrates this. The figure shows an example P-Grid tree.
Assume a query for the range 00100 — 1101 was initiated. Further, the
initiator Py knows about four peers, where the paths from P;, P, and
Pj3 are in the range. As every peer has at least one reference to another
peer for each of the positions of its path, Py must at least know about
four peers, each located in a different sub-tree. The part of the tree the
initiator can deduce from its local routing information is shown in solid
lines. The dashed lines indicate that part of the tree not known to the
initiator, which results in a small error in this first estimate. The minimal
number of peers in the range estimated in this situation is 8, the correct
value is 10.

Estimation Refinement

The first estimation performed by the query initiating peer is solely based
on the routing information available at that peer. This information con-
sists of at least one reference per level respectively one peer of each sub-tree
a range query is sent to. For fault-tolerance and load-balancing reasons
structured overlays usually keep multiple references at each level to re-
main operational during peer churn or to select the least loaded peer for
query load balancing. Therefore, the information a query initiating peer

68 Chapter 4: Range Queries

has about the structure and peers in a sub-tree increases with the number
of references per level.

But, the information gathered like this is still not complete and the
estimation might still be too small as some peers remain “invisible” from
the local point of view. Therefore, initiating peers piggy-back with each
query sent to a sub-tree the estimate of peers considered in a sub-tree.
For example in Figure 4.8, the range query sent from peer P, to peer Pj
also contains the estimate that three peers build the sub-tree 001x. As
Py only knows that P3; has path 00110, it knows that there must be a
peer 00111 and at least one peer for 0010, though Py does not know that
the sub-tree 0010% actually consists of two peers. P3 is aware of this fact,
because Pj’s routing table must contain at least one of the peers from
sub-tree 0010%, and can return the correct number of peers in sub-tree
001x with its query reply to peer Fy. Fy can then correct the estimate
of query replies expected for the initiated range query. Peers receiving a
range query with correct information do not have to “correct” the initial
estimate.

The required message overhead for our completeness estimation is
therefore minimal as no additional messages have to be sent and only
small information are piggy-backed with sent query and query reply mes-
sages. In case a range query hits a peer outside the target range with an
incorrect estimate, the receiving peer can either react by replying with a
short acknowledgment message correcting the initial estimate, or it for-
wards the incorrect estimate to target peers in the range and the correction
will be returned in the query reply messages. In the first case, the query
initiator can sooner correct the estimated completeness at the cost of a
small extra message, whereas in the second case the correction is done at a
later time with the reception of query results without additional messages.

Applying the method as described above, we will never over-estimate
the number of expected replies. Moreover, when a query is finished, we
will always recognize this for sure. This is possible because the paths of
the replying peers are analyzed. Thus, receiving these replies, we always
know for sure the actual size of the corresponding sub-tree.

Further Improvements

There was much research spent on designing overlay systems as much
stable and reliable as possible. Thus, we can even cache estimated trees
once they are built. These cached trees can later be used for subsequent
queries. The trees should then be adapted to changes in the overlay
structure registered — which may, of course, occur, but are expected to
be rather rare. In this way, we achieve a quite accurate and satisfyingly
exact completeness estimation, which is automatically maintained with
each query initiated.

The task of achieving complete query results is due to the used overlay

4.4. Completeness Estimation 69

system, in this case the P-Grid overlay. Nevertheless, incomplete results
may occur in rather unstable and unreliable large-scaled systems. This
also effects the completeness estimation, as, for instance, we will experi-
ence a difference in the static completeness concerning all data that should
be available, and the dynamic completeness based on the results actually
received. This should be involved into completeness considerations. A
nice aspect of the method proposed here is that it allows for estimating
the size of results missing in this case.

4.4.3 Usability in other Overlay Systems

Our approach is based on a parallel resolution of range queries in a binary
trie similar to a prefix hash tree, whereby in the case of P-Grid the depth
of each sub-tree can be estimated by the known nodes of this sub-tree
stored in the local routing table. To the best of our knowledge no other
system can already provide completeness estimation for range queries.
In this section, we briefly discuss the possibilities for other systems to
estimate the number of query replies and the usability of our approach
for them.

The approach for range queries in SkipGraphs [AS03, AKKO04] is the
most similar one to the one of P-Grid as peers also maintain routing
information at multiple levels. Our proposed method can also be used by
SkipGraphs to estimate the number of peers in other sub-trees. The only
problem is the number of peers remaining in the bucket layer below the
lowest interconnected skip-list level. But, as load-balancing is in place,
this number should be similar to the number of buckets the current node
is in.

Mercury, the second structured overlay network using order-preserving
hashing, uses long-range links within the Chord-based attribute hubs to
implement a similar range query algorithm as P-Grid’s shower algorithm.
Based on the information available we assume that Mercury can estimate
range query completeness in a similar way than we have shown here for
P-Grid if adequate routing information is available and cached.

Approaches like [RRHS04] and [LNST04] are based on a prefix hash
tree where peers remain at each level of the tree, unlike in P-Grid where
peers only remain at the leaf level. The routing in this tree starts at the
root level and trickles down the tree from nodes to their children until
all nodes in the target range are reached. As we assume that nodes do
not know the exact number of their children, it is not possible for them
to estimate how many nodes will return results for a range query. If this
number can be estimated, the technique presented in this paper can also
be adapted for completeness estimation in systems based on prefix hash
trees.

Finally, approaches forwarding a range query sequentially along neigh-
bors cannot estimate the final number of nodes involved in a range query,

70 Chapter 4: Range Queries

e.g., CAN-based systems presented in [GAE03, SGAE04].

4.4.4 FEvaluation

The focus of the following evaluation is to show the applicability, exact-
ness and quality of the proposed completeness estimation. These aspects
are not directly depending on the size of the network, but rather on the
size of the constructed overlay trie. This, in turn, also but not exclu-
sively depends on the network size. We created a local and reliable but
real environment consisting of 61 nodes. These nodes were physically dis-
tributed over 20 machines, each running up to 4 instances listening on
different ports. As the environment was stable, we were able to use a
low replication factor, lowering the number of replicas responsible for one
path in the P-Grid trie. This resulted in a wider and deeper tree. Thus,
the results are also significant for larger scaled networks, where usually a
higher replication factor is used. We used two environments, the first with
a replication factor of 2, the second with a factor of 1. In unreliable sys-
tems, this factor will be set to 5 or higher compensating frequent joins and
leaves by peers. Our evaluation focuses on the completeness estimation
of range queries and we assume that P-Grid guarantees the availability of
at least one peer per partition even in very dynamic or unreliable setups
like PlanetLab.

We inserted 48 data items from each of the peers, resulting in a total
of 2928 data items. The used string data represents information about
movie titles and was taken from IMDB!. The average number of leafs,
maximal path length and the average path length were 32, 8 and 5 for a
replication factor of 1. For a factor of 2, the values were 19, 6 and 4.5,
respectively. The resulting P-Grid trie was not balanced. Almost 40%
of the leafs were located under key prefix 0 and the tree was deeper and
wider under key prefix 1.

In order to evaluate the influence of the number of references for one
level of the local routing table we built three environments, using a max-
imal number of references of 1, 3 and 5. A query mix of three different
range queries, involving different parts of the trie and therefore resulting
in a different number of replies, was run. Each query was initiated 10
times, each time on a randomly chosen node. In the following, we present
and discuss the results of the described experiments.

Completeness on Data Level

The first figure shows the correspondence between completeness on data
level and on peer level. Figure 4.9 shows the percentage of the final result
received with respect to the number of replies received. We exemplary
chose one of the described network environments (replication factor 2,

"http://www.imdb. com/

4.4. Completeness Estimation 71

—; il
2]
St
5 il
= il
8
g il
B= ql-% —— -
@2-% —— |
| | q3_%
10 15 20 25

reply nr.

Figure 4.9: Completeness on data level

maximal references 5) — in the other settings results look similar. The
plot shows that especially for the two queries resulting in less answers the
development of the result size is almost linear. For the query involving
the whole P-Grid trie there is a higher increase in that size with the last
query replies. Even if P-Grid implements a sophisticated load-balancing,
there might exist keys a particular high number of data items is mapped
to. P-Grid’s load-balancing technique splits high frequented key space
partitions more fine-granular than others, but does not “split” single keys.
Thus, some peers are still responsible for a higher number of items than
others. Due to the locally used storage system, the answer time correlates
to the amount of data to be processed locally. Therefore, replies from
these peers arrive at the end, resulting in a higher increase of the result
size with the final answers. A perfect mapping would be indicated by a
straight line. The figure shows that the mapping from completeness on
data level to the completeness on reply level is satisfyingly realistic in
load-balanced overlay systems.

Estimate Number of Replies

Figure 4.10 shows the number of replies we estimated using the proposed
technique with each reply received. Additionally, the straight line rep-
resents the actual completeness on reply level. The figure clearly shows
that our method always estimates the number of replies correctly at the
end. Moreover, it gets evident that only a small number of first replies
is needed in order to determine a correct value in the end. As expected,
the higher the number of references for each level of the routing table,
the more exact the initial estimation and the less corrections are needed.
The figure also shows that in this case the size of the temporary errors is
smaller than with lower references per level. The differences in the number
of replies for equal queries are due to the need for starting networks with
different parameters from scratch every time. By this, and the application
of a random-walk strategy in order to build the P-Grid trie, this results

Chapter 4: Range Queries

reply nr.

reply nr.

35 35
30 b 30 b
25 - 7 25+ 7
20 - 1 g 201 1
e
. 4 [=5 . 4
15 3 15
107 qé—est — 7 10 qé—est — 7
X —est T ” —est >
5¥¢ 33—esl 1 5¢ 33—esl]
0))) completeness 0))) completeness
0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35
reply nr. reply nr.
(a) replication:1, maxref:1 (b) replication:1, maxref:3
40
351 b
30 b
g 251 b
=2 201 b
g
=15 D b
L l-est —— |
LU . Ao ——
5t 3—est B
. .) __completeness
0 5 10 15 20 25 30 35 40
reply nr.
(c) replication:1, maxref:5
20 30
18 b
16 b 25 b
14F 1 .
12 7 g 201 7
10 B _:
8 b 2 15 7
6 ql-est —— 7
4 e q2-est —— 4 10 [t ql-est 1
s q3—est i q2-est —<—
0 ., complefeness 5 . ‘ s ,q3-est,
0 2 4 6 8 10 12 14 16 18 20 0 5 10 15 20 25 30
reply nr. reply nr.
(d) replication:2, maxref:1 (e) replication:2, maxref:3
30
25 b
. 201 1
g
> - 4
= 15
T L+ ql-est —— |
5T ‘ q2—est —— |
q3—est
0)) __completeness |
0 5 10 15 20 25 30
reply nr.

(f) replication:2, maxref:5

Figure 4.10: Estimated number of replies with corrections

4.4. Completeness Estimation 73

in, only slightly, different overlay trees.

The smaller the part of the trie involved into range query processing
the less information is needed in order to achieve exact estimations. For
the first two queries, even the settings using a replication factor of 1 and/or
a maximal number of references per level of 3 and 1 are quite satisfying.
As it is more probably that sub-trees are queried than the whole tree, this
shows that the proposed method provides quick and exact estimations
even with low information. This also shows the effectiveness for larger
scaled and unreliable systems where, in turn, more information shall be
contained in the local routing tables.

Summarizing, we can state that for each of the considered cases we
only need a fraction of replies in order to achieve an exact completeness
estimation. As the method goes along with very low additional effort, this
proves its powerfulness for trie structured overlays in general.

Relative Estimate

The last figures show the relative completeness (%M) estimated

with each reply. Thus, it illustrates the ratio of error correction. Moreover,
this time the queries were run on two different networks for each setting,
each of them run for a different time before starting queries. Results
from the hence four runs were averaged. Thus, effects of slightly different
overlay tries are eliminated. Figure 4.11 shows that the ratio of correction
is always almost equal for each of the used environments. Following,
independent from the query actually initiated, completeness estimation
is comparably good and corrections provide equally good improvements
with respect to the size of the final result. The figures also show that
the initial estimate is good for all tests, but it is better if more references
are stored at each routing table level. As expected, the reduction in the
error is visible only for the first query replies and converges to 0 for the
later replies. Another important observation is that the estimation for
the queries with less replies are very exact with little information and
that the corresponding plots approach each other with rising numbers of
references.

Estimation on PlanetLab

Finally we ran some experiments on PlanetLab. In each run, we involved
as many nodes as were available in the tests. This always involved nodes
spanning the whole globe. At the time of our experiments, for each run
there were between 382 and 390 peers available in our slice. Every time
a new experiment was initiated, we built a P-Grid network from scratch.
After a certain waiting time for establishing a suitable overlay trie we
initiated range queries. The inserted data was again randomly chosen
from a set of top-frequent entries from the IMDB, resulting in a total of
about 16,000 index entries. The set of all generated keys shows a skewed

74

Chapter 4: Range Queries

0.95

Ei

=) 0.9

% 085

ks

% 0.8

£ 075
0.7
1

_ 095

<

£

S 094

g

% 085

5

£ 08
0.75
1
0.98

T 096

S

S 094

[0}

g 092

:5“ 0.9 ¢,

* 088
0.86

(e
W

ql-est ——
q2-est —+—
q3-—est

15 20
reply nr.

10

(a) maxref:1

oo poogo

25 30

ql-est ——
q2—est ——
q3—est

35

(c) maxref:5

0 5 10 15 20 25 30 35
reply nr.
(b) maxref:3

ql-est ——
- q2-est ——
1 1 1 1 \q3_pSt 1

0 5 10 15 20 25 30 35 40

reply nr.

Figure 4.11: Estimated relative number of replies with corrections

4.4. Completeness Estimation 75

heavy-tail distribution (power-law like), as shown in Figure 4.12 (all keys
that were inserted more than one time, log-log scale). We used a value of 5
for P-Grid’s replication factor as well as the maximal number of references
per routing level. The resulting P-Grid trie was not balanced. Almost
40% of the leaves were located under key prefix 0 and the tree was deeper
and wider under key prefix 1. The average number of leaves, maximal
path length and the average path length were 35, 7 and 5, respectively.
The average number of single entries each peer was responsible for was
approximately 5,000.

1000¢
g I ++++++
g 1002 trfw#
o r
g N
o 10 ¢ %ﬂ 3

E lh_

1 n ol n M| n Lol n L
1 10 100 1000 100(¢

keys

Figure 4.12: Key distribution

Figure 4.13 shows the number of estimated replies with respect to the
number of already received replies and reveals that completeness estima-
tion is quite exact in this case, even with the very first replies. Addi-
tionally, the figure shows the number of actually received replies averaged
over all queries. We only need a small fraction of all replies in order
to achieve almost exact correctness. This result therefore confirms our
findings presented in Figure 4.10.

40 T — —
357 - - o
30fF e i
= 25 e ’ N
%; 20 L o1 1
= 157 o received el 7
e e e2 -
received e2 -~
. e3--- A
0 T ‘ ‘ | receivede3d ; - -
0 5 10 15 20 25 30 35
reply nr.

Figure 4.13: Completeness estimation on PlanetLab

All in all the proposed method for completeness estimation is abso-

76 Chapter 4: Range Queries

lutely satisfying. The initial estimation, based on no further knowledge
than the local one, is quite good for any type of query and environment.
Even if this first estimate is erroneous, only a small amount of replies is
needed in order to determine an exact estimate.

4.5 Conclusions

This chapter has shown how range queries can efficiently be implemented
in structured overlay networks using order-preserving hashing. Whereas
the min-max traversal approach is basically supported by any structured
overlay as it only requires neighboring links between peers usually already
required for system maintenance. The shower algorithm on the other
hand benefits from P-Grid’s trie structure to process range queries in
parallel using multiple messages at the same time trickling down the tree
till all queried partitions are reached. As multiple query messages result
in multiple query reply messages, we provide a range query completeness
estimation for users and applications to estimate the number of reply
messages to expect, even before the first message is issued. We can further
identify the completeness of a query, i.e., the event of receiving the last
reply, on data and peer level.

The evaluation of the range query implementation in the P-Grid ap-
plication has shown that both algorithms perform well even in a realistic
environment such as the PlanetLab testbed. The applications part at the
end of this thesis will show how applications can benefit from a structured
overlay network providing efficient range queries to enrich the applications
functionalities, making the support for range queries indispensable in any
P2P system.

Chapter 5

Distributed Inference

Structured overlay networks enable applications to share large data sets
in wide-area networks and to efficiently locate shared information. The
previous chapter has shown how range queries can be implemented in
these systems exploiting data properties to estimate correlated data ac-
cess. There, data correlations are derived directly from data properties. A
second way to obtain data correlations is by applications and their users,
providing additional information to set their data entries into a relation-
ship, i.e., also into a relationship with other users’ data. This annotation
of data with metadata is common practice in PDMS and the Semantic
Web as data is provided and maintained by a community integrating and
relating new information to existing knowledge.

The Semantic Web community has developed a number of languages
(RDF, RDF Schema, OWL) that deploy logic for automatic reasoning of
shared data. The database community supports this new trend with effi-
cient inference support for semantic web data in their central databases.
Inference is the act or process of deriving a conclusion based on data avail-
able in an information system. Inference is studied and applied within
several fields such as logic, statistics and artificial intelligence. It enables
applications to draw conclusions from a collection of data and relation-
ships between data and potential conclusions. This has the advantage that
data can be processed system internally and that large amounts of data
do not have to be exposed to the application. A system enabling infer-
ence operations can therefore optimize its internal structure accordingly
to more efficiently process reasoning requests. For a P2P system support-
ing inference, data does not have to be retrieved from several peers and
returned to an application, but instead can be processed in the P2P sys-
tem itself and only return a final, probably relatively small, result. This
in-network processing can thereby be optimized by the P2P system and
is orthogonal to classical lookup operations presented so far.

This chapter shows how distributed inference can be supported on top
of a structured overlay network such as P-Grid. By distributed inference
we understand the reasoning about data shared in a distributed system

7

78 Chapter 5: Distributed Inference

such as an overlay network. We show how the shared data is reorganized to
more efficiently process reasoning requests, i.e., to optimize in-networking
processing. We base our approach on Bayesian networks and Bayesian
inference, representing one of many inference methods. However our ap-
proach of restructuring shared data is not limited to Bayesian networks.
Our data reorganization approach is based on the spring relaxation tech-
nique already successfully used for other purposes in P2P systems, such
as proximity routing. The spring relaxation technique allows us to cluster
correlated data on peers and their proximity. Data correlations are de-
rived from user annotations and used during the inference process to draw
conclusions. Clustering correlated data therefore has the advantage of re-
ducing messaging costs for distributed inference. This chapter presents
our variant of the spring relaxation algorithm to cluster correlated data for
efficient distributed inference, and its extensive evaluation in a simulation.

5.1 Motivation

Recently, inference found a new field of application in the context of
the Semantic Web as description logics, such as OWL, can be automati-
cally processed using automatic reasoners. The Web Ontology Language
(OWL) is a language for authoring ontologies and OWL ontologies are
written in RDF/XML to aid automated parsing. For example, consider
the terms ’professor’ and ’staff” in an ontology for universities, with the
relation of ’professor’ being a subclass of ’staff’. Then we can deduct by
inference that all professors are also staff members at the university. This
knowledge can now be used for query resolution or query reformulation
to improve the quality of the result set. OWL is an important part of
the Semantic Web, and has attracted both academic and commercial in-
terest. Centralized databases optimized for RDF such as Sesame' and
Jena? offer efficient reasoning capabilities on the locally stored data as
required by Semantic Web applications built on top of them. Efforts of
the P2P community to provide a distributed version of such an RDF store
are the systems GridVine [CMAAO07] and UniStore [KSR*07]. They pro-
vide lookup operations on shared RDF data using RDF Schema/RDQL
queries respectively a variant of SPARQL, the query language of the Se-
mantic Web, named VQL. Chapter 9 will present more details about Uni-
Store, its internal data organization and data processing support. The
storage of semantic data in a distributed system hamper reasoning as all
the required data is not available locally anymore. To support similar in-
ference capabilities as in centralized systems, a distributed system either
first collects the required data to perform inference, or uses distributed
inference. The collection of data for local inference can become expensive

"http://www. openrdf . org/
2http://jena.sourceforge.net/

5.2. Belief Propagation 79

if the reasoning involves large data sets spread around the globe. Dis-
tributed inference has the advantage that no data has to be gathered first
and data is processed locally at nodes in the network. To derive conclu-
sions, intermediate results have to be exchanged in-between involved data
sets, requiring to send messages across the network if parts of the data are
not available locally. This inference method is called message-passing and
a standard technique to perform probabilistic inference, in a local and dis-
tributed setup. GridVine already applied reasoning internally to analyze
the correctness of schema mappings as shown in [CMAF06]. The message
passing technique applied in [CMAF06] motivated us to provide a dis-
tributed inference architecture on top of P-Grid supporting the reasoning
on shared data in P2P systems.

Distributed probabilistic inference is also already applied for various
applications in sensor networks [PGMO05]| where network limitations are
probably more obvious than in classical P2P networks. Sensor networks
provide data streams and it is sometimes too expensive to ship all the
generated data over the network, especially in outdoor settings consisting
of nodes running on battery power. In such a scenario, network com-
munication is the most expensive operation and has the strongest limit-
ing influence on the life-time of these networks and should therefore be
avoided [HSPMO6]. In-network processing as for example by distributed
inference is therefore a good solution to avoid unnecessary network com-
munication as data can remain at the nodes. To minimize network com-
munication induced by reasoning over facts stored at network nodes, data
required for this operation should be available at one node or preferably in
the neighborhood of the node. The data reorganization requires to cluster
correlated data accordingly.

5.2 Belief Propagation

Pearl’s belief propagation [Pea88] enables distributed inference by
a simple message-passing algorithm between nodes in a Bayesian
network modeling correlations between variables. A node can represent
any kind of probabilistic variable, be it an observed measurement, a
parameter, a latent variable, or a hypothesis. Belief propagation was
first successfully applied in the domain of error correcting codes (Turbo
Codes [BGT93]), speech recognition, image processing and medical
diagnosis. Recently, it was used in P2P systems in the context of
content distribution [BMRO04] and in sensor networks [[JWEFMWO04].
The simplicity of the message-passing algorithm holds the risk of being
not scalable towards large-scale networks because many small messages
have to be sent between nodes. Approaches to reduce communication
costs such as Generalized Belief Propagation [YFWO00] cluster nodes and
build a hierarchy based on common variables of clusters. The message
reduction comes with the drawback that the size of sent messages

80 Chapter 5: Distributed Inference

increases exponentially (number of states™0des in the cluster) hecause the

exchanged messages now contain the joint probabilities of all nodes and
states in the cluster. An open problem is how nodes are clustered in a
distributed way requiring no global knowledge and coordination so that
the communication costs are minimized.

The belief propagation algorithm, also known as the sum-product al-
gorithm, is an iterative algorithm for computing marginal probabilities,
“beliefs” about possible diagnoses, of nodes on a probabilistic graphical
model such as Bayesian networks. A Bayesian network is a directed acyclic
graph of nodes representing variables and edges representing dependence
relations among the variables. If there is an edge from node A to node
B, then node B’s state depends on node A’s state. This is specified by a
conditional probability distribution for node B, conditioned on the state
of node A. A Bayesian network is a representation of the joint distribution
over all the variables represented by nodes in the graph. We assume that
the joint probability distribution factors into a product of terms involv-
ing node pairs and single nodes. These factors are called edge potentials
Yij(xs,25) and local potentials ¢;(x;). Evidence nodes are nodes with a
known value. A node can represent any kind of variable, e.g., an observed
measurement, a parameter, a latent variable, or a hypothesis. For ex-
ample, consider the simple Bayesian network in Figure 5.1 consisting of
3 variables OS1, Driverl and Appl. The dependencies are as follows: if
the hardware driver Driverl is installed on the operating system OS1, the
application Appl is likely to run smoothly with 90% probability. If the
driver is missing, the application runs only to 40% and if OS1 is not in-
stalled, then the application does not run at all independent of the driver.
If it is known that OS1 is installed, then its probability would be set to
1 and the probabilities for Appl to run would only depend on Driverl

thereafter.
| True False | True False
Installed| 0.2 0.8 Installed| 0.2 0.8

0Os1 Driver1| Runs Error

T T 09 0.1
T F 04 06
F T 00 1.0
F F 00 1.0

Figure 5.1: Bayesian network example

5.2. Belief Propagation 81

The belief propagation algorithm is provably efficient on trees and
experiments demonstrate its applicability to arbitrary network topologies
using loopy belief propagation for loopy networks [Wei00], which we will
present in the following. The algorithm is currently used with success
in numerous applications including low-density parity-check codes, turbo
codes, free energy approximation, and computer vision.

5.2.1 The Message Passing Algorithm

The algorithm passes messages across the edges in the graphical model,
i.e., in each iteration, a node sends a message to an adjacent node if it
has received messages from all of its other adjacent nodes at the previous
iteration. In the first iteration, nodes send an initial message, usually
set to 1, to all adjacent nodes. In subsequent iterations, messages passed
from node z; to node z; are updated using the following rule:

mij(x;) = > i(xi) i (i, w5) [] mna(z:)
i k#j

where ¢;(x;) are the local potentials of node x; and v;;(x;, x;) are the edge
potentials. The product of messages excludes the message received in the
previous iteration from node j, the node we are passing the message to.
The messages m;j(x;) and the local potentials ¢;(z;) are vectors whose
length corresponds to the number of states a node x; can be in. The edge
potentials 1;;(x;, z;) are N x M matrices where N is the number of states
node z; can be in and M is the number of states for node ;.

Finally, the marginal probabilities of nodes, called the beliefs, can be
computed by multiplying all received messages by the local potentials:

k

The beliefs are normalized by « to avoid numerical underflow. The
algorithm converges if none of the beliefs in successive iterations changes
by more than a small threshold. For singly connected graphs, it is
proved [Pea88] that beliefs at nodes converge to the marginal probability
at that node, which is:

bi(zi) = a Y plx) = pi(x;)

xj/x;

In networks with loops, evidence is counted multiple times. As all evi-
dence is double counted in equal amounts, Pearl’s belief propagation also
provides good approximations of the marginal probabilities in loopy net-
works.

82 Chapter 5: Distributed Inference

5.3 The Inference Architecture

Our idea of providing a generic distributed inference system is based on
two fundamental design decisions: (i) no central coordination of the vari-
ables in the system and their dependencies; (ii) no global knowledge and
only pair-wise interactions between nodes. Both requirements are satisfied
by the P-Grid overlay infrastructure and Bayesian networks together with
belief propagation. P-Grid is used to store the structure of the Bayesian
network by indexing all variables of the probabilistic network and all de-
pendencies between them. This is achieved by indexing the following
information tuples:

o (#(v;),P(v;)): enables applications to find all variables of the
Bayesian network as the variable identifier (v;) is hashed by
P-Grid’s hash function(#()). It further contains the information
on which peer P(v;) the value of variable v; is currently maintained
for inference. The value of P(v;) can change over time and has to
be updated every time variable v; is moved to a different peer to
improve reasoning performance.

o (#(v;),vj) and (#(vj),v;): represents the edge e;; required to find
all correlated variables of v; respectively v;. As the edge is non-
directional, an edge has to be indexed twice.

The advantage of storing a Bayesian network in a distributed infras-
tructure is that any user of the system can add variables and edges to the
probabilistic network. Thus, the Bayesian network can be maintained by
a user community and is not subject to supervision by a single authority,
i.e, administrator.

Learning a Bayesian network structure and probabilities from dis-
tributed data is studied in various papers [Yam97, Hec95, CSKO04]. In
this thesis we assume an existing Bayesian network stored in P-Grid and
do not further study the possibility of Bayesian learning. Belief propaga-
tion requires multiple message-passing iterations between all nodes of the
Bayesian network which are stored at physical P-Grid nodes. P-Grid’s
index structure allows to locate all correlated variables by simply per-
forming a lookup. If correlations (v;,v;) and variable locations P(v;) do
not change frequently, these system lookups can be economized by local
lookups in a cache, holding the necessary information. This means that
peers responsible for a variable cache the location of correlated variables
for direct communication during the reasoning process. This avoids repet-
itive lookup operations during distributed inference to locate the current
peer responsible for a variable and all correlations of a variable. To keep
the cached information up-to-date, a peer should periodically query for
the latest set of correlations for its locally maintained variables to be aware
of the latest updates. The second cached information, the current peer

5.4. The Relaxation Algorithm 83

responsible for a variable value P(v;), can be obtained on demand. If a
peer p; during the reasoning process contacts a peer P(v;) for the value of
a variable v;, and P(v;) is no longer responsible for v;, then p; can lookup
the current location P(v;) using P-Grid’s index.

On a global scale, this can still lead to scalability problems for our
system as distributed inference requires to send messages between all cor-
related variables located at different peers. To reduce network access
and thereby processing delays, we uncouple variable values, the local po-
tentials, from the P-Grid index and allow them to be stored at different
physical P-Grid nodes to improve the efficiency of belief propagation. This
relocation of variable values is stored in the index by the reference to P(v;),
the currently responsible peer for v;’s local potential. An open problem is
how those local potentials are stored close to each other, in the best case
even on the same physical P-Grid node, without central coordination and
knowledge, to achieve the desired network access reduction.

5.4 The Relaxation Algorithm

In this section we describe the relaxation algorithm based on the spring
relaxation technique that we developed. We assume that Bayesian vari-
ables are connected by springs and the Bayesian network forms a spring
network which has to be relaxed, i.e., the network has to be in a state
requiring least possible energy. The energy a spring requires is directly
proportional to the distance between the two P-Grid nodes the Bayesian
variables are stored at. In P-Grid, the distance between two nodes can
be defined by which routing table level has to be used to reach a peer.
For example, Table 5.1 shows the distance to several peers based on the
peer’s routing table.

Table 5.1: P-Grid distance for a peer with path 010

Level ‘ Prefix ‘ Peers ‘ Distance
0 1* 1010, 110, 111, ... 3
1 00* 000, 0010, 0010 2
2 011* | 00110, 00111 1
Replicas | 010 010 0

The distance between two nodes is indirectly proportional to the level
of the routing table as the expected routing cost (hops) to lower levels is
higher than to higher levels, i.e., closer levels. Peers have proportionally
more references to closer levels and can therefore route to peers in these
levels with less hops. The spring between two variables remaining at
the same node requires no energy. Therefore, the optimal solution of
the spring relaxation algorithm would be to place all variables at one

84 Chapter 5: Distributed Inference

node. This is of course not desirable because P2P systems are based
on the idea of load sharing which is in contradiction with the optimal
solution mentioned before. Thus, the spring relaxation algorithm also has
to consider load balancing of variables among participating nodes. P-Grid
provides already heuristic statistics about the current load of each level of
the trie represented by a peer’s routing table. These statistics are required
by P-Grid itself to provide load-balancing of stored index information and
are used in the following for our approach too. The statistics are based on
periodic interactions with random peers of the routing table to sample the
current load distribution. The periodic sampling enables peers to estimate
the current load of a routing table level and the global average load.

Figure 5.2 illustrates our idea for the example presented in Figure 3.4.
The data layer shows correlated variables (data items) connected by
springs representing the attractive force between these items. The
strength of the force is thereby proportional to the distance among
data items, i.e., the distance of the peers in the P-Grid network as
shown above. The relaxation algorithm presented in this section aims
at relaxing all springs between correlated variables to map them in a
way onto the P-Grid network leading to a minimum remaining energy
in the spring network. A spring network with minimal stored energy
also represents the optimal solution for our initial aim to minimize
in-network processing costs of distributed inference. The reasoning costs
are minimal as the number of variables at the same peer was maximized
by the relaxation algorithm, leading to a minimal number of physical
messages required to send across the network. The number of inference
messages sent between probabilistic variables thereby remains the same
as before the relaxation step. We are only interested in reducing the
number of physical messages sent between peers, i.e., between variables
stored at different peers.

Data layer

Figure 5.2: Illustration of the spring relaxation approach

5.4. The Relaxation Algorithm

85

The algorithm used to relax the Bayesian network is shown in Al-

gorithm 5.5. The algorithm is executed by each node iteratively till no
improvement is achieved anymore, i.e., if the tension a node observes for
its variables increases between two steps, or a maximum number of itera-
tions is reached. The algorithm obviously also terminates if no node has
variables to move anymore, i.e., the load is balanced among all nodes. The
following list provides an overview of the used variables in the algorithm:

e localVars: list of variables the local node maintains

e avgload: local estimate of the global average load

e currentLoad: the current load of the local node

e routingTable: the routing table of the local node

e routingTable.levels: the number of levels in the local routing table

e candidate(j).tension(i): the tension at level i for candidate variable j

e candidate(j).tension: all tensions at all levels for candidate variable j

Algorithm 5.5 The spring relaxation algorithm

NN RNNINDNIDND — /= s e e
- N R N O

28:
29:

—_
=

freeVars = length(localVars) — avgLoad/2;

if (freeVars <=0) then
return;

end if

undirVars = variables having a tension only at one level;

while ((freeVars > 0) and (length(unidirVars) > 0)) do
move variable to a peer from the level with the tension;
removeFirst(unidirVars);
freeVars = freeVars — 1;

end while

: multidirVars = variables having tensions to multiple levels;

: while ((currentLoad > avgLoad) and (length(multidirVars) > 0)) do

for ¢ = routingT able.levels to 1 do
if (level 7 is underpopulated) then
candidates = variables having a tension at level i;
for j =1 to length(candidates) do
if (candidate(j).tension(i) >= maxz(candidate(j).tension)) then
move variable to a peer from level 7;
remove(multidirVars, candidate(j));
currentLoad = currentLoad — 1;
if (currentLoad <= avgLoad) then
break;
end if
end if
end for
end if
end for
end while

86 Chapter 5: Distributed Inference

First, in line 1 to 4, each node checks if it has “free” variables it can
move to other nodes or not. Currently, nodes are allowed to move variables
as long as they have more than avgLoad/2 variables. The limit was chosen
by us to ensure that all peers contribute a minimum amount of storage
to the system to share the storage load collaboratively amongst all peers
in the network. P-Grid obtains an estimate for the current average load
in the system but the accuracy of this estimate is not crucial for the
algorithm. In line 5, nodes determine those local variables which have a
tension to other nodes remaining at the same level of the local routing
table leading to one tension at one level. Ideally, variables have a tension
to only one node and not to different nodes at the same level. If the
local node can move variables and it found such unidirectional variables,
it moves them directly to the corresponding level or node (line 6 to 10).
Nodes can refuse to maintain new variables if their load is already greater
or equal to twice the average load. In such a case, the variable is moved
to another node at the same level. Moving a variable always requires only
one message between the two involved peers.

A node can try to balance the load in the system if it maintains above
average many variables. It therefore uses all non-unidirectional variables,
i.e., variables which have tensions at multiple levels (line 12 and 13). Next,
the node tries to balance each level of its routing table, starting with the
highest level, i.e., its closest neighbors (line 14). Starting with the closest
neighbors allows nodes to balance load first locally before they try to
balance load on peers further away from them, i.e., on peers stored in lower
levels. If a level is underpopulated (line 15), i.e., a level maintains below
average many variables, then the node first selects candidate variables out
of its local variables (line 16). Candidates are all variables which have a
tension at the current level. Next, starting from line 17, the node checks if
the tension at the current level for the candidate variable is the strongest
tension the variable has considering all levels. This ensures that variables
are moved to levels with their strongest tension. This process continues
as long as candidates are available and the node has enough variables to
move.

5.5 Evaluation

The presented relaxation algorithm was implemented in Matlab and eval-
uated with diverse Bayesian networks. We present results for Bayesian
networks resembling the topology of random networks, binary trees and
scale-free networks with up to 2048 variables, stored in P-Grid networks
with up to 512 nodes. As the ratio between number of variables and
number of P-Grid nodes is the most dominant factor for the achieved per-
formance, we will present results for 2048 variables in a P-Grid network
of 64, 128, 256 and 512 nodes. Considering the motivating scenarios we
have in mind for our system, tree-based belief networks and scale-free net-

5.5. Evaluation 87

works are the most realistic network topologies. The network size and the
number of variables is difficult to estimate but the evaluation shows that
our approach scales well even though no proof can be given so far. All
experiments were repeated 10 times and the figures show the average of
those 10 repetitions with their standard deviation. Each time a new belief
network was created and variables were assigned randomly to nodes.

5.5.1 Network Topologies

We briefly describe some properties of the network topologies we used for
our evaluation. The networks were visualized with the Pajek tool [Bat01]
using the 2D Fruchterman Reingold layout for random networks and the
Kamada-Kawai layout for the others. Additionally, we show the node
degree distribution by sorting nodes according to their node degree and
plotting their degree in log-log scale.

Random Networks

We constructed random networks by adding for each node degree/2 edges
to other nodes with equal probability to reach the desired average node
degree. Figure 5.3 shows a network of 1024 nodes with an average node
degree of 4, nodes have between 2 and 10 edges. The degree distribution
indicates that most of the nodes have a degree around the average.

ok R

R st

degree

10 10°
variable

10

(a) Network visualization (b) Node degree distribution

Figure 5.3: A random network: 1024 nodes with average node degree 4

Binary Trees

The second used topology is a binary tree with each node having exactly
two children excluding leaf nodes. KEach node has exactly one parent
excluding the root of the tree. Therefore, the node degree varies between
1 and 3 with an average around 2. Figure 5.4 shows a binary tree with
1023 nodes. The degree distribution shows the leave nodes (half of the

88 Chapter 5: Distributed Inference

nodes) at the bottom with 1 edge, the root with 2 edges in the middle
and the intermediate nodes with 3 edges at the top.

3 * o xxx

SRR u«/‘,/, /
DN \§\\‘\‘\\‘\W i1y
NI 0 W //% 77

== ——
= — A =
”/Zé// /“%’ﬁ b W\%\\\\\}t& » 1o 0 g 10°
IF LRI variable
(a) Network visualization (b) Node degree distribution

Figure 5.4: A binary tree: 1023 nodes

Scale-Free Networks

The last used network topology is a scale-free network with the prop-
erty that the number of links k originating from a given node exhibits a
power law distribution P(k) ~ k~99"™% The network is constructed by
progressively adding nodes to an existing network and introducing links
to existing nodes with preferential attachment so that the probability of
linking to a given node i is proportional to the number of existing links k;
that that node has, i.e.,

k;

>k

J

P(linking to node i) ~

Scale-free networks occur in many areas of science and engineering,
e.g., including the topology of web pages (where the nodes are individual
web pages and the links are hyper-links), and are therefore a good model
for our scenario. Figure 5.5 presents a scale-free network on the left side
with highly connected nodes in the center and loosely connected nodes at
the periphery. The node degree varies between 1 and 62 with an average
around 4. The node degree distribution follows a power-law distribution.

5.5.2 Message Reduction

The most interesting evaluation criterion is of course the message reduc-
tion achieved by redistributing the variables close to each other in the
P-Grid network. Figures 5.7 — 5.9 present the results obtained for the
three network topologies. The plots show the achieved message reduc-
tion after each iteration of the spring relaxation algorithm by relating the

5.5. Evaluation 89

50

variable

(a) Network visualization (b) Node degree distribution

Figure 5.5: A scale-free network: 1024 nodes with average node degree 4.

number of required messages to run one iteration of the belief propagation
algorithm. At the beginning, 100% of the messages are required, while
after each iteration of the spring relaxation algorithm, less messages are
required. The message reduction is given with the standard deviation
of 10 repeated simulations for each setup. Each run required different
numbers of iterations to terminate the relaxation algorithm, therefore the
figures show up to 20 iterations, the maximum number of iterations. Most
runs finished after around 10 iterations and only a few reached the max-
imum number of executed iterations. Figure 5.6 shows the distribution
of iterations for 100 runs of the relaxation algorithm for 1024 variables
in a scale-free network and 128 P-Grid nodes. The figure shows that the
algorithm terminated a few times already after 4 iterations and only a few
required up to 16 iterations. Almost 90 percent, i.e., 90 runs out of 100
performed, were finished after 10 iterations.

Figure 5.7 shows that the algorithm does not perform well for any eval-
uated random network as expected. The random correlations of variables
in these networks makes it difficult for the spring relaxation algorithm to
cluster variables close to each other to reduce the message effort. The
figures show that the message reduction increases with larger P-Grid net-
works but the achieved message reduction does not exceed 25% as achieved
for 512 P-Grid nodes. As random networks are not considered as the most
realistic model for our use case, this result is tolerable in our opinion. Ran-
dom networks also require more iterations than other network topologies
before the relaxation algorithm terminates, i.e., for 256 nodes, the algo-
rithm even reached the maximum number of iterations (20). The average
number of required iterations was between 10 and 15, slightly increasing
with the number of P-Grid nodes.

For binary trees, see Figure 5.8, the relaxation algorithm is able to
reduce the number of required messages to around 35% of the initially

90

Chapter 5: Distributed Inference

1001

80+

601

501

runs (%)

301

101

iterations

Figure 5.6: Distribution of required iterations of 100 runs for a scale-free net-
work of 1024 variables on 128 P-Grid nodes.

100

90 \\\&_S_I_H_X‘X_X_H
80
70
60
50

40

messages [%)]

30
20

10

8
iteration

(a) 64

100
90
80

70

messages [%)]
@
o

2 4 6 8 10 12 14 16 18 20
iteration

(c) 256

messages [%)]

messages [%)]

100
90 \x%*;_w
80

70
60
50
40
30
20

10

iteration
(b) 128

100
90
80
70
60
50
40
30
20

10

2 4 6 8 10 12 14 16 18
iteration

(d) 512

Figure 5.7: Message reduction for random networks with different numbers of
P-Grid nodes and 2048 variables.

5.5. Evaluation 91

required number before running the relaxation algorithm. The obtained
results seem to be independent of the number of nodes in the P-Grid
network. Binary-tree based networks also require less iterations of the
relaxation algorithm. The average was for all networks around 10 and
none of the 40 runs reached the maximum number of iterations of 20.

100
90
80
70
60

50

messages [%)]
messages [%]

40

30
201 20

101 10

2 4 6 8 10 12 14 16 18 2 4 6 8 10 12 14 16
iteration iteration

(a) 64 (b) 128

100
90
80
70
60
50

40

messages [%)]
messages [%)]

30
20r 20

101 10

8 10 6 8
iteration iteration

(c) 256 (d) 512

Figure 5.8: Message reduction for binary tree-based networks with different
numbers of P-Grid nodes and 2048 variables.

Finally, we observe similar results for the scale-networks as shown in
Figure 5.9. The relaxation algorithm is able to reduce the message cost by
up to 75% for the smallest P-Grid network of 64 nodes still up to 55% for
the largest P-Grid network of 512 nodes. The average number of required
iterations is compared to the other two network topologies also smaller,
around 10 and even less for larger networks.

The standard deviation is small for all network topologies and net-
work sizes which is an indicator that the algorithm scales well. In all
experiments, the algorithm was iterated up 20 times but the main reduc-
tion is achieved already in the first 10 iterations. Again, this seems to
be independent of the number of nodes and number of variables in the
networks.

92 Chapter 5: Distributed Inference

100 100
90 90
80 80
70 70
g 60 g 60
8 8
§ 50 2 50
a @
g 40 é 40
30 30
20 20
10 10
0 0
2 4 6 8 10 12 14 2 4 6 8 10 12 14 16
iteration iteration
(a) 64 (b) 128
100 100
90 90
80 80
70 70
g 60 g 60
? ?
[[
2 50 2 50
3 3
¢ a0 ¢ a0
£ £
30 30
20 20
10 10
0 0
2 4 6 8 10 12 2 4 6 8 10
iteration iteration
(c) 256 (d) 512

Figure 5.9: Message reduction for scale-free networks with different numbers
of P-Grid nodes and 2048 variables.

5.5. Evaluation 93

5.5.3 Load Balancing

Apart from the reduction of required messages for the message-passing
algorithm, it is important that the storage load of variables is balanced
among the participating nodes. The storage load further corresponds to
the message load during distributed inference as all variables are accessed
exactly once per reasoning iteration. Figures 5.10 — 5.12 present the cor-
responding results obtained again for random networks, binary trees and
scale-free networks. All figures show the average variable load which re-
mains constant over all iterations as the number of variables and nodes
does not change. The standard deviation indicates the load balance in the
system. Additionally, the maximum load of nodes is given by the dotted
line.

Whereas the relaxation algorithm did not perform well for random
networks to reduce the number of required messages, it was more suc-
cessful to balance the load among the nodes, as shown in Figure 5.10.
The standard deviation is decreasing for all network sizes as well as the
maximum number of variables per node (dotted line). For small networks,
where the average variable load is higher compared to larger networks, the
maximum load was even less than the maximum load of twice the average
load nodes are willing to accept. This limit was more dominant for larger
networks.

Similar results were obtained for the binary tree-based networks (see
Figure 5.11).

Figure 5.12 shows that scale-free networks cause a slight increase of
unbalance and at least one node reaches the maximum tolerable variable
load independent of the network size. This is due to the fact that 1 or
2 nodes usually have very high degrees and therefore “attract” a lot of
other variables causing the high load at the P-Grid node maintaining
such highly-connected variables.

5.5.4 Reduction Effort

The accomplished message reduction for distributed inference achieved by
the relaxation algorithms comes with the cost of moving around variables
in the P-Grid network requiring one direct message between two peers for
each movement. In the following, we will present the number of variables
moved at each iteration for P-Grid networks of different size and 2048
variables in the Bayesian network.

Figure 5.13 shows the number of variables moved per iteration of the
spring relaxation algorithm for random networks. Most of the variables
are moved in the first iterations and more variables have to be moved
in larger P-Grid networks as nodes store less variables on average. The
variance increase at the end can be explained by the fact that some out of
the 10 runs already terminated and therefore did not move any variables
at those iterations anymore. In the end, around 65% of the variables

94 Chapter 5: Distributed Inference

%gzZNNNMHHM @HHHMHM
(a) 64 (b) 128

TR

fo U

1 [TTTIITIIT T
(c) 256 (d) 512

Figure 5.10: Variables per node for random networks with different numbers
of P-Grid nodes and 2048 variables.

5.5. Evaluation

95

variables/node
w
o

variables/node
[S = S S N
S o © o

o N
T

2 4 6 8 10 12 14 16 18
iteration

o N & o ®
s

(a) 64
ENERRRRARRAREAE
[TTTITITTTIITTT

© 256

variables/node

variables/node

)
a

w
S

N
a

n
=}
T

=
3

&l

=
o
—

141

h
12
\

2 4 6 8 10 12 14 16
iteration

(b) 128

\
10r

8
iteration

(d) 512

Figure 5.11: Variables per node for binary tree-based networks with different
numbers of P-Grid nodes and 2048 variables.

96 Chapter 5: Distributed Inference

ttttttttt

tttttttttttttttttt

Figure 5.12: Variables per node for scale-free networks with different numbers
of P-Grid nodes and 2048 variables.

5.5. Evaluation 97

remained at the original node for the 64 node network and around 37%
for the P-Grid network with 512 nodes.

I
S
=)
IS
o
=]

w

@

=}
IS
S
S

@

1=}

=)
w
a
=]

N

a

=}
w
S
=]

moved variables
moved variables
2R NN
o o o a
o o o o

o
=]

o

=]

[S)
N
IS
[
o
=
~
[
I
=L
o
o
N
IN
[
15}
I
N
[
kN

8 6
iteration iteration

(a) 64 (b) 128

5001

4001

moved variables
w
(=3
o
moved variables

]
=1
S

0 5 10 15 20 0 5 10 15
iteration iteration

(c) 256 (d) 512

Figure 5.13: Variables moved per iteration for random networks with different
numbers of P-Grid nodes and 2048 variables.

More variables are moved if they form a binary tree-based Bayesian
network as seen in Figure 5.14). More than twice as many variables are
already moved at the first iteration compared to the random networks
though the number of moved variables decreases faster. The size of the P-
Grid network has less influence as the overall number of variables moved
is more or less equal for all network sizes. This is also reflected by the fact
that the difference of variables remaining at their originators is smaller,
from around 30% for the smallest network to around 26% for the largest
evaluated network.

Similar numbers are observed for random networks as shown in Fig-
ure 5.15. The number of moved variables is similar to the tree-based
networks as well as the fast decrease per iteration. In contradiction to
the other two network topologies, only 22% of the variables remained at
the orginating peer for the P-Grid network with 64 nodes and around
33% variables in largest network of 512 nodes. This result proves once
more that the relaxation algorithm is able to cluster variables close to
each other better if the ratio between variables in the Bayesian network

98 Chapter 5: Distributed Inference
1000 1000y
800 800F
]]
5 600 £ ool
> >
<
£ 400 £ 400F
200 2001
0 . 0
(] 6 8 10 12 14 16 18 0 8
iteration iteration
(a) 64 (b) 128
1000 1000
800 800
8 8
s g
& 600 'S5 600
> >
£ 400" 2 400
2000 200
o . . ! o
0 6 8 10 12 14 16 (]

iteration

(c) 256

iteration

(d) 512

Figure 5.14: Variables moved per iteration for binary tree-based networks with
different numbers of P-Grid nodes and 2048 variables.

5.5. Evaluation 99

and number of P-Grid nodes is larger, i.e., on average more variables are
mainted per P-Grid node.

10001 1000
900 900
8001 800

7001
6001

@
Q
=]

5001

moved variables
moved variables
o
(=]
(=]

4001

IS
S
=]

300F

@
o
=3

2001

N
Q
=]

1001

[
1)
=]

% 5 10 1 % 2 4 6 8 10 12 14 16
iteration iteration
(a) 64 (b) 128
1000} 10001
900t 9001
800} 800
g 700 g 700
B o0 B o0
5 500t < 500
g g
© a00r & 400p
300 3008
2001 2001
1000 100t
0 == 0
0 2 4 6 8 10 12 0 2 4 6 8 10
iteration iteration
(c) 256 (d) 512

Figure 5.15: Variables moved per iteration for scale-free networks with different
numbers of P-Grid nodes and 2048 variables.

5.5.5 Discussion

The results obtained from the Matlab evaluations look very promising.
The relaxation algorithm is able to move correlated variables close to
each other to reduce the message cost for distributed inference down to
30% of the original cost for some network topologies. Binary tree-based
and scale-free network based Bayesian networks enable the largest mes-
sage reductions by moving most of the variables away from their original
nodes. Most of them are moved in the first iterations and the required
communication effort will pay-off soon if the Bayesian network remains
unchanged and a lot of inferences are performed. The performed evalua-
tion also shows that the presented relaxation algorithm terminates already
after a few iterations and only in few cases had to be stopped by the set
maximum iteration limit of 20.

100 Chapter 5: Distributed Inference

5.6 Related Work

Generalized Belief Propagation [YFWO00] reduces the number of messages
by clustering correlated variables together and sending only one mes-
sage between those clusters. This approach has three drawbacks: (i) the
message sizes increase exponentially (number of states™odes in the cluster)
because the exchanged messages now contain the joint probabilities of
all nodes and states in the cluster; (ii) the complexity of processing the
messages and beliefs at nodes also increases considerable with increasing
number of nodes in a cluster; (iii) it is not obvious for us how clusters
are formed in a distributed way without central coordination and knowl-
edge which is essential in peer-to-peer systems. Though Generalized Belief
Propagation provides more accurate beliefs than Pearl’s belief propaga-
tion, it is currently not applicable for large-scale networks.

Reference [PGMO5] presents an inference architecture for sensor net-
works based on message-passing on a junction tree. For this approach,
a distributed algorithm is first used to form a spanning tree of nodes
which is used later to construct the junction tree for inference. Junction
trees group variables into cliques and their size determines the computa-
tion costs at nodes whereas the separator size between cliques determines
the communication costs. The approach was evaluated with 54 sensor
motes in a local experiment showing spanning tree optimizations and the
communication costs of the junction tree. Inference on junction trees is
exact and always results in the exact marginals at the cost of requiring
building a tree with larger messages and higher computation costs. Belief
propagation only provides approximate inference on lower overheads.

Spring relaxation is used in various domains and we will only present
two examples for peer-to-peer systems. Vivaldi [DCKMO04] is a decen-
tralized network coordinate system using a spring-mass model to position
nodes in a virtual coordinate system according to their latencies. Nodes
run the distributed spring relaxation algorithm as soon as a new latency
measurement was performed to reduce the distance error between nodes.
An application of Vivaldi is described in [PSWT04] to optimize the path
in stream-based overlay networks. Services are placed on nodes close to
each other in the virtual latency space.

5.7 Conclusions

This chapter has shown a clustering approach for probabilistically corre-
lated data items in a Bayesian network used for distributed inference. We
used the data correlations given by the Bayesian network to reorganize the
index of the structured overlay of P-Grid. Variables were moved close to
their correlated variables and if possible even on the same peer. The con-
sequence of this step for distributed inference is that less messages have
to be sent in the network to perform the reasoning step. The presented

5.7. Conclusions 101

evaluation has shown that, depending on the topology of the Bayesian
network, a reduction of more than 50% can be achieved by our relaxation
algorithm.

102 Chapter 5: Distributed Inference

Chapter 6

Multi-Term Queries

A common practice in current information systems is the use of multiple
keywords to search for information, as currently very successfully demon-
strated by web search engines. The idea behind it is that information,
such as web pages on the Internet, are indexed by distinctive keywords
which are used later to resolve user queries consisting of one or multiple
keywords. The simplicity and user-friendliness of this approach is respon-
sible for its success as users do not have to struggle with complex query
languages. But this simplicity on the user side leads to several challeng-
ing problems the field of information retrieval deals with. These problems
have recently also gained popularity in the P2P community in the context
of P2P web search engines.

The P2P community has tried to adopt approaches from information
retrieval to build distributed information systems and P2P web search en-
gines. The basic infrastructure of one of these systems will be presented
later in this chapter. We will not focus on the indexing part, i.e., how
distinctive keywords are extracted from documents, and rather focus on
how a structured overlay network can be (re-)organized to efficiently re-
solve multi-term queries on the indexed information. Multi-term queries
require to search for multiple keywords and return the intersection of the
multiple result sets, i.e., all documents containing all given keywords. In
structured overlay networks we have the problem that the multiple key-
words are usually not maintained by the same peer requiring to gather
all documents matching all keywords at one peer first before an intersec-
tion of the result set can be returned, if a complete answer including all
matching answers is desired.

This chapter first presents an overview of how such intersections can
be currently processed in distributed systems using a distributed index.
We will then reuse our relaxation algorithm from Chapter 5 to reorganize
the distributed index to more efficiently process multi-term queries on a
single overlay index. An evaluation of the optimized algorithm with a
real-life data set is given at the end of this chapter.

103

104 Chapter 6: Multi-Term Queries

6.1 Motivation

A structured overlay network maintains a distributed index stored at peers
in the network holding information about their shared data. The dis-
tributed index thereby holds references to the actually shared data re-
maining at providing peers. Whereas this approach works well for single-
key lookups, multi-term queries require to intersect multiple result sets
before a final result can be returned. The distribution of the index offers
several ways of how such an intersection can be implemented.

Local Join A local join executes two independent queries and joins both
received result sets at the end locally at the query initiator. This approach
is basically supported by any structured overlay as it only requires local
post-processing of queries already supported by the system. Another ad-
vantage is that the index itself does not require to store any additional
information than the index term, i.e., if documents are indexed then each
keyword is indexed only with a reference to the document containing the
index term, ignoring all the other distinguishing terms. Although this
approach is simple and easy to realize, the main drawback is the overhead
induced by the multiple independent queries. For example, a query with
two keywords leads to two independent queries to be resolved for each of
the keywords. The two result sets will contain documents matching the
corresponding query term and have to be transmitted to the requesting
peer. The local join builds the intersection of these result sets and returns
all documents present in both result sets. In case all documents contain
only one of the keywords and not the other, the final result set will be
empty. The two transfered intermediate result sets could have therefore be
avoided. Figure 6.1 illustrates query resolution for two keywords involving
two responding peers and local merging of received result sets.

To reduce communication costs for local joins, distributed top-k
queries [MTWO05, ZTZ07] can be used, i.e., find and return only the k
best matching objects for a given query. Top-k queries rely on ranking
operations to rank documents locally and globally, leading to additional
overhead.

Sequential Join A query plan [PM02, ZS05] can be used to resolve
multiple keywords of a query sequentially by forwarding the query and
their intermediate results along all peers responsible for the keywords.
The query plan should start at the most selective keyword to minimize
the traffic of query resolution as only matching items are forwarded with
the query to the peer responsible for the second keyword. The advantage
of this approach is that the query initiator only receives one final response
containing all items matching all keyword criteria. Further, the number
of items matching the first resolved keyword bounds the size of sets trans-
fered as following peers can only eliminate candidate results. The draw-

6.1. Motivation 105

Figure 6.1: Query resolution for two keyword terms using local join

back of this approach is that a query and its intermediate results have to
travel between multiple peers before a result is returned to the initiator.
This causes a long delay for the query initiator as no results are returned
before the last keyword was resolved. If the order in which keywords are
resolved is not chosen wisely, i.e., the most selective keywords first, then
this approach can further cause a high network overhead if intermediate
results are relatively large compared to the final set. Finally, a P2P sys-
tem would have to support query plan resolution which is not trivial to
implement. Figure 6.2 illustrates query resolution for two keywords by a
query plan passing along the received query with intermediate results till
all query terms are resolved. The resulting answer set is returned to the
query originator by the peer responsible for the last resolved query term.

Remote Join The problem of resolving multi-term queries was already
studied for distributed database systems using approaches for data frag-
mentation as introduced in Section 2.2. Data is distributed on multi-
ple physical devices connected by a network similar to the setup of P2P
systems, though distributed databases are usually under central control.
Nevertheless, a common approach is to look at queries issued against the
database to identify relationships amongst data sets and cluster strongly
correlated data fragments on the same physical machine. Therefore, all
keywords of a multi-term query may be answered by a single machine
enabling the remote join of results. A remote join is only possible if all
necessary data is stored at one single peer, i.e., one peer is responsible
for the queried attributes. This means for a multi-term query that the
peer is responsible for all keywords of the query and can return result
sets for each of them. Therefore, the peer is also able to perform the join
directly before returning multiple records. From a distributed system’s

106 Chapter 6: Multi-Term Queries

Figure 6.2: Query resolution for two keyword terms using a query plan

point of view, a remote join is the optimal solution for multi-term queries
as communication costs are minimal. As the answering peer has already
all the necessary data to perform the join locally, e.g., in its own database,
the resulting data set transmitted back to the query initiator will be the
final set. No additional message respectively data has to be transmitted
and therefore no bandwidth is wasted. Figure 6.3 illustrates query reso-
lution for two keywords by a remote join at the peer responsible for both
keywords resulting in only one final result set.

s

resultset

s

Figure 6.3: Query resolution for two keyword terms using remote join

6.2. Related Work 107

6.2 Related Work

The resolution of multi-term queries in structured overlay networks is
currently mainly studied in the context of P2P web search engines, i.e.,
P2P full-text search.

[SA06] introduces the idea of query-driven indexing of multi-term
queries using a Distributed Cache Table (DCT). DCT populates the stor-
age space provided by participating peers with result sets (caches) for
carefully chosen queries and uses this data to answer further queries. Each
cache stores a list of document digests, containing an unique document
identifier and a list of terms extracted from the document, and hence
can be used to resolve any query if its result set is contained in the list.
Peers maintain those caches which are frequently used to answer queries
and consume little space. The reasoning behind the cache size restric-
tion is related to limited storage and traffic consumption and refers to
the approach that indexes discriminative term sets (queries in their case)
associated with result sets of constrained size [PLRT06]. DCT performs
an adaptive selection of queries to cache, based on the monitored query
statistics taking into account limited storage capacity with the goal of
minimizing the number of cache-misses. In particular, each peer runs a
greedy algorithm leading to a global quasi-optimal cache selection. There-
fore, DCT adopts a query-adaptive indexing strategy.

A DCT can be built on top of any structured overlay as it relies on the
single term index offered by all these systems. The goal of DCT is to add
an additional cache for frequently queried multi-term queries so that these
queries can be directly answered from the cache and do not have to be
composed by separate single term queries (by a local join at the initiating
peer). The implementation of the query-driven indexing is complex and
requires the knowledge about query statistics to decide which multi-term
queries have to be cached. DCT tries to optimize the utilization of the
available cache size in the system which means maximizing the number
of queries which can be answered by the cache directly. Details about
how query terms are selected for caching can be found in [SA06] and in
follow up publications like [SLP*07a, SLP*07b] where this approach is
used in a distributed web retrieval setup. Caches for multi-term queries
are maintained by peers of the P2P system and the overlay has to store
locations of caches and update these regularly. It therefore builds a meta-
index defining the position of a cache for a multi-term query, to which
such a query is forwarded to be answered.

As a caching technique is used, the paper focuses on query hit rates
and resulting query traffic reductions. The results show that a high rate
of cache hits is able to considerable reduce the required traffic for query
resolution. The main drawback of this approach though is that caches
can be out-of-date and need to be refreshed regularly. Further, caches
require additional storage space (even if “unused” space is used) which

108 Chapter 6: Multi-Term Queries

has to be provided by peers. [SLP*07a] further shows that caches are
likely not to hold all relevant hits for a query if the query frequency of a
term couple is below the threshold. Our approach does not rely on caches
and therefore always has all hits available for a query, if desired. In our
case, the query frequency threshold only has an influence on traffic effort
and not on result quality (recall).

[BMT*06, MBN106] addresses a similar problem of result quality in
terms of recall, i.e., the fraction of relevant documents returned by a query.
Their two-step approach uses a DHT to maintain lists of peers holding
documents containing terms. Each entry contains the IP address of the
peer together with statistics to calculate IR-style measures for a term
to identify the most promising peers to submit a query. Term correla-
tions are learned from query logs and propagated among peers mostly
in a piggy-backed manner. This information is used by peers to pub-
lish not only statistical information for single terms in their documents,
but further for highly correlated term combinations. These statistics can
then be used during query resolution to identify prominent peers for (sub-
sets of) multiple terms to reduce the number of contacted peers, respec-
tively, to increase the relative recall. The two-step approach presented in
[BMT*06, MBN*06] is different from our one-step approach as we resolve
queries directly on a distributed index whereas they use a distributed in-
dex, and identified term correlations, to select candidate peers for local
query resolution.

6.3 Query-Driven Clustering

The main drawback of the approach presented in [SA06] is its requirement
to maintain caches for popular multi-term queries. We propose a slightly
different solution for the same problem relying on methods presented
in [SA06]. Based on the fragmentation techniques used in distributed
databases, we propose to relocate index items based on their probability
to occur together in multi-term queries. In distributed database systems,
query executions are analyzed to identify data segments processed fre-
quently together. While this can be done by a central component in dis-
tributed databases, P2P networks require a distributed solution for this
problem. DCT proposes a solution that is applicable for any structured
overlay. We will use it in the following. The query statistics allow us to
build a probabilistic network of frequently queried terms. The edges be-
tween the nodes, i.e., query terms, of the probabilistic network represent
correlations amongst query terms induced by multi-term queries. The
strength of the probabilistic correlation, i.e., the strength of the edge,
depends on how often the two terms are queried jointly. The proba-
bilistic network therefore represents the most queried keywords and their
strongest correlations with other keywords, as derived from the query
statistics.

6.3. Query-Driven Clustering 109

Instead of building a cache for frequently queried terms, we intend to
move and cluster index items directly in the structured overlay network
so that queries can be answered by peers directly. The advantage we see
compared to the DCT approach is that entries in the cache can be out of
date and need to be updated frequently. Our approach does not require
any active maintenance for index entries and requires only a similar meta-
index as DCT to lookup relocated index entries. The remaining question
is how and where index items are clustered so that as many multi-term
queries as possible can be answered by a single peer, i.e., if the peer is
responsible for all terms of a query, or at least by as less peers as possible.

6.3.1 Architecture

Our approach is based on the distributed inference approach on top of
structured overlay networks and their spring relaxation algorithm to clus-
ter correlated data, as presented in Chapter 5. We adjust the inference
architecture and the relaxation algorithm in the following ways to meet
our new requirements to support multi-term queries:

Indexing We use P-Grid to index shared documents. FEach term is
indexed separately and can be found through P-Grid’s single-key lookup
mechanism. Therefore single-term queries are handled as usual by P-Grid.
Additionally, index entries are allowed to move around in P-Grid and can
be maintained by a different peer, i.e., a peer currently not responsible
for the hash value of a term. In case index entries for a term have been
relocated, a reference to this new partition/peer is maintained at the
originally responsible peer. Query resolution for relocated terms therefore
requires one more hop. For very frequently queried terms, we can envision
a caching mechanism to avoid this one extra hop if desired.

Monitoring To identify frequently queried terms, we have to monitor
and maintain keyword statistics for each query term. The statistics pro-
vide information about how often a query term was queried (recently)
and how often other query terms were queried (recently) jointly. These
statistics can be maintained at peers responsible for keywords and ex-
changed amongst them to calculate the probability that two query terms
occur jointly in a query. This probability can then be used as correla-
tion strength in a probabilistic network, similar to the Bayesian networks
used in Chapter 5. A vertex represents a unique query term whereas an
edge represents a correlation between two query terms. The correlation
strength is calculated in the following way:

f(tij)
@) + f(t5) — f(tiy)

corr(ti, t;) =

110 Chapter 6: Multi-Term Queries

with f(t;) and f(t;) representing the term frequencies of term ¢; and ¢;,
and f(t; ;) the frequency of joint occurrences of term ¢; and ¢; in queries.
The joint access frequency f(t; ;) can be monitored at peers responsible
for t; and t; as a multi-term query always holds all keywords of a query.

Relaxation The spring relaxation algorithm presented in Section 5.4
dealt with variables and their correlations of equal strength, i.e., each cor-
relation was equally important to relax. In our case, correlations amongst
query terms are associated with a probability, i.e., how likely two query
terms occur together. Therefore, some correlations are more “important”
to relax than others as a stronger correlation means that this correlation
occurs more frequent. Favoring strong correlations during the relaxation
leads to overall lower lookup costs as they have a larger influence on the
overall number of messages and data exchanged in the system. The relax-
ation algorithm was therefore adopted to move variables, i.e., terms, with
stronger correlations first by ordering uni-directional and multi-directional
variables according to their correlation strength.

6.4 Evaluation

We evaluated our optimized relaxation algorithm with a Java simulator
and network topologies derived from a real-world data set. We used the
Wikipedia! document collection from the end of 2004 with more than 3
million articles and a collection of more than 4 million queries. We filtered
out several queries and query terms, such as common stop words, as they
are not interesting for our evaluation (e.g., stop words occur too often to be
indexed). The remaining queries and query terms were used to obtain the
most frequently queried keywords together with their frequently jointly
accessed query terms. We are only interested in this subset of query
terms as their frequent repetition allows us to optimize their access. As
these terms occur frequently, they also have a high influence on the overall
access costs compared to infrequent query terms. For example, [Wie83]
has shown that the most active 20% of user queries account for 80% of
the total data access.

We first analyzed the query log from Wikipedia to identify all keywords
and their correlations. Keywords are correlated if they occur together in
a query. We extracted all correlated terms as binary relations. These
relations are further associated with their corresponding query frequency,
i.e., how often a relation occurred within the query log. Figure 6.4 shows
the frequency distribution of 87232 terms we found in the query log, and
the frequency distribution of the corresponding 803222 term relations.
The figure shows that the distributions resemble a power-law distribution

"http://wikipedia.com/

6.4. Evaluation 111

with a few terms/relations occurring very often while most of the them
occur rarely.

queries

10° 10 10° 10° 10* 10° 10° 10° 10* 10°

term relation

(a) Term distribution (b) Relation distribution
Figure 6.4: Distribution of term and relation frequencies (log-log scale)

The here observed distributions further confirm our assumptions made
in Chapter 5, that scale-free networks following a power-law distribution
are a very good model for our evaluation of distributed inference.

6.4.1 Probabilistic Networks

Our evaluation focuses on the most frequently queried terms respectively
query relations. We extracted the most frequently queried term relations.
We chose the most 1024, 2048, and 4096 queried terms to build a proba-
bilistic network. Each term is represented by a node in the probabilistic
network, and each edge stands for one of the most queried term relations.
The strength of an edge is defined by the strength of a relation, i.e., the
query frequency as defined in the previous section. Figure 6.5 shows the
probabilistic networks for the 1024 respectively 2048 most queried terms.

6.4.2 Term Posting Lists

To evaluate the lookup costs for our top-k queried terms and relations,
we associated each term with its corresponding posting list. A posting
list is a list of references to documents returned by a query. In our case
the posting lists of a term contained references to Wikipedia articles in
which the term occurred. Common terms have longer posting lists as they
occur in more documents than distinctive keywords. For example, stop
words are characterized by very long posting lists as they occur in almost
all indexed documents, and are therefore ignored during indexing. We
assume that users are interested in a complete answer set for queries, i.e.,
all documents matching the query. This requires to return all entries in
a posting list. A lookup for a common term with a long posting list is
therefore more expensive in terms of network traffic than a lookup for a

112 Chapter 6: Multi-Term Queries

S
S

/

(a) k = 1024 (b) k = 2048

Figure 6.5: Probabilistic network of term relations for the top-k queried terms

term with a short posting list. The same holds of course for multi-term
queries returning the intersection of all term posting lists involved in the
query.

Figure 6.6 shows the distribution of posting list sizes for all terms
occurring in the Wikipedia query log. The figure follows again approx-
imately a power-law distribution with a few terms occurring in many
documents whereas most terms occur only in a few documents.

documents

term

Figure 6.6: Distribution of term posting list sizes

6.4. Evaluation 113

6.4.3 Lookup Costs

The most important metric in our evaluation is the lookup cost reduction.
We therefore count the number of references to documents transmitted
over the network, based on the posting lists of terms. For example, the
cost of a multi-term query with two keywords stored at two different peers
is the sum of the posting list sizes of the two terms. The cost of the same
query with the two keywords stored at the same peer is however the size of
the intersection of the two posting lists. We are therefore only interested
in multi-term queries with multiple keywords of our probabilistic network.
The lookup costs of single-term queries always correspond to the posting
list size of the queried term. Furthermore, infrequent terms, which are
not considered in our probabilistic network, are not evaluated as their
lookup costs are not reduced by the relaxation algorithm. The number
of remaining queries, i.e., queries for the top-k queried keywords, used
during our simulation depends on the size of the probabilistic network
and increases with the number of considered terms as follows:

terms ‘ queries

1024 | 22690
2048 | 48219
4096 | 89325

We store the probabilistic network for the top 1024, 2048, and 4096
queried term pairs in P-Grid networks of size 16, 32, 64, 128, 256, and
512 nodes. The average number of terms per node varies according to
[terms|/|nodes|. Our optimized spring relaxation algorithm tries to clus-
ter correlated terms on the same P-Grid node within 10 iterations. We
set this limit as we did not observe any further improvements with more
iterations during our experiments. In fact, most of the relations were al-
ready relaxed after one or two iterations of our algorithm. We ran 10
independent simulations for all setup combinations (varying number of
terms and varying P-Grid network sizes) and present the averages and
standard deviations of them in the following.

Figure 6.7 presents the achieved lookup cost reduction. The figures
show the average lookup costs (and standard deviations) at the end of our
relaxation algorithm for all sizes of probabilistic and P-Grid networks.
The costs are the sum of all posting list sizes required to transmit to
resolve all considered queries. Our baseline cost (100%) is the cost of
query resolution before relaxation. As terms are assigned to P-Grid nodes
randomly before relaxation, some related nodes already happen to be
stored at the same node. This means that our baseline cost is already
by up to 20% lower than the maximal lookup cost, i.e., no related terms
are stored at the same node. The difference between maximal cost and
initial cost is higher for higher ratios of terms per nodes, i.e., the two

114 Chapter 6: Multi-Term Queries

costs are almost the same, e.g., for 1024 terms stored on 512 nodes. We
further provide the minimal lookup costs of a centralized solution, i.e., all
terms are stored at one peer and only the intersection of all posting lists
of queried terms are transfered. The minimal lookup costs can only be
achieved if all term relations are relaxed, i.e., all multi-term queries can
be processed by a remote join. The percentage of relaxed relations is also
given in Figure 6.7. The figures show two trends:

(i) the relaxation and therewith the lookup cost reduction decreases
if the ratio of terms per node decreases, i.e., the average load of nodes.
This is explainable by the fact that a smaller ratio gives a P-Grid node
less opportunities to move terms around and relax the system as it is
only responsible for a few terms. Further, nodes cannot store more than
2 - average load terms and therefore not store all related terms on one
node. Note that the average load is relatively small in our experiments
due to memory limitations. We expect that the ratio is higher in a real-
world setup as real nodes are able to store more terms than nodes during
our simulation.

(ii) the relaxation algorithm seems to perform better for term pairs
with higher query frequency as considered in smaller probabilistic net-
works. The average lookup cost reduction is higher for smaller network
sizes, independent of the P-Grid network size and terms per node ra-
tio. This is explainable by the fact, that term pairs with higher query
frequency have a higher impact on the lookup cost. Secondly, larger net-
works have more weaker correlations, which are more difficult to relax,
and in total still have a considerable influence on the overall lookup costs.
Figure 6.8 shows the absolute numbers for our relaxation algorithm in
terms of posting list transmitted for query resolution. The maximum
number refers to the case when all related terms are stored at different
peers, what is the case for P-Grid networks with 512 nodes before re-
laxation. The initial setup (after terms are assigned to P-Grid nodes)
reduces the lookup cost for smaller P-Grid networks, e.g., for 16 P-Grid
nodes. The figure shows that the cost after relaxation (relaxed) is smaller
than the initial costs for all term network sizes and the P-Grid network of
16 and 512 nodes. Finally, the absolute cost reduction remains constant
with growing probabilistic term network size, although the relative cost
reduction as shown in Figure 6.7 decreases with growing network sizes.

6.4.4 Relaxation Effort

An interesting metric for our simulation is of course the invested effort to
relax our probabilistic network and achieve lookup cost reductions. The
relaxation costs comprise the cost of our relaxation algorithm to relocate
terms, and the cost to relocate the posting lists of terms, if they were
relocated, at the end of relaxation. The relaxation algorithm only requires
small messages changing references in the P-Grid index and is therefore

6.4. Evaluation

115

100+
——relaxation degree
90+ ——average lookup costs
T A minimal lookup cost
801 KX
S I
7 70 T .
o 601
]
X
8 501 T
S 401
o
301
° T 1
20+ I I I
104
O A A A A A A
16 32 64 128 256 512
nodes
(a) k = 1024
100+
——relaxation degree
90+ ——average lookup costs
A minimal lookup cost
801
<
= 701 1
@ t
o
o 601 i
E T
8 507 pe
§ 407 1 Tt
IS
3 301 I i
[
201
10+
0 A A A A A A
16 32 64 128 256 512
nodes
(b) k = 2048
1004
——relaxation degree
90+ ——average lookup costs
A minimal lookup cost
801
)
= 701
(%]
8
o 604 1 T
2 k3
3 501 I 1 1
E IR -
g 404 = =
[=
3 301
[
201
10+
0 A A A A A A
16 32 64 128 256 512
nodes
(c) k = 4096

Figure 6.7: Lookup cost reduction and relaxation for the top-k queried terms

116 Chapter 6: Multi-Term Queries

x10

v maximum
- ¢ -init (512)
—e—init (16)
- ¢ -relaxed (512)
—e—relaxed (16)
A minimum

posting list entries

1024 2048 4096
terms

Figure 6.8: Posting list entries transfered for query resolution

negligible compared to the relocation of large posting lists. The total
number of posting lists and the number of relocated ones depends on the
number of terms in the probabilistic network. Table 6.1 shows the total
posting list size, i.e., the sum of all posting lists of terms, and the number
of relocated ones at the end of the relaxation algorithm. If we compare
these numbers with the absolute lookup costs presented in Figure 6.8, we
can conclude that the relaxation effort is a magnitude smaller than the
cost reduction by our relaxation algorithm, and therefore tolerable.

terms ‘ total posting list size ‘ mean relocated size

1024 2.29 - 109 1.63 - 10°
2048 3.96 - 107 3.42 - 109
4096 7.60 - 107 6.98 - 107

Table 6.1: Number of relocated posting list entries

6.4.5 Load Balancing

Finally, we have to evaluate the impact of our relaxation algorithm on
load balancing in the P-Grid network. We first look at variations of the
term load from the aspired average load per node. Figure 6.9 shows the
variations from the average load (value 0) for all simulated settings. The
figures indicate reasonable load balancing as indicated by the standard
deviation from the average load and the minimum respectively maximum
load found at the end of relaxation. For smaller terms-per-nodes ratios,
the maximum load reaches the set upper limit of 2-average load, whereas

6.4. Evaluation 117

the lower limit (a node does not store any terms) is never reached.

There are several other load metrics of interest for distributed systems.
Our relaxation algorithm is able to deal with any kind of load, e.g., query
load balancing, and can relocate terms accordingly. An important aspect
not mentioned so far is the fact that terms do not have the same storage
load impact on nodes, i.e., terms with long posting lists require to store
more document references than terms with short posting lists. Unfortu-
nately it is so far not possible for us to achieve good load balancing for
posting lists. The reasons are that the distribution of posting list sizes
as shown in Figure 6.6 follows a power-law distribution, i.e., some terms
have very long posting lists. The largest posting lists are by magnitudes
longer than the average load of nodes, and the load of nodes storing these
long posting lists cannot be balanced as posting lists cannot be split up
and divided among several nodes, i.e., posting lists belong to terms which
are currently maintained by one peer only. Posting list load balancing
can only be considered if the average load reaches the level of the longest
posting lists or if posting lists can be split up on several nodes. Both
requirements are currently not fulfilled in our simulations.

6.4.6 Discussion

The presented results indicate that multi-term queries can benefit from
query-driven clustering through our spring relaxation algorithm. The clus-
tering of correlated query terms reduces the cost of query resolution for
these terms. The results are based on the assumption that these term cor-
relations were gathered by monitoring user queries and kept up-to-date.
Our results indicate that our approach works best for the most frequently
queried term pairs, represented by small probabilistic networks, however,
the absolute cost reduction is good for all evaluated networks sizes. Our
relaxation algorithm works better if nodes store more terms, i.e., if the
average number of terms per node is higher, as nodes have more opportu-
nities to move terms around and thereby relax term relations. We envision
that in a real-world setting this ratio will be even higher leading to even
better results than presented here.

The cost for relaxing the term network is thereby smaller than the
gain we were able to achieve. Our evaluation shows that relaxation pays
off quickly, e.g., after less than 1 month for the used Wikipedia query logs.

Our simulation further considered load balancing, especially the num-
ber of terms stored by node. However, our relaxation algorithm is able to
consider other types of load, e.g., query load and posting list load. Our
experiments show that we are able to balance the number of terms stored
at P-Grid nodes. The more interesting posting list load was not consid-
ered as the average load was not high enough to balance the power-law
distributed sizes of posting lists.

118 Chapter 6: Multi-Term Queries

1 v v upper limit
60 -
maximum load
——average load
40 minimum load
v 2 lower limit
g 201 N
g <
¥ o2
£ o] I i £ =%
I} A
o
- A
£ 20
i)
A
_40<
-601 N
16 32 64 128 256 512
nodes
(a) k = 1024
v v upper limit
maximum load
1007 ——average load
minimum load
v 2 lower limit
— 504
%)
e v
g v
A4
= 07 I I T x *
[+ A
Q A
£
© —501
= A
-1004
A
_150< T T T T T T 1
16 32 64 128 256 512
nodes
(b) k = 2048
v v upper limit
maximum load
2004 ——average load
minimum load
v 2 lower limit
— 100+
(%2}
1= v
8 v
¥ v
o I I z =
© A
2 A
£
5 —100
= A
—200+
iy
_300< T T T T T T 1
16 32 64 128 256 512
nodes
(c) k = 4096

Figure 6.9: Variations of term load compared to the average load for the top-k
queried terms

6.5. Conclusions 119

6.5 Conclusions

This chapter has shown how multi-term queries in structured overlay net-
work can benefit from term clustering. Highly correlated terms occurring
frequently together in multi-term queries can be identified and clustered
at one node to enable a remote join, i.e., returning only the intersection of
their result set instead of the two result sets separately. Enabling remote
joins therefore reduces the size of transmitted result sets and network
overhead.

We used a probabilistic network to model term correlations, i.e., jointly
queried terms. The probabilistic network is stored in a P-Grid network
and relaxed by our spring relaxation algorithm. However, this approach is
applicable to any other structured overlay network including DHTs using
uniform hashing.

120 Chapter 6: Multi-Term Queries

Part 111

From Theory to Practice

121

In theory, there is no difference between theory and practice.
But, in practice, there is.
Jan L.A. van de Snepscheut.

124

Chapter 7

Architecture

As any theory is only as good as its practical implementation and eval-
uation, one of the main goals of this thesis was to also implement and
evaluate the designed algorithms. The theoretical efficiency of our ap-
proaches was proven in the previous chapters and evaluation results of
our implementation were presented showing the applicability and perfor-
mance in practice. For this purpose we implemented our algorithms in
a standalone Java application used for testing and dissemination of our
system.

P-Grid is currently one of the very few systems implemented and tested
in a real deployable Java application whereas most other systems were
only simulated. Some systems even only exist in theory and were never
implemented in any form. We consider the practical proof of theory as
the most important one and also as the most difficult one to achieve.

We therefore developed a modular Java application consisting of the
basic components required to build a P2P system and extensions imple-
menting some of the approaches presented in this thesis. P-Grid can run
as standalone application providing basic information sharing functional-
ity or it can be used as library by other applications to provide tailored
services according to user and application requirements.

This chapter presents the modular architecture and interfaces designed
in the implementation of P-Grid. The architecture currently consists of
two main modules, a routing layer providing elementary routing function-
alities and an indexing layer to build the structured overlay network and
the distributed index infrastructure. Both layers have a well defined Java
API. We will present them together with a simple usage example in the
next implementation chapter.

7.1 Overview

The software architecture of P-Grid describes the main structure of the
system, its main components and the relationships and interactions be-

125

126 Chapter 7: Architecture

tween them. Together with interface descriptions of externally visible
components, an architecture description facilitates the understanding and
usability of the described software for application developers and users as
it provides a high-level overview of the design and its core components.

P-Grid’s architecture consists of two main components, the routing
layer and the indexing layer. The routing layer provides the basic con-
cepts of P2P systems common to all P2P systems, including unstructured
overlays such as Gnutella. It enables applications to route respectively
send messages to other peers in the overlay network. The indexing layer
on top relies on the routing services of the routing layer, and its cor-
responding interface, to provide indexing functionalities as common to
structured overlay networks. The indexing layer enables to index the
locally shared data and to distribute the generated index items to corre-
sponding peers for maintenance. Unstructured overlays do not maintain
a distributed index and their offered functionality is entirely covered by
the routing layer.

The idea behind this separation of functionality is to make the basic
routing layer interchangeable by other P2P routing structures as those
introduced in Chapter 2. The routing layer only provides functionalities
common to all P2P systems and its interface is not tailored towards P-
Grid’s specific properties but rather kept generic. The routing layer not
only provides a well-defined interface for P-Grid but also defines a generic
interface for developing P2P systems. This allows application developers
implementing against this interface to interchange the underlying routing
layer at any time. Applications using the indexing interface are addition-
ally able to make their data available and searchable in the distributed
index of structured overlay networks. The indexing interface therefore
represents specific structured overlay functionality not supported by all
P2P systems, e.g., Gnutella. Data can be shared in an application-specific
way through so-called type handlers enabling applications to influence the
way data is indexed.

Figure 7.1 presents P-Grid’s architecture and its two layered structure.
The routing layer is built on top of the TCP/IP layer offering simple
communication and messaging services among Internet hosts. TCP/IP
provides delivery guarantees UDP cannot offer and is more suitable for
large message sizes requiring data streaming. Both P-Grid layers provide
an API for applications respectively they are used internally. We will now
in the following describe both layers and their components in more details.

7.2 Routing Layer and API

The routing layer provides an abstraction of the P2P network adding
P2P routing functionality on top of the standard TCP/IP network layer.
Whereas the network layer deals with streams and message packets sent
between Internet nodes, the routing layer adds the concept of peers iden-

7.2. Routing Layer and API 127

Application

Indexing API

Index
Table

Ej Indexing layer
Routing API

Routing -
Table Routing layer
Network layer (TCP/IP)

Figure 7.1: P-Grid’s layered architecture

tified by a unique identifier independent of their current IP address. Ad-
ditionally, in structured overlay networks peers are responsible for a par-
tition of the key space and can therefore also be identified with a key or
key range they are responsible for. The key or key range is not used by
unstructured overlays as they are only responsible for their local data.
The core service offered by the routing layer is the sending and routing
of messages between peers using different routing strategies. To perform
this operation, the routing layer maintains a routing table with peers of
interest. The set of peers required to route within the network depends
on the structure of the P2P network. For example, Gnutella only requires
a set of random peers to route messages whereas P-Grid requires peers
with certain positions in the network, i.e., peers with increasing distance
in the key space. The routing table can further maintain replica peers
responsible for the same partition of the key space.

As already mentioned before, the routing layer is kept generic so that
it covers most of the currently existing P2P networks and their routing
strategies. The idea behind it was that applications developing against
the routing interface can interchange the underlying routing strategy, i.e.,
overlay network, at any time. Depending on application needs, certain
routing topologies have advantages compared to others. Although each
P2P system has its strengths and weaknesses, their core components and
services are still the same and can therefore be unified in a common in-
terface. We further hope that other P2P system developers make use of
our routing interface and provide according interfaces in their system as
well.

7.2.1 Routing Layer Components

The routing interface consists of some basic concepts such as peers and
messages which we will introduce now briefly. These concepts are common
for most P2P systems and provide a minimum set of components and
services required to build a P2P system. The core components of a P2P
system are the following:

128 Chapter 7: Architecture

GUID represents a global unique identifier used by peers, messages,
queries, etc. to identify themselves uniquely in the network. They are
created locally and their global uniqueness is guaranteed by combining
the local IP address with the time of creation and a random seed.

Key defines the partition of a structured overlay a peer is responsible
for or the partition an index entry will fall into. In P-Grid, a key is a
binary string, e.g., ’00101010’, defining the partition a peer is responsible
for, i.e., a peer’s path. For each index item a binary key is generated
defining which partition respectively which peer will store and maintain
this index entry. A key is further used to route messages and index entries
in the P2P network. It is compared to the local key or key range a peer is
responsible for to decide if a message reached its destination peer or has
to be further forwarded.

KeyRange consists of two keys as defined above, representing a lower
and upper bound of a range of keys. Key ranges are used by peers to
define the area they are responsible for and by messages to define the
partitions they are supposed to reach, for example in a range query. Key
ranges are only used by order-preserving overlay networks.

KeySet is a set of keys as defined above. A set of keys can be used
to route messages to multiple destination keys not spanning over a key
range.

Message is used to transmit any application specific data between two
peers, either directly by opening a direct connection to another peer if its
address is known, or by routing the information through the P2P network
given a destination key. A message is uniquely identified in the network
by a GUID.

Peer represents a peer participating in the P2P network. A peer can
be identified by its global unique identifier GUID and by its current IP
address and port. Be aware that the GUID remains the same even if a peer
changes its IP address, e.g., if it gets assigned a new dynamic IP address
by its provider for following logins. Additionally, a peer of a structured
overlay is responsible for a key respectively key range.

7.2.2 Routing Layer Services

The core services of the routing layer are sending and routing messages
as offered by the routing interface described next. All offered services can
be classified in the following categories:

7.2. Routing Layer and API 129

Local services are services dealing with the local state of a peer. Peers
in a P2P system have to maintain certain information locally to keep
the system alive including their position in the network and their routing
table. Local services provide access to them or initialize them.

Join/leave operations are required by P2P systems to enable peers
to join and leave the system at any time. Whereas a join operation is
mandatory, some P2P systems do not necessarily require a leave operation
informing peers of a network about the forthcoming departure of the local
peer.

Routing service is the main service offered by P2P systems and im-
plements the delivery of a message towards a destination key or keys.
Unlike direct communication as described later, routing does not require
to know the destination IP address of a peer and rather routes a message
in the P2P network according to its destination key until a peer respon-
sible for the key is reached. P2P systems are able to offer various routing
strategies. The simplest one is the routing towards one single destination
key. In our interface we further include the possibility to route messages
to a key range defined by a lower and upper bound. A message with
a destination KeyRange is routed to at least one peer of each partition
spanning the key range. Similarly, a message can be routed to a set of
keys implementing multicast routing in P2P systems. Finally, as data is
usually replicated on several peers, the interface offers the possibility to
route a message to all replicas of a peer.

Lookup service enables applications to discover a peer responsible for
a given key. This is similar to the routing service though it does not
deliver information through a message to a destination key but rather
enables applications to communicate directly with peers of interest once
they are discovered by the lookup service.

Direct messaging finally enables applications to directly communicate
with other peers of the network if their current IP address is known.
This service does not rely on the routing service as a destination peer’s
address must be know a priori. The advantage of direct communication
with a peer is to avoid possibly expensive multi-hop routing. Therefore
it is sometimes better to perform a lookup operation to discover a peer
of interest and afterwards directly communicate with this peer to avoid
routing overhead. Unstructured overlays such as Gnutalla only use direct
messaging as peers are not responsible for a key range as required by the
above described routing services.

130 Chapter 7: Architecture

7.3 Indexing Layer and API

The indexing layer on top uses functionalities provided by the routing
layer to build the distributed index of structured overlay networks. This
feature is separated from the routing layer as a distributed index is not
supported by all P2P systems, especially unstructured ones, and therefore
only useful for structured overlay networks. However, the indexing layer
provides the concept of queries which was not included in the routing layer
as queries can be seen as a special type of messages.

The main purpose of the indexing layer is to index the locally shared
data and distribute the generated index items to corresponding peers for
maintenance. It therefore uses local tools such as the TypeHandler, fur-
ther discussed in Section 7.3.3, to extract and index information of shared
data. Depending on the generated key for an index item and the key
range the local peer is currently responsible for, the newly created index
item is either entered into the local index table or routed via the routing
interface to a remote peer. The index table collects all index entries the
local peer is responsible for and is used during query resolution to find
matching items.

7.3.1 Indexing Layer Components

The indexing layer uses all components of the routing layer and further
introduces the following components.

IndexItem represents the index information extracted from shared
data and distributed in the network to resolve queries. An index item
contains at least a Peer element representing the sharing peer plus
the indexed information. A Key element determines the partition it is
maintained in. Each index item can further be identified by a unique
identifier GUID and is associated with a Type we will explain shortly.
Finally, index items can carry any data attached by the TypeHandler
depending on application needs. We will further discuss this feature in
Section 7.3.3.

Query is a specialization of the generic Message element of the routing
interface to formalize a query of one or multiple keywords, respectively a
lower and higher bound of a range query. Each query can be identified by
its GUID and is again associated with a Type. Similar to an index item,
a query contains a key or key range representing the hash value of the
query strings or the lower and higher bound of a range query.

Type specifies the type of index information or query and is introduced
by a TypeHandler. Index items and queries are associated with a type as
different information requires different ways of how index information is

7.3. Indexing Layer and API 131

extracted and how a query is locally matched against index items. This
logic is provided by TypeHandlers responsible for an introduced type.

7.3.2 Indexing Layer Services

The core index services rely on services provided by the routing layer and
include data manipulation operations and query processing.

Data manipulation is the process of inserting, modifying or deleting
data in the distributed index. An insert adds a so far not present index
item into the system to make it available for searches. An update of an
index item results in the alternation of the index information for a given
index item and a deletion removes an index item completely from the
distributed index. As all these operations are executed in a distributed
setting involving multiple peers and replicas, only best-effort guarantees
can be given for these operations and longer manipulation delays are pos-
sible.

Search enables applications to find shared data of all participating peers
in the network. A search involves the creation of one or multiple queries,
routing the query messages to the responsible peer, respectively multiple
peers responsible for the query, and finding all matching index items in
the index table of the resolving peers. As a result, a query returns all
matching items to a keyword or multiple keywords.

7.3.3 Data Type Handlers

Applications sharing data through the distributed index might wish to tai-
lor the way data is indexed and queries are processed at responsible peers,
enabling applications to bring in application-specific knowledge about the
data. Different types of data, e.g., files, RDF tuples, Bayesian variables,
etc., require different parts of the data to be indexed and searched during
a query. P-Grid allows applications to define their own data types and
corresponding type handlers. A data type is defined by a string choosen
by applications to classify data of this type, e.g., “text/file” for simple
file-sharing. A data type string should be unique in a P-Grid network to
avoid conflicts, otherwise an application has to create a dedicated P-Grid
network.

A data type handler builds the link between an application and the
indexing layer respectively P-Grid. It enables an application to directly
influence P-Grid’s behavior of how data is indexed and queried. In a
nutshell, by introducing a data type and providing a corresponding type
handler, an application becomes responsible to create index items for new
shared data and to resolve queries for its data type. These two functions
are strongly related as the indexing part determines with which keywords

132 Chapter 7: Architecture

data can be found and query handling reverses this step by matching
queries against index items.

7.4 Interaction Diagrams

This section provides simple interaction diagrams to illustrate how the two
layers interact with each other and how they can be used by applications
to perform core services. We will present two use cases, the insertion and
indexing of new data and the issue and resolution of a query.

7.4.1 Data Insertion

Figure 7.2 shows the sequence diagram for data insertion. At the begin-
ning applications are required to register their own data type handler for
their application-specific data. Defining a system wide unique data type
and providing a corresponding data type handler to the indexing layer
enables applications later to tailor the indexing of data they are willing to
share with other peers. In Figure 7.2 data inserted by the application is
therefore indexed by the application provided type handler and returned
to the indexing layer for further processing. The indexing step extracts
the relevant information from the shared data and generates binary keys
for each extracted keyword. The data type handler is only responsible
for the data extraction whereas the indexing layer provides the mapping
between text strings and binary strings. Depending on the key for an
extracted keyword, a data item is either stored in the local index table
maintained by the indexing layer or distributed to a responsible peer. The
data distribution is executed by the routing layer by routing the corre-
sponding information to a peer of the local routing table closest to the
target destination. This procedure is repeated at the remote peer, the next
routing hop, till the destination peer is reached and the index information
is added to the index table.

7.4.2 Query Resolution

Indexed and distributed data can now be searched by any application
running on any peer in the network. Figure 7.3 shows how an application
looking for a keyword uses the indexing layer to issue a query. The query
containing the keyword is expanded by the type handler responsible for
the given query type. The indexing layer requests from the registered data
type handler for the query type a binary key generated out of the query.
The type handler is, as in the data insertion use case, only responsible
for extracting the significant information out of the query (e.g., keyword)
to generate the binary key using indexing layer functionality. The key
enhanced query is now routed to the responsible peer by the routing layer
if the local peer is not already responsible for the query key. The routing

7.4. Interaction Diagrams 133

Indexing Type Routing Routing
Layer Handler Index Table Layer Table

|

register(typehandler) D‘ }
|

|

|

|

|

index(data)]

T
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
store(local keys, data) {]

Application

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
—

nextHop(keys)
T
I
route(peer, keys, data)

send(remote keys, data)

T
|
|
|
|
|
|
|
|
|
|
|
Figure 7.2: Data insertion sequence diagram

layer uses the local routing table to determine the next hop peer the query
will be forwarded to.

Indexing Type Routing Routing
Layer Handler Layer Table

search(keyword)

Application

index(keyword)]

|
send(key, keyword)
nextHop(key)

|
|
|
|
I |
| |
| |
| |
| |
! ™
| I
| |
| | 72
| | |
| | | |
| | | route(peer, key, keyword)
| | | t
| | | |
| | |

Figure 7.3: Query resolution sequence diagram (local side)

A query usually traverses over a couple of peers till it is routed to its
final destination, a peer responsible for the routing key generated out of
the query keyword. Figure 7.4 shows how an incoming query is processed
at a query-responsible peer. The routing layer first checks if the local peer
is really responsible for the routed message, in our case a remote query
containing a query keyword. Assuming the current peer is responsible for
the query, it hands over the query to the corresponding type handler for
this query type. The type handler provided by the application for this
data type is now responsible to match index information in the index ta-
ble against the keyword using application-specific knowledge already used
before for indexing and query key generation. The index table provides
an interface assisting the type handler in finding matching items keeping
the implementation efforts for data type handlers minimal. All matching
items are finally returned back to the routing layer replying to the query

134 Chapter 7: Architecture

request with a query response message sent back directly to the requesting
peer already waiting for the response.

Routing
Layer

Indexing Type
Layer Handler
T T T

Index Table

|
route(peer, key, keyword) -
responsible(key)

1

search(keyword)

handle(keyword) ——

query(keyword)

D — e
. |
|

Figure 7.4: Query resolution sequence diagram (remote side)

7.5 Conclusions

This chapter presented the architectural design of the P-Grid implementa-
tion. The P-Grid architecture currently consists of two layers, the routing
and the indexing layer. The separation enables applications to interex-
change different routing strategies in the routing layer. The indexing layer
is independent of the P2P network topology and offers indexing function-
alities as known from structured overlay networks.

P-Grid offers a set of interfaces to help application developers in build-
ing their applications on top of P-Grid. The routing and indexing layer
provide a well-defined API and can be used by applications directly. P-
Grid further offers a so-called data type handler to tailor data indexing
towards application specific needs. The next chapter will present the im-
plementation of the architecture presented in this chapter in P-Grid’s Java
application.

Chapter 8

Implementation

The architectural design presented a high-level view of the implementa-
tion and introduced the basic concepts of P-Grid’s Java-based implemen-
tation. This chapter provides more details about each package of the
implementation and how each architectural component is realized in the
code. Throughout the work in this thesis both theory and practice were
considered and developed hand in hand. The result is a running and
well-tested application which can be used as standalone application or as
library by other applications.

The open and extensible architecture design of P-Grid enables appli-
cations to use all functionalities through well-defined interfaces and to
tailor P-Grid using application-specific knowledge where necessary. We
will therefore present in this chapter more details about the internal struc-
ture of the P-Grid code and how P-Grid can be used by other applications.
The package descriptions should help developers willing to extend or mod-
ify code to quickly identify the area they have to look into whereas further
details about the two interfaces (routing and index) will help application
developers on top of P-Grid to get started. We will further provide a
short code example of how P-Grid can be used by applications to share
information in a structured overlay network.

At the end of this chapter, we will present an evaluation of P-Grid’s
bootstrapping approach and a small facet of the implementation tackling
the problem of query load balancing. We were facing and investigating
this problem during our implementation. The approach is briefly pre-
sented and evaluated on PlanetLab showing its impact on query resolution
latencies.

8.1 Overview

The P-Grid system is currently implemented in several packages as shown
in Figure 8.1. The root package pgrid comprises all general classes such as
Constants, GUID (Global Unique IDentifier), Host, Properties, Statis-

135

136 Chapter 8: Implementation

tics, and Type used by many other packages. The pgrid.core package
implements all basic algorithms, e.g., the construction and query algo-
rithms presented in Chapter 3, and will be further discussed in Section 8.2.
The pgrid.interfaces package provides the interfaces for the routing
and indexing layer introduced in the architectural design in Chapter 7.
Both interfaces will be presented in more details in Section 8.3. The
pgrid.network package is responsible for all aspects of network com-
munication between two P-Grid peers as further shown in Section 8.4.
Finally, the package pgrid.util provides useful tools and functions for
all other packages such as unique identifier generation and logging.

interfaces network

generic

identity
loadbalancing

logging

Figure 8.1: P-Grid’s package structure

8.2 Core Package

The core package implements the core functionalities of P-Grid and
therefore contains all implementations of P-Grid’s algorithms for data
indexing, load-balancing and searching. The package itself is further
divided into three sub-packages. The pgrid.core.index package
maintains the local index table and reliably stores them in a database
back-end. The pgrid.core.maintenance package deals with all
challenges related to the maintenance of the P-Grid network and the
maintenance of the overlay network. Finally, all lookup operations are
handled by the pgrid.core.search package.

8.2.1 Index Sub-Package

A P2P system may share millions of files and millions of peers and there-
fore needs an efficient local database back-end to maintain the local index
information. This functionality is provided by the index sub-package of
the core package. The main classes in this package are the IndexManager
and IndexTable. The IndexManager provides all necessary interfaces to
manipulate the local database back-end represented by the IndexTable.
Among the functionalities offered by these classes are insert and delete

8.2. Core Package 137

operations required to implement the data manipulations offered by the
indexing layer of P-Grid. Further the IndexTable enables data type han-
dlers provided by applications to retrieve locally maintained index items
given various selection criteria to resolve queries.

All offered functions are executed directly on a database back-end
running in the same Java virtual machine as P-Grid itself. We currently
use the embedded version of the H2 Database Engine [H2], a free SQL
database. The advantage of an embedded database is its better perfor-
mance compared to a client-server setup. It is further easier to deploy
P-Grid with an embedded database as it can be shipped as library and
does not require to be installed and maintained separately as a database
server, further requiring a running daemon in the background.

For higher numbers of index items per peer a database back-end might
become a bottleneck as massive insert and delete operations cause long ex-
ecution delays due to re-indexing of stored data for efficient query resolu-
tion. Under these circumstances other solutions might perform better and
require the replacement of our default back-end by either another database
or different approaches. The IndexManager and IndexTable make this
step transparent for P-Grid as these two classes provide a generic interface
and are not related to H2 or any other SQL database.

8.2.2 Maintenance Sub-Package

P-Grid is a structured overlay network requiring to build and maintain
a distributed data structure organizing peers in a virtual trie and
assigning peers to partitions for making them responsible for index
items. The implementation of these algorithms can be found in the
pgrid.core.maintenance package.

For applications interested in details about P-Grid’s maintenance, the
most interesting class is the MaintenanceManager class. It provides access
to all phases of the life-time of a P-Grid network, from the initial boot-
strap phase until permanent load balancing to maintaining operational
and efficient.

In brief, a P-Grid network is constructed during a so-called bootstrap
phase in which peers join the network by contacting a bootstrap peer given
by the application or the user. The Bootstraper class tries to contact a
bootstrap peer until it successfully received addresses of peers already in
the network for forthcoming interactions.

As next step P-Grid peers replicate their local index items at randomly
selected peers in the network collected during the bootstrap phase. The
Replicator initiates these requests locally and also processes incoming
requests accordingly. The replication phase guarantees a certain level of
fault-tolerance to overcome temporary failures of peers, peer departures,
etc. during network construction.

Finally P-Grid’s overlay structure is built by so called exchanges. An

138 Chapter 8: Implementation

exchange is either initiated locally by the ExchangeInitiator or triggered
by a remote request. In both cases, the Exchanger class prepares all
required information for an exchange which will then be executed by the
exchange algorithm implemented in the ExchangeAlgorithm class.

After the establishment of a well-structured and load-balanced
overlay network acting as routing infrastructure for P-Grid, the
pgrid.core.maintenance.loadbalancing package takes care of
any changes in load balance, i.e., arising imbalances due to arriving
or departing peers as well as data insertions and deletions. To
enable re-joining peers to maintain their last identity in case they
changed their IP address, as they might use a dynamic IP address
provided by many Internet Service Providers (ISP) nowadays, the
pgrid.core.maintenance.identity package guarantees that each peer
can publish its new IP address in the P-Grid network itself. P-Grid
therefore stores identifiers - IP address mappings of each peer and repairs
local routing table entries on demand following various strategies as
described in [ADHO04].

8.2.3 Search Sub-Package

The previous two sub-packages index and maintenance provide the re-
quired infrastructure to efficiently resolve search requests and answer user
queries. To that end, the search sub-package provides an SearchManager
to issue new searches and to register for search results as soon as they are
received by the local peer. Applications interested in search results have to
implement the SearchlListener interface presented in Section 8.3.2. The
current implementation supports single and multiple keyword queries and
range queries.

8.3 Interfaces Package

We have introduced in Chapter 7 the routing and indexing layer and
their corresponding interfaces to access P-Grid’s functionalities through a
well-defined and stable interface. As we hope that these generic interface
definitions are as well used by other P2P system developers, they are not
part of the P-Grid package and defined in a separate package p2p. *.

P-Grid implements both the routing and the indexing interface
defined in p2p.routing and p2p.indexing in its interfaces package
pgrid.interfaces. We will now provide more details about the generic
P2P interfaces and their implementation in P-Grid.

8.3.1 P-Grid’s Routing Interface

The routing interface as defined in Section 7.2 offers basic P2P services
such as join/leave and message routing. These services are considered

8.3. Interfaces Package 139

common and necessary for all P2P systems and all other services can be
built on top of them, such as the indexing layer for structured overlay
networks.

The Java API is defined in p2p.routing containing all components
as described in Section 7.2.1 to provide the services as described in
Section 7.2.2. The Java interface for these services can be found in
p2p.routing.Routing and is further presented in Listing 8.1.

// Local services

public void init (Properties properties);
public Peer getLocalPeer ();

public Peer[] getNeighbors();

public boolean isLocalPeerResponsible (Key key);
public void shutdown ();

// Join/leave operations
public void join (Peer peer);
public void leave ();

// Routing functions

public void route(Key key, Message message);

public void route(Key[] keys, Message|[] message);
public void route(KeyRange range, Message message);
public void routeToReplicas(Message message);

// Lookup service
public Peer lookup(Key key, long timeout);

// Direct messaging
public void send(Peer peer, Message message);

// Listeners
public void addRoutingListener (RoutingListener listener);
public void removeRoutingListener (RoutingListener listener);

Listing 8.1: The routing interface

The local services deal with the local state of the peer running the
P-Grid application and provide detailed information about:

e getLocalPeer () returns the local peer object with details about the
local IP address, the listening port and current position of the peer
in the P2P network, i.e., the key range the local peer is currently
responsible for.

e getNeighbors () returns a list of all peers in the routing table used
for routing and maintenance. The structure of routing tables varies
between P2P network and can usually be rebuilt by the peers pro-
vided in the form of a list.

140 Chapter 8: Implementation

e isLocalPeerResponsible(Key key) verifies if the local peer is cur-
rently responsible for the given key depending on the current posi-
tion of the local peer in the P2P network.

The local services further include an initialization method
(init (Properties properties)) used to parameterize the local P2P
instance for example by giving a listening port in the properties
different from the default. If no properties are given, the P2P instance
will be initialized with its defaults. If an application does no longer
require the P2P instance, it should be properly closed by the shutdown ()
method.

The join/leave operations enable applications to

e join(Peer peer) join an existing network by contacting a known
peer of the network, usually a so-called bootstrap peer.

e leave() leave a network, i.e., do not listen to any incoming connec-
tions and therefore not actively participate in the network anymore.
The latest state is nevertheless stored locally for later joins enabling
peers to continue at their latest position in the network.

The routing function of the routing interface is the main service of-
fered and can be used to route a message to one or several peers depending
on which function is used:

e route(Key key, Message message) represents the simplest rout-
ing operation and, as all other routing operations as well, routes a
message to a peer currently responsible for the specified key.

e route(Key[] keys, Message message) routes a message to mul-
tiple destination keys in a bundle, i.e., the number of messages sent
over the network is minimized by bundling messages into one as long
as possible. As peers can be responsible for a key range, one peer
can cover all destination keys making one message routed in the
network sufficient.

e route(KeyRange range, Message message) is able to route a
message to a given key range, i.e., the message will be received
by all peers in the key range. The actual number of messages sent
over the network is minimized as for multiple keys above.

e routeToReplicas(Message message) finally routes the given mes-
sage to all replicas of the local peer. Unlike the other route opera-
tions where a message is only received by one peer per key (range),
routeToReplicas routes the message to all peers responsible for
a key (range), namely the key (range) the local peer is currently
responsible for.

8.3. Interfaces Package 141

The lookup service is related to the routing operation as it routes a
system-internal lookup message to a destination key to find a responsible
peer. Therefore lookup(Key key, long timeout) returns the Peer re-
sponsible for the given key, otherwise null if no peer can be found before
the timeout is reached.

Finally direct messaging enables applications to directly commu-
nicate with a peer of the P2P network without the overhead of rout-
ing a message over various peers to a destination peer. The function
send (Peer, Message) opens a TCP/IP connection to the given Peer to
deliver the Message directly. This method is interesting if larger data has
to be transmitted between peers and if applications want to avoid the
routing overhead as the destination peer can be identified beforehand by
the lookup service.

P2P networks send messages between peers which requires a certain
time depending on the network infrastructure, network and peer load,
etc.. Therefore functions involving network communication cannot return
results immediately but rather return results as soon as they are avail-
able. The routing interface allows applications to register a Routing
listener for P-Grid which will invoke a newMessage (Message message,
Peer origin) method every time a message is received. Applications
thereby can react immediately on a received Message sent by a origin
peer.

P-Grid’s implementation of all these services plus some additional
P-Grid specific services can be found in pgrid.interfaces.routing.
PGridRouting. The generic routing services presented here cover most of
the functionalities of P-Grid and are sufficient to build efficient P2P appli-
cations on top of P-Grid. Although some applications may not intend to
interchange their underlying P2P system and can therefore benefit from
P-Grid specific properties the generic routing interface cannot offer.

8.3.2 P-Grid’s Indexing Interface

The indexing interface as defined in Section 7.3 offers indexing services on
top of the aforementioned basic routing interface. Distributed indexing
is offered by structured overlay networks only and therefore not common
to all P2P systems. Nevertheless, all structured overlay networks such
as P-Grid offer a basic set of functionalities to index shared data in a
distributed index and to enable efficient lookups on the index.

The Java API is defined in p2p.indexing containing all components
as described in Section 7.3.1 to provide the services as described in
Section 7.3.2. The Java interface for these services can be found in
p2p.indexing.Indexing and is further presented in Listing 8.2.

// Local operations
public Collection getLocallndexEntries();
public void shutdown ();

142 Chapter 8: Implementation

// Data manipulation

public void insert(Collection entries);
public void update(Collection entries);
public void delete (Collection entries);

// Search
public void search(Query query,
SearchListener listener);

// Listeners
public void addIndexListener(IndexListener listener ,
Type type);
public void removelndexListener(IndexListener listener
Type type);

Listing 8.2: The indexing interface

The interface first offers again some local operations. The function
getLocalIndexEntries() returns all currently maintained index entries
at the local peer in a Collection. The shutdown() operation ensures
that all local data items are stored persistently in the database back-end
before the application quits.

The data manipulation operations enable applications to insert,
update and delete data. All three functions take a collection of data
entries as input. The insert(Collection entries) operation inserts all
data items of the entries collection into the network distributing each
data item to its corresponding peer currently responsible for the binary
key of the data item. The update(Collection entries) assumes that
the data items in the entries collection are already present in the network
and updates them accordingly similarly as the insert method. Finally, the
delete(Collection entries) operation deletes all entries provided as
input. All three operations are executed with best-effort guarantees and
best-effort consistency guarantees. Offline peers cannot be updated in-
stantly as they are temporary not reachable by other peers. They have
to be synchronized as soon as they rejoin the overlay network.

The search functionality is implemented by the search(Query
query, SearchListener listener) function. The query thereby
contains either a keyword or a keyword pair for range queries which will
then by hashed by the data type handler and P-Grid into a binary key
used to route the query to the destination peer. As query results are not
immediately available, applications have to register as SearchListener
to receive results as soon as they become available at the local peer. The
search listener interface will be presented in further details in the next
section.

Applications can also register a so-called IndexListener to observe
locally added, removed and updated index items. The interface offers the
functions

8.3. Interfaces Package 143

e indexItemsAdded(Collection items)
e indexItemsRemoved(Collection items)

e indexItemsUpdated(Collection items)

to inform applications about any modification on the local index table
due to operations triggered by remote peers such as data modifications
the local peer is responsible for or other applications operating on the
same local index table.

Search Listener

The search listener interface is the only way for applications to receive
search results and receive search status notifications. The interface pro-
vides the following functions and notifications:

e newSearchResult(GUID guid, Collection results) is invoked
as soon as new search results for a query identified by the guid
are received and available locally.

e noResultsFound(GUID guid) informs applications that a search
with the identifier guid did not result in any matches.

e searchFailed(GUID guid) is invoked if a search failed, e.g., be-
cause the responsible peer could not be reached.

e searchFinished(GUID guid) represents the end of a search opera-
tions and is called if no further results are expected to be received
respectively will be delivered to the application.

e searchStarted(GUID guid, String message) informs applica-
tions that a search has reached at least one peer responsible. This
function is only useful for search operations involving multiple
peers and longer processing delays.

The Type Handler

Applications willing to share application-specific and unique data are ca-
pable to define their own data type and provide a corresponding type han-
dler to the indexing layer. A type handler enables applications to influence
the way data is indexed and queried in P-Grid, using application-specific
knowledge otherwise not used by P-Grid. A type handler is responsible
for extracting the essential information from data used for the distributed
index. A search can only succeed if the necessary information was in-
dexed beforehand. Therefore these two operations are tightly coupled in
structured overlay networks and should be performed by the application
itself. Applications need to implement the following functions for a type
handler:

144 Chapter 8: Implementation

e IndexEntry createIndexEntry() should return an empty Index-
Entry with default values for the data type the type handler is
responsible for.

e IndexEntry createIndexEntry(Object data) should return a
new IndexEntry object for the given data object. All other values
take the default value.

e IndexEntry createIndexEntry(GUID guid, Key key, Peer
host, Object data) should return a new IndexEntry object with
all values given. The guid defines the globally unique identifier of
the index entry, the key is the binary string defining the partition
the entry will be stored at, the peer object gives the peer sharing
the index entry, and data represents the actual data indexed by
this entry.

e handleLocalSearch(Query query, SearchListener listener)
is invoked by the indexing layer when a query for the data type was
received and should be processed by the type handler. The type
handler should look into the local index table to find all matching
items and return them to the given SearchListener.

e Key generateKey(Object object) should generate the binary
string Key for the given data object. The data object can be any
class known to the data type handler.

e KeyRange generateKeyRange(Object lowerBound, Object
higherBound) should generate two keys for the KeyRange hashing
the given lowerBound and higherBound of a range query.

Although it looks at the first glance difficult to implement all these
functions for a type handler, P-Grid’s routing layer and indexing layer
offer great support to generate generic index entries and to map data in
form of strings onto binary hash strings, the keys. The indexing layer and
index table further have several functions allowing the type handler to
easily browse, query and filter the local data set to find matching items.

8.4 Network Package

The network package is responsible for any network communication
among P-Grid peers participating in the structured overlay network. The
pgrid.network package contains several classes and sub-packages we
will discuss later. A ConnectionManager handles all open connections to
other peers and accepts incoming connection requests. Once a connection
between two peers is established, the connection manager assists the
MessageManager to send messages by providing the corresponding open
connection. For the P-Grid protocol, only one open connection per

8.4. Network Package 145

peer is necessary and used. Incoming messages are also handled by the
message manager once it was ensured that the local peer is responsible
for it. The message is then pre-processed by the message manager before
it is dispatched and forwarded to other classes of P-Grid outside the
network package for further processing. Finally, the pgrid.network
contains a stream reader and a stream writer together with a specific
P-Grid message reader and writer.

Network communication and message routing are the main function-
ality of a P2P system and the network package therefore further contains
four sub-packages.

8.4.1 Generic Sub-Package

The GenericManager in the generic package is responsible for all generic
messages received in P-Grid. A generic message offers applications the
possibility to send application-specific data to other peers in a P-Grid
network. Therefore generic messages are handled outside the P-Grid pro-
tocol engine as they are not used by P-Grid itself. A generic message can
carry any type of data to a given destination peer or it can be routed to
a destination address given a P-Grid binary key, respectively key range,
using the routing strategies offered by P-Grid.

8.4.2 Lookup Sub-Package

The lookup package implements the lookup service offered by the routing
interface as presented in Section 8.3.1. The lookup service is the only
remote service which can be implemented directly in the network package
as it does not require access to the local database. To remind, the lookup
service returns a host responsible for a given binary key. A request is
therefore routed to the destination address where the reached peer can
respond directly with its local address.

The lookup package contains a LookupManager handling all locally is-
sued lookup requests and returning received host address to the requester.
The RemoteLookupHandler on the other hand handles all incoming lookup
requests from other peers and responds with the local address to them.

8.4.3 Protocol Sub-Package

A P2P systems requires different messages to communicate with other
peers and send data around the network. These messages are defined in
the protocol sub-package of the network package. The P-Grid protocol
currently consists of 25 messages ranging from simple greeting and boot-
strap messages required by all peers over query and range query messages
required to realize the routing and indexing services to P-Grid internal
maintenance messages.

146 Chapter 8: Implementation

P-Grid messages are transmitted in a plain-text XML format or par-
tially ZLIB-compressed to reduce message sizes and transmission times for
larger messages. The use of XML makes it easier to debug and understand
the communication between peers by adding little overhead in terms of
message sizes and processing time. The ZLIB compression reduces the
message sizes of large messages to a minimum, whereby the compression
factor increases with increasing message sizes. A binary version of the
protocol was also developed and will soon replace the XML version.

The protocol package contains a class for each message type available
and used in P-Grid. A message class contains all the information a mes-
sage will carry over the Internet, or does carry all the received information
from a remote peer. The actual message stream is created by the mes-
sage class itself using the information provided during initialization of the
message, respectively, the message class can extract all the information
from received data for further processing by P-Grid.

8.4.4 Router Sub-Package

A message created by the local peer or received by a remote peer has to be
routed to a remote peer if a message has not reached its final destination
yet. This decision is taken in the router sub-package by the Router class.
A message can be sent to one or multiple remote peers depending on the
given routing strategy of the message type. P-Grid currently supports the
following routing strategies for messages:

e Greedy: is the standard prefix-resolving routing strategy of struc-
tured overlays routing a message closer and closer to its destination
address. It is used for all single key lookups such as single keyword
queries and host lookups.

e Shower: is used by a range query to reach all peers in a given key
range. The shower routing strategy splits a message into several
messages if necessary depending on the routing table structure of
the local peer.

e Topology: is used to find the topological neighbors of a peer, e.g.,
for the min-max traversal algorithm to resolve range queries. The
routing strategy takes a destination address together with a param-
eter to find the most-left or most-right peer in this area.

e Broadcast: sends a message to a random selection of peers in the
local routing table similar to the routing strategy of unstructured
networks using hop counts and a time-to-life (TTL) for messages.

e Replica: sends a message to all replicas known to the local host.
A message thereby contains a list of hosts the message has already
been sent to decrease redundancy and network overhead. It is used
to broadcast a message within a replica group.

8.5. Util package 147

¢ Random Walk: sends a message to a random peer of the local
fidget list until the time-to-life (TTL) is expired.

8.5 Util package

The util package provides useful helper classes used throughout the P-
Grid code. Some classes such as the Tokenizer provide functionalities like
splitting up a string into a string array given a separator, whereas others
are only abstract classes implemented in the P-Grid package such as the
abstract class Properties providing a framework to maintain properties
for an application and in a file.

The util package further contains a sub-package guid providing classes
to create globally unique identifier as required by P-Grid. The second sub-
package logging provides some extensions to the default Java logger used
in P-Grid to log events on the console and/or file.

All utility classes in this package are of course, as the rest of the code,
disposable for reuse by developers for their developments and applications
and can be downloaded from the P-Grid web site http://www.p-grid.
org/.

8.6 Evaluation of P-Grid’s Bootstrapping

Bootstrapping is one of the specific features of P-Grid not present in
other overlays. Therefore, we evaluated the approach outlined in Sec-
tion 3.4 particularly carefully using our P-Grid implementation. We used
the PlanetLab infrastructure to obtain results from large-scale experi-
ments under realistic networking conditions and to verify our theoretical
predictions outlined in more details in [ADHS05]. Our experiments on
PlanetLab ran on up to 300 nodes depending on the number of available
nodes. Each node runs one instance of a P-Grid node. When interpret-
ing the results presented in the following, it is important to consider that
PlanetLab is shared by hundreds of research groups for experiments that
are executed in parallel and thus mutually influence the performance con-
siderably especially in respect to absolute latency.

Experimental setup We deployed the P-Grid software, i.e., the peers,
on all available nodes at the times the experiments were conducted and
assigned 10 keys from a real text collection (taken from the Alvis! infor-
mation retrieval use case) to each peer. This relatively low number of keys
was chosen to speed up experiments. [ADHSO05] shows that sample size
has little influence on load balancing. To validate our experiments, we
also performed tests with larger numbers (up to 2000 keys per peer) and

Thttp://www.alvis.info/

148 Chapter 8: Implementation

used different key distributions, including uniform random distribution
and Pareto distribution.

The time-line of the experiments was as follows: In an initial phase
starting at time ¢ peers join the system by contacting a bootstrap peer
(until ¢ + 30min) and the peers form an unstructured overlay network
(from ¢ until ¢ + 45min) which is used afterward to mutually replicate
their data a fixed number of times to increase availability (from ¢+ 45min
until ¢ +60min). In this replication phase peers randomly choose 5 peers
from the unstructured overlay network to replicate their data. Subse-
quently, from t + 60min to t + 300min, the structured overlay network
is constructed using the approach presented in Section 3.4. We were es-
pecially interested in evaluating the bandwidth consumption during this
phase and verify whether the theoretically predicted load balancing prop-
erties of the algorithm are achieved under realistic networking conditions.
Then we run queries on the constructed overlay network (¢ 4+ 300min
to t + 400min) to analyze search performance. Each peer performed a
single key lookup every 1-2 minutes. In the final phase (¢ + 400min to
t 4+ 500min) network churn is simulated to evaluate the failure resilience
of P-Grid. Each peer independently decides to go offline 1-5 minutes
every 5—10 minutes which causes considerable churn the system has to
compensate.

Experimental results We first verified that the system behavior
matches the theoretical predictions and the simulations presented
in [ADHS05]. The experiment was performed with 296 peers and
compared to simulation results using the same number of peers and the
same key set.

The quality of load balancing is evaluated as defined in [ADHS05]
and is matching for simulations and experiments with an average of 0.38
for 10 simulations (the standard deviation is 0.05) respectively a value of
0.39 for the experiment. This indicates that the theoretically predicted
load distribution properties are met quite accurately by the implemen-
tation even under realistic network conditions with slow connections and
communication failures.

We now report some system measurements that we made to evaluate
the performance of the overlay network, both during the construction
phase, as well as its operational life both in a static situation (no change in
peer population) as well as under churn (peers leave and join the network).

Figure 8.2 shows the number of peers in the overlay at a given time.
We see how first peers join the network and the number of peers in the
network increases to the maximal number. Then during the construction
phase this number is stable (approximately 300 peers) while decreasing
again in the final phase where we simulate network churn and a substantial
dynamic fraction of peers becomes unavailable.

Figure 8.3 shows the aggregate bandwidth consumption of all peers

8.6. Evaluation of P-Grid’s Bootstrapping 149

300

250

200+

peers
.
@
3

100 H

50

0

1 I I I I I I)
0 50 100 150 200 250 300 350 400 450 500
Time [minutes]

Figure 8.2: Number of participating peers

(maintenance and queries) in Bytes/sec. During the construction phase
the bandwidth consumption reaches a peak of 250 Bytes/sec per peer.
The maintenance consumption decreases quickly down to less than 100
Bytes/sec and becomes negligible compared to the bandwidth consumed
by queries.

300~
= maintenance
queries

250+

Bandwidth [Bps]
= N
& S
3 3

o
)
]

50

OB\/QJ,,,_,,,_,,J,,,L,, VAN e

0 50 100 150 200 250 300 350 400 450 500
Time [minutes]

Figure 8.3: Aggregate bandwidth consumption

Figure 8.4 shows the average query latency and its standard deviation.
The absolute values are relatively high and essentially reflect the poor
response time of PlanetLab nodes. The response time is slightly higher
with a larger deviation during the network churn because requested peers
may be offline which has to be compensated.

We observed that the number of query hops per query is as low as
theoretically expected, i.e, approximately half of the mean path length,
even during churn. The average path length was slightly below 6 and
the average number of query hops per query was approximately 3. More-

150 Chapter 8: Implementation

60
— — = standard deviation
average

50

401

Time [seconds]
©
8

20

N
N ’
. vy \,
N
10+

0 L L L L L L L L)
300 320 340 360 380 400 420 440 460 480 500

Time [minutes]

Figure 8.4: Query latency

over after the construction phase has led to full evolution of the overlay
network, all peers discovered all their replicas, and the system had an
expected mean replication factor of 5, as intended, and success rate for
queries was between 95% and 100% even during network churn. Queries
were mainly unsuccessful because of network problems such as lost or
corrupted messages.

8.7 Load-Aware Message Routing

During the implementation of P-Grid, we faced several problems concern-
ing correctness, efficiency, robustness, expandability, etc. of our system.
Some of these challenges originated from the heavily distributed, random-
ized and parallelized algorithms used by P-Grid. A source of problems, or
better challenges, we did not foresee at the beginning is the used testbed
for our testing and evaluations. Our aim was to develop an application
tested and evaluated in a realistic network environment before deployed
on the Internet. PlanetLab provides such an environment and recently
became the state-of-the-art testbed for distributed systems.

The success of PlanetLab among researchers and developers soon lead
to limited resources for users to test their systems as all resources are
shared among users, i.e., users cannot reserve resources and time slots
for their tests. The consequences for applications were manyfold: (i)
limited memory resources available forcing developers to reduce memory
requirements of their application and to close possible memory leaks; (ii)
limited CPU cycles available lead to long delays for local calculations and
therefore further to unpredictable message response times; (iii) the high
load on peers and their network connections caused higher message loss
rates than in local area networks or the Internet.

The first challenge was mainly solved by the already presented well de-

8.7. Load-Aware Message Routing 151

signed software architecture and local debugging to reduce memory con-
sumption and to find memory leaks. The later two limitations have an
influence on correctness, robustness and efficiency of one of P-Grid’s core
services, message routing. It was therefore important for us to find so-
lutions for these problems as they can also occur on the Internet in a
real-world deployment. For example, overloaded PlanetLab peers can be
seen as slow peers on the Internet respectively peers with a slow Internet
connection. High message loss rates can further occur on low bandwidth
or wireless network links of the Internet.

This chapter will focus on optimizing message routing for query mes-
sages in a P-Grid network of PlanetLab peers with various loads. Message
routing in a structured overlay network involves multiple intermediate
peers (hops) till the destination peer is reached. In case of a query, the
destination peer has to perform a lookup operation on the local index to
return all matching entries to the query initiating peer. The query re-
sponse time is defined at the initiating peer by the delay between sending
out the query and receiving the query reply. The time can be improved,
i.e., reduced, by avoiding overloaded, i.e., slow, peers during routing. This
comprises peers involved in forwarding the query towards its destination
and selecting the fastest peer in the destination partition, if multiple are
available, to find matching entries. Please note that overloaded Plan-
etLab peers can represent slow Internet peers respectively peers with a
slow Internet connection as in both cases their response time will be long
considering realistic result set sizes. Overlay networks maintain for fault-
tolerance multiple entries in their routing tables (data replication) and
replicate index information (structural replication) to compensate node
and network failures. Therefore, peers have multiple peers at hand to
forward a query and to select the destination peer to process a query and
reply matching entries.

8.7.1 Routing Strategies

Considering the diversity of peer response times and CPU loads of Plan-
etLab peers, we implemented five different next-hop selection strategies in
the P-Grid application to evaluate their influence on query response times
and query load distribution in a realistic environment. The five strategies
are the following:

e Random: Queries are forwarded to a random peer of the correspond-
ing routing table level.

e [ized: The first time a query is forwarded to a certain level, a peer
at this level is selected randomly and all subsequent queries are
forwarded to the same peer. This is analogous to having no routing
redundancy.

152 Chapter 8: Implementation

e Least Frequently Used (LFU): Peers maintain a counter of sent mes-
sages for all peers in their routing table and queries are forwarded
to the peer with the lowest counter per routing level. This strategy
uses a local estimate of other peers load, and hence will not depend
on other peers’ honesty.

e Currently Least Loaded (CLL): Queries are forwarded to the peer
with the lowest reported query load at a level; peers piggy-back
their query load in the last minute on acknowledgment messages.

o Currently Fastest Response (CFR): Peers forward queries to the cur-
rently fastest responding peer at a level; peers therefore measure
the time between sending a query to a peer and receiving the corre-
sponding acknowledgment message. This strategy inherently takes
care of congestion caused by either traffic within the overlay, or any
extrinsic reasons. This strategy can also be seen as proximity-based
routing as peers in the proximity tend to respond faster than peers
further away.

8.7.2 Evaluation

These five routing strategies were evaluated on PlanetLab on up to 300
nodes, depending on the number of available nodes. Each PlanetLab node
runs one instance of a P-Grid node, and possibly several other experiments
by other users in parallel. Therefore PlanetLab nodes are subject of var-
ious loads depending on the simultaneously running experiments on the
testbed. Although these external factors influence our experiments they
also provide a realistic environment with slower and faster peers.

We deployed the P-Grid software, i.e., the peers, on all available nodes
at the times the experiments were conducted and assigned 10 keys to each
peer. This relatively low number of keys was chosen to speed up experi-
ments. We waited 150 minutes till the P-Grid network was constructed,
i.e., peers became responsible for key partitions and their routing tables
contained the necessary references to other peers/partitions to resolve
queries. The delay of 150 minutes is based on experience and depends
mainly on the number of nodes participating in the experiment, the num-
ber of inserted data and the testbed environment. The constructed P-Grid
network had the following characteristics: (i) on average, 5 peers were re-
sponsible for a partition, i.e., on average 5 peers could answer a query;
(ii) peers maintain up to 10 routing entries per level, i.e., a query could
be routed to up to 10 different peers. Please note that 10 is the maximum
number of references per level and decreases for higher routing levels as
it is further bound by the maximum number of peers available per sub-
tree/partition, i.e., on average 5 for the highest routing level according to
the replication factor.

8.7. Load-Aware Message Routing 153

After this initial construction phase, each peer issued queries with in-
tervals between 1 and 2 minutes. For the five different next-hop selection
strategies, each strategy was used for 50 minutes. In the following we will
discuss the influence of the different routing strategies on the required
bandwidth, number of messages, query response time, and the load dis-
tribution for peers.

Bandwidth and Number of Messages First of all, we compare the
required bandwidth and number of messages for query resolution for the 5
routing strategies. Figure 8.5 shows the average bandwidth consumption
and number of messages per peer and minute for query and query replies
for each strategy. Both, the bandwidth and number of messages, remains
the same for all five strategies, i.e., all strategies perform equally. This
was expected as the effort to resolve a query remains the same. This
observation is further confirmed by the fact that the number of hops a
query requires remains the same for all strategies.

— query

ey
;,«W\/\/v_,_/\/\/\,_/\»\j“ifi”/ ° #’W\/W\J—/\/\/Af—/\/:w

Bandwidih [Bps]
g

150 200 250 300 350 400 150 200 250 300 350 400
Time [minutes] Time [minutes]

(a) Bandwidth (b) Messages

Figure 8.5: Bandwidth and number of messages

Query Response Time and Success Next, we compare the query
response time together with the query success rate for our five next-hop
routing strategies. On the left hand side of Figure 8.6, we can see that
the response time is the same for the strategies Random, Fized, and LFU
as expected. Those three strategies distribute the forwarding load for
queries uniformly among all peers in the network, i.e., all peers forward
on average the same number of queries leading to similar query response
times.

The response time drastically increases for the CLL strategy. The rea-
son is that slow peers which cannot process many queries are overloaded
and therefore become even slower. The CLL strategy always prefers glob-
ally underloaded peers and does not take into account the heterogeneity
of peers regarding their bandwidth connection and processing power. On

154 Chapter 8: Implementation

the other hand, the CFR strategy always prefers peers which responded
recently fast to query forwarding requests. Therefore, queries are not for-
warded to slow peers anymore and the average query response time is
lower than for the other strategies. We will show later that this improve-

ments comes along with an increased imbalance for the query forwarding
load.

\
\
! 98,
Z \ E %
g [N s
i [ERVAN % o7l
! ,
| 1 @ 97|
.
1
‘
,
‘

150 200 250 300 350 400 150 200 250 300 350 400

(a) Response time (b) Success rate

Figure 8.6: Query response time and query success rate

Figure 8.6 also shows that all strategies perform equally well in terms
of success rates. Most queries reached a responsible peer being able to
respond to a query initiator with the requested answers. The missing
3% of success rate are explainable by lost query reply messages as query
initiators do not acknowledge their receipt to their senders. A lost query
message can therefore not be detected and will not be retransmitted in
case of an error.

Load Distribution Finally we look at the load distributions observed
by peers to forward respectively answer queries. Figure 8.7 shows the
CDF for both loads and for the five next-hop strategies. It is obvious that
the strategy has an influence on the forwarding load and basically none
on the resolution load. The Random and LFU perform almost equally as
they locally balance the load among their references over time. The Fized
strategy already increases the imbalance as one peer is selected at the
beginning and kept as forwarding reference over time. Therefore, some
peers already have to handle almost twice as many queries compared to the
Random and LFU strategy. The worst strategy in terms of load balancing
is as expected CFR. As queries are only forwarded to fast responding
peers, slow peers do not observe any query load anymore leading to a
considerable imbalance of query forwarding load. The best load balancing
strategy however is the CLL strategy. Again, as expected as this strategy
considers the observed query load at each peer and peers use the reported
loads to select their next candidates.

8.7. Load-Aware Message Routing 155

Random
)

——LFU
——cu
CFR

o 100 200 300 400 500 600 700 0 50 100 150 200 250 300 350 400
Forwarded queries Answerex d queries.

(a) Fowarding load (b) Resolution load

Figure 8.7: Query load to forward and resolve queries

The load observed by peers to resolve queries is almost the same for
all strategies as the routing strategy only has an influence at the last hop
to choose the finally responsible peer to answer a query. [DSA07] studies
a query load balancing approach for structured overlays considering a
combination of caching and the existence of route redundancy. The paper
shows that caching helps to reduce the answering load of peers as more
peers become responsible for popular index entries. The paper further
shows that route redundancy cannot balance the answering load as queries
still have to be answered by a few responsible peers and only depends
on the distribution of issued queries. The forwarding load on the other
can very well be balanced by load-aware routing strategies using multiple
routing entries in structured overlay networks present for fault-tolerance,
as also shown by our evaluation.

Discussion P2P networks of peers with heterogenous resources and per-
formance are common in the Internet and are therefore to consider by over-
lay networks. Our evaluation shows that routing strategies can improve
routing performance in such environments considering only local or small
piggy-backed information. The three randomized forwarding strategies
Random, Fized, and LFU have similar properties and represent current
practice in overlay networks. The CLL and CFR strategies have the high-
est impact, as expected, as they consider the recent load and response
delays observed by peers. Although CFR shows the worst query load
balancing characteristics, we still consider it as the best strategy as it is
the only one considering peer and link heterogeneity. Faster and better
connected peers will receive more queries to forward and/or to respond to
but they are also able to do so whereas the CLL strategy slows down the
overall system by also selecting slow peers.

Our CFR routing strategy is further similar to proximity-based rout-
ing as studied in [HLWY06, CDHRO03]. The idea of proximity routing is
to select, among the set of possible next hops, the one that is closest in

156 Chapter 8: Implementation

the physical network or one that represents a good compromise between
progress in the key space and proximity. RTT, the round trip time of mes-
sage packets, is often used as distance measure among hosts, resembling
our response time measurements used for the CFR routing strategy.

8.8 Conclusions

This chapter presented more details about P-Grid’s implementation of the
architectural design presented in the previous chapter. We showed how the
two-layered approach, their components and services were realized in the
code. For each package, we presented the most relevant classes enabling
application developers to easily use and extend our code if desired.

The advantages and challenges of implementing P-Grid in a deployable
and testable application was outlined in the case study of load-aware
message routing. Although, the implementation of such a distributed and
complex system is challenging and time-intensive, the benefit of testing
and evaluating the system in realistic environments is invaluable. Not
only is an implementation the only proof that approaches work in reality,
real-world tests also yield to new insights into the system which have to
be considered in theory to fine-tune and improve approaches. Theory
and practice are therefore inseparable for the development of structured
overlays.

Chapter 9

UniStore

The implementation of P-Grid enabled us to build applications on top of
it relying on a stable structured overlay network providing efficient single
key lookups as well as more complex search predicates. Nowadays, many
new applications, for example Wikis, social networks, and distributed rec-
ommender systems, require the efficient integration of decentralized and
heterogeneous data sources at a large scale. In this chapter, we present
our approach of a universal storage for RDF-like triple data based on
P-Grid and the universal relation model as its key enabling technologies
to achieve flexibility, robustness, and efficiency for large-scale distributed
data storage and query processing.

We first outline the motivation for building a global-scale universal
distributed storage (UniStore) to support new web applications and pro-
vide an overview of the corresponding challenges related to it. The ar-
chitecture of UniStore is based on P-Grid, solving already some of the
challenges such as scalability, robustness and availability. On top, a triple
store deals with the problem of data organization following the idea of
the universal relation model allowing schema-independent query formula-
tions. We introduce our query language VQL, based on SPARQL, in the
context of similarity queries. Similarity queries are an important feature
together with schema mappings to support data heterogeneity on data
and schema level. We support several similarity query operations such as
similarity joins and ranking operations. Their evaluation on PlanetLab
shows that our implementation on top of P-Grid meets our theoretical
cost predictions.

This chapter represents work carried out in collaboration with Prof. Kai-Uwe
Sattler and Marcel Karnstedt from TU Ilmenau, who originated the idea of UniStore
and implemented the application. We contributed to the design of the application and
algorithms presented in this chapter, and provide the underlying P2P infrastructure.

157

158 Chapter 9: UniStore

9.1 Motivation

An increasing number of applications on the Web are based on the idea
of collecting and combining large public data sets and services. In such
public data management scenarios, the information, its structure, and its
semantics are controlled by a large number of participants and integration
and data management functionalities come into existence through the
collaborative efforts of the users, i.e., the system’s public. Examples of
such applications are Wikipedia, social networks such as friend-of-a-friend
networks, or recommender systems.

Despite being distributed or decentralized in respect to data from a
conceptual point of view, the supporting infrastructures of these systems
are still inherently centralized, as in the original web approach web servers
manage their data locally and only communication and hyper-linking in-
troduce the aspect of decentralization (though the Web itself is decen-
tralized). For example, in Wikipedia articles are edited in a decentralized
way, but adding the information permanently to the (central) data col-
lection is done under central control; in social networks, e.g., friend-of-a-
friend networks, although inherently decentralized, users typically enter
via centralized portals and data management is centralized at the portal.
Though often centralization makes sense to maintain full control of the
information management, the downsides are bottlenecks and single-point-
of-failures, which have to be accounted for by expensive hardware and
secondary Internet connections.

In this chapter, we argue for a decentralization of data management for
novel web applications and search engines. This means that information
sources are highly distributed, data is described according to heteroge-
neous schemas, no participant has a global view of all information, and
data and service quality can only be guaranteed in a best effort way. Best
effort may seem to be a severe limitation at first glance. However, many
services we use on a daily basis follow this approach and still provide
meaningful service, for example email, DNS, and P2P systems which do
not provide any “transactional” service guarantees.

For such type of public information systems, the P2P approach offers
an interesting alternative to existing information system architectures. On
the infrastructure side, data is accessed directly at the source, i.e., always
fresh, efficient indexing is available, and the systems scale well in terms
of nodes and data mounts. Additionally, new systems can be deployed
at very low costs as no specialized infrastructures are required as the
resources of the participants are being used, high-quality data from the
“edge” of the Internet, i.e., the annotated knowledge of the participants,
can be made available very easily, and the systems are robust due to
their decentralized architecture. On the data level, however, new research
problems have to be addressed, the most prominent being: Data may
exist in a large number of different schema organizations, it is unclear

9.2. Challenges 159

how trust-worthy the data is, and expressively of queries and possible
guarantees (existence, completeness, etc.) are limited at the moment.

Despite these open questions, we argue that global-scale universal dis-
tributed storages have a number of important advantages that outweigh
the problems and are a new type of Internet storage system. Our vision is
to build a light-weight universal distributed storage for public data/meta-
data as an enabling backbone technology for storage, which exploits the
gigantic storage and processing capacity of the available Internet nodes in
the same way as the network layer exploits the worldwide communication
devices for routing messages between nodes. In the following sections, we
will present the challenges to be addressed and possible solutions.

9.2 Challenges

In contrast to systems such as OceanStore [KBCT00, REGT03], which
aim at secure archival storage for a single data source, we aim at inte-
grating data sources into a universal storage at an Internet scale. While
some of the challenges may be similar, there exist several different aspects
and others have to be taken into account differently because of disjoint
requirements. We overview the key issues for a universal store in the
following and classify the challenges along three questions:

1. How to structure and organize data in massively distributed set-
tings?

2. How to query data and how to query efficiently?

3. What is necessary to build a robust and practical solution?

The first question deals with data organization and raises two chal-
lenges:

Genericity and flexibility Because we cannot assume that all users
and applications agree to a common schema, a generic and extensible
schema is required for structuring data. It should facilitate to add new
elements without restructuring or conflicts. This should be accompanied
by a schema-independent query language relieving the user of the burden
to know relations, classes or element paths. A good choice would be a
universal relation model [MUV84] or —as a new incarnation— an RDF-like
triple-based model.

Dealing with heterogeneity In order to be able to combine data from
different domains without forcing all providers to use the same schema,
techniques for resolving heterogeneities both on schema level (different
names or structures for the same concept) as well as on data level (different
representations of the same real-world object) are required. Particularly

160 Chapter 9: UniStore

in large systems, resolving conflicts should be left to the individual user
but be supported by appropriate modeling concepts (e.g., correspondence
relationships for schema elements) as well as by explicitly handling schema
information as data.

The second question is related to query processing with the following
challenges:

Expressiveness of queries Querying data in a large-scale distributed
storage requires both classical DB-like queries allowing to restrict and
combine data (selection, projection, join, set operations) as well as IR-
style queries (e.g., keyword search over all attributes, similarity). In ad-
dition, a query language for this domain should support querying schema
data (attributes, correspondences) as well and treat this as plain data.

Efficient query operators Distributed implementations of the query
operators should come with worst-case guarantees (e.g., O(log n) for struc-
tured overlays) and exploit the features of the underlying infrastructure
(e.g., for DHT's hash-based placement, topology-aware routing and multi-
casting). Furthermore, processing more complex queries, which typically
result in several equivalent execution plans, should involve cost-based and
adaptive query optimization considering the dynamicity of the whole net-
work and the autonomy of the individual nodes.

Question (3) touches practicability of a large-scale distributed plat-
form. Among others the main challenges are:

Scalability Certainly, an important property of a distributed system is
scalability with respect to the number of nodes. For a structured overlay
network this is inherently guaranteed for lookup operations. However,
scalability has to be also addressed for more complex query operations as
well as particularly for data import/update (e.g., bulk inserts/updates)
and more generally maintenance operations.

Robustness and availability A distributed storage has to be robust
and reliable, which basically means to be resilient against node and link
failures. This has to be addressed by maintaining redundant links (as
already provided by structured overlays), but also by replicas of data.
Data replication raises several further issues, such as the required number
of replicas in order to guarantee a degree of availability or the strategies
used for update propagation in a decentralized environment. Moreover,
the existence of replicas allows the system to choose among different nodes
for retrieving data based on the current load of nodes, but requires dis-
tributed monitoring of load in a dynamic environment.

Privacy, trust, and fairness In structured overlay networks where
data is not stored on a provider’s site there exists a strong requirement to

9.3. Architecture 161

prevent malicious behavior of nodes (e.g., modifying locally stored data).
Thus, privacy of the hosted data as well as trusting peers on the returned
result of a query are important challenges. Secondly, a fair distribution
of data and/or load has to be guaranteed in order to avoid negative affect
of the overall performance.

9.3 Architecture

Structured P2P overlays are a good basis for a distributed universal stor-
age because problems like scalability, robustness and fair balance of load
and work are covered as described in the previous sections. Structured
overlays offer logarithmic search complexity in the number of nodes and
are based on hashing for data placement, which allows for realizing effi-
cient query processing strategies. Additionally, they offer guarantees and
limits needed for defining an appropriate cost model.

Figure 9.1 shows the architecture of the implemented system. Based
on the P-Grid overlay layer, triple storage functionality is provided by a
second layer, which is used by P-Grid’s StorageService to store triple data
and to process structured queries.

p
/ Universal Storage /
User interface
store VQL
' '
Triple storage layer Triple Analyzer
Manager ;
Storage | Query %
P2P storage layer Service | Executor %
QueryPlan | Network (%
P2P basic layer
0 1

00 o1 10 11 o

I
@ @ ® O Q
=
Network layer (TCP/IP) =)
e
. —® =

Y ®
i)

Figure 9.1: Distributed universal storage

162 Chapter 9: UniStore

9.3.1 Distributed Storage Layer

As mentioned earlier, we aim to provide a scalable distributed infrastruc-
ture for storing, retrieving and integrating structured meta-data like data
for the Semantic Web. In this regard, a natural way of supporting these
features, to some extent, is to exploit scalability, location transparency,
logarithmic search complexity as well as guarantees offered by the P2P in-
frastructure. In the implementation, P-Grid is used as distributed storage
layer because of its support for scalability as well as robustness as required
by our infrastructure. It is also used for data management in general and
index management in particular. We further rely on P-Grid’s efficient
support for exact key lookups and more complex search predicates such
as substring search, range queries, similarity queries (see Section 9.4) and
multi-term queries.

9.3.2 Triple Storage Layer

In order to face the challenges of data organization, we follow the idea of
the universal relation model allowing schema-independent query formu-
lation. However, because exploiting the features of a structured overlay
for fast lookups requires to index all attributes, we store data vertically,
similar to the idea of RDF. RDFPeers [CF04] exploits a similar data
organization for RDF data as in our work, but does not address, for in-
stance, similarity-based queries. If we assume relational data, each tuple
(OID,vy,...,v,) of a given relation schema R(Aq,...,Ay) is stored in
the form of n triples

(OIDvAlyvl)v'"?(OIDaAna’Un)

where OID is a unique key, e.g., a URI, and the attribute names A;
may contain a namespace prefix ns which allows the user to distinguish
different relations and avoid conflicts.

Figure 9.2 illustrates this for two example tuples representing papers
at a workshop and conference. Each tuple contains three attributes: ti-
tle, conference and year. The 18 resulting triples are distributed in the
network of 8 peers (corresponding hash keys are sketched: e.g., 0ID->t
means triple t was inserted according to hash(0ID)). Additionally, we
allow to store triples representing a simple kind of schema mappings in
order to overcome schema heterogeneities.

The vertical storage supersedes the explicit representation of null val-
ues making the universal relation approach feasible even for heterogeneous
data. Obviously, this data storage model is exactly the same layout as
RDF — therefore RDF data can be stored seamlessly.

Note that, though we use an OID field, we do not assume unique and
homogeneous identifiers for all objects — instead the OID is system gen-
erated allowing to group the triples for a logical tuple. Integration tasks,

9.3. Architecture 163

Logical tuples schema: (a12,'Similarity...",'ICDE 2006 — Workshops’,2006)
(OID,'title’,’confname’,’year’) (v34,’Progressive...",'ICDE 2005’,2005)

[A#tv=>(v34,'confname’, ICDE 2005")] ‘

v—>(al2, 'title’,' Similarity...")
A#tv—>(v34,'title’,'Progressive...’

OID->(al2,'title’,’Similarity...")
OID->(al2,'confname’,'ICDE 2006 - WS})
OID->(al2,’year’,2006)
A#v—>(al2,'confname’,'ICDE 2006 - WS})

v—>(v34,title’,’Progressive...")

A#tv—>(al2,'year’,2006
v—>(al2,’confname’,'ICDE 2006 — WS >

) Attv—>(v34,'year’,2005)

A#v—>(al2,'title’,’Similarity...")
OID->(v34,'title’,’Progressive...")
\v—>(v34,’confname’,’ICDE 2005’)‘ OID->(v34,'confname’,'ICDE 2005")
OID->(v34,'year’,2005)

Figure 9.2: Example tuples stored in P-Grid

i.e., merging different tuples representing the same real-world object, are
expected to be performed on top of this in a user/application-specific way
as part of queries.

The hash-based approach of the underlying overlay system allows for
inserting each triple multiple times into the structured overlay using differ-
ent keys. This is analogous to indexing data in relational systems, as each
entry and any combination of the triples’ entries (e.g., “hot” attributes)
may be chosen, and several kinds of indexes may be implemented (e.g.,
textual or spatial indexes). This can increase efficiency of query process-
ing by far. Moreover, by inserting full triples each time, we introduce a
kind of replication on triple level, additionally to replication on peer level,
which is essential in structured overlay systems.

By default, we index each triple on the OI D, A;#wv; (the concatenation
of A; and v;), and v;. This enables search based on the unique key, queries
of the form A;#v; > v;, and using v; as the key for queries on an arbitrary
attribute. Like this, efficient reproduction of origin data, as well as access
to parts of special interest, is ensured in each situation, as the elements
of an origin tuple are stored

(i) clustered — good to achieve low bandwidth consumption and a small
number of messages, and

(ii) well distributed — better suited for dynamic situations and load bal-
ancing.

By applying order-preserving hash functions similar values are stored
at the same peer or neighboring peers, which decreases the efforts incurred
in processing range queries, joins, or similarity operations.

164 Chapter 9: UniStore

9.3.3 Schema Mapping

On top of the data triple storage we additionally allow to store data rep-
resenting a simple kind of schema mappings in order to overcome schema
heterogeneities. In a universal relation model, mappings are simply corre-
spondence links between attributes, whereas different kinds of correspon-
dences can be represented (e.g., “semantically equivalent”, “subsumes”,

..). Figure 9.3 shows an example of a mapping situation. Two rela-
tions (i.e., a set of attributes that belong to each other) are sketched and
two equivalence mappings between attributes are indicated. This can be
enriched by other correspondences like subclass and also be extended to
relations themselves, respectively concepts they represent.

city |name [pop | country| head | ...|Sup]...
:_ _ \iuii equiv \jibclass
v v
town | townname |age | location| ...| Sub

Figure 9.3: Attribute mapping

An equivalence mapping between the attributes Ay and A, is repre-
sented by a triple

(A1, map:equiv, Ag)

where map:equiv describes the kind of correspondence and A; is the
identifier of the source attribute. This additional metadata can be queried
explicitly by the user — or even automatically by the system to retrieve
relevant data without needing the user to interact. Moreover, we think of
schema matchers to “crawl” the system (at regular intervals or initiated by
the user) and find correspondences (semi-)automatically — thus, the user
only needs to join the system, provide his (desired) data and/or schema,
and may query remote data at once, without any further intervention
and special knowledge. However, such schema matching approaches are
beyond the scope of this thesis. Instead we refer to the respective work
[RBO1]. However, we envision methods as presented in [CMAFO06] to
(semi-)automatically infer on the correctness of schema mappings. The
required architecture for efficient distributed inference is thereby already
provided by P-Grid.

The introduced data organization helps to deal with some of the earlier
mentioned challenges, because it provides a generic and flexible schema,
which can even be extended by meta information to overcome the burden
of data heterogeneity. By building the triple store on top of a structured
overlay, we can exploit powerful features of these systems to create a
robust, scalable and reliable distributed storage. However, problems like

9.4. Similarity Queries 165

trust and privacy in such environments are treated by the P2P overlay
and database research communities, but are far from being solved finally.
From the view of data integration, the introduced model provides a wide
range of capabilities to utilize integration techniques for dealing with data
heterogeneities.

9.4 Similarity Queries

Similarity queries are a key requirement in distributed content manage-
ment systems for two simple reasons: (1) users are unable to specify their
information needs correctly and (2) large information amounts with possi-
bly suboptimal data quality are queried. Data quality may be suboptimal
due to spelling errors and typos and we cannot assume that all users will
agree on exactly the same schema and value representations, i.e., naturally
people will use different though often syntactically similar conceptualiza-
tions for the same data. Therefore, we argue that similarity-based query
operations play a key role in dealing with heterogeneities by enabling to
retrieve data (similarity lookup and filtering) as well as to combine data
(similarity join and grouping) based on fuzzy matching conditions.

Based on our triple storage model we present and discuss strategies
for efficient processing of similarity selections and joins in a structured
overlay. We will show that there are several possible strategies exploiting
structured overlay features to a different extent (i.e., key organization,
routing, multi-casting) and thus the choice of the best operator imple-
mentation in a given situation (selectivity, data distribution, load) should
be based on cost information allowing the system to estimate the compu-
tation and communication costs of query execution plans. Obviously, this
cannot be done in the same way as in classical centralized database sys-
tems where all necessary statistical cost information are available. Hence,
we present a cost model for similarity operations on structured data in a
structured overlay network.

Basically our approach is generally applicable to any P2P system, be
it structured, e.g., Chord, CAN, P-Grid, or unstructured, e.g., Gnutella.
However, structured P2P systems have a couple of advantages, we can ex-
ploit in processing similarity queries: (1) Cost-aware processing requires
the definition of accurate cost measures which in turn requires the knowl-
edge about the complexity involved in the processing tasks, which cannot
be provided for unstructured systems like Gnutella, but are available for
structured systems. (2) Structured overlays offer very low overheads for
locating data items, typically O(log(n)). As we insert and query large
amounts of small data items in our approach, this is an important factor
for minimizing costs. (3) Structured overlays offer better data-processing
related guarantees, for example, for completeness, existence, etc., which
are important properties for database-like processing of predicates.

166 Chapter 9: UniStore

9.4.1 The Query Language VQL

Users should be able to search for (1) data, (2) metadata, and (3) com-
binations of both by defining constraints on both the data and schema
levels. Queries should encompass simple search conditions but also ad-
vanced operations on the distributed data such as joins or ranking should
be supported. To enable the user to express these types of queries, we
use the VQL query language which is based on SPARQL [PS06], a query
language for RDF. As query formulation and the logical algebra used for
representing query plans are not in the focus of this thesis, we will only
informally introduce VQL and the logical algebra through some simple ex-
amples demonstrating its capabilities and the types of queries we discuss
in the following sections.

Let us assume that each user in a P2P system has a movie database
similar to IMDB (http://www.imdb.com/). For simplicity, without con-
straining generality, we assume that the following simple relations are used
by the participants:

movies: (title, year, type)
topl00: (movie, director)
actors: (name, mtitle , rolename)

The basic construct of a query in VQL is a SELECT - WHERE block
similar to SQL, but as we do not manage relations in a horizontal manner
we do not have to provide a FROM clause. The WHERE clause is defined
on triples (OID, A;,v;), selection is done using optional FILTER (expr)
statements in the WHERE clause, and the functions dist and edist allow
the user to express similarity in terms of distance (Euclidean or edit dis-
tance). Each term in a query starting with a question mark represents a
variable and all expressions in the WHERE clause are implicitly combined
conjunctively. Additional clauses such as ORDER BY, LIMIT and OFFSET
are optional and have the same meaning as in SQL.

The following VQL statement defines a query for all directors who
worked with actors named similar to “Billy Bill” in the years 2000 — 2004,
including also the movie title and year in the result set, and ordered by
the year the movie was produced. Additionally, we make the complicating
assumption that the data provided by the users is erroneous and thus also
the join operation on the movie titles, required to produce the final result
uses similarity-based string matching.

SELECT ?d,7t,7y

WHERE { (?o0l,name,?n) FILTER (edist(?n, Billy Bill)<3)
(7ol ,mtitle ,7t) (?702,movie,?s)
FILTER (edist (?7t,?s)<2)
(703, title ,7u) FILTER (edist (?t,7u)<2)
(703 ,year ,?7y) FILTER (dist (?y,2002)<3)
(702,director ,7d) }

9.4. Similarity Queries l67

ORDER BY 7y DESC

A powerful advantage of the vertical storage model we use is the possi-
bility to express similarity on the schema level in addition to similarity on
the data level, which simplifies homogenization tasks. The following exam-
ple joins data from movies with corresponding data from actors, by ap-
plying similarity first on the schema level (only edist(title,mtitle)=1
can satisfy the filter condition on schema level in line 3) and then on in-
stance (data) level (the actual movie titles). Moreover, to keep the final
result size small, we only select those 10 movies which where produced
closest to 2005 (top-N query).

SELECT ?v1,7v2,?n,7r,7y

WHERE { (70l1,%7al,?vl) (?02,%a2,7v2)
FILTER (edist(?al,?a2)<2)
FILTER (edist (?vl,?v2)<3)
(7ol ,rolename,?r) (7o0l,name,?n)
(702 ,year ,?y) }

ORDER BY dist (7y,2005) LIMIT 10

The logical algebra used to represent the resulting operator plans is
closely related to the relational algebra, but extended by some special
operators.

9.4.2 Similarity Measures and Processing

The typical distance measure for numerical values is the Euclidean dis-
tance which can be mapped to range queries in the overlay network. Range
queries have received quite some attention recently and several structural
overlays can handle them already. We will not discuss range queries in
further details here. We nevertheless rely on P-Grid’s ability to process
such range queries efficiently. For similarity measures on string values the
situation is different as they cannot be mapped to range queries. This is es-
pecially true for the popular Levenshtein distance or edit distance [Lev66].
Without constraining the general applicability of our approach, we will
focus on the processing of single string similarity predicates based on the
edit distance edist(s1,s2), though our approach works for any distance
measure d(z,y) — R.

In its simplest form the edit distance of two strings s; and so is the
number of operations (insertion, deletion or substitution of characters)
needed to transform si into so. For instance, the edit distance d of “edna”
and “eden” is 2. Several approaches exist to efficiently process similarity
measures based on the edit distance. We base our work on that of Navarro
et al. [NBY98] and Gravano et al. [GIJT01] who suggest the evaluation of
the edit distance using substrings of fixed length ¢, so-called ¢-grams. We
briefly discuss the main results of these works which we exploit in our ap-
proach. The main observation is that if we pick any d+ 1 non-overlapping

168 Chapter 9: UniStore

g-grams extracted from string sq, at least one of the g-grams must be fully
contained in the comparison string se (the two matching g-grams corre-
spond to each other) [NBY98] if their edit distance is edist(s1,s2) = d.

As a consequence, we extend the original storage scheme highlighted
before as follows: Rather than indexing only whole strings, we additionally
split them into g-grams and index those (both on the instance and on
schema levels), i.e., for a triple t = (OID, A;, v;) we store the following in
P-Grid:

[h(oid), (OID, t)],
[h(Ai#qgl(Ui))7 (OID7 t)]v Tt [h(Ai#qgn(Ui))7 (OID7 t)],
[h(qgl ('Ui))v (OIDv t)]’ R [h(qgn ('Ui))’ (OID> t)]v
[h(qgl (Az))7 (OID7 t)]v R [h(qgn(A))7 (OID7 t)]

(h() denotes the hash function of P-Grid to generate the key under
which the triple is stored, and gg;(s) denotes the i*® g-gram of s). This
storage scheme involves a non-negligible overhead (depending on the ac-
tual choice of indexed attributes), but decreases query processing costs
considerably, as we will show in the following sections.

As an example, consider a tuple ¢ : {123,edna} with schema
s: {id,name}. In the original scheme the following data items would be
stored in the structured overlay (we assume that the triple’s OID is 1):

[h(1), (1,id,123)], [h(id#123), (1,id,123)], [A(123), (1,id,123)],
[h(1), (1,name,edna)]|, [h(name#edna), (1,name,edna)],
[h(edna), (1,name,edna)|

Extending this by a 3-gram index on instance level of attribute name
produces the following additional data items to be stored:

[h(name#edn), (1,name,edna)], [h(name#dna), (1,name,edna)],
[h(edn), (1,name,edna)], [h(dna), (1,name,edna)]

Additionally, indexing on schema level results in the following addi-
tional data items to be stored:

[h(nam), (1,name,edna)], [h(ame), (1,name,edna)]

9.5 Physical Operators

Having discussed the basic conceptual approach for similarity queries, we
will now describe the implementation of similarity operators available in
our query engine. As already mentioned, we distinguish between queries
on instance level, on schema level, and queries combining both levels.
We will only describe the processing of queries on instance level as the
handling of queries on schema level differs only in the selection of part

9.5. Physical Operators 169

of the triples which is processed. We start with similarity selections as
the basis for advanced operators and then present similarity joins and
ranking operators as examples for advanced operators. In the following
we will only deal with string similarity as numerical similarity measures
can simply be mapped on range queries and additionally, string data will
be the dominating data type in most systems (not only on schema, but
also on instance level).

In principle, we could process string similarity queries by only utilizing
the functionality already provided by P-Grid. By issuing key lookups,
we can locate the data concerned by similarity predicates, e.g., by prefix
searches on the attribute names. However, this would be very expensive as
instance level queries can result in involving the whole overlay if popular
attributes are distributed among all peers, e.g., as in Chord. If this is
combined with similarity measures on the schema level the situation would
be even worse as we have to look at even more data using this simplistic
approach. Additionally, only a fraction of the queried peers will actually
contribute to the final result. We will denote this simple strategy as term-
based processing which will serve as a baseline for comparison to show the
gain we can achieve through our ¢-gram-based processing strategy. This
strategy exploits additional indexes based on g-grams as described above
and incurs additional messages for querying these indexes, but saves a lot
of bandwidth and message costs for processing the queries in most cases.

To be able to compare the costs of these two alternatives we will define
a cost model in Section 9.6. However, it is not the focus of this thesis to
redefine optimization and planning tasks already known from relational
and distributed database systems. Rather we target the costs incurred by
the actual gathering of data distributed among the peers of the overlay
network which is required to be able to process similarity queries.

9.5.1 Similarity Selection

The most fundamental operation we have to support in processing similar-
ity queries is similarity selection, which means that all data correspond-
ing to a similarity predicate is located and returned to the peer having
initiated the query. With term-based processing, we contact each peer
responsible for a part of the data to be queried as shown in Algorithm 9.6
for basic similarity predicates such as edist(A;#v;,s) < d, where A; is a
given attribute name, p is the peer executing the query, h() is the hashing
function used by the overlay, s is the search string, and d is a positive
integer denoting the edit distance.

Assuming that Retrieve(p, k,s) is the normal query forwarding and
search function of an overlay, SimRetrieve extends it with similarity
search functionality, i.e., the normal routing is not touched but each peer
receives the search string s to be used for similarity matching plus the
required similarity d for local evaluation. We also assume that Retrieve

170 Chapter 9: UniStore

Algorithm 9.6 Term-based similarity selection T'Sel(p, A;, s, d)
: T = SimRetrieve(p, h(A;), s, d);
: R=0;
: for allt € T do
R = RU Retrieve(p, h(£(t,1)),£(t, 1))
end for

can do both exact and prefix (path) queries, for example, as in P-Grid.
Thus a query for h(A4;) would be successful although we actually indexed
A;#v; as already described. This is just a shortcut to exploit existing
overlay functionality and to be more efficient in query processing. For
systems not offering prefix search, triples (OID, A;,v;) would be indexed
with A; as the key. However, in the following we implicitly assume that
prefix search is supported by Retrieve and thus also by SimRetrieve,
without constraining the general applicability of the algorithms. As we
are dealing not only with triples but with tuples, line 4 uses the OID
to retrieve all parts of a tuple and reconstruct it (this is equivalent to
Retrieve(p, key(&(t,1)),£(t,1))), where £(t,7) simply means to take the
it" field of a tuple ¢, which in our storage model is the OID for i = 1).
The result of this operation is then collected in R. If we would only work
with triples, e.g., RDF, or are not interested in all attributes of a tuple,
this step would not be necessary.

The g-gram based variant of similarity selection is shown in Algo-
rithm 9.7.

Algorithm 9.7 Q-gram-based similarity selection: QSel(p, A4;, s,d)
: determine d + 1 g-grams @ from s;
: R =10
: for all ¢ € Q do

T = SimRetrieve(p, h(Ai#q), s, d);

for allt € T do

R = RU Retrieve(p,h(§(t,1)),6(¢, 1))

end for

end for

PP Wy

The main difference to the term-based variant is that SimRetrieve is
called in a loop, once for each g-gram. Then, we again reconstruct the
tuples (line 6) by querying for all found OIDs. Both similarity selection
algorithms allow an improvement and parallelization if the whole tuple
should be reconstructed, as done at line 4 in Algorithm 9.6 and at line 6
in Algorithm 9.7. Instead of returning first temporary results at line 1
respectively line 4 by SimRetrieve to a query initiating peer and then
materializing all tuples sequentially, peers responsible for a SimRetrieve
can materialize a tuple before it is returned to an initiator. The query is
thereby forwarded to peers responsible for the corresponding O Ds which
then reply directly to the initiating peer. We call this method DelSel
and the impact of this variant depends on the current network state and

9.5. Physical Operators 171

data distribution, and is covered by our cost model which we present in
Section 9.6.

9.5.2 Similarity Join

A similarity join is one of the most important similarity operators as it is a
powerful tool to overcome heterogeneity at the schema level, which allows
the system to deal with semantic inconsistencies, i.e., supports schema
integration, and at the data level to address inconsistencies or inaccuracies
in the data to be processed. The following discussions are based on the
definition of similarity string joins given in [Coh00]: Given two input sets
of tuples r and s with schemas 7 : (X7 ... Xy) and § : (Y7 ...Y]) a similarity
join produces the cross product of all tuples and returns those tuples
t with schema f := (X7...XY1...Y}) for which a similarity predicate
p:edist(X;,Y;) <c, i <kANj<IAcis constant, is true.

Such joins are also conceivable only on schema level, but we expect
joins comprising both levels to occur much more frequently. This corre-
sponds to similarity predicates like edist(A;, B;) < 1 Aedist(A;, B;) < 3.
In the following we discuss similarity joins on the instance level as the same
algorithms can be applied on the schema level and a combination of the
two levels then is straight-forward. To process such a join, three basic
approaches exist:

1. Process the left and the right side separately and evaluate the join
on the data gathered locally. The disadvantage of this strategy is
that a lot of data may be transferred unnecessarily which will not
contribute to the result.

2. Process the left side first, i.e., materialize data for the left side
(w.lo.g. we expect the left side to be materialized) and apply a
nested loop approach for querying similar data from the right side.

3. Include both selections into the join processing: a peer responsi-
ble for object(s) from the left side delegates the query to one peer
responsible for the right side, similar to the standard approach of
mutant query plans [PMO02].

Term-based processing implies to gather all data needed at the query
initiator and process everything locally. This corresponds to the first
variant above and involves the execution of two (similarity) selections,
which again can be varied in the actual way of processing.

Assuming that the left input set is materialized completely, we can
use the approach of processing string similarity based on g-grams in order
to find matching candidate tuples from the right side, before completely
fetching all of the corresponding strings (variant 2 above). An intuitive
implementation is based on a (block) nested loop access, which means that

172 Chapter 9: UniStore

each materialized tuple from the left side is used as input for a correspond-
ing similarity selection on the right side (not single tuples, but actually
block(s) of them, respectively). Algorithm 9.8 illustrates this approach.

Algorithm 9.8 Nested Loop Similarity Join: NLJoin(p, A;, Bj,d)

: L = Retrieve(p, h(A;), Ai);
: R =0;
: for allt € L do
R = RU{Retrieve(p,h(§(t',1)),&(t', 1)) : ' € QSel(p, B;,£(t,3),d) };
end for

To get a more complete view, we also included the left-side selection
(here exemplary by calling Retrieve in line 1), though this is a separate
operator. The actual join tuples are built in line 4: Each tuple from the left
side is joined with all similar tuples from the right side (located by calling
QSel). The final result is collected in R. The somehow “centralized”
character of this method allows for minimizing the repeated querying of
duplicate strings and g-grams. This can be achieved by merging the single
queries into multiple blocks (or only one single block). This eliminates the
disadvantage of variant 1, but still puts the join processing load on a single
node.

An interesting alternative for distributed environments as P2P sys-
tems is to include both materializing operations into the join operator,
rather than only the left one (variant 3 above). In this case, peers re-
sponsible for parts of the left side delegate directly to right side peers:
DelJoin(p, Retrieve(p, key(A;), A;), Bj,d). DelJoin calls Retrieve as in-
troduced before, but responsible peers do not return results directly.
Rather, they forward similarity selections to the peers responsible for the
right side. These peers reply to the initiating peer directly if any tuples
are actually joined according to edist(A;, B;j) < d. This variant may be
extended to a block-based processing at each involved peer, similar to Al-
gorithm 9.8. The advantage of this method is, that we do not include any
waiting states in the processing. The disadvantage is that less opportuni-
ties exist to eliminate repeated querying of identical strings and g-grams,
as outlined for Algorithm 9.8.

9.5.3 Ranking Operators

In large-scale environments, like, for example, Google, where only best-
effort solutions are applicable, ranking queries are a necessary query type.
As an example, we discuss top-N similarity queries. Top-IN queries are
always based on a certain ranking function. We describe the implemen-
tation of a nearest neighbor ranking (NN), though other rankings are
supported, but rather unsuitable for string processing.

For the term-based variant we simply query for the attributes needed
and determine the top-NN strings locally at the initiating peer. The q-

9.6. Similarity Operator Costs 173

gram-based version relies on the predetermination of an interval to query.
This interval is determined such, that it potentially comprises all N needed
tuples. If not, this interval is successively extended until at least N objects
are available locally. Algorithm 9.9 illustrates the method.

Algorithm 9.9 Top-N Query: TopN(p, A, s, N)

T c=[{d € 3(p) : h(d) 2 h(AIT
2: {determine the size r of the local range of A;}
3: range = N/£ =N - Z;

4: d = DetIntv(range,s,0);

5 R =10

6: repeat

7. R= RUQS@Z(@A s,d);

8 range = /‘R‘ = _hd\?
9: d = DetIntv(range,s,d);
10: until |R| > N

11: R = Limit(Sort(R,A), N);

First each peer determines the number of local data elements for at-
tribute A. Based on this number the peer calculates a data density which
approximates the number of values from A that are stored at a single
peer. If the data is distributed uniformly among peers, this density is a
good first choice for determining an according query interval. The interval
can adapted by calculating a new data density based on values already
retrieved.

9.6 Similarity Operator Costs

The crucial part about optimizing query plans is to obtain the required
data in the distributed system, i.e., how to access the corresponding peers
in the structured overlay in an optimal way without unnecessary (re-
)Jtransmissions. If data is available locally, cost estimation for operators is
identical to the relational case. The main possible alternatives for obtain-
ing data are (1) to collect all data and process operators locally and (2)
to use the indexes defined in the underlying overlay as access structures
in a way that minimizes data transmission and query costs. In this sec-
tion we discuss the problem of cost estimation for the introduced physical
operators in order to be able to compare the different variants and enable
a P2P system to choose the optimal query plan.

In a distributed environment the main costs measured are the num-
ber of messages m and the number of hops h needed to process a query.
Low bandwidth consumption and short query answer times may also be
of interest, but are very hard (if not impossible) to predict. Fortunately,
the number of query hops is usually directly related to the query response
time. In the following we provide estimates for m and h for each of the in-
troduced operators for processing a single similarity lookup in the overlay

174 Chapter 9: UniStore

system. Usually, a logarithmic limit in the number of peers N for m and
h is guaranteed. In the following we will refer to this limit as my; for the
number of messages a lookup results in, and as h; for the number of hops,
respectively. We will only consider query messages, possible additional
system and reply messages are not considered in our estimates.

We provide knowledge about string and g-gram selectivities by man-
aging local indexes on each peer for approximating the data distribution.
One approach for this is using tries as in [SGS04]. In the following we ex-
pect all needed values to be available at each peer, although in a real-world
environment some of these values will have to be approximated.

| operator op | Mop | hop |
Fetch(A;) my+ra, —1 hy+ra, —1
TS@l(pyAiv S7d) MFEetch(A;) hFetch(Ai)
QSel(p, Ai,s,d) (d+1)-my hy
DelSel(p, Ai, s,d) (d+1)-my hy
TJoin(p, A;, Bj,d) MLeftSel(A;) maz(hrefisei(a;)s
MFetch(B;) hreten(s;))
NLJoin(p, As, B, d) MeftSel(A;) Riefisel(a;)
+ +
Cleft * mQSel(p,Bj,sAi,d) hQSel(p,Bj,sAi,d)
DelJoin(p, Ai, Bj, d) MLeftSel(A;) hregtsei(a;)
+ +
Cleft " MQSel(p,B;,54,.d) | NQSel(n,B;,54,.d)

Table 9.1: Costs for physical operators

Table 9.1 summarizes our cost estimations for all introduced similarity
operators, ranking operators are not considered. The Fetch operation was
not introduced separately so far, it provides the functionality of the first
step in T'Sel to fetch all values of a single attribute. This operation is
processed in a sequential way: first, a query is sent to one peer responsible
for a part of the queried attribute. This peer returns matching data and
forwards the query, if there are other peers responsible for the attribute.
This process is repeated until the last responsible peer is reached. We
have to consider m; messages to reach the first peer, and r4, — 1 messages
to forward the query to other peers, if 4, represents the number of peers
responsible for attribute A; and key data is clustered according to A;.
Instead of fetching all data of an attribute, the g-gram-based similarity
selection QSel queries for d + 1 g-grams in parallel.

If c4, represents the number of unique values in A; and sels the se-
lectivity of the predicate edist(A;,s) < d, we have to query for cy, - sels
complete tuples in the final step of both selections, resulting in c4 - sels-m;
messages. This is an additional constant factor for all implementations if
the tuples are materialized at the end. The formulas in Table 9.1 do not
include these costs for tuple materialization. Sub-queries for this opera-
tion can be processed in (quasi) parallel, which results in h; hops.

The main impact on performance between 7'Sel and ()Sel lies in r4,.
A term-based selection gets more expensive if more peers are responsible

9.7. Evaluation 175

for a part of the queried attribute. Furthermore, performance of T'Sel
strongly depends on the current network state, because of its sequential
character. The ()Sel similarity selection operator is particularly suited for
dynamic environments as no temporary answers and no waiting states are
required at the initiating peer. This is at the expense of more query mes-
sages, as several tuples will be queried multiple times for materialization
(issued by different peers).

The costs for advanced operators are estimated on the basis of the costs
of similarity selections. LeftSel(A;) symbolizes any suitable (similarity)
selection on attribute A;. The nested loop similarity join promises to be
efficient if Le ftSel(A;) refers to a selection that reduces the size cje ¢ of the
left input, e.g., a similarity selection QSel(p, A, sa,,da,). In T Join the
right input is always fetched completely. Another main difference should
be the consumed bandwidth, as T'Join completely fetches B; and N L.Join
usually only a small fraction. Similar to @Sel and DelSel, the third join
implementation DelJoin differs in the number of answer messages and
the economized waiting state at the query initiator.

9.7 Evaluation

We implemented our algorithms on top of the Java-based P-Grid overlay
and performed experiments on PlanetLab. The aim of these experiments
was to evaluate the bandwidth consumption and the number of messages
as the key performance characteristics. Furthermore, we give a first proof
of concept for the introduced cost model by comparing estimated costs to
the real costs.

In the experiments we used a network of approximately 400 peers each
running on a dedicated physical PlanetLab node. Each node inserted 10
strings of lengths between 8 and 45 characters, randomly chosen from a
4000 entry sample of movie titles from the IMDB database with a skewed
heavy-tail key distribution as shown in Figure 9.4 (log-log scale). The
figure only shows keys which were inserted more than once and highlights
a power-law like key distribution, as it is usual in structured overlay sys-
tems when working on string data. The figure provides a general view
on the actual data distribution and thus, gives directions for selectivity
estimation on strings (and g-grams, in particular), which is used in the
introduced cost model. With all gq-grams and replication (average repli-
cation factor: 5) each peer was responsible for approximately 900 index
entries. The constructed P-Grid tree had a height of 8.

We implemented all of the introduced physical operators. In
Section 9.6 we already discussed possible problems of several processing
strategies in dynamic environments. The term-based operators can result
in involving a main part of the peers in the overlay system into the
processing of a single similarity selection. As a consequence we encounter
a huge amount of messages and heavy load, which results in poor answer

176 Chapter 9: UniStore

Occurrences

Figure 9.4: Key distribution (log-log scale)

times and can even bring peers to crash. Moreover, the sequential
character of the strategy results in poor performance in general, and
processing of a query may not be finished at all, as crashed peers can
interrupt a corresponding sequence of queried peers completely. We
experienced these symptoms in the real-world environment of PlanetLab
and could not achieve useful results with the described experimental
setup. Thus, we can only provide cost estimations for these operators,
but which reflect the bad performance of this approach. For the future
it could be necessary to improve this strategy by applying parallelized
routing techniques and extended usage of acknowledgment messages in
order to overcome the performance problems.

To evaluate other operators we used similarity queries which affected
data from all partitions of the data set. A set of 5 randomly chosen strings
was queried in distance 3 using the g-gram based similarity selections. We
extended the query mix by 5 similarity string joins. The left input of these
joins was provided by a g-gram based selection in distance 1. We set the
actual join distance for tuples from the right to 3. Each peer initiated
a randomly generated query mix by starting a query every 5-8 minutes.
All of the following figures show the average number of messages, average
bandwidth consumption, respectively, measured per minute at each peer.

9.7.1 Experimental results

Figure 9.5 shows the measured and estimated number of messages for
similarity string joins.

From time 340-380 (time 0-340 was used to bootstrap the P-Grid over-
lay system) we ran the N LJoin operator and predicted corresponding
costs. From time 380-420 the plot of estimated costs also shows the es-
timate for term-based similarity joins. As explained before, we did not
achieve useful results with this operator in the described experimental
setup. But, this is anticipated by the estimated costs as well. The perfor-
mance of the nested loop join behaves as expected, i.e., as estimated. The

9.7. Evaluation 177

[}
o

—query estimated

| ---query
- - query reply

A a
o o

Messages
w
o

5}40 360 380 400 420
Time [minutes]

Figure 9.5: Real and estimated costs for NLJoin (time 340-380) and T'Join
(time 380-420)

small peaks signalize materialize operations of tuples contained in the final
result. These subqueries result in several extra messages because object
IDs are spread all over the system. As we want to determine the correct
relations between costs of different physical implementations, rather than
exact costs, these results are acceptable. The plot shows that we are able
to achieve this. The small offset in the predicted costs — the burst starts
at time 385, not at time 380 — is due to the implementation of the cost
predictor. The point is not to predict the exact time of occuring messages,
but rather the prediction of a correct amount of messages.

60
——query estimated

50} -~ -query
- -'query reply

Messages
w B
o o

n
o

-
o

220 440 460 480 500 520
Time [minutes]

Figure 9.6: Real and estimated costs for QSel (time 420-450), DelSel (time
450-480) and T'Sel (time 480-510)

Figure 9.6 presents analog results for similarity selections. Time 420-
450 corresponds to the execution of Q)Sel, time 450-480 to DelSel, and
time 480-520 to the term-based selection 7'Sel (again, only predicted costs
are plotted). The estimated costs are constant as we only involve the
processing of actual queries into the calculation (no query replies). This
is reflected by the real costs, small fluctuations are due to the following
materialize operations. Again, the burst in the plot of estimated costs

178 Chapter 9: UniStore

reflects the bad performance of the term-based similarity selection. As
estimated, the costs of QSel and DelSel are almost identical. Similar to
the experiments on joins, the plots show the correctness of our cost model
and that the bad performance of the implemented term-based selection is
predictable a-priori.

Finally, we illustrate the bandwidth consumption of both query types
in Figure 9.7. This figure shows that, despite the storage overhead we
experienced, the consumed bandwidth is within acceptable limits. The
tested selection types show little difference between bandwidth used for
queries and bandwidth used for query replies. The plots also show the
higher bandwidth consumption of join queries in contrast to selections.
This goes conform with our expectations, because the join operators com-
bine selection operators with additional queries.

250 160
---query ---query
--query reply 150 --query reply
2000 e . s
N 140h
@ qs0p -7 @, 1307
= =
o © 120
3 z -
2100 2 110 ¢
o o
100
50r L aemmTTT h ‘
""" 9+
g40 350 360 370 380 8220 430 440 450 460 470 480

Time [minutes] Time [minutes]

Figure 9.7: Bandwidth consumption for similarity join (left) and similarity se-
lections (right)

As a consequence, we experience that the g-gram based algorithms
are an important extension to known overlay systems in order to process
similarity queries efficiently. In contrast to traditional implementations
this approach scales up to high numbers of peers and is applicable to
dynamic environments with skewed data distributions. The costs of these
operators can be estimated in an easy fashion, allowing optimizers to
speed up processing and lower network load. Such estimates are based on
small information, but are quite accurate, which is reflected by the correct
relations of estimated costs for analog operators implemented differently.

9.8 Related Work

There is a number of related approaches aiming to support complex struc-
tured queries and data heterogeneity on top of structured overlay net-
works in peer data management systems (PDMS). Most of these systems
have either a focus on implementing classical relational algebra opera-
tors and particularly joins on top of a structured P2P system such as

9.8. Related Work 179

PIER [HHH' 02, HHL 03], or on supporting data integration and schema
heterogeneity such as GridVine [ACMHP04, CMAAOQ7].

OceanStore [KBC100, REGT03] is not a peer data management
system per definition, nevertheless we will introduce it briefly here for
the sake of completeness. OceanStore is a global persistent data store
designed to scale to billions of users. It provides a consistent, highly-
available, and durable storage utility atop an infrastructure comprised of
untrusted servers. Any computer can join the infrastructure to contribute
local storage and using already shared resources. Shared resources are ac-
cessed through a distributed file system in which users can store data
objects, analog to files in a classical file system. OceanStore caches data
promiscuously to increase data availability and system performance, i.e.,
local replicas provide faster access to data. Promiscuous caching requires
redundancy and cryptographic techniques to protect the data from the
servers upon which it resides. OceanStore further employs a Byzantine-
fault tolerant commit protocol to provide strong consistency across repli-
cas, which can be weakened by applications for higher performance and
availability.

UniStore shares only a few similarities with OceanStore, amongst them
are data distribution and replication, data location transparency and sys-
tem robustness. Other than that mentioned these two systems have dif-
ferent aims and provide different functionalities.

PIER [HHH'02, HHL"03] is an Internet-scale query engine built on
top of the distributed hash table Bamboo [RGRKO04]. It was the first
general-purpose relational query processor targeted at a P2P architec-
ture of thousands or millions of participating nodes on the Internet and
supports massively distributed, database-style dataflows for snapshot and
continuous queries. PIER stores data in the DHT in tuple form and ev-
ery tuple in PIER is self-describing, containing its table name, column
names, and column types. Data is accessed through 14 logical operators
and 26 physical operators (some logical operators have multiple imple-
mentations). Most of the operators are similar to those in a DBMS, such
as selection, projection, tee, union, join, group-by, and duplicate elimi-
nation. These operators are executed in a distributed fashion by query
plans using the UFL dataflow language, i.e., UFL currently stands for
Unnamed Flow Language. PIER currently has three kinds of indexes to
locate peers responsible for query operators: a true-predicate index, an
equality-predicate index, and a range-predicate index. The true-predicate
index allows a query that ranges over all the data to find all the data.
Equality predicates support operations that need to find a specific value
of a partitioning key and can be routed to the relevant node using the
DHT. For range search, PIER uses a Prefix Hash Tree (PHT) [RRHSO04].

PIER aims at distribution and scalability challenges as our approach
but does not consider the problem of heterogeneity. On the contrary they
assume that agreement on a global schema is feasible and desirable. Both

180 Chapter 9: UniStore

systems implement a tuple based data management schema enabling self-
describing data and therefore schema mappings. Both systems also share a
similar approach of distributed query processing using query plans holding
query operators, executing on several indexes provided by a structured
overlay.

GridVine [ACMHP04, CMAAOQ7] is a peer data management infras-
tructure addressing both scalability and semantic heterogeneity. Scalabil-
ity is addressed by peers organized in a structured overlay network form-
ing the physical layer in which data, schemas and schema mappings are
stored. Semantic interoperability is achieved trough a purely decentral-
ized and self-organized process of pair-wise schema mappings and query
reformulation, forming a semantic mediation layer on top and independent
of the physical layer. The semantic layer enables peers to share data in
the overlay network according to local schemas interlinked by user-defined
schema mappings. These schema mappings are then used for automatic
query reformulation allowing queries to traverse a sequence of schemas at
the mediation layer and retrieve all relevant results, irrespective of their
schemas. GridVine offers a recursive and an iterative gossiping approach,
i.e., query reformulation approach. In iterative gossiping, the peer is-
suing the original query is responsible for retrieving all mappings and
reformulating all queries by itself iteratively. In recursive gossiping, the
reformulation process is iteratively delegated to those peers receiving re-
formulated queries. Recursive gossiping performs systematically better
because it distributes the reformulation load among peers.

GridVine shares most of the aims and features of our approach, e.g.,
both systems use the same underlying overlay network. The differences
relate to the challenges expressiveness of queries and dealing with het-
erogeneity. GridVine implements triple pattern queries with support for
conjunctive and disjunctive queries realized by distributed joins across
the network. We support similarity-enriched SPARQL queries with in-
network query execution realized by query plans executed in parallel. On
the contrary we currently do not implement something similar to Grid-
Vine’s verification of schema mappings [CMAF06] to identify incorrect
schema translations though both are able to deal with data and schema
heterogeneity to the same extend.

Piazza [HIM104] is as well a peer data management system dealing
with scalability and data heterogeneity. It uses a mapping language for
mapping between sets of XML source nodes with different document struc-
tures (including those with XML serializations of RDF). The architecture,
that uses the transitive closure of mappings to answer queries, is able to
follow mappings in both forward and reverse directions can both remove
and reconstruct XML document structure. Unlike GridVine Piazza uses
central indexing and an extension to use an underlying DHT only seems
to be planned for the future, a key requirement for Internet-scale systems.

RDFPeers [CF04] presents a scalable and distributed RDF triple

9.9. Conclusions 181

repository for storing, indexing and querying individual RDF statements.
RDFPeers self-organize into a multi-attribute addressable network
(MAAN) which extends Chord to efficiently answer multi-attribute and
range queries. The system’s query processing capabilities are very similar
to the ones of GridVine as it supports triple pattern queries, disjunctive
and range queries and conjunctive multi-predicate queries using RDQL.
In contrast to our approach and GridVine, query resolution is done
locally and iteratively. Further, RDFPeers also does not address the
problem of schema heterogeneity and is therefore not as generic and
flexible as GridVine or us.

LSH forest [BCGO5] uses a locality-sensitive hashing (LSH) function
to index high-dimensional data for answering (approximate) similarity
queries. The queries return the m points in the data set closest to the
query according to a distance function. The system is based on P-Grid
and stores documents in the overlay network using the LSH function.
Therefore, similarity queries can be performed by first routing to the peer
closest to the initial query and then returning documents similar to the
query by using existing neighbor links in P-Grid. The paper does not
provide an evaluation of required messages or bandwidth as provided by
us.

EZSearch [Tra05] is based on the Zigzag hierarchy which clusters
semantically close nodes in a multi-layer hierarchy and supports range
queries and top-N queries. The evaluation of the system by a simu-
lation shows that the system works well for both query types even for
Zipf-like query distributions but it remains unclear how the system deals
with skewed data distributions which require sophisticated load balancing
mechanisms. Additionally, no experimental evaluation exists.

9.9 Conclusions

We presented UniStore, a global-scale universal distributed storage sys-
tem targeted at new web applications for public data management. In this
scenario data is collected through a large number of collaborative partic-
ipants which are not obliged to use common schemas and terminologies.
UniStore enables them to store and query heterogeneous data in a reliable
and distributed fashion. We support heterogeneity on schema and data
level by using a vertical triple-based storage model, similar to the univer-
sal relation model, and the support of schema mappings and similarity
queries. Our evaluation shows that our query operators are efficiently
implemented on top of P-Grid and meet our theoretical expectations.
UniStore is currently the only implemented system avail-
able offering both large-scale storage of heterogeneous data in
triple form (equally RDF) and database-like query operations
with completeness guarantees. UniStore can be downloaded from
http://www.dbis.prakinf.tu-ilmenau.de/unistore.

182 Chapter 9: UniStore

Chapter 10

Conclusions

Since the beginning of the new millennium, the Internet has changed from
a more-or-less passive information resource and email service provider, to
a rapidly changing playground for a new generation of Internet users, will-
ing to provide information to other internauts. Early P2P systems made
file-sharing as easy as web browsing and emailing for all Internet users,
boosting their popularity and user community. The increasing amount
of shared data motivated research for more sophisticated P2P data man-
agement systems and led to the first PDMS. Their database-like query
processing capabilities bring up new requirements for structured overlays,
on which PDMS are based upon. Similar to local databases [AMMHO7],
PDMS can benefit from structured overlays tailored towards Web 2.0 ap-
plications and data structures. These new requirements were so far not
tackled by the P2P community although their performance impact is con-
siderable.

Throughout this thesis, we considered to improve correlated data ac-
cess of applications like PDMS on top of structured overlays using a dis-
tributed index to access shared resources. In contrast to the classical use of
structured overlays for resource sharing and discovery, PDMS require fre-
quent joint data access exploiting and inducing data correlations amongst
shared data. Most structured overlays optimized their distributed in-
dex for efficient single key lookups only, and a few are further suitable
for efficient range scans, minimizing network access and the number of
nodes involved during data access. Data correlations induced by joint
data access beyond range queries are currently not considered by data/in-
dex partitioning approaches in structured P2P systems. As examples, we
studied three relevant types of data correlations in the context of their
use in PDMS. We presented our approach to efficiently process range
queries in structured overlays exploiting the order relationship of data
entries and the order-preserving hash function used by several overlays.
Probabilistic data correlations can be used to model a wide spectrum of
data correlations. We used two examples, distributed inference and multi-
term queries and their induced correlations. We presented our approach

183

184 Chapter 10: Conclusions

of re-organizing the distributed index to cluster strongly correlated data
entries at one node, or at least in the proximity, to improve processing
performance. The spring relaxation technique allowed us to “relax” cor-
relations among data entries, following the P2P principle of no central
control and local decisions by autonomous peers in pair-wise interactions.
The evaluation of our approach has shown a considerable reduction of
network access and a significant improvement in joint data access for our
two studied problems of distributed inference and multi-term queries.

Although our approach was designed for the P-Grid overlay system,
their applicability for other overlays with similar properties is discussed for
each solution. We nevertheless presented implementation details about P-
Grid and evaluations of core functionalities and extensions, such as range
queries. P-Grid’s open and extensible architecture enabled us to further
implement a public data management systems called UniStore on top of
it. One of UniStore’s distinguishing features is its support for similarity
queries to overcome schema and data heterogeneities. We presented Uni-
Store’s similarity query operators, an analysis of their processing costs
and an evaluation on PlanetLab meeting the predicted costs. UniStore
is, together with GridVine, the only implemented PDMS with support
for database-like query operators and schema heterogeneity. P-Grid’s
underlying role as distributed data management layer is crucial for the
performance and scalability of UniStore.

Directions for Future Research

This thesis provided first means for structured overlays to deal more ef-
ficiently with correlated data access. We believe that structured overlays
will soon become the dominant type of P2P systems with more-and-more
applications building and relying on them. PDMS are the best example as
their success is almost not stoppable anymore. The Web 2.0 with its rich
structured metadata requires already today such open and distributed
information management systems to further evolve. P-Grid is currently
part of several initiatives in this direction, amongst them in the Nepo-
muk project!, with the ambition to build a distributed semantic desktop
enabling users to share information from their desktop with friends and
colleagues.

A next step for us is the implementation of our approach to cluster
correlated data in P-Grid. We envision building a generic middleware
on top of P-Grid dealing with any kind of probabilistic data correlations
to build a meta-index on top of the distributed index of P-Grid. A first
step has already been reported in [BMAQ7], implementing our approach
for distributed inference in P-Grid. The first results achieved look as
promising as our simulation results presented in this thesis. We are cer-

"http://nepomuk.semanticdesktop.org/

185

tain to achieve similar results for multi-term queries and other operations
requiring joint data access, once our implementation efforts are finalized.

The example of UniStore has shown the capabilities of structured over-
lays for public data management systems. Research on PDMS still has
to solve certain challenges, such as security and trust, before they will
be used by a larger set of applications and users. Nevertheless, we see
PDMS as a very suitable application for structured overlays to finally
bring them the success they were waiting for since their invention. Sup-
porting and tailoring structured overlays towards the new requirements
raised by PDMS will therefore certainly be an important field of research
for the P2P community in the near future.

186

List of Frequently Used
Symbols and Abbreviations

Greek Symbols

d(p) The set of data keys peer p currently maintains.

m(p) The path of peer p.

11 The set of all paths, i.e., all partitions of P-Grid’s key space.
p(p,1) The references of peer p at level [.

o(p) The references of peer p to peers with the same path, i.e.,

the peer’s replicas.

Abbreviations
DBMS Database Management System
DDBS Distributed Database System
DHT Distributed Hash Table
GUID Globally Unique Identifier
pP2p Peer-to-Peer
PDMS Peer Data Management System
PHT Prefix-Hash-Tree
SHA Secure Hash Algorithm
TTL Time-To-Live

187

188 Symbols

Bibliography

[Abe01]

[Abe02a]

[Abe02b]

[ACK*02]

[ACMHPO4]

[ADHO4]

[ADHO5]

[ADHSO05]

Karl Aberer. P-Grid: A self-organizing access structure
for p2p information systems. In Proceedings of Sixth Inter-
national Conference on Cooperative Information Systems
(CooplS), pages 179-194, 2001.

Karl Aberer. Efficient search in unbalanced, randomized
peer-to-peer search trees. Technical Report 1C/2002/79,
Ecole Polytechnique Fédérale de Lausanne (EPFL), 2002.

Karl Aberer. Scalable data access in p2p systems using un-
balanced search trees. In Proceedings of the Fourth Work-
shop on Distributed Data and Structures (WDAS’2002),
Paris, France, March 2002.

David P. Anderson, Jeff Cobb, Eric Korpela, Matt Lebof-
sky, and Dan Werthimer. SETI@home: an experiment in
public-resource computing. Commun. ACM, 45(11):56-61,
2002.

Karl Aberer, Philippe Cudré-Mauroux, Manfred
Hauswirth, and Tim Van Pelt. Gridvine: Building
internet-scale semantic overlay networks. In International
Semantic Web Conference, pages 107-121, 2004.

Karl Aberer, Anwitaman Datta, and Manfred Hauswirth.
Efficient, self-contained handling of identity in peer-to-peer

systems. IEEE Transactions on Knowledge and Data En-
gineering, 16(7):858-869, 2004.

Karl Aberer, Anwitaman Datta, and Manfred Hauswirth.
Multifaceted simultaneous load balancing in dht-based p2p
systems: A new game with old balls and bins. Self-star
Properties in Complex Information Systems, 3460:373-391,
2005.

Karl Aberer, Anwitaman Datta, Manfred Hauswirth, and
Roman Schmidt. Indexing data-oriented overlay networks.

189

190

BIBLIOGRAPHY

[AKK*03]

[AKKO04]

[AMMHO7]

[AP03]

[AS03]

[BAS04]

[Bat01]

[BCGO5]

In Proceedings of the 31st International Conference on
Very Large Databases (VLDB), August 2005.

Marcelo Arenas, Vasiliki Kantere, Anastasios Kementsiet-
sidis, [luju Kiringa, Renée J. Miller, and John Mylopoulos.
The Hyperion project: from data integration to data coor-
dination. SIGMOD Rec., 32(3):53-58, 2003.

James Aspnes, Jonathan Kirsch, and Arvind Krishna-
murthy. Load balancing and locality in range-queriable
data structures. In Proceedings of the twenty-third annual
ACM symposium on Principles of distributed computing
(PODC ’04), pages 115-124, New York, NY, USA, 2004.
ACM Press.

Daniel J. Abadi, Adam Marcus, Samuel R. Madden, and
Kate Hollenbach. Scalable semantic web data management
using vertical partitioning. In VLDB ’07: Proceedings of
the 33rd international conference on Very large data bases,
pages 411-422. VLDB Endowment, 2007.

Karl Aberer and Magdalena Punceva. Efficient search
in structured peer-to-peer systems: Binary v.s. k-ary un-
balanced tree structures. In Proceedings of the Interna-
tional Workshop On Databases, Information Systems and
Peer-to-Peer Computing (DBISP2P), Humboldt Univer-
sity, Berlin, Germany, September 7-8 2003. Collocated
with VLDB 2003.

James Aspnes and Gauri Shah. Skip graphs. In Proceed-
ings of the fourteenth annual ACM-SIAM symposium on
Discrete algorithms (SODA ’03), pages 384-393, Philadel-
phia, PA, USA, January 2003. Society for Industrial and
Applied Mathematics.

Ashwin R. Bharambe, Mukesh Agrawal, and Srinivasan Se-
shan. Mercury: supporting scalable multi-attribute range
queries. SIGCOMM Computer Communication Review,
34(4):353-366, 2004.

Vladimir Batagelj. Pajek - program for large networks
analysis and visualization. Online, 2001. http://vlado.
fmf.uni-1j.si/pub/networks/pajek/.

Mayank Bawa, Tyson Condie, and Prasanna Ganesan.
LSH forest: self-tuning indexes for similarity search. In
Proceedings of the 14th international conference on World
Wide Web (WWW 05), pages 651-660, New York, NY,
USA, 2005. ACM Press.

BIBLIOGRAPHY 191

[BGK*02]

[BGTY3]

[Bit]

[BKadHO5]

[BKS01]

[BM72]

[BMAO7]

[BMRO4]

[BMT06]

[CCR*03]

P. Bernstein, F. Giunchiglia, A. Kementsietsidis, J. My-
lopoulos, L. Serafini, and I. Zaihrayeu. Data management
for peer-to-peer computing: A vision. In Proceedings of the
Fifth International Workshop on the Web and Databases
(WebDB ’2002), 2002.

Claude Berrou, Alain Glavieux, and Punya Thitima-
jshima. Near shannon limit error-correcting codes and
decoding: Turbo codes. In Proceedings of the IEEE In-
ternational Communications Conference, 1993.

BitTorrent website. Online. http://www.bittorrent.
org/.

Marcin Bienkowski, Miroslaw Korzeniowski, and Fried-
helm Meyer auf der Heide. Dynamic load balancing in
distributed hash tables. In Proceedings of the 4th Inter-
national Workshop on Peer-To-Peer Systems (IPTPS’05),
2005.

Stephan Borzsonyi, Donald Kossmann, and Konrad
Stocker. The skyline operator. In Proceedings of the 17th
International Conference on Data Engineering, pages 421—

430, Washington, DC, USA, 2001. IEEE Computer Soci-
ety.

Rudolf Bayer and Edward M. McCreight. Organization
and maintenance of large ordered indices. Acta Informatica
1, 1:173-189, 1972.

Nicolas Bonvin, Grégoire Montavon, and Damien Auroux.
Implementing Belief Propagation on P-Grid. Technical
Report 2008-004, EPFL, Lausanne, Switzerland, January
2007.

Danny Bickson, Dahlia Malkhi, and David Rabinowitz.
Efficient large scale content distribution. In Proceed-
ings of the Workshop on Distributed Data and Structures
(WDAS), Lausanne, Switzerland, 2004.

Matthias Bender, Sebastian Michel, Peter Triantafillou,
Gerhard Weikum, and Christian Zimmer. P2p content
search: Give the web back to the people. In Proceedings
of 5th International Workshop on Peer-to-Peer Systems

(IPTPS 2006), Santa Barbara, USA, 2006.

Brent Chun, David Culler, Timothy Roscoe, Andy Bavier,
Larry Peterson, Mike Wawrzoniak, and Mic Bowman.

192

BIBLIOGRAPHY

[CDHRO3]

[CFO4]

[CMAAO07]

[CMAFO06]

[CNP82]

[Coh00]

[CSKO04]

[CSWHOO]

Planetlab: an overlay testbed for broad-coverage ser-
vices. ACM SIGCOMM Computer Communication Re-
view, 33(3):3-12, July 2003.

Miguel Castro, Peter Druschel, Y. Charlie Hu, and Antony
I. T. Rowstron. Topology-aware routing in structured peer-
to-peer overlay networks. In Future Directions in Dis-
tributed Computing, pages 103 — 107, 2003.

Min Cai and Martin Frank. RDFPeers: a scalable dis-
tributed rdf repository based on a structured peer-to-peer
network. In Proceedings of the 13th international confer-
ence on World Wide Web (WWW °04), pages 650-657.
ACM Press, 2004.

Philippe Cudré-Mauroux, Suchit Agarwal, and Karl
Aberer. GridVine: An infrastructure for peer informa-
tion management. IEEE Internet Computing, 11(5):36-44,
2007.

Philippe Cudré-Mauroux, Karl Aberer, and Andras Feher.
Probabilistic message passing in peer data management
systems. In Proceedings of the 22nd International Confer-
ence on Data Engineering (ICDE’06), page 41, Washing-
ton, DC, USA, 2006. IEEE Computer Society.

S. Ceri, M. Negri, and G. Pelagatti. Horizontal data par-
titioning in database design. In Proceedings of the 1982
ACM SIGMOD international conference on Management
of data (SIGMOD ’82), pages 128-136, New York, NY,
USA, 1982. ACM Press.

William W. Cohen. Data integration using similarity joins
and a word-based information representation language.
ACM Transactions on Information Systems, 18(3):288-
321, 2000.

R. Chen, Krishnamoorthy Sivakumar, and Hillol Kar-
gupta. Collective mining of bayesian networks from dis-
tributed heterogeneous data. Knowledge and Information
Systems, 6(2):164-187, 2004.

Tan Clarke, Oskar Sandberg, Brandon Wiley, and
Theodore W. Hong. Freenet: A distributed anony-
mous information storage and retrieval system. In Pro-
ceedings of the International Workshop on Design Issues
in Anonymity and Unobservability, volume 2009/2001,
page 46, Berkeley, CA, USA, July 2000.

BIBLIOGRAPHY 193

[Dat91]

[DCKMO04]

[DHA03]

[DSA07]

[GAEO03]

[GBGMOA4]

[GHI*01]

[GIJ*01]

C. J. Date. An Introduction to Database Systems. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA,
1991.

Frank Dabek, Russ Cox, Frans Kaashoek, and Robert Mor-
ris. Vivaldi: A decentralized network coordinate system.
In Proceedings of ACM SIGCOMM, 2004.

Anwitaman Datta, Manfred Hauswirth, and Karl Aberer.
Updates in highly unreliable, replicated peer-to-peer sys-
tems. In Proceedings of the 23rd International Conference
on Distributed Computing Systems (ICDCS ’03), page 76,
Washington, DC, USA, 2003. IEEE Computer Society.

Anwitaman Datta, Roman Schmidt, and Karl Aberer.
Query-load balancing in structured overlays. In Proceed-
ings of the Seventh IEEE International Symposium on
Cluster Computing and the Grid (CCGRID’07), Rio de
Janeiro, Brazil, May 2007. ACM Press.

eDonkey: Unofficial protocol specification. On-
line. http://kent.dl.sourceforge.net/pdonkey/
eDonkey-protocol-0.6.2.html.

FastTrack: known parts of the protocol. Online.
http://cvs.berlios.de/cgi-bin/viewcvs.cgi/
gift-fasttrack/giFT-FastTrack/PROTOCOL?rev=
HEAD\&content-type=text/vnd.viewcvs-markup.

Abhishek Gupta, Divyakant Agrawal, and Amr El Ab-
badi. Approximate range selection queries in peer-to-peer
systems. In Proceedings of the First Biennial Conference
on Innovative Data Systems Research (CIDR 2003), Asilo-
mar, California, United States, January 2003.

Prasanna Ganesan, Mayank Bawa, and Hector Garcia-
Molina. Online balancing of range-partitioned data with
applications to peer-to-peer systems. In Proceedings of
the 30st International Conference on Very Large Databases
(VLDB), Toronto, Canada, September 2004.

Steven Gribble, Alon Halevy, Zachary Ives, Maya Rodrig,
and Dan Suciu. What can databases do for peer-to-peer?
In Proceedings of the Fourth International Workshop on
the Web and Databases (WebDB ’2001), 2001.

Luis Gravano, Panagiotis G. Ipeirotis, H. V. Jagadish, Nick
Koudas, S. Muthukrishnan, and Divesh Srivastava. Ap-
proximate string joins in a database (almost) for free. In

194

BIBLIOGRAPHY

[GKK*03]

[Gnua|

[Gnub)]

[GS05]

[H2]

[Hec95]

[HHH*02]

[HHL*03]

[HIM*04]

Proceedings of the 27th International Conference on Very
Large Data Bases (VLDB ’01), pages 491-500, San Fran-
cisco, CA, USA, 2001. Morgan Kaufmann Publishers Inc.

Phillip B. Gibbons, Brad Karp, Yan Ke, Suman Nath, and
Srinivasan Seshan. Irisnet: an architecture for a world-
wide sensor web. IEEE Pervasive Computing, 2(4):22-33,
October—December 2003.

Gnutella development forum. Online. http://groups.
yahoo.com/group/the_gdf.

Gnutella: Protocol version 0.6. Online. http:
//rfc-gnutella.sourceforge.net/src/rfc-0_
6-draft.html.

P. Brighten Godfrey and Ion Stoica. Heterogeneity and
load balance in distributed hash tables. Procceedings of
the 24th Annual Joint Conference of the IEEE Computer
and Communications Societies (INFOCOM’05), 1:596-606
vol. 1, March 2005.

H2 database engine. Online. http://www.h2database.
com/.

David Heckerman. A tutorial on learning with bayesian
networks. Technical Report MSR-TR-95-06, Microsoft Re-
search, Redmond, USA, 1995.

Matthew Harren, Joseph M. Hellerstein, Ryan Huebsch,
Boon Thau Loo, Scott Shenker, and Ion Stoica. Complex
queries in dht-based peer-to-peer networks. In Revised Pa-
pers from the First International Workshop on Peer-to-
Peer Systems (IPTPS 01), pages 242-259, London, UK,
2002. Springer-Verlag.

Ryan Huebsch, Joseph M. Hellerstein, Nick Lanham,
Boon Thau Loo, Scott Shenker, and Ion Stoica. Query-
ing the internet with pier. In Proceedings of 19th Interna-
tional Conference on Very Large Databases (VLDB ’03),
pages 321-332, Berlin, Germany, 2003.

Alon Y. Halevy, Zachary G. Ives, Jayant Madhavan, Peter
Mork, Dan Suciu, and Igor Tatarinov. The piazza peer
data management system. IFEFE Transactions on Knowl-
edge and Data Engineering, 16(7):787-798, 2004.

BIBLIOGRAPHY 195

[HIST03]

[HKO7]

[HLWY06]

[HSPMO6]

[HTT]

[LJWFMWO04]

[KaZ]
[KBCH00]

[K1e99]

[KLL*97]

Nicholas J. A. Harvey, Michael B. Jones, Stefan Saroiu,
Marvin Theimer, and Alec Wolman. Skipnet: A scal-
able overlay network with practical locality properties. In
Proceedings of the Fourth USENIX Symposium on Inter-
net Technologies and Systems (USITS ’03), Seattle, WA,
March 2003.

Manfred Hauswirth and Mark Kornfilt. Efficient process-
ing of rare queries in gnutella using a hybrid infrastruc-
ture. In Proceedings of the 5th International Workshop on
Databases, Information Systems and Peer-to-Peer Com-
puting, Vienna, Austria, September 2007.

Feng Hong, Minglu Li, Minyou Wu, and Jiadi Yu. Pchord:
Improvement on chord to achieve better routing efficiency
by exploiting proximity. IEICE - Trans. Inf. Syst., E89-
D(2):546-554, 2006.

Y. Thomas Hou, Yi Shi, Jianping Pan, and Scott F. Mid-
kiff. Maximizing the lifetime of wireless sensor networks
through optimal single-session flow routing. IFEE Trans-
actions on Mobile Computing, 5(9):1255-1266, 2006.

Http - hypertext transfer protocol. Online. http://www.
w3.org/Protocols/.

Alexander T. Ihler, III John W. Fisher, Randolph L.
Moses, and Alan S. Willsky. Nonparametric belief propaga-
tion for self-calibration in sensor networks. In Proceedings
of the Third international symposium on Information pro-
cessingin sensor networks, pages 225-233, New York, NY,
USA, 2004. ACM Press.

KaZaA website. Online. http://www.kazaa.com/.

John Kubiatowicz, David Bindel, Yan Chen, Steven Czer-
winski, Patrick Eaton, Dennis Geels, Ramakrishna Gum-
madi, Sean Rhea, Hakim Weatherspoon, Chris Wells, and
Ben Zhao. Oceanstore: an architecture for global-scale per-
sistent storage. SIGARCH Computer Architecture News,
28(5):190-201, 2000.

Jon Kleinberg. The small-world phenomenon: An algorith-
mic perspective. Technical Report 99-1776, Cornell Com-
puter Science, October 1999.

David Karger, Eric Lehman, Tom Leighton, Rina Pan-
igrahy, Matthew Levine, and Daniel Lewin. Consistent

196

BIBLIOGRAPHY

[KMS07]

[KSHS06]

[KSR*07]

[LCP*04]

[Lev66]

[LNS93]

[LNS94]

hashing and random trees: distributed caching protocols
for relieving hot spots on the world wide web. In Proceed-
ings of the twenty-ninth annual ACM symposium on The-
ory of computing (STOC ’97), pages 654663, New York,
NY, USA, 1997. ACM Press.

Marcel Karnstedt, Jessica Miiller, and Kai-Uwe Sattler.
Cost-aware skyline queries in structured overlays. In
Proceedings ICDE Workshop on Ranking in Databases
(DBRank’07), pages 285-288, Istanbul, Turkey, 2007.

Marcel Karnstedt, Kai-Uwe Sattler, Manfred Hauswirth,
and Roman Schmidt. Similarity queries on structured
data in structured overlays. In Proceedings of the 22nd
International Conference on Data Engineering Workshops
(ICDEW’06): Proceedings of the 2nd IEEE International
Workshop on Networking Meets Databases (NetDB’06),
page 32, Atlanta, GA, USA, April 2006. IEEE Computer
Society.

Marcel Karnstedt, Kai-Uwe Sattler, Martin Richtarsky,
Jessica Miiller, Manfred Hauswirth, Roman Schmidt, and
Renault John. Unistore: Querying a dht-based universal
storage. In Proceddings of the 23rd International Confer-
ence on Data Engineering (ICDE 2007), Istanbul, Turkey,
April 16-20 2007.

Eng Keong Lua, Jon Crowcroft, Marcelo Pias, Ravi
Sharma, and Steven Lim. A survey and comparison of
peer-to-peer overlay network schemes. IEEE Communica-
tions Surveys & Tutorials, 7(2):72-93, March 2004.

Vladimir Levenshtein. Binary codes capable of correcting
deletions, insertions, and reversals. Sowviet Physics Dok-
lady, 10(8):707-710, 1966.

Witold Litwin, Marie-Anne Neimat, and Donovan A.
Schneider. Lh*: Linear hashing for distributed files. In
Proceedings of the 1993 ACM SIGMOD international con-
ference on Management of data (SIGMOD ’93), pages 327—
336, New York, NY, USA, 1993. ACM.

Witold Litwin, Marie-Anne Neimat, and Donovan A.
Schneider. Rp*: A family of order preserving scalable dis-
tributed data structures. In Proceedings of the 20th In-
ternational Conference on Very Large Data Bases (VLDB
’94), pages 342-353, San Francisco, CA, USA, 1994. Mor-
gan Kaufmann Publishers Inc.

BIBLIOGRAPHY 197

[LNST04]

[Man04]

[MBN*06]

[MMO2]

[MTWO05]

[NCWDS4]

Chu Yee Liau, Wee Siong Ng, Yanfeng Shu, Stéphane Bres-
san, and Kian-Lee Tan. Efficient range queries and fast
lookup services for scalable p2p networks. In Proceedings
of the International Workshop on Databases, Information
Systems, and Peer-to-Peer Computing (DBISP2P), pages
93-106, 2004.

Gurmeet Singh Manku. Balanced binary trees for id man-
agement and load balance in distributed hash tables. In
Proceedings of the twenty-third annual ACM symposium
on Principles of distributed computing (PODC °04), pages
197-205. ACM Press, 2004.

Sebastian Michel, Matthias Bender, Nikos Ntarmos, Pe-
ter Triantafillou, Gerhard Weikum, and Christian Zimmer.
Discovering and exploiting keyword and attribute-value co-
occurrences to improve p2p routing indices. In CIKM ’06:
Proceedings of the 15th ACM international conference on
Information and knowledge management, pages 172—181,

New York, NY, USA, 2006. ACM.

Petar Maymounkov and David Mazieres. Kademlia: A
peer-to-peer information system based on the xor metric.
In In Proceedings of 1st International Workshop on Peer-
to-Peer Systems (IPTPS ’02), pages 53-65, Cambridge,
MA, USA, March 7-8 2002.

Sebastian Michel, Peter Triantafillou, and Gerhard
Weikum. Klee: a framework for distributed top-k query
algorithms. In Proceedings of the 31st international confer-
ence on Very large data bases (VLDB ’05), pages 637-648.
VLDB Endowment, 2005.

David Maier, Jeffrey D. Ullman, and Moshe Y. Vardi. On
the foundations of the universal relation model. ACM
Trans. Database Syst., 9(2):283-308, 1984.

Napster website. Online. http://www.napster.com/.

Gonzalo Navarro and Ricardo Baeza-Yates. A practical
g-gram index for text retrieval allowing errors. CLEI Elec-
tron Journal, 1(2):31-88, 1998.

Shamkant Navathe, Stefano Ceri, Gio Wiederhold, and
Jinglie Dou. Vertical partitioning algorithms for database
design. ACM Trans. Database Syst., 9(4):680-710, 1984.

198

BIBLIOGRAPHY

[NDLROO]

[NOTO02]

[NOTZ03]

[OTZ+03]

(OV91]

[PACRO02]

[Pea88]

[PGMO5]

[PLR*06]

Yakham Ndiaye, Aly Wane Diene, Witold Litwin, and
Tore Risch. Scalable distributed data structures for high-
performance databases. In Proceedings of Workshop on
Distributed Data and Structures, 2000.

Wee Siong Ng, Beng Chin Ooi, and Kian-Lee Tan. Best-
peer: A self-configurable peer-to-peer system. In Proceed-
ings of the 18th International Conference on Data En-
gineering (ICDE ’02), page 272, Washington, DC, USA,
2002. IEEE Computer Society.

Wee Siong Ng, Beng Chin Ooi., Kian-Lee Tan, and Aoying
Zhou. Peerdb: a p2p-based system for distributed data
sharing. Proceedings of the 19th International Conference
on Data Engineering (ICDE’03), pages 633—644, 5-8 March
2003.

Beng Chin Ooi, Kian-Lee Tan, Aoying Zhou, Chin Hong
Goh, Yingguang Li, Chu Yee Liau, Bo Ling, Wee Siong
Ng, Yanfeng Shu, Xiaoyu Wang, and Ming Zhang. Peerdb:
peering into personal databases. In SIGMOD ’03: Proceed-
ings of the 2003 ACM SIGMOD international conference
on Management of data, pages 659-659, New York, NY,
USA, 2003. ACM.

M. Tamer Ozsu and P. Valduriez. Principles of distributed
database systems. Prentice-Hall, Inc., Upper Saddle River,
NJ, USA, 1991.

Larry Peterson, Tom Anderson, David Culler, and Timo-
thy Roscoe. A blueprint for introducing disruptive technol-
ogy into the internet. In Proceedings of HotNets—I, Prince-
ton, New Jersey, October 2002.

Judea Pearl. Probabilistic Reasoning in Intelligent Sys-
tems: Networks of Plausible Inference. Morgan Kaufmann,
San Francisco, CA, USA, 1988.

Mark Paskin, Carlos Guestrin, and Jim McFadden. A ro-
bust architecture for distributed inference in sensor net-
works. In Proceedings of the 4th international symposium
on Information processing in sensor networks (IPSN ’05),
page 8, Piscataway, NJ, USA, 2005. IEEE Press.

Ivana Podnar, Toan Luu, Martin Rajman, Fabius Klemm,
and Karl Aberer. A Peer-to-Peer Architecture for Infor-
mation Retrieval Across Digital Library Collections. In
European conference on research and advanced technology

BIBLIOGRAPHY 199

[PM02]

[PRRO7]

[PS06]

[PSW+04]

[Pug90]

[RBO1]

[RDO1]

[REGT03]

[RFH'01]

for digital libraries (ECDL’06), Lecture Notes in Computer
Science, pages 14-25, 2006.

Vassilis Papadimos and David Maier. Mutant query
plans. Information and Software Technology, 44(4):197—
206, April 2002.

C. Greg Plaxton, Rajmohan Rajaraman, and Andréa W.
Richa. Accessing nearby copies of replicated objects in a
distributed environment. In Proceedings of the ninth an-
nual ACM symposium on Parallel algorithms and archi-
tectures (SPAA ’97), pages 311-320, New York, NY, USA,
1997. ACM Press.

Eric Prud’hommeaux and Andy Seaborne. SPARQI query
language for RDF. Online, April 2006. http://www.w3.
org/TR/rdf-sparql-query/.

Peter Pietzuch, Jeffrey Shneidman, Matt Welsh, Margo
Seltzer, and Mema Roussopoulos. Path optimization in
stream-based overlay networks. Technical Report TR26-
04, Harvard University, Cambridge, Massachusetts, 2004.

William Pugh. Skip lists: a probabilistic alternative to
balanced trees. Communications of the ACM, 33(6):668—
676, 1990.

Erhard Rahm and Philip A. Bernstein. A survey of ap-
proaches to automatic schema matching. The VLDB Jour-
nal, 10(4):334-350, 2001.

Antony Rowstron and Peter Druschel. Pastry: Scalable,
decentralized object location and routing for large-scale
peer-to-peer systems. In Proceedings of the IFIP/ACM In-
ternational Conference on Distributed Systems Platforms
(Middleware), pages 329-350, November 2001.

Sean Rhea, Patrick Eaton, Dennis Geels, Hakim Weath-
erspoon, Ben Zhao, and John Kubiatowicz. Pond: The
oceanstore prototype. In Proceedings of the 2nd USENIX
Conference on File and Storage Technologies (FAST ’03),
pages 1-14, Berkeley, CA, USA, 2003. USENIX Associa-
tion.

Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard
Karp, and Scott Schenker. A scalable content-addressable

200

BIBLIOGRAPHY

[RGRKO04]

[Rit01]

[RMO04]

[RRHS04]

[SA0G]

[SGAE04]

[SGS04]

[Sky]

network. In Proceedings of the 2001 conference on Appli-
cations, technologies, architectures, and protocols for com-
puter communications (SIGCOMM °01), pages 161-172,
New York, NY, USA, 2001. ACM Press.

Sean Rhea, Dennis Geels, Timothy Roscoe, and John Ku-
biatowicz. Handling churn in a dht. In Proceedings of the
USENIX Annual Technical Conference 2004 on USENIX
Annual Technical Conference (ATEC’04), pages 10-10,
Berkeley, CA, USA, 2004. USENIX Association.

Jordan Ritter. Why gnutella can’t scale. no, really. Online,
February 2001. http://www.cs.ucsb.edu/ ravenben/
classes/290F/papers/GnutellaScale.html.

John Risson and Tim Moors. Survey of Research
towards Robust Peer-to-Peer Networks: Search Meth-
ods. Technical Report UNSW-EE-P2P-1-1, Univer-
sity of New South Wales, Sydney, Australia, Septem-
ber 2004. http://www.ee.unsw.edu.au/ timm/pubs/
robust_p2p/submitted.pdf.

Sriram Ramabhadran, Sylvia Ratnasamy, Joseph M.
Hellerstein, and Scott Shenker. Brief announcement: Pre-
fix Hash Tree. In Proceedings of the twenty-third annual
ACM symposium on Principles of distributed computing
(PODC °04), pages 368-368, New York, NY, USA, 2004.
ACM Press.

Gleb Skobeltsyn and Karl Aberer. Distributed Cache
Table: Efficient Query-Driven Processing of Multi-Term
Queries in P2P Networks. In P2PIR, 2006.

Ozgur D. Sahin, Abhishek Gupta, Divyakant Agrawal, and
Amr El Abbadi. A peer-to-peer framework for caching
range queries. In Proceedings of the 20th International
Conference on Data Engineering (ICDE’04), page 165,
Washington, DC, USA, 2004. IEEE Computer Society.

Eike Schallehn, Ingolf Geist, and Kai-Uwe Sattler. Sup-
porting similarity operations based on approximate string
matching on the web. In Proceedings of the 12th Inter-
national Conference on Cooperative Information Systems
(CooplS °04), Agia Napa, Cyprus, 2004.

Skype website. Online. http://www.skype.com/.

BIBLIOGRAPHY 201

[SLP*07a]

[SLP*07b]

[SMK*01]

[SSDN02]

[Tra05]

[UGMWOL]

[W3(]

[Wei00]

[Wie83]

[Yam97]

Gleb Skobeltsyn, Toan Luu, Ivana Podnar Zarko, Martin
Rajman, and Karl Aberer. Query-Driven Indexing for Scal-
able Peer-to-Peer Text Retrieval. In Proceedings of the 2nd
International Conference on Scalable Information Systems
(Infoscale’07), 2007.

Gleb Skobeltsyn, Toan Luu, Ivana Podnar Zarko, Martin
Rajman, and Karl Aberer. Web Text Retrieval with a P2P
Query-Driven Index. In Proceedings of The 30th Annual
International ACM SIGIR Conference (SIGIR’07), 2007.

Ton Stoica, Robert Morris, David Karger, M. Frans
Kaashoek, and Hari Balakrishnan. Chord: A scalable peer-
to-peer lookup service for internet applications. In Proceed-
ings of the 2001 conference on Applications, technologies,
architectures, and protocols for computer communications
(SIGCOMM °01), pages 149-160, New York, NY, USA,
2001. ACM Press.

Mario Schlosser, Michael Sintek, Stefan Decker, and Wolf-
gang Nejdl. Hypercup - hypercubes, ontologies and effi-
cient search on p2p networks. In Proceedings of the First
Workshop on Agents and P2P Computing, Bologna, Italy,
July 2002.

Duc A. Tran. Hierarchical semantic overlay approach to
p2p similarity search. In Proceedings of the USENIX An-
nual Technical Conference 2005 on USENIX Annual Tech-
nical Conference (ATEC’05), pages 16-16, Berkeley, CA,
USA, 2005. USENIX Association.

Jeffrey D. Ullman, Hector Garcia-Molina, and Jennifer
Widom. Database Systems: The Complete Book. Pren-
tice Hall PTR, Upper Saddle River, NJ, USA, 2001.

W3C. Resource description framework (rdf). Online.
http://www.w3.org/RDF/.

Yair Weiss. Correctness of local probability propagation in
graphical models with loops. Neural Computation, 12(1):1-
41, 2000.

Gio C. Wiederhold. Database Design. McGraw-Hill, Inc.,
New York, NY, USA, 1983.

Kenji Yamanishi. Distributed cooperative bayesian learn-
ing strategies. In Proceedings of the tenth annual confer-
ence on Computational learning theory (COLT ’97), pages
250-262, New York, NY, USA, 1997. ACM Press.

202

BIBLIOGRAPHY

[YFWO00]

[ZHST04]

2505

[ZTZ07]

Jonathan S. Yedidia, William T. Freeman, and Yair Weiss.
Generalized belief propagation. In Advances in Neural In-

formation Processing Systems (NIPS), volume 13, pages
689-695. MIT Press, 2000.

Ben Y. Zhao, Ling Huang, Jeremy Stribling, Sean C. Rhea,
Anthony D. Joseph, and John Kubiatowicz. Tapestry: A
resilient global-scale overlay for service deployment. IEEE
Journal on Selected Areas in Communications, 22(1):41-
53, January 2004.

Jiangong Zhang and Torsten Suel. Efficient query evalu-
ation on large textual collections in a peer-to-peer envi-
ronment. In Proceedings of the Fifth IEEE International
Conference on Peer-to-Peer Computing (P2P’05), pages
225-233, Washington, DC, USA, 2005. IEEE Computer
Society.

Keping Zhao, Yufei Tao, and Shuigeng Zhou. FEfficient
top-k processing in large-scaled distributed environments.
Data Knowledge Engineering, 63(2):315-335, 2007.

203

204

CURRICULUM VITAE

CURRICULUM VITAE

Name: Roman Schmidt

Date of birth: May 18, 1977

Place of birth: Mistelbach, Austria
Languages: German, English and French

EDUCATION
Nov 03 — Aug 08

Sept 96 — Dec 02

Sept 91 — Jun 96

Ph.D., Computer Science

Distributed Information Systems Laboratory (LSIR)
Ecole Polytechnique Fédérale de Lausanne (EPFL)
Advisor: Prof. Karl Aberer

M.Sc., Computer Science

Distributed Systems Group (DSG)

Vienna University of Technology (TU Vienna)
Advisor: Prof. Mehdi Jazayeri

Polytechnic School
Industrial Engineering & Business Management
Polytechnisches Gewerbemuseum (TGM), Vienna

WORK EXPERIENCE

Nov 03 — May 08

July 03 — Nov 03

Nov 03 — May 08

Oct 97 — Oct 02

Ph.D. Student and Research Assistant
School of Computer and Communication Sciences
Ecole Polytechnique Fédérale de Lausanne (EPFL)

Research Internship
Distributed Information Systems Laboratory (LSIR)
Ecole Polytechnique Fédérale de Lausanne (EPFL)

Research Assistant
Distributed Systems Group (DSG)
Vienna University of Technology (TU Vienna)

Visual Basic Developer
WinChipo typing tutor
berthold-software, Austria

CURRICULUM VITAE 205

PUBLICATIONS

Book Chapters

e Schahram Dustdar, Harald Gall and Roman Schmidt. Web ser-
vices for Groupware. In Service-oriented Software System Engi-

neering: Challenges and Practices. Zoran Stojanovic and Ajantha
Dahanayake (Eds.), Idea Group Publishing, USA, 2004.

Journal Papers

e Karl Aberer, Anwitaman Datta, Manfred Hauswirth and Roman
Schmidt. Das P-Grid-Overlay-Netzwerk: Von einem einfachen
Prinzip zu einem komplexen System (in German). In Datenbank
Spektrum, 13, 2005, dpunkt.verlag.

e Karl Aberer, Philippe Cudré-Mauroux, Anwitaman Datta, Zoran
Despotovic, Manfred Hauswirth, Magdalena Punceva and Roman
Schmidt. P-Grid: A Self-organizing Structured P2P System. In
SIGMOD Record, 32(3), September 2003.

e Karl Aberer, Philippe Cudré-Mauroux, Anwitaman Datta, Zoran
Despotovic, Manfred Hauswirth, Magdalena Punceva, Roman
Schmidt and Jie Wu. Advanced Peer-to-Peer Networking:
The P-Grid System and its Applications. In PIK (Prazis der
Informationsverarbeitung und Kommunikation) journal, 26(3),
2003.

e Karl Aberer, Manfred Hauswirth, Magdalena Punceva and Roman
Schmidt. Improving Data Access in P2P Systems. In IEEFE Internet
Computing, 6(1), January /February 2002.

Conference Papers

e Alain Mowat, Roman Schmidt, Michael Schumacher and Ion
Constantinescu. Extending Peer-to-Peer Networks for Approximate
Search. In Proceedings of the 23rd Annual ACM Symposium on
Applied Computing, March 16 - 20, 2008, Fortaleza, Ceara, Brazil.

e Marcel Karnstedt, Kai-Uwe Sattler and Roman Schmidt. Complete-
ness Estimation of Range Queries in Structured Overlays. In Pro-
ceedings of the 7th IEEE International Conference on Peer-to-Peer
Computing, September 2-5, 2007, Galway, Ireland.

e Anwitaman Datta, Roman Schmidt and Karl Aberer. Query-load
balancing in structured overlays. In Proceedings of the 7th IEEFE
International Symposium on Cluster Computing and the Grid (CC-
GRID’07), Rio de Janeiro, Brazil, May 14-17, 2007.

206

CURRICULUM VITAE

Marcel Karnstedt, Kai-Uwe Sattler, Martin Richtarsky, Jessica
Miiller, Manfred Hauswirth, Roman Schmidt and Renault John.
UniStore: Querying a DHT-based Universal Storage (Demo paper).
In Proceedings of the 23rd International Conference on Data
Engineering (ICDE 2007), Istanbul, Turkey, April 16-20, 2007.

Roman Schmidt and Karl Aberer. Efficient Peer-to-Peer Belief
Propagation. In Proceedings of the 14th International Conference
on Cooperative Information Systems (CooplS), Montpellier, France,
November 1-3, 2006.

Marcel Karnstedt, Kai-Uwe Sattler, Manfred Hauswirth and Roman
Schmidt. Cost-Aware Processing of Similarity Queries in Structured
Overlays. In Proceedings of the 6th IEEE International Conference
on Peer-to-Peer Computing, Cambridge, UK, September 6-8, 2006.

Karl Aberer, Anwitaman Datta, Manfred Hauswirth and Roman
Schmidt. Indexing data-oriented overlay networks. In Proceedings of
the 31st International Conference on Very Large Databases (VLDB),
Trondheim, Norway, August 30 - September 2, 2005.

Anwitaman Datta, Manfred Hauswirth, Roman Schmidt, Renault
John and Karl Aberer. Range queries in trie-structured overlays.
In Proceedings of the 5th IEEE International Conference on Peer-
to-Peer Computing, August 31 - September 2, 2005, Konstanz, Ger-
many.

Schahram Dustdar, Harald Gall and Roman Schmidt. Web Ser-
vices for Groupware in Distributed and Mobile Collaboration. In
Proceedings of the 12th IEEE Furomicro Conference on Parallel,
Distributed and Network based Processing (PDP 2004), A Coruna -
Spain, February, 11-13, 2004, IEEE Computer Society Press.

Workshop Papers

e Marcel Karnstedt, Kai-Uwe Sattler, Manfred Hauswirth,

Brahmananda Sapkota and Roman Schmidt. A DHT-based
Infrastructure for Ad-hoc Integration and Querying of Semantic
Data. In Proceedings of the International Database Engineering and
Applications Symposium (IDEAS’08), September, 2008, Miinster,
Germany.

Marcel Karnstedt, Kai-Uwe Sattler, Manfred Hauswirth and Ro-
man Schmidt. Similarity Queries on Structured Data in Structured
Overlays. In Proceedings of the 2nd IEEE International Workshop
on Networking Meets Databases (NetDB’06), in cooperation with

CURRICULUM VITAE 207

22nd IEEE Conference on Data Engineering (ICDE 2006), April 3,
2006, Atlanta, GA, USA.

e Manfred Hauswirth and Roman Schmidt. An overlay network for
resource discovery in Grids. In Proceedings of the 2nd International
Workshop on Grid and Peer-to-Peer Computing Impacts on Large
Scale Heterogeneous Distributed Database Systems (GLOBE’05), in
conjunction with the 16th International Conference on Database and
Expert Systems Applications (DEXA 2005), 22 - 26 August, 2005,
Copenhagen, Denmark.

TEACHING

Teaching Assistant for the Distributed Information Systems course,
EPFL, M.Sc. program in Communication Systems, Fall 2006 &
2007.

Teaching Assistant for the Conception of Information Systems course,
EPFL, M.Sc. program in Communication Systems, Spring 2004 &
2005.

Teaching Assistant for the Introduction to Information Systems
course, EPFL, M.Sc. program in Communication Systems, Spring
2004.

SCHOLARSHIPS

e Forderungsstipendium, Vienna University of Technology, 2001.

e Top Stipendium, Lower Austrian State Academy, 2001.

