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Résumé

L’impact des réseaux Pair-a-Pair (i.e., Peer-to-Peer ou P2P) sur I'ensemble
de I'Internet est indiscutable. Ces systémes ont engendré une série de
nouvelles applications, par exemple au sein du nouvellement nommé Web
2.0. Le glissement du modele classique client-serveur de 'Internet, avec
sa distinction marquée entre fournisseurs de contenu et consommateurs,
vers un paradigme d’échange d’information entre consommateurs aboutit
a avenement du paradigme P2P. Les environnements distribués perme-
ttent aux utilisateurs de partager leur contenu de maniére autonome et
locale, i.e., leurs informations restent stockées sur des ordinateurs en pé-
riphérie de I'Internet, plutot que d’étre rassemblées et organisées sur des
serveurs centraux. Les réseaux structurés logiques (structured overlay
networks) furent créés dans le but d’organiser I’énorme masse de données
partagées dans les réseaux P2P en construisant un index global, quoique
distribué. Bien que le but initial de ces systemes fat de fournir des mé-
canismes de recherche par mot-clé, le besoin de supporter des opérations
plus complexes émergea rapidement. Les systemes de gestion de données
pair-a-pair (Peer Data Management Systems ou PDMS) représentent un
bon exemple d’applications construites sur des réseaux logiques structurés
et supportant des mécanismes d’intégration de données et de traitement
de requétes complexes, similaires & ceux offerts par les bases de données
distribuées.

Les requétes complexes requierent typiquement des acces conjoints
a de multiples données, alors que les recherches par mot-clé n’affectent
habituellement qu’une seule entrée. Le partitionnement de I'index réparti
des réseaux logiques structurés est optimisé pour les recherches de clés
uniques, alors que les acces conjoints comme ceux requis par les PDMS
ont été négligés jusqu’ici. Les bases de données distribuées ont démontré
par le passé que le support d’acces conjoints a de multiples données est
nécessaire et crucial afin de permettre des traitements de données efficaces
minimisant les ressources réseau. Notre but est d’appliquer cette idée aux
réseaux logiques structurés en regroupant les données utilisées conjointe-
ment par les applications, notamment pour les PDMS mais aussi pour
d’autres types d’applications.

Les corrélations entre données peuvent étre dérivées a partir de di-
verses sources de données, de processus, d’utilisateurs ou d’applications.
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Nous présentons dans cette these des solutions pour trois types de corréla-
tions différentes, et ce dans divers contextes : (i) pour les requétes & inter-
valle, ou I'exploitation de 'ordonnancement des données est fondamental
pour tout traitement de données ; (ii) pour l'inférence probabilistique
distribuée, ou I'exploitation de corrélations complexes entre les données
provenant de différents utilisateurs gagne en importance dans le contexte
du Web 2.0 ; (iii) pour les requétes multi-termes, ou 'exploitation des
corrélations entre données, dérivées des statistiques d’acces, fournit aux
utilisateurs des mécanismes de recherches par mot-clé simples mais ef-
ficaces. Notre approche exploite différentes propriétés intrinséques aux
réseaux logiques structurés, comme les techniques de hachage préservant
I’ordonnancement afin de supporter efficacement les requétes a intervalle.
De plus, nous introduisons un algorithme de clusterisation distribué basé
sur des techniques de relaxation de ressorts pour regrouper les données
fortement corrélées autour d’un seul nceud. Les acces conjoints sont ainsi
résolus sur un seul noceud, ou sur un faible nombre de noeuds, afin de réduire
I'utilisation de la bande passante et de ce fait accroitre les performances
du systeme.

Notre approche a été implémentée dans le réseau logique structuré
P-Grid, bien qu’elle soit suffisamment générique pour étre appliquée a
d’autres réseaux P2P jouissant de propriétés similaires. Cette these in-
clut une description détaillée de I'implémentation Java de P-Grid, de son
architecture, et de son évaluation utilisant PlanetLab, la plateforme de
tests devenue standard pour les systemes P2P. Enfin, 'implémentation
Java de P-Grid nous permet de construire un systéme PDMS se basant
sur les résolutions de requétes optimisées de P-Grid. Nous présentons
UniStore, un systeme de gestion de données distribué orienté vers la ges-
tion de données publiques et supportant des opérations sur des bases de
données hétérogenes, ainsi que son évaluation sur PlanetLab.

Mots-clés: Systemes pair-a-pair, réseaux logiques structurés, corréla-
tions de données, systemes de gestion de données pair-a-pair.
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Abstract

The impact of Peer-to-Peer (P2P) networks on the Internet landscape is
undisputed. It has led to a series of new applications, e.g., as part of the so-
called Web 2.0. The shift from the classical client-server based paradigm
of the Internet, with a clear distinction between information providers and
consumers, towards consumers sharing information among each other led
to the rise of the P2P paradigm. The distributed setting enables users
to share their content autonomously and locally, i.e, information remains
at computers at the edge of the Internet and is not gathered and orga-
nized at central servers. Structured overlay networks were designed to
organize the huge quantity of data shared in P2P networks by building
a global, though distributed, index of shared information. Whereas the
initial aim of these systems was to provide efficient lookup operations for
single keyword operations, the need for more complex operations emerged
very quickly. Peer Data Management Systems (PDMS) is one such ex-
ample of application that enables data integration and complex query
processing similar to (distributed) database systems on top of structured
overlays.

Complex query operators usually require joint access to multiple data
entries whereas single key lookups usually only affect a single data entry.
The partitioning of the distributed index of standard structured overlays is
optimized towards single key lookups and joint data access as required by
PDMS was neglected so far. (Distributed) databases have already shown
that (index-)data organization supporting correlated data access is nec-
essary and crucial for efficient processing, as network usage is minimized.
We aim at applying this insight to structured overlays by clustering cor-
related data frequently accessed jointly by applications, including PDMS
but also other types of applications.

Data correlations can be derived from different sources, data proper-
ties, processing properties, users and applications. We study and present
solutions for three different types of correlations in the context of different
applications: (i) range queries where exploiting the order relationship of
data is a fundamental basis for any database-like system; (ii) distributed
probabilistic inference where exploiting user-defined complex data corre-
lations gains importance through the Web 2.0; (iii) multi-term queries
where exploiting data correlations derived from data access statistics en-



ables simple but powerful keyword search to users. Our approach exploits
properties of structured overlays, such as order-preserving hashing, to re-
alize efficient range query processing. We further introduce a distributed
clustering algorithm based on the spring relaxation technique to cluster
strongly correlated data entries at one node respectively in its proximity.
Joint data access is thus performed on a single or few nodes to reduce
network bandwidth consumption and therefore to increase system perfor-
mance.

Our approaches are realized on top of the structured overlay network
P-Grid although they are generic enough to be applied to other P2P net-
works with similar properties. This thesis presents details about the Java
implementation of P-Grid, its architectural design and its evaluation on
PlanetLab, today’s standard testbed for P2P systems. The implementa-
tion of P-Grid in a Java application finally enabled us to build a PDMS
system on top relying on P-Grid’s efficient query processing. We present
the UniStore system, a distributed data management system aiming at
public data management and support for database-like query operators
on heterogeneous data, and its evaluation on PlanetLab.

Keywords: peer-to-peer systems, structured overlay networks, data cor-
relations, peer data management systems.
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Chapter 1

Introduction

The Internet is nowadays part of our daily life and omnipresent at business
and free time. We use it to communicate with friends and colleagues via
email, we read the daily news on websites of our favorite newspapers
and we inquire about products we consider to buy, compare prices and
functionalities on company websites. These services basically represent
the core Internet as it was established at its foundation, following the
classical client-server paradigm where institutions provide information and
services on servers and consumers act as clients. In the last years, this
rigid regime was broken up by new technologies and service providers
bringing users into the role of information providers. This evolution of the
Internet is often referred as part of the “Web 2.0”. Web 2.0 includes other
important developments such as the Semantic Web aiming at meaningful
access to Web data.

The most important new technology in the era of the Web 2.0 are
Peer-to-Peer (P2P) systems. This is highlighted by the fact that P2P sys-
tems are the leader of overall bandwidth consumption on the Internet for
several years already, consuming approximately 74% percent last year!.
P2P systems enable users to directly share data with other users overcom-
ing the need of expensive central infrastructure for services. The second
big advantage of the P2P technology is that these systems do not have
and require an administrator, meaning that any content can be shared by
any user at all time. This freedom has to be paid by P2P system users as
they have to remain online to share their resources with the community
and to build and maintain the system. The P2P system itself is respon-
sible to organize the shared data and provide the required functionalities
to discover and download shared content. First-generation P2P systems
formed loosely coupled unstructured networks of peers where queries by
users were resolved by simple message broadcasts. This approach was as
successful as simple and used by the first well-know P2P systems such as

http://www.ipoque.com/news_&_events/internet_studies/internet_study_
2007



2 Chapter 1: Introduction

Gnutella. Technical problems emerged with a growing number of peers
and users in the P2P population unveiling scalability limitations in terms
of bandwidth consumption, network maintenance and query processing
capabilities. The second generation P2P systems introduced the concept
of structured overlay networks and addressed these limitiations by intro-
ducing distributed search structures. The basic idea in structured overlay
networks is to organize the shared data in a distributed index. The index
itself is maintained by peers in the P2P system and enables efficient lookup
of all shared data. Maintenance algorithms ensure the consistency of the
index and thus reliable data access independent of peer availabilities. In a
structured overlay network a hash function is used to map resources and
peer IP addresses into a common application-specific identifier space and
to bind resources to peers such that peers are responsible for data items
with similar hash keys. The hash keys are randomly generated in a way
that guarantees that two different data items are mapped to the same
hash key only with very small probability.

Distributed Hash Tables (DHT) are one variant of structured overlay
networks implementing this idea using a uniform random hash function.
The use of a uniform random hash function implies that in general data
items are relatively uniformly distributed over peers. A drawback is that
relationships among data items are not maintained by the hash function,
i.e., related data items are in general mapped to non-similar hash keys.
This implies in a distributed setting that related data items are in gen-
eral not stored at the same or nearby peers as peers are responsible for a
short range of similar keys in the hashed key space. As a result any lookup
operation beyond single key lookups will therefore lead to potentially inef-
ficient multiple lookup operations involving multiple peers. Thus, a DHT
is a solution tailored towards efficient exact key lookups.

Exact key lookups as provided by DHTs are an important way to
quickly and efficiently access data in a data management system. But
also more complex search predicates are required and provided by such
systems. This requires additional access structures depending on the sup-
ported query types. For example, range queries are frequently required
for structured data access. Obviously a hash table is not an efficient data
structure for this type of query as data from a given range is scattered over
potentially many peers. Therefore, as alternative, some structured over-
lay networks consider the use of order-preserving hash functions to build
the distributed index. As a result the order of data items is maintained by
the hash function and can be exploited during lookups to support more
complex search predicates, e.g., range queries. On the downside such an
overlay network has to take care of storage load balancing as large data
sets can be mapped to a relatively small key range possibly overloading
peers in this region, a problem that is avoided when using uniform random
hash functions. P2P systems using order-preserving hashing require there-
fore additional mechanisms to balance the peer distribution with respect
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to the distribution of keys generated from data items. In the following
section we will provide an overview of the issues and solution strategies
that have been explored to enable more complex data access functionali-
ties in data-oriented P2P systems, starting from a historical overview of
related works in database systems.

1.1 Data Oriented P2P Systems

A database is a collection of structured information organized in such a
way that a computer program can quickly select desired pieces of data.
The data is stored in a persistent way, e.g., on a hard disk. A database
management system (DBMS) is a complex set of software programs that
controls the organization, storage, management, and retrieval of data in
a database. A DBMS allows users to create new databases and spec-
ify their schema (logical structure of data), using a data-definition lan-
guage (DDL) [UGMWO1]. Additionally, a Data Manipulation Language
(DML) can then be used to retrieve, insert, delete and update data in
a database. The database query language supports users with various
operators to access and retrieve data in the database. To speedup data
retrieval, databases index stored data and restructure the physical store
accordingly. A query optimizer is then responsible for choosing the best
access path to access requested data on the disk. An access path refers to
the data structures and the algorithms that are used to access the data.
Indexes can be used in essentially two different ways. First, they can
be used for sequential access to the indexed file — here sequential means
Sin the sequence defined by values of the indexed field. Second, indexes
can be used for direct access to individual records in the indexed file on
the basis of a given value for the indexed field [Dat91]. Indexes can be
implemented using a variety of data structures, the most popular ones
are B-trees [BM72] and hash indexes. A B-tree is a particular type of
tree-structured index storing sorted data for efficient retrieval in a block-
oriented storage context. B-trees are therefore efficient for sequential data
access as, for example, required by range queries and scans. Hash index
is a technique for providing fast direct access to a specific record on the
basis of a given value for some field. Therefore, the primary operation it
supports efficiently is a lookup: given a key (e.g., a person’s name), find
the corresponding value (e.g. that person’s telephone number).

[OV91] defines a distributed database as a collection of multiple, logi-
cally interrelated databases distributed over a computer network. To form
a DDBS, files should not only be logically related but there should also
be structure among the files, and access should be via a common inter-
face. A distributed database management system (distributed DBMS)
is then defined as the software system that permits the management of
the distributed database and makes the distribution transparent to the
users. In a distributed DBMS, the relations in a database schema are
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usually decomposed into smaller fragments which might be allocated to
different sites. There are two alternatives for this fragmentation, hori-
zontally [CNP82] and vertically [NCWD84] (and using both in a hybrid
fashion). In both cases user applications are analyzed for, at least, their
most important query predicates ([Wie83] has shown that the most active
20% of user queries account for 80% of the total data access). The dis-
tributed DBMS therefore maintains joint access statistics of attributes and
their frequencies by user queries. For example, vertical partitioning uses
an attribute affinity matrix to represent joint access. This matrix is fur-
ther used for the fragmentation process by clustering together attributes
with high affinity. This process is usually done by a central control unit
administering the distributed database and having complete knowledge
on the system, or this knowledge is globally available at all nodes, i.e., the
DBMS is aware of the partitioning schema and can access the partitioned
data directly at successive requests (user queries).

Attempts to overcome the limitation of centralized maintenance were
presented in [NDLROO] introducing Scalable Distributed Data Structures
(SDDS). The data of an SDDS are partitioned for storage over several
servers and SDDS scales transparently for the application to potentially
any number of sites. Data access does not require any centralized direc-
tory but information on the location of data partitions is eventually dis-
tributed over all servers. The partitioning and access scheme depends on
the used SDDS. The LH* scheme [LNS93] provides a scalable distributed
linear hash partitioning for direct access while the RP* scheme [LNS94]
provides scalable distributed range partitioning for parallel range scans.
Structured overlay networks go one step further and provide a fully dis-
tributed access structure to shared resources using a distributed index
without requiring global knowledge at nodes on data partitions in or-
der to maintain scalability with very large numbers of peers. Structured
overlays partition data horizontally based on hashed resource identifiers
derived from data item properties. Furthermore they deal with the un-
reliability of peers by providing sophisticated maintenance algorithms.
Data partitioning and load balancing are performed in structured overlay
networks without exploiting global knowledge on the network and statis-
tical information on data distribution and query access as it is typically
exploited in distributed databases. Structured overlay networks can be
classified in two types of approaches: distributed hash tables and order
preserving structured overlay networks. A Distributed Hash Table (DHT)
such as Chord [SMK™'01], Pastry [RD01] and CAN [RFH'01] is analogous
to an hash index in a database system enabling efficient exact key lookups
as known from databases. Overlay networks using order-preserving hash-
ing such as Mercury [BAS04], SkipNet [HJST03] and P-Grid [Abe01] are
analogous to a tree-structured index such as a B-tree supporting efficient
range scans.

The first works considering more complex database functionalities for
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P2P systems were[GHIT01] and [BGKT02]. [GHI*01] focuses on the prob-
lem of data placement, i.e., how to distribute data and workload so that
cost is optimized under the existing resource and bandwidth constraints.
[BGK™02] on the other hand focuses on the problem of data integration,
i.e., supporting mappings between P2P databases using different vocabu-
laries to express the same real-world concepts in order to enable query re-
formulation and answering. Both works have initiated many further works
on Peer Data Management Systems (PDMS) such as Piazza [HIM™04]
(initiated by [GHIT01]), Hyperion [AKKT03] (initiated by [BGK™02]),
PIER [HHH*02, HHL 03] and GridVine [ACMHP04, CMAAO07].

Today the notion of PDMS relates mainly to distributed data inte-
gration systems providing transparent access to heterogeneous databases
without resorting to a centralized logical schema and focus on the problem
of data integration, schema mappings and query reformulation. PDMS are
composed by autonomous databases using local schemas which have to be
mapped to each other to enable distributed query processing. This further
has to be achieved in a distributed fashion as no central coordination and
knowledge is assumed to be available. GridVine [ACMHP04, CMAAO07],
for example, uses pair-wise schema mappings and query reformulation to
form a semantic mediation layer on top of a structured overlay connecting
heterogeneous databases. User defined schema mappings are validated by
a distributed message passing scheme to automatically detect erroneous
mappings [CMAF06]. Piazza [HIMT04] has similar goals as GridVine. It
uses a mapping language for mapping between sets of XML source nodes
with different document structures (including those with XML serializa-
tions of RDF). The system uses the transitive closure of mappings to
answer queries and is able to follow mappings in both forward and reverse
directions. RDFPeers [CF04] is a scalable and distributed RDF triple
repository and self-organizes peers into a multi-attribute addressable net-
work (MAAN) which extends Chord to efficiently answer multi-attribute
and range queries. The system’s query processing capabilities are very
similar to the ones of GridVine as it supports triple pattern queries, dis-
junctive and range queries and conjunctive multi-predicate queries using
RDQL. The recent rise of triple-based data models such as RDF [W3C]
led to several examples where structured overlays support vertical parti-
tioning of databases [CF04, KSHS06]. Proper partitioning strategies for
triple-based data are also the focus of research for Semantic Web data
management with centralized DBMS [AMMHO7].

PIER [HHH'02, HHL" 03] has a slightly different focus on P2P data
management supporting Internet-scale querying. It is built on top of the
Bamboo DHT [RGRKO04], aiming for large-scale data and peer distribu-
tion beyond the usual scale of distributed databases. It supports mas-
sively distributed, database-style data-flows for snapshot and continuous
queries as known from distributed DBMS. PIER provides a full degree of
data independence, including a relational data model, and a full suite of
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relational query operators and indexing facilities that can manipulate data
without regard to its location on the network. PIER maintains several
different index structures to speedup query operations executed by query
plans passed along peers in the system. PIER’s query operators are very
similar to those offered by traditional (distributed) database systems.

Other approaches to P2P query processing are PeerDB [NOTZ03,
OTZ703] and IrisNet [GKKT03]. PeerDB is a database application im-
plemented on top of BestPeer [NOT02] enabling SQL query processing on
heterogeneous databases. Schema relations are annotated with descrip-
tions and keywords used during a two-phase query processing strategy
to select candidate relations in the first phase, before a query is finally
submitted to promising peers. BestPeer can be reconfigured accordingly
to keep promising peers in the proximity to reduce network costs. The
IrisNet system uses a hierarchical data model (XML) and a hierarchical
network overlay (DNS) to route queries and data. As a result, IrisNet
shares the characteristics of traditional hierarchical databases: it is best
used in scenarios where the hierarchy changes infrequently, and the queries
match the hierarchy.

P2P data management systems such as PIER and GridVine rely heav-
ily on the availability of structured overlay networks to achieve Internet
scalability. As we have further seen, structured overlay networks, in par-
ticular DHT's, were mainly designed for supporting efficient exact key
lookups. Efficient range scans are supported by those structured overlay
networks using order-preserving hashing. Beyond that, little attention
has been devoted so far to the implications of the data access patterns in
structured overlay networks induced by P2P data management systems
and the influence on data processing performance. In particular different
forms of correlations among data items implied by data access patterns
have so far not been considered in the design and use of structured overlay
networks. This thesis studies the problem of considering joint data access
on correlated data in structured overlays and provides novel solutions for
optimizing fragmentation/partitioning of the distributed access structure
and algorithms using the distributed access structure to reduce network
utilization. We therefore discuss now in more detail the issues on accessing
correlated data in structured overlay networks.

1.2 On Correlated Data

P2P applications, such as peer data management systems, frequently use
structured overlay networks as distributed index to efficiently access data.
Access is not only limited to single data entries, e.g., for retrieving an
entry by its identifier, but can involve a set of data entries. Joint access
to data entries induces a correlation relationship among data entries. The
strength of the correlation among a set of data entries corresponds to the
probability that those data entries are accessed jointly by an application.
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In a distributed system data is distributed over different nodes and
data access implies consumption of network resources to retrieve data en-
tries. Joint data access to a set of data entries can therefore require to
access multiple nodes to retrieve them all. The number of nodes required
to access depends on the distribution of the data in the network. Net-
work access is still the most expensive resource in distributed systems
and an important design goal in distributed systems is thus to minimize
bandwidth consumption and reduce communication latency. In the case
of joint data access this implies in particular that the number of nodes
accessed when retrieving a set of data entries should be minimized. This
can in particular be achieved if correlated data, i.e., data that is pro-
cessed frequently jointly, is stored at the same or nearby nodes. In order
to achieve this goal existing data correlations to estimate joint data access
of applications need to be exploited when partitioning data among nodes.

Data correlations can be obtained in several ways. First, correlations
can be derived from inherent properties of the data domains, in particular
from known relationships among different data values. The knowledge of
the nature of the relationship and the possible types of queries allows to
derive that certain sets of data entries are more likely to be jointly accessed
than others. A simple example of such a data value property is the order
relationship among data values in an ordered domain. Since structured
query languages support range queries, neighboring data values are likely
to be jointly accessed and therefore should be stored together. Another
example of this type are similarity relationships among text data values.
Since queries typically retrieve the most similar text values to a given
query text it is advantageous to jointly store similar text values.

Secondly, data correlations can be derived from relationships among
data entries which are explicitly represented in the database. Such re-
lationships are particularly rich in PDMS as data is provided and main-
tained by a community of users integrating and relating heterogeneous
information to common knowledge. Examples of such relationships are
schema mappings in PDMS, relating a local schema to other schemas in
the system, and Friend-of-a-Friend (FOAF) networks relating persons and
documents in the Semantic Web. The Semantic Web and itOs modeling
languages enable to define a variety of relationships with the aim to sup-
port their automated processing. In this context we find new types of
relationships which go beyond standard structured data representation,
for example distributed probabilistic inference networks. For performing
probabilistic inference, inference algorithms require access to the inference
network. Due to the nature of these algorithms neighboring data entries
in the probabilistic inference network have a higher probability to be ac-
cessed jointly during inference inducing higher correlation of data access
amongst them.

Finally, joint access statistics can be used to obtain data correlations
between data entries. A system can monitor queries and their predicates
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to identify access patterns of applications. These can be maintained in
access statistics which are used to derive data correlations for frequently
jointly accessed data entries. An example for such a correlated data access
are multi-term queries, i.e., queries for multiple keywords. Multi-term
queries access all data entries matching all/any keywords and therefore
induce a data correlation among frequently jointly queried keywords and
their corresponding data entries.

Different sources of information on data correlation can also be com-
bined. For example, joint access statistics can be further refined with data
correlations derived from the order relationship of data values. While the
order relationship enables to estimate joint access, statistics can highlight
frequently queried ranges and therefore refine data placement.

1.3 Scope of Research

In this thesis, we investigate the problem of optimizing joint data ac-
cess in structured overlay networks. We present algorithms to partition
the distributed index of overlay networks among nodes exploiting data
correlations. We derive and use data correlations from data properties,
properties of data processing algorithms and joint access statistics of ap-
plications. We present for each of these cases a concrete example of a
problem based on a data processing problem in structured overlay net-
works. The common objective of all solutions is to cluster correlated data
on nodes to reduce communication cost for joint access as required by the
specific applications.

For concrete description of our solutions and implementation we rely
on P-Grid, a structured overlay network using order-preserving hashing,
although our findings can be generalized to other systems with similar
properties as discussed for each presented solution in the correspond-
ing chapter. We describe the implementation and evaluation of our ap-
proaches into the P-Grid system, and show how a peer data management
system can be built on top of our work.

1.4 Outline of the Thesis and Contributions

This document is divided into three parts. The first part, Fundamentals,
provides an overview of P2P systems and a more detailed description of
P-Grid basics we use in the remainder of this thesis. Access of Correlated
Data, the second part, presents algorithms to efficiently partition the dis-
tributed index of correlated data to improve joint access to it. The third
part, From Theory to Practice, shows how some of these algorithms are
realized in a Java application and finally used by a peer data management
system to ensure scalability, reliability and efficiency.
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Part I: Fundamentals

This thesis starts with an overview of the best-known P2P systems in
Chapter 2. In our overview we focus on structured overlay networks and
their way of data placement, i.e., how data is partitioned among peers
and how data correlations are considered during this process. We further
present PlanetLab, a distributed P2P system testbed which is used to
evaluate some of our approaches and implementations. The first part
finishes with a more detailed description of the structured overlay network
P-Grid in Chapter 3. The algorithms we present in the second part of this
thesis are based on P-Grid.
The main contributions of this part are:

e a detailed survey of the most popular structured overlay networks
and a discussion of their way to consider data correlations

e a precise overview of P-Grid basics including its structure, search
algorithm, hash function and construction

Part II: Access of Correlated Data

Chapter 4 presents two algorithms suitable for P-Grid to efficiently re-
solve range queries in a structured overlay. Range queries rely on the
order relationship which can be derived from data properties. Although
the algorithms were designed for P-Grid, they are also suitable for other
structured overlays with similar properties. The next chapter, Chapter 5
targets the problem of more complex data correlations provided by users
and /or applications. We consider data correlations derived from proba-
bilistic inference networks, e.g., to perform reasoning in the domain of the
Semantic Web. While range queries are naturally supported by P-Grid,
this type of data correlations requires an additional index re-partitioning
algorithm to improve joint data access. Our approach is based on the
spring relaxation technique enabling distributed clustering by autonomous
peers. The last Chapter 6 tackles the problem of data correlations de-
rived from access statistics induced by applications. Structured overlay
networks were originally designed for efficient single-term lookups given a
single key. We propose to apply our spring relaxation algorithm already
used in Chapter 5 to improve lookup efficiency in case more than one key-
word is present. Our aim is to cluster frequently jointly queried keywords
together to reduce network communication and thereby joint data access.
The main contributions of this part are:

e an approach for range query processing in structured overlay net-
works

e an algorithm to estimate the number of replies by range queries
together with a completeness estimation during range query pro-
cessing
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e a decentralized clustering algorithm for multi-dimensional correla-
tion graphs on top of structured overlay networks

e an architecture for distributed inference on Bayesian networks on
top of structured overlay networks

e an approach to efficiently support multi-term queries in structured
overlay networks

Part III: From Theory to Practice

The previous part presented algorithms and their analytical and practical
evaluation based on simulations and an implementation of the P-Grid sys-
tem. This part presents details about the P-Grid system itself. Chapter 7
presents the architectural design and provides a high-level overview of
our system. P-Grid’s implementation is divided into two parts, a routing
layer and an indexing layer, which both have a defined API for applica-
tions. Our intention was to provide a P-Grid independent API for P2P
systems which can be used by other P2P system developers at will. In-
teraction diagrams show how these two layers interact and how data can
be inserted and queried by applications. Chapter 8 provides details about
the Java implementation following the architectural design. The code is
divided into several packages and sub-packages of which the most impor-
tant classes are described briefly. Finally, we present an evaluation of
P-Grid’s unique bootstrapping capabilities and a query load balancing
solution representative for the enhancements implemented in the course
of this thesis. The last chapter of this thesis presents an application based
on P-Grid and benefiting from the designed and implemented algorithms
in P-Grid. Chapter 9 presents UniStore a large-scaled but still light-
weight distributed data management system on top of P-Grid. The main
motivation for UniStore is the idea of public data management, where a
large amount of independent users provide and/or look for information
structured in any conceivable way. The focus of UniStore lies on efficient
query processing, which involves the choice of distributed indexes, cost-
based optimizations and the application of Multiple Mutating Query Plans
(M2QP). We present UniStore’s approach to efficiently process similarity
queries on top of P-Grid and provide a PlanetLab evaluation of various
similarity operators.
The main contributions of this part are:

e an extensible two-layered architecture for P-Grid enabling applica-
tions to tailor P-Grid’s behavior towards application-specific needs

e a high-level overview of P-Grid’s implementation, its main compo-
nents and services and their internal interaction

e a stable API for P2P systems enabling applications to interchange
the underlying P2P system implementation at will
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e an overview of P-Grid’s Java implementation listing all packages
and their core classes and functionalities

e a simple though effective way of query load balancing implemented
and tested on PlanetLab

e an overview of the UniStore application based on P-Grid including
its architecture and query language

e an approach to efficiently process string similarity queries in struc-
tured overlays
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Chapter 2

Peer-to-Peer Systems

The concept of Peer-to-Peer (P2P) systems is to share resources such as
data, storage, CPU and bandwidth in a cooperative way. Peers provide
a small fraction of their resources to build a distributed system of larger
capacity than any of the peers alone would be able to provide. As a result,
the system is able to provide better scalability for their services than a
centralized solution. All peers are treated equally and autonomously, i.e.,
no central coordinator is in control of other peers.

The most common service provided by current P2P systems is the dis-
tributed management of large sets of files. Examples are the well-known
file-sharing networks where individual autonomous users collaborate to
share their files. The data is provided by the users and remains under
their control. This paradigm is recently more and more adopted by so-
called peer data management systems aiming at providing Internet-scale
database systems supported by autonomous users. The functionalities of-
fered by these new P2P systems go beyond simple file-sharing applications
and aim at advanced services like distributed query processing and data
integration.

This chapter briefly presents the history of P2P systems and their
evolution over the last years resulting in a variety of systems adjusted for
different needs of applications. We then present the most well-known P2P
systems and discuss their differences with a focus on how these systems
organize shared data and exploit data correlations.

2.1 A Short History

The history of P2P systems in the Internet is not even 10 years old but
their impact was noticeable from the beginning on and their success is
nowadays undisputed. The development started with the Napster [Nap]
system released June 1, 1999 and used by millions of users all over the
world to share music files. The concept was so simple and the system so
easy to use that its success caused its shutdown already two years later

15
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by injunction for facilitating the transfer of copyrighted material. From
that point on, P2P was mainly associated by the public with pirate-to-
pirate although P2P systems were used in earlier days by the scientific
community, e.g., Seti@Home [ACK102], almost unnoticed by the public
though. But the financial impact of Napster on the music industry and
its attention in the global news caused the breakthrough for P2P on the
Internet leading to a variety of P2P applications nowadays used by almost
every Internet user.

The variety of applications also strongly influenced the evolution of
P2P systems as new applications had new requirements on data process-
ing leading to new infrastructures and designs. Napster had a central
server to index all shared files which was soon recognized as single-point
of failure and bottleneck for P2P systems as data was only processed at
the central server. Later systems were aiming at complete decentralization
of data processing lacking any central coordination. These fully decentral-
ized networks can be categorized in unstructured and structured overlay
networks. The most successful unstructured overlay is the file-sharing net-
work Gnutella [Gnua]. Its decentralization and simplicity still guarantees
its survival although several protocol revisions have already been imple-
mented. For example, Gnutella introduced the concept of SuperPeers, a
hierarchical overlay of inter-connected peers (SuperPeers) responsible for
query routing and “normal” peers connecting to SuperPeers. This hierar-
chical architecture was later adopted by many other overlay systems, e.g.,
KaZaA [KaZ]. Nowadays, P2P systems are omnipresent in our daily life
and responsible for almost three-fourths of todays’ Internet traffic!. Most
modern systems are based on structured and /or hierarchical overlays. The
most popular P2P systems nowadays are BitTorrent [Bit] and Skype [Sky].
BitTorrent is a file-sharing network enabling fast downloads of large files
by splitting files in smaller chunks and downloading them from multiple
nodes in parallel. Skype is a distributed Voice over IP (VoIP) application
allowing users to communicate (audio-visually) over the Internet. Skype
currently counts approximately 276 million users with already 100 billion
call-minutes, according to Skype.

2.2 The Concept of Data Fragmentation

The idea of partitioning data and distributing it among several peers
is not new and was already introduced in the area of distributed
databases [OV91]. The main difference between distributed database sys-
tems and P2P systems is the autonomy of peers. Nodes in a distributed
database are under the control of a central database management system
(DBMS) organizing the storage devices located in the same physical

"http://www.ipoque.com/news_&_events/internet_studies/internet_study_
2007
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location or distributed over a network of interconnected computers. The
data stored in the database is fragmented/partitioned and distributed
across the multiple physical locations in the network, while under the
control of the central coordinator. Database nodes get assigned a
partition of the data they are responsible for. Like in P2P systems, data
can be replicated to increase reliability and fault-tolerance, depending on
business needs, and the distribution of data is transparent to users, i.e.,
a user does not have to know where data is stored or retrieved from.

An interesting problem in both distributed databases and P2P sys-
tems is how to partition and fragment data among peers. An approach
used by some of the early structured overlay networks is random uni-
form distribution using a hash function such as SHA-1. Data fragments
are randomly assigned to peers and an index has to be kept to retrieve
them later. While this achieves good storage load-balancing, one of the
important criteria for distributed systems, it lacks performance for more
complex distributed data processing operations beyond simple lookups re-
trieving a single data fragment. Two approaches to tackle this problem
in distributed database systems, where more complex data processing is
common, are horizontal [CNP82] and vertical [NCWD84]| fragmentation.
Both have the aim to partition data into smaller fragments of correlated
data which can then be stored at different physical locations.

Horizontal partitioning partitions a relation in a database into sub-
sets of tuples. This is useful if certain value ranges are often processed
together. For example, students with ZIP codes less than 5000 are stored
in Students_South, while students with ZIP codes greater than or equal
to 5000 are stored in Students_North. The two partition tables are then
Students_South and Students_North, while a view with a union might be
created over both of them to provide a complete view of all students.

Vertical partitioning partitions a relation in a database by partition-
ing the attribute sets and projecting the tables onto the attribute set
partitions. Normalization is a process that inherently involves vertical
partitioning. A common form of vertical partitioning is to split (slow to
find) dynamic data from (fast to find) static data in a table where the dy-
namic data is not used as often as the static. Creating a view across the
two newly created tables restores the original table with a performance
penalty, however performance will increase when accessing the static data,
e.g., for statistical analysis.

A hybrid approach combines both horizontal and vertical partitioning.
Which method is used in the end mainly depends on the queries posed
against the database and the performance requirements. Horizontal parti-
tioning is advisable if mainly all or most columns of a table are requested
for certain parts of a table, e.g., for all students with a ZIP code lower
than 5000. On the other hand, if two attributes are frequently processed
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together, not requiring other attributes of a table, then vertical partition-
ing provides better performance. To choose a partitioning schema, the
query history can be analyzed to identify dependencies between data en-
tries if they are not already known in advance. The partitioning aims at
storing highly correlated data at the same physical device to provide the
best performance.

2.2.1 Design Findings for P2P Systems

The previous section has shown that the idea of data partitioning is not
new and has been studied for a long time in the field of distributed
databases. P2P systems implement the same concept of data sharing and
data partitioning as distributed databases but without central control and
with autonomous peers. Nevertheless, data has to be organized in a cer-
tain way to provide efficient lookup and database-like lookup guarantees
for performance and completeness. Structured overlay networks achieve
this by building a decentralized index of all data shared in their system.
The index is fragmented and partitioned among participating peers similar
to horizontal data fragmentation in distributed databases. An important
question that remains is which peer holds which index entries.

Section 2.4 will present some of the most prominent structured over-
lays with a specific focus on their strategies of data respectively index
partitioning. We distinguish between two types of systems: (i) systems
using a uniform hash function and (ii) systems using a order-preserving
hash-function. Why is this an important criterion for us? Distributed
databases have shown that data partitioning according to data correla-
tions is important to achieve good performance. They therefore store
correlated data on the same physical location. We think that this is also
an important requirement for P2P systems if they are supposed to perform
efficiently for more complex operations beyond single key lookups.

For completeness before discussing structured overlay networks, we
will present the concept of unstructured overlays as they are currently
very widespread for P2P file-sharing applications and well-known. Their
design is usually very simple to provide stable large-scale networks with
best-effort lookup operations. These networks are very well suited for
file-sharing applications as highly requested files are usually also strongly
replicated in the network and therefore very likely be found. Rare content
is however more difficult to find and no guarantees can be given that it will
be found at all. Some unstructured networks therefore already consider a
hybrid approach to overcome this shortcoming by combining the benefits
of structured and unstructured networks [HK07]. The next section will
present the basic concept of unstructured networks and in more details
the most prominent representative, Gnutella.
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2.3 Unstructured Overlays

Unstructured overlays organize peers in a random graph and use flood-
ing, random walks or expanding-ring Time-To-Live (TTL) search, etc.
to query content stored at overlay peers. Using an unstructured topol-
ogy implies to involve all peers in data processing if the processing has
to be complete. As both data and index items remain locally at peers
each query is only evaluated against the local index. Data is therefore
not reorganized in the network and no global structure is maintained.
No central coordinator has knowledge of all the shared data. Therefore
no data correlations can be exploited as peers are not aware of other
peers’ data respectively index. Thus, unstructured networks are of mi-
nor interest for us as we aim at reducing lookup costs (the number of
involved peers) by exploiting data correlations between data items shared
in a P2P system. We will nevertheless present the first and probably
most famous unstructured P2P system Gnutella for completeness. Other
prominent systems are FastTrack [Fas|, eDonkey [eDo], BitTorrent [Bit],
and Freenet [CSWHO00]. A detailed description of them and a discussion
can be found in [LCPT04].

2.3.1 Gnutella

Gnutella [Gnua] is a decentralized protocol for distributed search on a
flat unstructured network of so-called servents (peers). Peers are called
servents as they act as servers (serv-) and clients (-ents) at the same time
according to the P2P paradigm that all peers are equal and share their re-
sources among each other. The original Gnutella protocol supported only
a flat hierarchy-less topology soon leading to performance and scalability
problems as described in [Rit01]. The scalability problem arises from the
flooding based resource location algorithm as shown in Figure 2.1.

All communication is entirely pair-wise between two servents and peers
only know their shared content, their neighbors and a set of recently
received peer addresses. Gnutella is therefore purely P2P as there is no
central coordination or control and peers only interact locally with their
environment. Peers further only decide based on local information and
do not have influence on other peers as others can refuse connections and
ignore messages at will. These properties enable peers to create ad-hoc
networks in a fast way and to remain operational even in very dynamic
environments with frequent peer joins and leaves. The simple protocol
consists of only 5 messages: ping, pong, query, query response, and push
on top of TCP/IP connections. Ping and pong are required to maintain
the network structure, query and query response to locate content and
announce matching items, and push is used for downloads from firewalled
servents. Peers not behind a firewall wishing to download content using
the standard HTTP protocol [HTT] can request to “push” a file from a
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Figure 2.1: Gnutella architecture and content location

firewalled peer to them by sending a push message to these peers. The
firewalled peer in response opens a TCP/IP connection to the requesting
peer which can now initiate the standard HTTP download protocol.
Queries are flooded by peers to all their neighbors in a certain radius
defined by a Time-To-Live (TTL) of a query. The usual TTL is 7 meaning
that a query is forwarded 7 times to all neighbors a peer has, i.e., generat-
ing multiple queries with the same T'TL. This design is extremely resilient
against peers leaving and joining at any time but can generate high net-
work traffic reducing the overall performance of the system or even cause
its breakdown. Each peer receiving a query evaluates its shared content
against the query and returns all matching items to the peer it received
the query from. Thus, a query reply traverses the same path back a query
came from. Downloads are afterwards handled directly between two peers.
The network structure to locate content is maintained in a similar way
as query resolution. Peers periodically send out so-called ping messages to
all their neighbors which are then again flooded to all their neighbors, of
course reducing the TTL by one. Peers receiving a ping message respond
with a pong message containing addresses of overlay peers. In this way,
peers get to know more and more peers in the network enabling them
to open further connections if desired or repairing broken connections to
other peers. The simplicity of this protocol makes Gnutella networks very
stable against node churn, i.e., peers joining and leaving the network at
any time, and they remain operational even if a large number of overlay
peers become unavailable. New peers willing to join the network require
only to know one peer of the network, usually a so-called bootstrap peer
provided by the network administrator. A new peer simply sends a ping
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message to the bootstrap peer or any other peer in the network and it
receives as response a list of participating overlay peers it can connect
subsequently.

Due to the aforementioned scalability problems, the latest proto-
col [Gnub] includes support for a two-layered SuperPeer architecture.
SuperPeers are called UltraPeers in the Gnutella network and improve
the scalability of the network as messages are only broadcasted in the
UltraPeer network and “normal” peers only connect to (one or more)
UltraPeers to advertise their shared content and issue queries. UltraPeers
perform query processing on behalf of their leaf peers shielding them
from most of the network traffic. As the bandwidth and processing
requirements are higher for UltraPeers, only peers meeting certain
requirements can become UltraPeers, e.g., fast peers with a good network
connection remaining online for most of the time. The two-layered
architecture therefore also increases the fault-tolerance against node
failures and communication errors as only reliable peers can become
SuperPeers to form a stable network backbone more dynamic nodes can
connect to at will. Figure 2.2 shows a two-layered P2P infrastructure
using SuperPeers.

&g\"v ; SuperPeer

Figure 2.2: SuperPeer architecture

2.4 Structured Overlays

Structured overlays provide a distributed index structure across multiple
physical devices for efficient location of resources, avoiding some of the
scalability problems of unstructured overlay networks. The efficient re-
source location service enables applications to realize different application
services on top such as data management (search, insert, update, etc.).
Application specific identifiers are used on top of the physical networking
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layer for managing resources and addressing peers in the overlay network.
While applications could also use physical identifiers of peers directly,
e.g., the IP address, application specific identifiers enable semantic rout-
ing and generic services for network maintenance, authentication, trust,
etc., which would be difficult to integrate into and support at the network-
ing layer. Additionally, the independence of application specific identifiers
of peers from their physical identifier (IP address) enables peers to change
their physical address while remaining addressable and reachable in the
overlay network.

In any structured overlay network, a set of peers provides access to a
set of resources. Both, peers and resources, are mapped to an (application-
specific) identifier space using a hash function, associating resources and
peers with application specific identifiers, so-called keys. Resources are
assigned to peers using a closeness metric on the identifier space, e.g.,
resources are assigned to the peer with the closest identifier to the resource
identifier. To enable access from any peer to any resource a logical network
is built, i.e., a graph is embedded into the identifier space. The structure
of the graph depends on the type of overlay network and peer identifiers
determine the position of peers within the structure, e.g., on a ring, in a
tree, etc..

We classify in the following structured overlays by the hash function
used to map peers and resources into an identifier space. Initially, struc-
tured overlays were designed for efficient single key lookups, i.e., retrieving
resources based on their application specific identifier. Chord [SMK™01]
uses uniform hashing to map peers and resources on a ring, i.e., the iden-
tifier space. The uniform hashing produces random keys on the identifier
space for peers and resources, leading to a uniform distribution of re-
sources on peers. Structured overlays using uniform hashing are also called
Distributed Hash Tables (DHT') and we will present their most prominent
representatives, Chord, Pastry [RD01] and Tapestry [ZHST04]. We will
finally present the initial design of CAN [RFH'01] originally using uni-
form hashing of which today variants exist using order-preserving hash
functions.

Structured overlays with order-preserving hashing represent our sec-
ond category. The difference to DHTs is that they preserve the semantic
relations of resources in the identifier space, e.g., if a resource ry is “smaller
than” resource 79 in an ordered domain then the identifier of the resource
key(ry) is also “smaller than” key(ry) in the identifier space. Preserv-
ing semantic relations of resources enables the implementation of efficient
lookup services relying on these correlations, e.g., range queries exploit-
ing the order relationship of resources. Examples of systems exploiting
this feature are Mercury [BAS04] and SkipNet [HJST03], which we will
present in the following, and P-Grid [Abe01] which will be presented in
more detail in Chapter 3.
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2.4.1 Distributed Hash Tables

Distributed Hash Tables (DHT) are structured overlay networks using
uniform hashing to map peers and resources uniformly and randomly on
the identifier space. As a consequence, resource identifiers are uniformly
assigned to peers. Peers are responsible for resource identifiers close to
their own identifier in the identifier space. The uniform distribution of
resource identifiers on peers leads theoretically to a uniform storage load
for peers, i.e., all peers are responsible for approximately the same number
of resource identifiers. Even in the case of a homogeneous system where
all nodes have the same capacity, DHTs can exhibit a substantial load
imbalance due to a natural variance of the randomized hashing [SMK*01].
[GS05, BKadH05] have presented approaches to tackle this problem as
load balancing is one of the main objectives of structured overlay networks
and was the main incentive for early systems to apply uniform hashing.
The disadvantage of uniform hash functions is that they do not preserve
semantic relationships of resources, as illustrated by Figure 2.3. The data
fragments a — z are mapped to the key space 0 — 9. The figure shows
how the hash function approximately uniformly distributes data fragments
on the key space while destroying the lexicographical order of the data
fragments. In the end, all fragments are spread out on the key space and
each peer A— D holds approximately the same amount of data falling into
the key range it is responsible for. In the following we will present several
systems using such a uniform hash function in more details.
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Figure 2.3: Uniform Hashing

Chord

Chord [SMK™01] is a ring-based DHT using consistent uniform hash-
ing [KLLT97] to assign peers and resources an m-bit identifier, using
SHA-1 as the base hash function. The peer identifier defines the peer’s
position on the ring and is obtained by hashing the peer’s IP address. A
resource identifier, also called key, is obtained by hashing a data value
of the resource. The length of the identifier m must be large enough to
make the probability of peers and resources hashing to the same identifier
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negligible. Identifiers are ordered on an identifier circle modulo 2™. The
key k of a resource is assigned to the first peer whose identifier is equal
to or follows k in the identifier space. This peer is called the successor
peer of key k, denoted by successor(k). If identifiers are represented as
a circle of numbers from 0 to 2™ — 1, then successor(k) is the first peer
clockwise from k. The identifier circle is called the Chord ring. To main-
tain consistent hashing mapping when a peer n joins the network, certain
keys previously assigned to n’s successor now need to be reassigned to n.
When peer n leaves the Chord system, all of its assigned keys are reas-
signed to n’s successor. Therefore, peers join and leave the system with
(logN)? performance, where N is the number of peers in the system. No
other changes of key assignments to peers need to occur. In Figure 2.4
the Chord ring is depicted with m = 6. This particular ring has ten peers
and stores five keys. The successor of the resource identifier 10 is peer
14, so key 10 will be located at peer 14. Similarly, if a peer were to join
with identifier 26, it would store the key with identifier 24 from the peer
32. Each peer in the Chord ring needs to know how to contact its current
successor peer on the identifier circle. Each peer n further maintains a
routing table with up to m entries, called the finger table. The i** entry in
the table at peer n contains the identity of the first peer s that succeeds n
by at least 2°~1 on the identifier circle, i.e., s = successor(n+2~1), where
1 <i < m. Peer s is the i finger of peer n (n.finger[i]). A finger table
entry includes both the Chord identifier and the IP address (and port
number) of the relevant peer. Figure 2.4 shows the finger table of peer 8.
The first finger entry for this peer points to peer 14, as it is the first peer
that succeeds (8+41) mod 26 = 9. Similarly, the last finger of peer 8 points
to peer 42, i.e., the first peer that succeeds (8 + 32) mod 64 = 40. In this
way, peers store information about only a small number of other peers,
and know more about peers closely following it on the identifier circle than
other peers. Such networks are also called Small-World networks [Kl1e99].
Also, a peer’s finger table does not contain enough information to directly
determine the successor of an arbitrary key k. For example, peer 8 cannot
determine the successor of key 34 by itself, as successor of this key (peer
38) is not present in peer 8’s finger table. Queries are therefore resolved
in multiple hops using always the longest finger possible reaching a peer
with a smaller or equal identifier. For example a query lookup at peer 8
for the identifier 34 would be forwarded first to peer 32 present in peer
8’s routing table and closest to the destination. Peer 32 will then be able
to forward the query to the responsible peer 38 holding key 34.

As the fingers are only shortcuts to route messages in less hops to
a destination, the successor pointers are essential for the Chord network
to remain operational. Therefore the Chord protocol periodically runs a
stabilization protocol in the background to update these pointers. The
frequency of these corrections depends on the frequency of peers joining
and leaving the network, invalidating pointers in peers’ routing tables.
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Finger Table
P8+1 P14
P8+2 P14
P4 P8+4 P14
P8+8 P21
P8 +16 P32
P8 + 32 P42

Figure 2.4: A Chord ring

The correctness of the Chord protocol relies on the fact that each peer is
aware of its successor, otherwise lookup operations cannot be guaranteed.
When peers fail, it is possible that a peer does not know its new successor,
and that it has no chance to learn about it. To avoid this situation,
peers maintain a successor list of size r, which contains the peer’s first r
successors. When the successor peer does not respond, the peer simply
contacts the next peer on its successor list. Assuming that peer failures
occur with a probability p, the probability that every peer on the successor
list will fail is p”. Increasing r makes the system more robust. By tuning
this parameter, any degree of robustness with good reliability and fault
resiliency may be achieved though at the cost of maintaining more pointers
in the routing table.

Pastry

Pastry [RDO01] is a DHT similar to Chord. Although the functionality
of Pastry is almost identical to other DHTs, what sets it apart is the
proximity-based routing built into the DHT concept. This allows Pastry
to realize the scalability and fault tolerance of other DHT's, while reducing
the overall cost of routing a packet by choosing the “nearest” node from
where the message originates, in terms of the proximity metric. The
proximity metric is supplied by an external program based on the IP
address of the target node and can be easily switched to shortest hop
count, lowest latency, highest bandwidth, or even a general combination
of metrics. This proximity-based routing has the advantage that messages
are forwarded to close neighbors or well connected peers reducing routing
latency. In other DHTs not considering this aspect, messages can travel
around the globe several times before the destination peer is hit though
it could be very close to the original sender. This is avoided in Pastry.
As mentioned already before, Pastry is very similar to Chord using
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uniform hashing to distribute peers and resources uniformly on a circular
index space. It therefore shares the same properties as discussed earlier
for Chord. Additionally to the ring structure known from Chord, Pastry
nodes further maintain a routing table forming a tree. The binary tree
structure is probably the first routing geometry that had been proposed for
DHTs [PRR97]. In the tree approach, the leaf nodes of the tree correspond
to the node identifiers that store the keys to be searched. The height of
the tree is log(n), where n is the number of nodes in the tree. The search
proceeds down the tree by doing a longest prefix match at each of the
intermediate nodes until the target node is found. Therefore, in this case,
matching can be thought of as correcting bit values from left-to-right at
each successive hop on the tree.

Tapestry

Tapestry [ZHST04] resembles Pastry by its hybrid ring and tree struc-
ture and proximity-aware routing using the same uniform hash function
SHA-1 mapping peers and resources uniformly on an identifier space. The
difference between Pastry and Tapestry is the handling of network local-
ity and data object replication. Tapestry’s architecture uses a variant of
the Plaxton [PRR97] distributed search technique, with additional mech-
anisms to provide availability, scalability, and adaptation in the presence
of failures and attacks. Plaxton [PRR97] proposes a distributed data
structure, known as the Plaxton mesh, optimized to support a network
overlay for locating named data objects which are connected to one root
peer. Tapestry uses multiple roots for each data object to avoid single
points of failure. It uses local routing maps at each peer, to incrementally
route overlay messages to the destination ID digit by digit, for instance,
x% %7 = %97 = %297 = 3297, where "*’ is the wildcard. The lookup and
routing mechanisms of Tapestry are based on matching the suffix in peer
identifiers as described above. Routing maps are organized into routing
levels, where each level contains entries that point to a set of peers closest
in distance that matches the suffix for that level. Also, each peer holds
a list of pointers to peers referred to as neighbors. Tapestry stores the
locations of all resource replicas to increase semantic flexibility and allow-
ing the application level to choose from a set of resource replicas based on
some selection criteria, such as date. Each shared resource may include an
optional application-specific metric in addition to a distance metric; e.g.
OceanStore [KBCT00] global storage architecture finds the closest cached
document replica which satisfies the closest distance metric. These queries
deviate from the simple “find first” semantics, and Tapestry will route the
message to the closest k distinct resources.
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CAN

The Content Addressable Network (CAN) [RFHT01] uses a hyper-
dimensional Cartesian coordinate space on a multi-torus to organize
peers and map resources onto peers and partitions. This d-dimensional
coordinate space is dynamically partitioned among all peers in the
system such that every peer possesses its individual, distinct zone within
the overall space. A CAN peer maintains a routing table that holds
the IP address and virtual coordinate zone of each of its neighbor
coordinates. A peer routes a message towards its destination using a
simple greedy forwarding to the neighbor peer that is closest to the
destination coordinates. Figure 2.5 shows a 2-dimensional CAN network
and illustrates the query routing among neighbors till the destination
area respectively peer is reached. The query is initiated at peer X
and peer X’s coordinate neighbor set contains the peers A, B, C, D.
CAN’s greedy routing algorithm aims at selecting the neighbor closest
to the destination coordinate of a query. Therefore peers compare the
coordinates of their neighbors with the destination coordinate and select
the peer which is closest to the destination. This is done till the query
hits the peer responsible for the destination coordinate. In our example,
peer X first forwards its query to peer D which is the closest neighbor to
peer E, the destination coordinate. CAN has a routing performance of
o(d - Né), N being the number of peers, and its routing state is of 2 - d
bound.

A
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Figure 2.5: Query routing in CAN

The virtual coordinate space is used to store {key,value} pairs by
applying a uniform hash function to the content to obtain a key mapped
deterministically onto a point P. The {key, value} pair is then maintained
by the peer responsible for point P. To retrieve a certain value, a peer
applies the same hashing function to obtain the destination coordinates
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of the key. These coordinates are included into a query and routed along
neighbors till the responsible peer is reached.

Peers partition the virtual space during the join process. A new peer
first contacts one of the well-know bootstrap peers to obtain an IP address
of a random peer of the CAN network. The new peer further choses a
random point P in the CAN coordinate space and requests the route to
this point from the random peer retrieved before. Using CAN’s routing
technique, the new peer will eventually get in contact with the peer re-
sponsible for the point P. The current peer in zone P will then split the
zone in two equal halves and hand over one half to the new peer. In a
2-dimensional space, zones are first split along the X dimension, then the
Y, and so on. The new peer takes over the neighbors from the previous
peer of point P and both peers add each other to their neighbors. Fur-
ther all {key,value} pairs falling in the zone of the new peer are handed
over by the previous peer. A takeover algorithm handles peers leaving the
network and ensures that all areas of the coordinate space are covered by
peers. If a peer leaves the network, its neighbor takes over its half and
informs all neighbors about the change to update their neighboring sets.

CAN is able to route messages even if several peers are temporar-
ily unavailable by picking the next closest peer in the neighbor set. To
improve data availability, CAN can maintain multiple independent co-
ordinate spaces with peers being assigned different zones in each space,
so called reality. For a CAN with r realities, a single peer is assigned
r coordinate zones, one on each reality available, and this peer holds r
independent neighbor sets. The contents of the hash table are replicated
on every reality, thus improving data availability. For further data avail-
ability improvement, CAN could use k different hash functions to map
a given key onto k points in the coordinate space. This results in the
replication of a single {key,value} pair at k distinct peers in the sys-
tem. A {key,value} pair is then unavailable only when all the k replicas
are simultaneously unavailable. Thus, queries for a particular hash table
entry could be forwarded to all k peers in parallel thereby reducing the
average query latency, and reliability and fault resiliency properties are
enhanced [LCPT04].

Discussion

All structured overlay networks using uniform hashing resemble the hash
table concept and are therefore so-called Distributed Hash Tables (DHTS).
DHTs further resemble the hash index known from databases to efficiently
lookup resources given their identifier. Independent of the used network
topology, resources are hashed to random identifiers which are scattered
uniformly around the network. Although this leads to good load balanc-
ing, i.e., all peers hold approximately the same number of resource identi-
fiers, it does not preserve semantic relations. DHTs are therefore mainly
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suitable for exact-key lookup operations, retrieving resources based on
their identifiers, as their counterparts in database systems.

Tapestry provides semantic flexibility to applications to select resource
replicas based on application-specific metrics, e.g., the freshest copy. To
support more complex lookup services, DHTs were adopted to meet ac-
cording requirements. For example, [GAE03, SGAE04] use CAN with an
order-preserving hash function to hash ranges of values and to support
range queries in CAN. We will discuss this approach in more details in
Chapter 4 and now present structured overlays based on order-preserving
hashing.

2.4.2 Structured Overlays with Order-Preserving Hashing

Structured overlays with order-preserving hash functions preserve the or-
der relationship of resources while mapping them onto the identifier space,
i.e., the generated identifiers of neighboring resources in a set of ordered
resources are also neighbors in the identifier space. The order relationship
is the natural relationship to be preserved as one-dimensional key spaces
are predominant in structured overlay networks. Peer identifiers have to
be distributed according to the distribution of resource identifiers to meet
the load balancing requirement, i.e., that all peers are responsible for ap-
proximately the same number of resource identifiers. The partitioning
of the identifier space depends on the distribution of resource identifiers
respectively the distribution of resources.

Figure 2.6 shows how data fragments are mapped on a key space us-
ing order-preserving hashing. The hash keys of lexicographically ordered
data fragments are in the same order as the original data fragments. This
leads to the same distribution in the key space as in the data domain pos-
sibly leading to a load-imbalance among peers responsible for partitions.
The advantage is that similar content is now stored at the same peer,
or at least in the proximity, e.g., data fragments a and b are mapped to
key 0 respectively 1 and therefore maintained by the same peer A. The
remainder of this chapter will present two structured overlays based on
order-preserving hashing. Chapter 3 will present P-Grid, also using an
order-preserving hash-function, in more details.

Mercury

The design focus of Mercury [BAS04] was to support multiple-attribute
range queries. Peers are organized in multiple routing hubs, one for each
indexed attribute. A routing hub is a circular overlay of peers and places
data contiguously on this ring, i.e, each node is responsible for a range
of values of a particular attribute. In contrast to DHTs distributing data
randomly and uniformly on the ring, Mercury’s order-preservation causes
the data being populated contiguously on the ring. A range query can
therefore simply be answered by finding the lower or upper bound and
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Figure 2.6: Order-Preserving Hashing

traversing all peers along the ring until the other bound is reached. Exact
lookup operations for a single key are of course further supported with
logarithmic effort as know from other DHTs.

Figure 2.7 illustrates an example Mercury network consisting of two
routing hubs H, and H, (also called attribute hubs) indexing values of
x and y coordinates of objects. The minimum and maximum values for
the x and y attributes are 0 and 320 respectively. Accordingly, the ranges
are distributed to various nodes. The data-item with z-coordinate 100
and y-coordinate 200 is sent to both H, and H,, where it is stored at
nodes b and e, respectively, as node b is responsible for all z-coordinates
between 80 and 160. A query as shown in Figure 2.7 is first routed to the
more selective routing hub, in this example hub H,, and then forwarded
along neighbors till the queried range is covered. As this can lead to high
query latencies, long-distance links, so-called fingers in Chord, are used
to provide a more efficient routing mechanism.
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query B [80,160)

intx <= 150 data item

int x >= 50 int x 100

inty <= 250 it y 200

inty >= 150 T y

[240,320) E [200,320)
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Figure 2.7: A Mercury network

Since there are likely to be particular ranges of an attribute that are
more popular for queries and data-records, nodes responsible for these
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ranges will be unfairly overloaded with both routing and computation
tasks. Mercury performs explicit load balancing by moving around nodes
and changing their responsibilities according to the loads. This enables
the combination of good load-balancing with support for range predicates.
However, one important side effect is that the distribution of range sizes
is no longer guaranteed to be uniform. Peers in popular areas are respon-
sible for smaller ranges than peers in less popular areas. Range queries
with equal range size will therefore involve more peers in popular areas
than in less popular areas, leading to higher lookup costs/delays in the
first case as more peers are involved. Load balancing is performed by a
join-leave protocol populating overloaded areas of a routing hub and re-
questing peers in lightly loaded areas to leave the network and re-join it.
Over time these leaves and re-joins cause a shift in the peer distribution.
The load distribution is sampled periodically by peers and represented by
approximate histograms.

SkipNet

SkipNet [HJS103] is a scalable overlay network that supports traditional
overlay functionality as well as content locality and path locality based on
Skip Lists [Pug90]. Content locality refers to the ability to either explicitly
place data on specific overlay nodes or distribute it across nodes within
a given organization. Path locality refers to the ability to guarantee that
message traffic between two overlay nodes within the same organization is
routed within that organization only. Content and path locality provide a
number of advantages for data retrieval, including improved availability,
performance, manageability, and security. For example, nodes can store
important data within their organization (content locality) and nodes will
be able to reach their data through the overlay even if the organization
becomes disconnected from the rest of the Internet (path locality). Storing
data near the clients that use it also yields to performance benefits.

SkipNet supports efficient message routing between overlay nodes, con-
tent placement, path locality, and constrained load balancing. It does so
by employing two separate, but related address spaces: a string name ID
space as well as a numeric ID space. Node names and content identifier
strings are mapped directly into the name ID space, while hashes of the
node names and content identifiers are mapped into the numeric ID space.
A single set of routing pointers on each overlay node enables efficient rout-
ing in either address space and a combination of routing in both address
spaces provides the ability to do constrained load balancing.

Figure 2.8 shows the routing infrastructure for a 8 node system labeled
A, D, M, O, T, V, X, and Z. The nodes are organized in a ring structure
ordered by their name, their name ID. All nodes are connected by the
root ring formed by each node’s pointers at level 0. The pointers at level
1 point to nodes that are 2 nodes away and hence the overlay nodes are
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implicitly divided into two disjoint rings. Similarly, pointers at level 2
form four disjoint rings of nodes, and so forth. Note that rings at level
h+ 1 are obtained by splitting a ring at level h into two disjoint sets, each
ring containing every second member of the level h ring.

Ring Ring Ring Ring Ring Ring Ring Ring
000 001 010 011 100 101 110 1

Dﬁ@@’@@ﬁw

% Level 1
o M—09]
Root Ring

Figure 2.8: The SkipNet network structure

Level 0

Each node can randomly choose a ring membership encoded as unique
binary number, the node’s numeric ID. As illustrated in Figure 2.8, the
first h bits of the number determine ring membership at level h. For
example, node X’s numeric ID is 011 and its membership at level 2 is
determined by taking the first 2 bits of 011, which designate Ring 01. As
described in [SMK™101], there are advantages to using a collision-resistant
hash (such as SHA-1) of the node’s DNS name as the numeric ID. The
SkipNet design does not require the use of hashing to generate nodes’
numeric IDs; they only require to be random and unique. Because the
numeric IDs of nodes are unique they can be thought of as a second address
space that is maintained by the same SkipNet data structure. Whereas
SkipNet’s string address space is populated by node name IDs that are not
uniformly distributed throughout the space, SkipNet’s numeric address
space is populated by node numeric IDs that are uniformly distributed.
The uniform distribution of numeric IDs in the numeric space is what
ensures that the routing table construction yields routing table entries
that skip over the appropriate number of nodes.

SkipNet supports Constrained Load Balancing (CLB). To implement
CLB, a data object’s name is divided into two parts: a part that specifies
the set of nodes over which load balancing should be performed (the CLB
domain) and a part that is used as input to the hash function (the CLB
suffix). In SkipNet the special character ’!" is used as a delimiter between
the two parts of the name. For example, suppose the document using the
name msn.com/DataCenter!TopStories.html is stored. The CLB domain
indicates that load balancing should occur over all nodes whose names
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begin with the prefix msn.com/DataCenter. The CLB suffix, TopSto-
ries.html, is used as input to the hash function, and this determines the
specific node within msn.com/DataCenter on which the document will
be placed. Storing a document with CLB results in the document being
placed on precisely one node within the CLB domain (although it would
be possible to store replicas on other nodes). If numerous other docu-
ments were also stored in the msn.com/DataCenter CLB domain, then
the documents would be uniformly distributed across all nodes in that
domain. To search for a data object that has been stored using CLB, we
first search for any node within the CLLB domain using search by name ID.
To find the specific node within the domain that stores the data object,
we perform a search by numeric ID within the CLB domain for the hash
of the CLB suffix.

Discussion

The aim of structured overlay networks with a order-preserving hash func-
tions is to retain the order relationship among resources. These systems
resemble, independent of their network structure, the idea of B-trees used
in databases to support efficient range scans on the index. Range queries
are therefore only supported by structured overlays with order-preserving
hashing. DHTSs, such as Chord, using uniform hashing were extended
with, for example, a Prefix Hash Tree (PHT) [RRHS04] to support simi-
lar functionality. This system implements multiple indexes optimized for
different lookup operations as also used in centralized databases.

The real advantage of traditionally using a hash index/table in main
memory is the constant time of lookup, insert, and delete operations. But
to facilitate this, a hash table sacrifices the order-relationship of the keys.
However, over a network, where only parts of the hash table are stored at
each location, these operations need multiple overlay hops anyway. For
most conventional DHT's the number of hops is logarithmic in the network
size. Thus the main advantage of constant time access no longer exists
in DHTs. This makes overlay networks with order-preserving hashing a
natural choice since they provide normal key search for the same order of
message complexity as a DHT and efficiently support range queries.

2.5 PlanetLab

PlanetLab is a global platform for deploying and evaluating Internet-scale
network services such as overlay networks. It was launched in 2002 with
100 machines distributed to 40 sites. Currently, about 800 nodes spread
over around 400 sites form an Internet-scale testbed used by researchers all
over the world to evaluate their developments. Further, a longer-term goal
of PlanetLab is to support continuously running services that potentially
serve a client community. In other words, PlanetLab is not only designed
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as testbed but also to support the seamless migration of an application
from early prototype, through multiple prototype design iterations, to a
popular service that continues to evolve. In the long term, PlanetLab
could serve as a microcosm for the next generation Internet [PACRO02].
We use PlanetLab as testbed for evaluating most of our algorithms we
will present in the remaining of this thesis. This section therefore briefly
describes the architecture and use of PlanetLab.

The centerpiece of the PlanetLab architecture is a slice (a horizontal
cut of global PlanetLab resources). Each service (a set of distributed and
cooperating programs delivering some higher-level functionality) runs in
a slice of PlanetLab. A slice encompasses some amount of processing,
memory, storage, and network resources across a set of individual Plan-
etLab nodes distributed over the network. A slice is therefore more than
just the sum of the distributed resources, it is more a network of wvirtual
machines with a set of local resources bound to each virtual machine.

A virtual machine is the environment where the program that im-
plements some aspects of a service runs. Each virtual machine runs on
a single node and is allowed to consume some fraction of that node’s re-
sources. In addition to being bound to a set of resources, a virtual machine
also defines the execution environment for which programs are written.
Multiple virtual machines run on each PlanetLab node, where a virtual
machine monitor arbitrates the node’s resources among them [CCR™03].

From a users point of view, PlanetLab provides a large set of servers
distributed all over the world available any time for testing developments.
All nodes can be accessed by SSH connections using a private/public key
pair created during user registration. This allows users to use scripts
accessing hosts to deploy and start their prototypes as well as monitoring
application status or retrieving log files for later local analysis.

The popularity of PlanetLab in the last years had led to several prob-
lems making evaluations on it sometimes difficult and not reproducible.
As resources are shared among all slices at a node and users cannot reserve
resources nor time slots for their experiments, the behavior of PlanetLab
can be unpredictable sometimes, especially at high seasons of conference
deadlines. As a consequence less resources are available for each user and
node and network failures are more likely. The high load at some nodes
further leads to higher response times as somebody would expect from
“normal” computers as multiple processes share one or two CPUs at the
same time.

Nevertheless, PlanetLab is the state-of-the-art evaluation platform for
real Internet-scale developments all implemented system have to be tested
on. Even though its performance may be unpredictable it just reflects the
real-world distributed systems have to be able to deal with anyway. We
therefore evaluated most of our algorithms on PlanetLab using a Java
implementation of P-Grid we will present in more details in Chapter 7
and Chapter 8.
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2.6 Conclusions

This chapter introduced various types of P2P systems with a focus on
structured overlay networks. Structured overlay networks provide access
to shared resources through a distributed index structure. Peers stor-
ing a fraction of the distributed index maintain routing information to
other peers to enable efficient lookups for any resource identifier. We cat-
egorized structured overlay networks by their hashing function. DHTs
use uniform hashing to achieve load balancing and are mainly suitable
for exact key lookups, i.e., retrieval of resources by their identifier only.
Structured overlay networks with order-preserving hashing retain the or-
der relationship among resources to additionally support efficient range
queries.
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Chapter 3

The P-Grid Overlay

The overview of P2P systems presented in the previous chapter has shown
that structured overlay networks using order-preserving hashing are the
natural choice if both, single key lookups and range queries, should be
supported efficiently. This chapter will present P-Grid, a trie-based struc-
tured overlay using order-preserving hashing, in more details. As the
advantage of constant time for lookup, insert and delete operations in a
classical hash index does no longer exist in DHTSs, a distributed trie struc-
ture can provide the same logarithmic access guarantees as DHTs while
retaining the order relationship of data.

We will present P-Grid’s distributed virtual binary trie to partition
peers and to assign them a small portion of the distributed index. The
lookup operation based on greedy prefix-routing implements single key
lookups on top of this access structure. Its construction and required
load balancing is further briefly described although not the focus of this
chapter. These functionalities are the base for the remainder of this thesis.
An evaluation of P-Grid’s construction and single-key lookup mechanism
will be presented in Chapter 8. At the end of this chapter, we discuss
P-Grid’s extensions for sharing correlated data.

3.1 Distributed Search Structure

P-Grid’s virtual binary trie is used to partition peers and to assign them
a small portion of the distributed index. The index is mapped onto a
key space represented by binary strings. Without constraining general
applicability P-Grid uses binary keys. This is not a fundamental limitation
as a generalization of the P-Grid system to k-ary structures is natural,
and exists [AP03]. Each peer is associated with a leaf of the tree and
a so-called path. Each leaf corresponds to a binary string, the so-called
key-space partition.

Each peer p € P is associated with a leaf of the binary trie, i.e., a key
space partition, which corresponds to a binary string 7(p) € II called the
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peer’s path. For search, the peer stores for each prefix 7(p,!) of 7(p) of
length [ a set of references p(p, ) to peers g with property 7(p,l) = 7(q,1),
where 7 is the binary string m with the last bit inverted. This means
that at each level of the trie the peer has references to some other peers
that do not pertain to the peer’s sub-trie at that level which enables the
implementation of prefix routing. The cost for storing the references and
the associated maintenance cost scale as they are bounded by the depth
of the underlying binary tree. More details and an example of the search
algorithm are presented in Section 3.2.

Each peer stores a set of data keys 6(p). Binary keys are calculated
using an order-preserving hash function presented in Section 3.3. For
d € §(p) key(d) has 7(p) as prefix but it is not excluded that temporarily
also other data keys are stored at a peer, that is, the set §(p, 7(p)) of data
keys whose key matches 7(p) can be a proper subset of §(p). Moreover,
for fault-tolerance, query load-balancing, and hot-spot handling, multiple
peers are associated with the same key-space partition (structural repli-
cation), and peers additionally also maintain multiple references o(p) to
peers with the same path (data replication), i.e., their replicas, and use
epidemic algorithms to maintain replica consistency [DHAO03].

Figure 3.1 shows a simple example of a P-Grid tree consisting of 6
peers (peer A - F) responsible for 4 partitions (00, 01, 10, 11), e.g., peer
F is responsible for the partition 00 and therefore peer F’s path is 00. As
mentioned before, peers have to maintain references at multiple levels to
other parts of the tree. The number of references is equal to the length of
a peer’s path. As the path of peer F is 00, its routing table consists of two
levels. Level 0 holds references to peers of the right side of the tree with
no common path prefix, e.g., peer E with path 11. Level 1 holds references
to peers of the neighboring sub-tree 1 with peers having the first bit in
common, e.g., peer B with path 01. The example shows that peers have
to maintain at least one reference per level to be able to route to all parts
of the tree, i.e., to all sub-trees seen by a peer, but it is not necessary to
maintain references to all partitions of the key space. Further, as multiple
peers are assigned to partitions they also maintain multiple references per
level for the same reasons, i.e., fault-tolerance, query load-balancing and
hot-spot handling. Finally, each peer stores keys having a prefix with a
peer’s path, e.g., peer B maintains all data keys with prefix 01.

There are several other structured overlays which topologically re-
semble P-Grid and use prefix-based routing variants, for example, Pas-
try [RDO01] and particularly Kademlia [MMO02] whose XOR distance metric
results in the same tree abstraction and choice of routes from all peers in
complementary sub-trees as in P-Grid. Important distinguishing features
of P-Grid include the bootstrapping algorithms for the P-Grid network
based on randomized algorithms, support for substring queries, and the
adaptive, structural replication (multi-faceted load-balancing of storage
and query load) [ADHS05].
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Figure. 1: An examplary P-Grid overlay network

)

There is another motivation for having a trie-structured overlay net-
work instead of a standard distributed hash table: The real advantage of
traditionally using a hash table in main memory is the constant time of
lookup, insert, and delete operations. But to facilitate this, a hash table
sacrifices the order-relationship of the keys. However, over a network,
where only parts of the hash table are stored at each location, we need
multiple overlay hops anyway. For most conventional DHTs the number
of hops is logarithmic in the network size. Thus the main advantage of
constant-time access no longer exists in DHTs. P-Grid provides normal
key search for same order of message complexity as a DHT, but in addi-
tion can be naturally extended to support more complex queries such as
range queries.

3.2 Basic Search Operation

The virtual binary trie of P-Grid now allows us to route queries to respon-
sible peers to resolve user queries. This is achieved by an eager prefix-
routing algorithm presented in Algorithm 3.1. The algorithm recursively
resolves the query for the given key k whereas p denotes the peer that
currently processes the request. The key is a binary string created by
hashing the keyword s with the same hash function used to index data
at insertion. The key is only used to identify the peer responsible for the
query, i.e., the peer whose path is a prefix of the query key. Once the
responsible peer is reached, the keyword is used to find and return all
matching index items. If the current peer is not responsible for the query,
i.e., its path is not a prefix of the query key, it forwards the query to one
peer of its routing table for further processing. The query is therefore
forwarded to a peer with the longest prefix match. For example, if the
current peer has two bits in common with the query key, it will select
randomly a peer of the routing table level two. Any peer at this level has
to have at least three bits in common with the query key. Therefore a
query is resolved bit-wise till the responsible peer is reached. Since P-Grid
uses a binary tree, its basic search operation is of complexity O(log|II|),
measured in messages required to resolve search requests, in a balanced
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tree, i.e., all paths associated with peers are of equal length. Skewed data
distributions may imbalance the tree, so that it may seem that search
cost may become non-logarithmic in the number of messages. However,
in [Abe02b, Abe02a] it is shown that due to the randomized choice of
routing references from the complimentary sub-tree, the expected search
cost remains logarithmic (0.5logn), independently of how the P-Grid is
structured. The intuition why this works is that in search operations keys
are not resolved bit-wise but in larger blocks thus the search costs remain
logarithmic in terms of messages. This is important as P-Grid uses order-
preserving hashing to compute keys which may lead to non-uniform key
distributions.

Algorithm 3.1 Basic search in P-Grid: Retrieve(p, k, s)
1. if w(p) C k then
return(d € 0(p) | key(d) =k, w C d);
. else

2
3
4:  determine [ such that 7(k,l) = 7(p,1);
5. r = randomly selected element from p(p,1);
6:  Retrieve(r, k, s);

7. end if

The algorithm always terminates successfully, if the P-Grid is com-
plete (ensured by the construction algorithm) and at least one peer in
each partition is reachable (ensured through redundant routing table en-
tries and replication). Due to the definition of the routing table and
the search algorithm it will always find the location of a peer at which
the search can continue (use of completeness). With each invocation of
Retrieve(p, k, s) the length of the common prefix of a peer’s path and the
query key increases at least by one and therefore the algorithm always
terminates. Note that, while the network has a tree/trie abstraction, the
system is hierarchy-less, and all peers reside at the leaf nodes.

The search algorithm presented in Algorithm 3.1 resolves queries by
first determining the peer responsible for the query and then matching
all index items against a given keyword. The query key is generated by
the same hash function used to index data. Therefore a query will locate
the same peer for a given key that has been located while storing the key.
Substring search can be supported by simply indexing not only the full
string but also the substrings and by adding them to the index. P-Grid
is therefore able to support any sort of substring search depending on
the granularity of indexing, which can be chosen by the application/user
using P-Grid.
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3.3 Order-Preserving Hash Function

P-Grid’s hash function maps application data to binary strings. In the
reference implementation we assume application data to be strings for
simplicity, but in fact any data type can be used. The hash function
is order-preserving, i.e., it satisfies the following property for two input
strings s; and sa:

s1C s2 = key(s1) C key(s2)

where C means is-prefiz-of. To enable this mapping, a balanced trie
is constructed from a sample string database consisting of unique, lex-
icographically sorted strings of equal length (sample string databases
can be provided by the user for different applications). Providing an
application-specific sample database enables applications to perform an
implicit load balancing, independent of P-Grid’s load balancing mecha-
nism, as application-specific knowledge about expected data distribution
is used to achieve a preferably uniform key distribution. The database
is recursively bisected into equally-sized partitions until each partition is
smaller than a threshold. The keys P-Grid uses are then calculated by us-
ing the application data to “navigate” character-wise through this trie and
appending ’0’ to the generated key for each “left-turn” or '1’ otherwise.
Algorithm 3.2 illustrates the hashing of a string representing application
data. The function requires the trie root as initial input to recursively
build the binary hash string.

Algorithm 3.2 Hashing in P-Grid: Hash(trie_node, data_string, key)

1: if trie_node == null or data_string is prefix or equal to trie_node
then

2:  return key;

3: else

4:  if data_string is lexicographically smaller than trie_node then

5: return Hash(trie_node.left, data_string, key + ’0’);

6: else

T: return Hash(trie_node.right, data_string, key + ’1’);

8: end if

9: end if

3.4 Overlay Construction

So far we were assuming a constructed binary trie to route queries to
responsible peers partitioned according to the load present in the sys-
tem. The construction of an Internet-scale overlay network requires an
algorithm to partition the key space by local interactions between au-
tonomous peers. In principle a construction of an overlay network can
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also be achieved by the standard maintenance model of sequential node
joins and leaves. However, this approach encounters two serious problems:

e The peer community will have to decide on a serialization of the
process, e.g., electing a peer to initiate the network. Thus in prin-
ciple the peer community has to solve the leader election problem,
which might turn out to be impossible to solve for very large peer
populations without making strong assumptions on coordination or
limiting peer autonomy.

e Since the process is performed essentially in a serialized manner
it incurs a substantial latency. In particular it does not take any
advantage of potential parallelization, which would be a natural
approach.

The need for an efficient and fast bootstrapping algorithm for struc-
tured overlay networks emerged with their increasing adoption for data-
oriented applications. Resources in such networks are identified by dynam-
ically changing predicates. Many different overlay networks can be used
simultaneously, each of them indexing a specific attribute value of shared
resources. Creating a distributed index for an attribute value requires
to build a new structured overlay network from scratch. The insertion
of large document sets can further lead to a reconstruction of an overlay
network, considering the new distribution of resources leading to better
load balancing in the system. Due to catastrophic network failures the
standard maintenance mechanisms no longer can reconstruct a consistent
overlay network. Thus the overlay networks needs to be constructed from
scratch. This scenario applies of course generally in any application, but
becomes more probable when multiple overlay networks are deployed in
parallel.

P-Grid uses a fully parallel approach involving all peers simultane-
ously. In data-oriented applications there exists an additional factor that
adds to the difficulty of finding a solution to the construction problem:
load balancing. When using overlay networks for semantic processing of
keys (range queries being a popular example) the canonical method of
uniform hashing of keys to remove skew in the key distribution is no more
applicable. This has led to substantial research on including load bal-
ancing features into overlay networks [ADH05, GBGM04, Man04]. Dur-
ing construction this has to be taken into account, thus the construction
approach has also to solve load balancing problems. In fact, P-Grid ad-
dresses two types of load balancing problems simultaneously, the balanc-
ing of storage load among peers under skewed key distributions and the
balancing of the number of replica peers across key space partitions. The
first is important in order to balance workload among peers and is solved
by adapting the overlay network structure to the key distribution. The
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second is important to guarantee comparable availability of keys in un-
reliable networks where peers have potentially low availability. This is a
classical Sballs into binsT load balancing problem. P-Grid’s approach is
based on a key-space bisection process which is a completely decentral-
ized, parallel and randomized algorithm for assigning peers to key space
partitions in proportion to the key distributions of the partitions. By re-
cursively applying key-space bisection, peers can incrementally construct
the overlay network while maintaining load balance. More details about
load-balancing aspects in the process of the overlay construction can be
found in [ADHSO05].

3.4.1 Divide and Conquer

The process of constructing an overlay network from scratch should re-
quire low latency, i.e., be highly parallel and require minimal bandwidth
consumption. At the same time the following load balancing criteria
should be achieved:

1. The partitioning of the key space should be such that each parti-
tion holds a constant number of data keys, i.e., the load of peers is
approximately the same.

2. Each resulting partition should be associated with a constant num-
ber of peers such that the availability of the different data keys is
approximately the same.

In a decentralized process peers do not have precise information on the
number of peers and keys present in a partition and cannot know which
decision the other peers in a partition take with respect to associating
themselves with a partition. The only available information is on the set
of locally stored data keys and information gathered from local interac-
tions with other peers. The decentralized process of P-Grid is based on
random peer encounters and a set of basic local interactions. The random
encounters can be initiated by performing random walks on a pre-existing
unstructured overlay network. The interactions peers can perform in their
encounters can be classified in three categories, as shown in Figure 3.2.

If peers belong to the same partition they can either repartition the
present partition (a divide-and-conquer strategy) or replicate the data
keys they currently hold. If they do not belong to the same partition,
they can refer each other to other peers using their routing table entries
and thus route to a peer that belongs to the same partition. If peers
from the same partition meet, they may decide to repartition in case the
current partition contains a sufficient number of data keys to justify a
further split, i.e., the partition is overloaded. They can coordinate locally
their decision. In addition, peers keep a reference to the peer encountered
after a split, and thus incrementally construct their routing tables.
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Figure 3.2: Network evolution

We will present an evaluation of P-Grid’s bootstrapping algorithm
in Section 8.6, showing the required bandwidth consumption to build a
P-Grid network from scratch for about 300 PlanetLab nodes.

3.4.2 Unstructured Backbone

P-Grid is known as structured overlay network based on a binary trie
to route messages with logarithmic effort to responsible peers. But P-
Grid also maintains an unstructured network for maintenance and fault-
tolerance reasons. The two networks thereby do not co-exist next to each
other with individual maintenance strategies but both are tightly coupled
and maintained at the same time. P-Grid’s construction and maintenance
algorithm of divide and conquer requires a random subset of peers to meet
randomly and on a periodic basis. This subset is called fidget list in P-Grid
and basically resembles the host cache in Gnutella keeping recently met
or received hosts in cache. Fidget lists are exchanged frequently between
P-Grid peers and peers select a random subset to keep in cache locally.
The frequent exchange guarantees that these lists are fresh and mainly
contain online peers.

The unstructured network is not only used for fault-tolerance reasons
but is also used to resolve queries at the beginning of P-Grid’s lifetime or
if P-Grid is restructured and its trie is temporarily not usable for lookups.
This allows P-Grid to be operational and resolve queries from the begin-
ning on, even if no structured overlay has been formed yet. Since this
as a short period at the beginning of the overall lifetime of a P-Grid
network, broadcasting as presented for Gnutella is a tolerable approach
for searching. The same holds for situations where the P-Grid structure
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might collapse if a large population of peers leaves at the same moment
and a complete restructuring is necessary.

Apart from these scenarios, P-Grid’s unstructured backbone offers
support for more ad-hoc networks which are formed for a shorter time
and probably do not require a structured overlay as they likely be of
smaller nature. Again, their short lifetime and limited number of nodes
makes a flooding based lookup approach tolerable as building a structured
overlay for such a short period might exceed overall search efforts.

3.5 Data Correlations in P-Grid

So far we have introduced the basic concepts of P-Grid and its support
for simple key lookups as also provided by other structured overlay net-
works. Further, P-Grid uses a order-preserving hash function to map
data keys to binary index keys distributed among participating peers to
retain the order relationship among hashed keys. Figure 3.3 illustrates
how such one-dimensional correlations can be mapped onto a P-Grid net-
work of peers by P-Grid’s order-preserving hash function. The network
layer at the bottom reflects the P-Grid structure seen from a networking
side, i.e., how peers are connected physically. Each peer requires at least
three connections for the given P-Grid example to resolve queries. The
data layer shows data fragments indexed in P-Grid and their static order
correlations, i.e., lexicographical correlations. Their order retains while
assigned to peers in the P-Grid network. Therefore P-Grid naturally sup-
ports range queries on the same distributed index already used for single
key lookups. Even though P-Grid naturally supports range queries by
its hash function, the algorithmic realization of query resolution is still
non-trivial and several solutions are feasible. We present two approaches
and their comparison in Chapter 4. We further provide an approach for
completeness estimation during range query processing. Range queries
exploit the order relationship of shared data and their induced data cor-
relations. These data correlations can be seen as one-dimensional as they
can be represented by an ordered list.

3.5.1 Multi-Dimensional Correlations

More complex data correlations can be modeled with probabilistic
networks forming random graphs in multiple dimensions. Such
multi-dimensional correlation graphs can usually not simply be mapped
by a hash function to a one dimensional key space. Further, such data
correlations can change over time and require an adaption of the data
mapping. Order relationships and their mapping are static and cannot
change over time. Therefore, structured overlays using order-preserving
hashing require explicit load-balancing mechanism to compensate
possible imbalances.
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Figure 3.3: One-dimensional correlations in P-Grid

This thesis shows how data with multi-dimensional correlations can be
mapped on structured overlays using a one-dimensional key space, such
as P-Grid. The mapping should cluster correlated data on one peer, or if
this is not possible, in the proximity to improve joint data access imposed
by applications. Figure 3.4 illustrates the problem based on the example
already used in Figure 3.3. Again, we have the organization of peers in the
P-Grid structure and some data fragments on the data level. Unlike for
one-dimensional correlations, these data fragments are now correlated in a
multi-dimensional probabilistic network which can be defined by users or
gathered by observations. A relation between two fragments indicates that
these two fragments are likely to be accessed together, e.g., be returned
by a query. It is therefore beneficial if strongly correlated fragments are
maintained close to each other to reduce processing costs.

Network layer

Figure 3.4: Probabilistic Correlations in P-Grid
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We already introduced two examples of multi-dimensional data cor-
relations and outlined their solution in Section 1.2. The concrete and
detailed description for distributed inference is presented in Chapter 5
whereas an extension of P-Grid for multi-term queries can be found in
Chapter 6.

3.6 Conclusions

P-Grid is a structured overlay network using an order-preserving hash
function enabling efficient exact key lookups based on prefix-based greedy
routing. P-Grid’s overlay construction is based on pair-wise autonomous
interactions between peers which can be performed in parallel leading to
an efficient and fast construction algorithm. The algorithm has shown to
achieve good load balancing even for skewed data distributions.

The design of P-Grid further allows efficient support for more complex
lookup operations benefiting from data correlations in the shared data set.
One-dimensional data correlations, e.g., derived from order relationships,
are supported by design and only require an efficient algorithm to execute
range queries on top of them.

Multi-dimensional data correlations are less straightforward to be sup-
ported by P-Grid. The problem of mapping them in a similar manner onto
the one-dimensional key space of P-Grid, and other structured overlay net-
works, will be shown in the following chapters of this thesis. The aim is to
use an additional overlay network on top of P-Grid which clusters these
probabilistically correlated data on peers and in the proximity to increase
processing efficiency.
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Chapter 4

Range QQueries

Range queries are a common lookup operation to retrieve all matching
data in a given range and are supported by most (distributed) informa-
tion systems. The processing of range queries causes a joint data ac-
cess on data items in the range. To improve the performance of such
lookups, systems exploit the order relationship among data entries and
arrange them according to their lexicographical order. Range queries are
therefore an example application for distributed systems to exploit data
properties for correlated data access. We can estimate data correlations
based on existing data relationships derived from data properties, such as
the order relationship. Related data items, i.e., neighboring data items in
lexicographical order, have a higher probability to be jointly accessed and
therefore also a stronger data correlation. Preserving the lexicographical
order of data entries in a structured overlay exploits these data correlation
and enables efficient range query lookups in such systems.

P-Grid’s data access structure, a virtual binary trie, and its order-
preserving hash function fulfill this requirement and therefore naturally
support the execution of range queries. A trie is a standard database struc-
ture to support range queries and was adapted by P-Grid for structured
overlay networks to efficiently support exact lookups and range queries
in the same overlay topology. This chapter shows how range queries can
be efficiently executed on top of the P-Grid structure, respectively any
other structured overlay resembling P-Grid. We present two approaches
and compare their performance analytically, and additionally present their
evaluation on PlanetLab. The first algorithm is the simple approach of
traversing all neighbors along the queried range starting from the lower,
respectively the upper, bound. This approach is easy to implement in
most structured overlay networks but has several drawbacks such as high
latency and poor fault-tolerance. The second approach, a shower algo-
rithm, uses the tree structure of P-Grid to resolve a range query in par-
allel leading to low query latencies and higher fault-tolerance against lost
messages for the cost of more messages sent.

As the shower algorithm is executed in parallel involving possibly mul-

o1



52 Chapter 4: Range Queries

tiple messages, a requesting peer will also receive multiple query replies
containing partial result sets. Detecting the completeness of a query is
therefore non-trivial as the number of messages to expect as result is not
known a-priori to a query initiating peer. We present an approach at
the end of this chapter to estimate the completeness of a range query
executing the shower algorithm. We are able to recognize completeness
when the last reply message was received. This information can be used
to start post-processing of the final result set or to simply notify the user
respectively an application.

4.1 Algorithms and Complexity Analysis

A range query retrieves all data items within a given range R defined by
a lower and upper bound b; and b,. Assuming all data items are ordered
according to the desired criteria, the simplest approach is to skip to the
lower respectively upper bound of the range query and then proceed and
return all data items till the upper respectively lower bound is reached.
P-Grid’s order-preserving hash function guarantees that all data items are
ordered and distributed among neighboring peers, i.e., a correlated data
item is either on the same peer or a neighboring peer. The sequential
min-maz traversal we will present and discuss next uses these properties
whereas the following parallel shower algorithm makes additional use of
P-Grid’s trie structure which parallelizes the execution of range queries.

4.1.1 Min-Max Traversal Algorithm

Range queries can be processed sequentially by starting from a peer hold-
ing data items belonging to one bound of the range and forwarding the
query to a peer responsible for the next partition of the key space, until
a peer responsible for the other bound of the range is encountered. This
strategy is called min-max traversal. The underlying data structure itself
does not always have the information about peers belonging to the next
neighboring key space partitions. However, such routes can be established
either during the construction of the P-Grid overlay structure (algorith-
mically trivial), or at run-time using the existing routing information at
the peers. Figure 4.1 shows the min-max traversal algorithm graphically.

First peer A initiates the range query by querying P-Grid for the lower
bound of the range which is peer C' in this example. Steps (1) and (2)
denote standard P-Grid routing and in step (3) the result is returned
to peer A, i.e., peer C. Then in step (4) peer A sends the range query
request to peer C' and peer C sends its data pertaining to the interval to
peer A (in the implementation steps (3), (4), and (5) are actually done
in one step). Concurrently the range query is forwarded to peer D using
the “next” pointer. Peer D checks whether it is in the queried range, and
if yes, peer D sends its data pertaining to the interval to peer A, and
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Figure 4.1: Min-max traversal range query strategy

concurrently forwards the range query to peer E which repeats the same
operations as peer D except that it does not forward the query to another
peer as it has checked that it is a peer responsible for the other bound of
the queried range. Algorithm 4.3 shows this algorithm in pseudo code.

Algorithm 4.3 Sequential range queries: minmax(R, p)
1. if 7(p) C R then
2:  return(d € §(p) | key(d) € R);
3:  determine a peer r responsible for the next key space partition;
4:  minmax(R,1);
5: end if

For simplifying the analysis we assume that the algorithm starts at the
lower bound of the range R (the routing of the query to the lower bound
is not shown here, but is algorithmically trivial in P-Grid). It is assumed
that the neighbor links are cached at each peer during the construction of
the trie (this is also algorithmically trivial). In the complexity analysis of
this algorithm we can assume storage load-balancing (which is achieved
stochastically by the P-Grid base system) and that on average there exist
M data items per key space partition. Then, if there is a range query
for the range R, such that there are D data items in the given range,
search cost and latency using min-max traversal (assuming “next” links
have been established during construction) is O(logy |I1])+ |[IIg|— 1, where
[TIz| is the number of partitions over which the whole range is stored in
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P-Grid and |II| is the total number of leaf-nodes in the complete P-Grid
tree (total number of key space partitions). The search cost and latency
using min-max traversal is dependent on the size of the answer set D for
the range query, but independent of the size of the range R of the query.
This is because |IIg| has an expected value of D/M, and in particular,
using Markov's inequality, Pr{|Ilg| > ¢D/M] < % for any positive ¢ thus
giving a weak bound on the deviation. We do not consider the trivial case
D < M as this would only affect 1 or 2 peers and concentrate on the more
general case of D > M.

As already mentioned, establishing and maintaining “next” pointers
in P-Grid is algorithmically trivial and most other DHTs pro-actively
maintain it as well. Without them, an additional small overhead of
ITIr|O(logs |TT|) would have to be included. Note that this is an upper
bound, as part of the routing does not have to be repeated for the peers
in the interval.

4.1.2 Shower Algorithm

The other variant for processing range queries is to do them concurrently.
Here, the range query is first forwarded to an arbitrary peer responsible
for any of the key space partitions within the range, and then the query is
forwarded to the other partitions in the interval using this peer’s routing
table. The process is recursive, and since the query is split in multiple
queries which appear to trickle down to all the key-space partitions in the
range, we call it the shower algorithm. The intuition of the algorithm is
shown graphically in Figure 4.2.

In the course of forwarding, it is possible that the query is forwarded
to a peer responsible for keys outside the range. However, it is guaranteed
that this peer will forward the range query back to a key-space partition
within the range. Moreover, the P-Grid routing ensures that no key space
partition will get duplicates of the range queries. Algorithm 4.4 gives the
pseudo code for the shower algorithm.

The search cost (in terms of messages) of this variant is lower bounded
by O(z) + |IIg| — 1. Since every message created in the range sub-space
reaches a different leaf node (since the sub-spaces are exclusive), and
there are expected D/M such sub-spaces, the upper bound is O(x) +
min(20(|TIg|), 2P¢P"=*) where Depth is the maximum path length of
any partition in the range. Thus the complexity of the shower algorithm
is again dependent only on the size of the answer set D for the range
query, but independent of the size of the range R of the query.

The upper bound for latency is O(z) + O(Depth — z). In particular,
unlike in the sequential variant, the latency of the parallelized shower
algorithm is independent of the number of data items in the range R,
but depends on the distribution of the data items (which determines the
Depth). Note that the issuer of the query will start getting responses for
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Figure 4.2: Shower range query strategy

Algorithm 4.4 Parallel range queries: shower(R, leyrrent, D)

1: if m(p) € R then

2. return(d € (p) | key(d) € R);

3: end if

4: determine [; such that 7(min(R),l;) = (p 1);
5: determine I, such that w(maz(R),1,) = 7(p,l);
6: lmin = maw(lcurrent, mZ’I’L(ll, ))7

7 ez = maz(ly, 1,);

8 if loyrrent < lmaz then

9 for | = l,,in t0 lee dO

10: r = randomly selected element from p(p,1);
11: shower(R, 1+1, 1);

12:  end for

13: end if
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part of the range with a minimum latency of O(z), since it will already
encounter some peer responsible for part of the range.

The expected value of x is 0.5log (nM /D). The intuition for the value
of x is that, if we increase the average memory of each logical partition to
D instead of M, there will be D/LM key space partitions in total, otherwise
retaining the routing network’s properties, and since first the query needs
to reach any arbitrary peer within the range, this translates into reaching
this virtual partition of average size D, and hence x is the expected search
cost in this new network, which has the same topological properties, but
fewer (nM /D) partitions.

4.2 Related Work

Traditional database research has shown that tries are among the most
practical data structures to support range queries. The work on pre-
fix hash trees (PHT) superimposes a P-Grid-like trie onto an arbitrary
structured overlay network [RRHS04]. The advantage of PHT is thus its
universal usability on top of any DHT, however, it is considerably less
efficient. Using a native trie structure as is done in P-Grid makes range
queries more efficient in terms of both message cost and latency. Note
that the analysis we showed before gives the costs in terms of the to-
tal number of overlay network messages. The analysis of PHT provides
the number of DHT searches for answering a range query, and each of
these DHT searches for a typical DHT (like Chord [SMK'01]) involves
logarithmic number of messages in terms of the key space partitions (al-
ternatively peer population). This is due to the fact that semantically
close data items are not necessarily stored close to each other in the over-
lay network (high fragmentation), and hence, multiple overlay network
queries are required to locate all the content. In contrast, tries cluster
semantically close data items which in turn enable efficient range access.
Another recent approach [LNST04] uses a hierarchical tree structure but
because of the hierarchy, it inherently has poor fault-tolerance and poor
query load-balancing characteristics.

To support approximate range queries, locality-preserving hashing to
hash ranges instead of keywords is used in [GAEO03]. An improvement of
this approach to support exact range queries is proposed in [SGAE04].
The fundamental problem of these approaches is that the ranges them-
selves are hashed, and hence, simple key search operations are not sup-
ported or are highly inefficient. Since both key and range queries are
needed, it is desirable to have one mechanism supporting both, instead
of maintaining separate hash tables for keys, and separate hash tables for
ranges, because such a strategy fails to reuse the resources of the peers.
These approaches [GAE03, SGAEO04] lead to very bad fragmentation even
for related ranges, and can result in either poor storage-load balancing or
inefficient access. Moreover, since they use CAN as the underlying net-
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work, the search efficiency guarantees hold only for uniform partitioning
of the space, which conflicts with storage load which is arbitrarily dis-
tributed, as will be the case for caching range queries, more so because
queries will also be non-uniformly distributed.

In terms of key search efficiency, support for range queries and stor-
age load-balancing, there are some interesting novel structured overlay
network abstractions which exhibit performance comparable to our trie-
structured proposal: Skip Graphs [AKKO04, AS03] which are based on
skip lists [Pug90], and Mercury [BAS04] which is based on small-world
routing. Skip Graphs can be viewed as a trie of skip lists that share their
lower levels. As Skip Graphs preserve the ordering relation among keys
they also support range queries. Similar to the shower variant of P-Grid,
range queries are resolved by finding any node in the interval (O(logn)
messages) and then broadcasting the query through the m nodes in the
interval which requires O(mlogn) messages. In total this is still of log-
arithmic complexity but quite a bit higher than the effort (in terms of
messages) incurred by our approach. Mercury, on the other hand, retains
the data sequentially, dynamically assigns the range for which individual
peers are responsible in order to provide good load-balancing, and uses
small-world routing among the peers. Multiple-attribute range queries by
using an individual index for each attribute as proposed in Mercury can
be done based on any indexing scheme, including ours. The important
and unaddressed issue in all existing literature on multiple-attribute range
queries is the issue of efficient joins. Though Skip Graphs and Mercury
offer comparable complexity characteristics in terms of search and range
queries as our approach, these systems have so far only been evaluated
with simulations, and no real implementations or experimental evaluations
in a real-world networking scenario exist. For our approach, however, we
do not only provide the theoretical study of the performance, but also re-
port on deployment and experimentation of a fully implemented overlay
network.

There exist many other range query proposals, which are of lesser
relevance than the approaches discussed above. A detailed survey of
search mechanisms in P2P systems, including range queries can be found
in [RMO04].

4.3 Evaluation

The two range query algorithms were implemented on top of the Java-
based P-Grid implementation and we performed a number of large-scale
experiments on PlanetLab to validate the analytical results presented in
Section 4.1 in a practical setting.

Experimental setup In the experiments we used a network of 250
peers each running on a dedicated physical PlanetLab node. We inserted
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2500 unique data items into the system and required an average replication
factor of 5 which is necessary in any overlay network to compensate for
node and communication failures. Thus initially we would have a total
of 5% 2500 = 12500 data items in the system and each peer would be
responsible for 5% = 50 data items. The real number of data items in
the system in fact was higher as for load-balancing each peer was required
to manage a minimum of 50 and a maximum of 100 data items, and given
the randomized construction approach of P-Grid, each peer would thus
hold on average 75 data items, i.e., the total number of data items in the
system was 250 * 75 = 18750.

To show that the algorithms basically work for any data distribution,
we used two different data sets, one uniformly distributed and one Pareto
distributed (with a probability density function of % and parameters
k=1 and a = 2.0) as shown in Figure 4.3.

‘Uniform‘ data dis‘tribution‘ Pareto data distribution
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Figure 4.3: Data set distributions

Pareto is a typical long-tail distribution which occurs frequently. We
will see in the experiments that P-Grid is insensible to such distributions
due to the efficiency of the underlying load-balancing algorithm which
balances both storage and replication load. We can thus safely infer that
if the results are good for a Pareto distribution, the system will perform
equally well for other frequent long-tail distributions, e.g., Zipf.

In the experiments each peer selected randomly 10 data items of a
global data set according to one of these distributions. The peers then
constructed a P-Grid which had an average height of log, %ggg = 5.6.
Then range queries which affected data from all partitions of the data
sets were issued. The queries were started from randomly chosen peers
with random lower range bounds, and were constructed in a way, such
that they would return 50, 100, 150, 200, 400, and 800 data items. For
each of the six answer set sizes, each of the two distributions, and each of
the two algorithms, one query was issued by each of the 250 peers, i.e., a
total of 6% 2% 2% 250 = 6000 queries resulting in 250 values per data point
in Figures 4.4-4.7.
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Experimental results There are several performance metrics of inter-
est to evaluate the system as well as the algorithms for their suitability to
support range queries. This includes load-balance characteristics (storage,
replication, and query load), data fragmentation, as well as message costs
and latency for various data distributions. Chapter 3 and [ADHS05] have
shown P-Grid’s efficient multi-faceted load-balancing characteristics and
that the use of order-preserving hashing ensures low data fragmentation,
while the dynamic construction of the trie structures ensures storage-load
balancing.

The main objectives of our experiments in this section were to demon-
strate the cost/latency trade-off of the range query algorithms, and to
show that because of the use of a load-balanced trie-structured overlay
network, the cost of range queries is independent of the data distribution
and the size of the range, but only dependent on the used algorithm and
the size of the answer set which we expected from the theoretical analysis
of Section 4.1. From the experimental results presented in the follow-
ing, we can observe that the cost and latencies are indeed independent of
the distribution and indirectly prove that the overlay network has good
storage-load balancing characteristics.

4.3.1 Message Latency and Cost

Figure 4.4 shows the costs incurred by range queries in terms of mes-
sage latency (hops), i.e., the maximum number of messages required to
hit each sub-partition of the range, i.e., one peer in each sub-partition.
Figure 4.4(a) shows a direct comparison of the experimental results and
Figure 4.4(b) gives the standard deviations of each of the four types of
experiments as error bars.

On average we need 3 hops to reach a responsible peer for both types
of algorithms, but the min-max algorithm then suffers from the sequential
traversal of the range to reach all sub-partitions after reaching the lower
bound. This leads to increasing hop counts with increasing range sizes
whereas for the shower algorithm the number of hops remains constant,
i.e., it is rather insensitive to the size of the answer set as an increase in
the number of hops for this algorithm basically means that the range has
exceeded one level in the tree and an additional hop is necessary as the
“shower” has to start at the next higher level. However, this benefit comes
at the cost of an increase in the overall messages as shown in Figure 4.5.
Figure 4.5(a) shows a direct comparison of the experimental results and
Figure 4.5(b) gives the standard deviations of each of the four types of
experiments as error bars.

The shower algorithm requires a slightly higher number of messages
but improves latency as it sends them to the responsible peers in parallel.
Therefore all peers responsible for a range section are reached after 3 hops
(in the experiment’s setup) independent of the range size. Range queries
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with an answer set size of 50 are answered mostly by one peer because
peers on average are responsible for 75 data items. It can further be seen
that both algorithms perform equally well for both data distributions and
scale well as expected. An increase of the answer set size by a multiplica-
tive factor of the average peer storage size yields an additional message on
average which is the best possible result achievable with limited storage
available at the peers and again indirectly proves the optimal behavior of
the underlying load-balancing algorithm.

Figure 4.5 also shows the total number of peers involved in a range
query, i.e., the number of peers forwarding or replying to a range query.
For the min-max algorithm this number is equal to the number of messages
because only one message is first routed to the lower bound and then
forwarded to the higher bound. Therefore the number of peers forwarding
a query to a peer of the desired range is smaller than for the shower
algorithm. More peers are involved during the shower algorithm because
messages are sent in parallel to reach desired peers (partitions).

4.3.2 Query Latency

In terms of query latency, it is interesting to see that the shower algorithm
is almost insensible towards answer set sizes. As can be seen in Figure 4.6
the latency is nearly constant.

This can be explained by the fact that a considerable number of data
items would have to be added before the trie increases its height which is
the major contribution to the latency for this algorithm. For the min-max
case the latency increases for obvious reasons as messages are forwarded
sequentially which increases the latency. Here an increase of the height
of the trie has a much more dramatic influence as the min-max algorithm
heavily depends on the width of the interval. While increasing the height
of the trie means only an additional hop for the shower-algorithm which
is processed largely in parallel, for the min-max algorithm the number of
sequential messages increases by a factor of 2 on average. Note that this
is expected from theory, since the height of the tree will increase by 1 only
if approximately twice the data items are in the same range, and in the
min-max algorithm, both latency and message cost is proportional to the
number of data-items in the answer-set.

A side result which can be inferred from these plots is that the small-
est range queries involving 3-5 peers take approximately 10-20 seconds
on average. Larger range queries using the min-max algorithm take a
multiple of that. This can be explained by the success of PlanetLab as
an experimental test-bed, since a large number of experiments are con-
ducted concurrently which considerably slows down PlanetLab’s overall
performance.
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4.3.3 Success Rate

Finally, in Figure 4.7 we show what level of result completeness we could
achieve by our range queries.
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Figure 4.7: Result completeness

This measure represents the percentage of received data items as an-
swers to a range query with respect to the actual number of data items
inserted (present) in the specific range. The result completeness is around
90% and is mainly independent of the range sizes and the data distribu-
tions. We observed several problems during our experiments in respect
to the PlanetLab environment, for example, communication problems and
crashes of PlanetLab nodes (not of the tested P-Grid system but the phys-
ical PlanetLab nodes), which explain the non-exhaustive results. Note
that, while it is an issue that is beyond the scope of this evaluation (such
failures because of unreliable peers are characteristic of any deployed P2P
system, the relatively high success rate in fact demonstrates the robustness
of P-Grid under churn. Smaller scale experiments in a local environment
with lower numbers of nodes and node failures have proved the functional
correctness of our implementation and provided a 100% success rate. To
increase the success rate on PlanetLab we could increase the replication
factor, i.e., data is replicated more often, and thus node failures could be
possibly compensated better. This will increase the maintenance overhead
but should provide better results. However, due to the duration of the
experiments and the lack of possibility to assess the conditions on Plan-
etLab that caused a certain experimental result and behavior, we have no
experimental evaluation of this strategy yet. In the experiments discussed
above we used a replication factor of 5 on average (in fact, each data item
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was replicated between 1 and 10 times). Taking this into account and the
very dynamic situation on PlanetLab a success rate of 90% seems reason-
able. In future work, we will explore the possibility to adapt replication
to the dynamic situation on the physical network to improve on the result
completeness.

4.4 Completeness Estimation

Section 4.1 presented range query algorithms for the P-Grid overlay using
parallel multi-cast protocols. A main challenge remaining is to estimate
the progress of query processing, i.e., to answer the question which fraction
of the total query result is already received. The difficulties are due to the
purely decentralized nature of the structured overlay, the lack of global
knowledge (no peer knows how many peers are responsible for the queried
key range), the dynamics of the network (peers may leave the network
during processing a query), as well as the often used best-effort strategy
for query routing and answering.

However, estimating the completeness of a query result is not only a
helpful information for the user issuing the query, but it is also needed for
processing complex queries. For instance, query operators like aggregation
or ranking-based queries (e.g., skyline queries [BKS01, KMS07]) require
to know when all input data is arrived in order to calculate the aggregate
value or to sort the input.

The objective of this section is to estimate the completeness of range
queries as a fundamental operator for more complex query operators and
to give guarantees on the quality of this estimation. The idea is to map
the completeness on data level to a completeness on peer level, thus,
estimating a number of replies expected for each query. Though it is
guaranteed by the shower algorithm that all peers receive exactly one
range query message, it is currently not possible for the initiating peer to
estimate the number of peers concerned by a range query, i.e., estimating
the number of response messages it has to expect. For keyword based
queries, a peer receives only one query response by one peer in a structured
overlay network as only one peer (or any of its replicas) is responsible for
the given keyword. A peer is therefore able to determine when a query
finished and when it received all matching items to either inform a user,
start post-processing or initiate subsequent queries. This is currently not
possible for range queries in structured overlay networks as the number
of response messages depends on the number of peers in the target range,
which is usually not known for a peer. We will present an approach
to estimate this number based on the local information available in a
peer’s routing table and corrected by intermediate peers forwarding range
queries or peers responding to range queries. We thereby assume a load-
balanced system where each peer holds approximately the same amount
of data as shown for P-Grid in [ADHS05]. Hence estimating the number
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of responding peers is equivalent to estimating the number of query hits
expected to be retrieved by a range query.

4.4.1 Completeness on Data vs. Peer Level

Estimating the completeness of queries should intuitively be bound to the
data level: the user is interested in what fraction of all expected result hits
she/he already received. This also holds for subsequent processing steps
following the execution of range queries. As briefly mentioned in the last
section, predicting completeness on data level is almost impossible with-
out enormous costs. Fortunately, in a load-balanced overlay system this
completeness can be mapped to completeness on reply level, because each
reply should deliver approximately the same number of results. This is
especially true for range queries, because no filtering steps are applied —
if a peer is responsible for a part of the range, it will return all of its local
data items. Moreover, we will show that we are able to guarantee to iden-
tify the last query reply when actually receiving it. Thus, a completeness
of 100% on reply level corresponds to a guaranteed completeness of 100%
on data level. So, for subsequent operations that rely on complete range
query replies estimation on reply level is absolutely satisfying. In order to
show its applicability for other situations, in Section 4.4.4 we show that
completeness on data level and reply level almost match. Note that, due
to the characteristics of sophisticated overlays, the majority of queries will
be answered completely.

4.4.2 Estimating Completeness

We focus on the shower algorithm implemented in P-Grid. In Section 4.4.3
we discuss the possibilities for other systems to provide completeness es-
timation for range queries and the applicability of our approach to them.

A peer initiating a range query starts this query by providing the
interval bounds of the desired range. Afterwards, each intermediate peer
responsible for routing the query, forwards it to one or more sub-trees,
depending on its own path, the paths of peers from its routing table, and
the paths of the queried range. Thus, the crucial point is to estimate the
number of peers responsible for a certain key range. But, due to load-
balancing aspects, this is quite difficult. The idea is to use all available
path information in order to build an estimated P-Grid trie. Based on
this tree, we can determine a minimal number of replies expected.

In the following we will explain, how we can determine the minimal
number of replies from an estimated P-Grid trie. Let

bibabs ... by

denote the x bits that form the binary path of such a peer. From this
path, we can deduce the existence of at least x other peers: Let b; denote
the inverted bit b;. For each path
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there must exist at least one responsible peer. Knowing about several
paths from peers in a range, the initiator can deduce a minimal number
of peers in that range. In order to achieve this, the initiator builds a tree
from those paths and reflects to the minimal number of peers.

00100 queried range 1101

Figure 4.8: Estimating the P-Grid trie

Figure 4.8 illustrates this. The figure shows an example P-Grid tree.
Assume a query for the range 00100 — 1101 was initiated. Further, the
initiator Py knows about four peers, where the paths from P;, P, and
Pj3 are in the range. As every peer has at least one reference to another
peer for each of the positions of its path, Py must at least know about
four peers, each located in a different sub-tree. The part of the tree the
initiator can deduce from its local routing information is shown in solid
lines. The dashed lines indicate that part of the tree not known to the
initiator, which results in a small error in this first estimate. The minimal
number of peers in the range estimated in this situation is 8, the correct
value is 10.

Estimation Refinement

The first estimation performed by the query initiating peer is solely based
on the routing information available at that peer. This information con-
sists of at least one reference per level respectively one peer of each sub-tree
a range query is sent to. For fault-tolerance and load-balancing reasons
structured overlays usually keep multiple references at each level to re-
main operational during peer churn or to select the least loaded peer for
query load balancing. Therefore, the information a query initiating peer
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has about the structure and peers in a sub-tree increases with the number
of references per level.

But, the information gathered like this is still not complete and the
estimation might still be too small as some peers remain “invisible” from
the local point of view. Therefore, initiating peers piggy-back with each
query sent to a sub-tree the estimate of peers considered in a sub-tree.
For example in Figure 4.8, the range query sent from peer P, to peer Pj
also contains the estimate that three peers build the sub-tree 001x. As
Py only knows that P3; has path 00110, it knows that there must be a
peer 00111 and at least one peer for 0010, though Py does not know that
the sub-tree 0010% actually consists of two peers. P3 is aware of this fact,
because Pj’s routing table must contain at least one of the peers from
sub-tree 0010%, and can return the correct number of peers in sub-tree
001x with its query reply to peer Fy. Fy can then correct the estimate
of query replies expected for the initiated range query. Peers receiving a
range query with correct information do not have to “correct” the initial
estimate.

The required message overhead for our completeness estimation is
therefore minimal as no additional messages have to be sent and only
small information are piggy-backed with sent query and query reply mes-
sages. In case a range query hits a peer outside the target range with an
incorrect estimate, the receiving peer can either react by replying with a
short acknowledgment message correcting the initial estimate, or it for-
wards the incorrect estimate to target peers in the range and the correction
will be returned in the query reply messages. In the first case, the query
initiator can sooner correct the estimated completeness at the cost of a
small extra message, whereas in the second case the correction is done at a
later time with the reception of query results without additional messages.

Applying the method as described above, we will never over-estimate
the number of expected replies. Moreover, when a query is finished, we
will always recognize this for sure. This is possible because the paths of
the replying peers are analyzed. Thus, receiving these replies, we always
know for sure the actual size of the corresponding sub-tree.

Further Improvements

There was much research spent on designing overlay systems as much
stable and reliable as possible. Thus, we can even cache estimated trees
once they are built. These cached trees can later be used for subsequent
queries. The trees should then be adapted to changes in the overlay
structure registered — which may, of course, occur, but are expected to
be rather rare. In this way, we achieve a quite accurate and satisfyingly
exact completeness estimation, which is automatically maintained with
each query initiated.

The task of achieving complete query results is due to the used overlay
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system, in this case the P-Grid overlay. Nevertheless, incomplete results
may occur in rather unstable and unreliable large-scaled systems. This
also effects the completeness estimation, as, for instance, we will experi-
ence a difference in the static completeness concerning all data that should
be available, and the dynamic completeness based on the results actually
received. This should be involved into completeness considerations. A
nice aspect of the method proposed here is that it allows for estimating
the size of results missing in this case.

4.4.3 Usability in other Overlay Systems

Our approach is based on a parallel resolution of range queries in a binary
trie similar to a prefix hash tree, whereby in the case of P-Grid the depth
of each sub-tree can be estimated by the known nodes of this sub-tree
stored in the local routing table. To the best of our knowledge no other
system can already provide completeness estimation for range queries.
In this section, we briefly discuss the possibilities for other systems to
estimate the number of query replies and the usability of our approach
for them.

The approach for range queries in SkipGraphs [AS03, AKKO04] is the
most similar one to the one of P-Grid as peers also maintain routing
information at multiple levels. Our proposed method can also be used by
SkipGraphs to estimate the number of peers in other sub-trees. The only
problem is the number of peers remaining in the bucket layer below the
lowest interconnected skip-list level. But, as load-balancing is in place,
this number should be similar to the number of buckets the current node
is in.

Mercury, the second structured overlay network using order-preserving
hashing, uses long-range links within the Chord-based attribute hubs to
implement a similar range query algorithm as P-Grid’s shower algorithm.
Based on the information available we assume that Mercury can estimate
range query completeness in a similar way than we have shown here for
P-Grid if adequate routing information is available and cached.

Approaches like [RRHS04] and [LNST04] are based on a prefix hash
tree where peers remain at each level of the tree, unlike in P-Grid where
peers only remain at the leaf level. The routing in this tree starts at the
root level and trickles down the tree from nodes to their children until
all nodes in the target range are reached. As we assume that nodes do
not know the exact number of their children, it is not possible for them
to estimate how many nodes will return results for a range query. If this
number can be estimated, the technique presented in this paper can also
be adapted for completeness estimation in systems based on prefix hash
trees.

Finally, approaches forwarding a range query sequentially along neigh-
bors cannot estimate the final number of nodes involved in a range query,
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e.g., CAN-based systems presented in [GAE03, SGAE04].

4.4.4 FEvaluation

The focus of the following evaluation is to show the applicability, exact-
ness and quality of the proposed completeness estimation. These aspects
are not directly depending on the size of the network, but rather on the
size of the constructed overlay trie. This, in turn, also but not exclu-
sively depends on the network size. We created a local and reliable but
real environment consisting of 61 nodes. These nodes were physically dis-
tributed over 20 machines, each running up to 4 instances listening on
different ports. As the environment was stable, we were able to use a
low replication factor, lowering the number of replicas responsible for one
path in the P-Grid trie. This resulted in a wider and deeper tree. Thus,
the results are also significant for larger scaled networks, where usually a
higher replication factor is used. We used two environments, the first with
a replication factor of 2, the second with a factor of 1. In unreliable sys-
tems, this factor will be set to 5 or higher compensating frequent joins and
leaves by peers. Our evaluation focuses on the completeness estimation
of range queries and we assume that P-Grid guarantees the availability of
at least one peer per partition even in very dynamic or unreliable setups
like PlanetLab.

We inserted 48 data items from each of the peers, resulting in a total
of 2928 data items. The used string data represents information about
movie titles and was taken from IMDB!. The average number of leafs,
maximal path length and the average path length were 32, 8 and 5 for a
replication factor of 1. For a factor of 2, the values were 19, 6 and 4.5,
respectively. The resulting P-Grid trie was not balanced. Almost 40%
of the leafs were located under key prefix 0 and the tree was deeper and
wider under key prefix 1.

In order to evaluate the influence of the number of references for one
level of the local routing table we built three environments, using a max-
imal number of references of 1, 3 and 5. A query mix of three different
range queries, involving different parts of the trie and therefore resulting
in a different number of replies, was run. Each query was initiated 10
times, each time on a randomly chosen node. In the following, we present
and discuss the results of the described experiments.

Completeness on Data Level

The first figure shows the correspondence between completeness on data
level and on peer level. Figure 4.9 shows the percentage of the final result
received with respect to the number of replies received. We exemplary
chose one of the described network environments (replication factor 2,

"http://www.imdb. com/
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Figure 4.9: Completeness on data level

maximal references 5) — in the other settings results look similar. The
plot shows that especially for the two queries resulting in less answers the
development of the result size is almost linear. For the query involving
the whole P-Grid trie there is a higher increase in that size with the last
query replies. Even if P-Grid implements a sophisticated load-balancing,
there might exist keys a particular high number of data items is mapped
to. P-Grid’s load-balancing technique splits high frequented key space
partitions more fine-granular than others, but does not “split” single keys.
Thus, some peers are still responsible for a higher number of items than
others. Due to the locally used storage system, the answer time correlates
to the amount of data to be processed locally. Therefore, replies from
these peers arrive at the end, resulting in a higher increase of the result
size with the final answers. A perfect mapping would be indicated by a
straight line. The figure shows that the mapping from completeness on
data level to the completeness on reply level is satisfyingly realistic in
load-balanced overlay systems.

Estimate Number of Replies

Figure 4.10 shows the number of replies we estimated using the proposed
technique with each reply received. Additionally, the straight line rep-
resents the actual completeness on reply level. The figure clearly shows
that our method always estimates the number of replies correctly at the
end. Moreover, it gets evident that only a small number of first replies
is needed in order to determine a correct value in the end. As expected,
the higher the number of references for each level of the routing table,
the more exact the initial estimation and the less corrections are needed.
The figure also shows that in this case the size of the temporary errors is
smaller than with lower references per level. The differences in the number
of replies for equal queries are due to the need for starting networks with
different parameters from scratch every time. By this, and the application
of a random-walk strategy in order to build the P-Grid trie, this results
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in, only slightly, different overlay trees.

The smaller the part of the trie involved into range query processing
the less information is needed in order to achieve exact estimations. For
the first two queries, even the settings using a replication factor of 1 and/or
a maximal number of references per level of 3 and 1 are quite satisfying.
As it is more probably that sub-trees are queried than the whole tree, this
shows that the proposed method provides quick and exact estimations
even with low information. This also shows the effectiveness for larger
scaled and unreliable systems where, in turn, more information shall be
contained in the local routing tables.

Summarizing, we can state that for each of the considered cases we
only need a fraction of replies in order to achieve an exact completeness
estimation. As the method goes along with very low additional effort, this
proves its powerfulness for trie structured overlays in general.

Relative Estimate

The last figures show the relative completeness (%M) estimated

with each reply. Thus, it illustrates the ratio of error correction. Moreover,
this time the queries were run on two different networks for each setting,
each of them run for a different time before starting queries. Results
from the hence four runs were averaged. Thus, effects of slightly different
overlay tries are eliminated. Figure 4.11 shows that the ratio of correction
is always almost equal for each of the used environments. Following,
independent from the query actually initiated, completeness estimation
is comparably good and corrections provide equally good improvements
with respect to the size of the final result. The figures also show that
the initial estimate is good for all tests, but it is better if more references
are stored at each routing table level. As expected, the reduction in the
error is visible only for the first query replies and converges to 0 for the
later replies. Another important observation is that the estimation for
the queries with less replies are very exact with little information and
that the corresponding plots approach each other with rising numbers of
references.

Estimation on PlanetLab

Finally we ran some experiments on PlanetLab. In each run, we involved
as many nodes as were available in the tests. This always involved nodes
spanning the whole globe. At the time of our experiments, for each run
there were between 382 and 390 peers available in our slice. Every time
a new experiment was initiated, we built a P-Grid network from scratch.
After a certain waiting time for establishing a suitable overlay trie we
initiated range queries. The inserted data was again randomly chosen
from a set of top-frequent entries from the IMDB, resulting in a total of
about 16,000 index entries. The set of all generated keys shows a skewed
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heavy-tail distribution (power-law like), as shown in Figure 4.12 (all keys
that were inserted more than one time, log-log scale). We used a value of 5
for P-Grid’s replication factor as well as the maximal number of references
per routing level. The resulting P-Grid trie was not balanced. Almost
40% of the leaves were located under key prefix 0 and the tree was deeper
and wider under key prefix 1. The average number of leaves, maximal
path length and the average path length were 35, 7 and 5, respectively.
The average number of single entries each peer was responsible for was
approximately 5,000.
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Figure 4.12: Key distribution

Figure 4.13 shows the number of estimated replies with respect to the
number of already received replies and reveals that completeness estima-
tion is quite exact in this case, even with the very first replies. Addi-
tionally, the figure shows the number of actually received replies averaged
over all queries. We only need a small fraction of all replies in order
to achieve almost exact correctness. This result therefore confirms our
findings presented in Figure 4.10.
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Figure 4.13: Completeness estimation on PlanetLab

All in all the proposed method for completeness estimation is abso-
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lutely satisfying. The initial estimation, based on no further knowledge
than the local one, is quite good for any type of query and environment.
Even if this first estimate is erroneous, only a small amount of replies is
needed in order to determine an exact estimate.

4.5 Conclusions

This chapter has shown how range queries can efficiently be implemented
in structured overlay networks using order-preserving hashing. Whereas
the min-max traversal approach is basically supported by any structured
overlay as it only requires neighboring links between peers usually already
required for system maintenance. The shower algorithm on the other
hand benefits from P-Grid’s trie structure to process range queries in
parallel using multiple messages at the same time trickling down the tree
till all queried partitions are reached. As multiple query messages result
in multiple query reply messages, we provide a range query completeness
estimation for users and applications to estimate the number of reply
messages to expect, even before the first message is issued. We can further
identify the completeness of a query, i.e., the event of receiving the last
reply, on data and peer level.

The evaluation of the range query implementation in the P-Grid ap-
plication has shown that both algorithms perform well even in a realistic
environment such as the PlanetLab testbed. The applications part at the
end of this thesis will show how applications can benefit from a structured
overlay network providing efficient range queries to enrich the applications
functionalities, making the support for range queries indispensable in any
P2P system.



Chapter 5

Distributed Inference

Structured overlay networks enable applications to share large data sets
in wide-area networks and to efficiently locate shared information. The
previous chapter has shown how range queries can be implemented in
these systems exploiting data properties to estimate correlated data ac-
cess. There, data correlations are derived directly from data properties. A
second way to obtain data correlations is by applications and their users,
providing additional information to set their data entries into a relation-
ship, i.e., also into a relationship with other users’ data. This annotation
of data with metadata is common practice in PDMS and the Semantic
Web as data is provided and maintained by a community integrating and
relating new information to existing knowledge.

The Semantic Web community has developed a number of languages
(RDF, RDF Schema, OWL) that deploy logic for automatic reasoning of
shared data. The database community supports this new trend with effi-
cient inference support for semantic web data in their central databases.
Inference is the act or process of deriving a conclusion based on data avail-
able in an information system. Inference is studied and applied within
several fields such as logic, statistics and artificial intelligence. It enables
applications to draw conclusions from a collection of data and relation-
ships between data and potential conclusions. This has the advantage that
data can be processed system internally and that large amounts of data
do not have to be exposed to the application. A system enabling infer-
ence operations can therefore optimize its internal structure accordingly
to more efficiently process reasoning requests. For a P2P system support-
ing inference, data does not have to be retrieved from several peers and
returned to an application, but instead can be processed in the P2P sys-
tem itself and only return a final, probably relatively small, result. This
in-network processing can thereby be optimized by the P2P system and
is orthogonal to classical lookup operations presented so far.

This chapter shows how distributed inference can be supported on top
of a structured overlay network such as P-Grid. By distributed inference
we understand the reasoning about data shared in a distributed system

7
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such as an overlay network. We show how the shared data is reorganized to
more efficiently process reasoning requests, i.e., to optimize in-networking
processing. We base our approach on Bayesian networks and Bayesian
inference, representing one of many inference methods. However our ap-
proach of restructuring shared data is not limited to Bayesian networks.
Our data reorganization approach is based on the spring relaxation tech-
nique already successfully used for other purposes in P2P systems, such
as proximity routing. The spring relaxation technique allows us to cluster
correlated data on peers and their proximity. Data correlations are de-
rived from user annotations and used during the inference process to draw
conclusions. Clustering correlated data therefore has the advantage of re-
ducing messaging costs for distributed inference. This chapter presents
our variant of the spring relaxation algorithm to cluster correlated data for
efficient distributed inference, and its extensive evaluation in a simulation.

5.1 Motivation

Recently, inference found a new field of application in the context of
the Semantic Web as description logics, such as OWL, can be automati-
cally processed using automatic reasoners. The Web Ontology Language
(OWL) is a language for authoring ontologies and OWL ontologies are
written in RDF/XML to aid automated parsing. For example, consider
the terms ’professor’ and ’staff” in an ontology for universities, with the
relation of ’professor’ being a subclass of ’staff’. Then we can deduct by
inference that all professors are also staff members at the university. This
knowledge can now be used for query resolution or query reformulation
to improve the quality of the result set. OWL is an important part of
the Semantic Web, and has attracted both academic and commercial in-
terest. Centralized databases optimized for RDF such as Sesame' and
Jena? offer efficient reasoning capabilities on the locally stored data as
required by Semantic Web applications built on top of them. Efforts of
the P2P community to provide a distributed version of such an RDF store
are the systems GridVine [CMAAO07] and UniStore [KSR*07]. They pro-
vide lookup operations on shared RDF data using RDF Schema/RDQL
queries respectively a variant of SPARQL, the query language of the Se-
mantic Web, named VQL. Chapter 9 will present more details about Uni-
Store, its internal data organization and data processing support. The
storage of semantic data in a distributed system hamper reasoning as all
the required data is not available locally anymore. To support similar in-
ference capabilities as in centralized systems, a distributed system either
first collects the required data to perform inference, or uses distributed
inference. The collection of data for local inference can become expensive

"http://www. openrdf . org/
2http://jena.sourceforge.net/
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if the reasoning involves large data sets spread around the globe. Dis-
tributed inference has the advantage that no data has to be gathered first
and data is processed locally at nodes in the network. To derive conclu-
sions, intermediate results have to be exchanged in-between involved data
sets, requiring to send messages across the network if parts of the data are
not available locally. This inference method is called message-passing and
a standard technique to perform probabilistic inference, in a local and dis-
tributed setup. GridVine already applied reasoning internally to analyze
the correctness of schema mappings as shown in [CMAF06]. The message
passing technique applied in [CMAF06] motivated us to provide a dis-
tributed inference architecture on top of P-Grid supporting the reasoning
on shared data in P2P systems.

Distributed probabilistic inference is also already applied for various
applications in sensor networks [PGMO05]| where network limitations are
probably more obvious than in classical P2P networks. Sensor networks
provide data streams and it is sometimes too expensive to ship all the
generated data over the network, especially in outdoor settings consisting
of nodes running on battery power. In such a scenario, network com-
munication is the most expensive operation and has the strongest limit-
ing influence on the life-time of these networks and should therefore be
avoided [HSPMO6]. In-network processing as for example by distributed
inference is therefore a good solution to avoid unnecessary network com-
munication as data can remain at the nodes. To minimize network com-
munication induced by reasoning over facts stored at network nodes, data
required for this operation should be available at one node or preferably in
the neighborhood of the node. The data reorganization requires to cluster
correlated data accordingly.

5.2 Belief Propagation

Pearl’s belief propagation [Pea88] enables distributed inference by
a simple message-passing algorithm between nodes in a Bayesian
network modeling correlations between variables. A node can represent
any kind of probabilistic variable, be it an observed measurement, a
parameter, a latent variable, or a hypothesis. Belief propagation was
first successfully applied in the domain of error correcting codes (Turbo
Codes [BGT93]), speech recognition, image processing and medical
diagnosis. Recently, it was used in P2P systems in the context of
content distribution [BMRO04] and in sensor networks [[JWEFMWO04].
The simplicity of the message-passing algorithm holds the risk of being
not scalable towards large-scale networks because many small messages
have to be sent between nodes. Approaches to reduce communication
costs such as Generalized Belief Propagation [YFWO00] cluster nodes and
build a hierarchy based on common variables of clusters. The message
reduction comes with the drawback that the size of sent messages
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increases exponentially (number of states™0des in the cluster) hecause the

exchanged messages now contain the joint probabilities of all nodes and
states in the cluster. An open problem is how nodes are clustered in a
distributed way requiring no global knowledge and coordination so that
the communication costs are minimized.

The belief propagation algorithm, also known as the sum-product al-
gorithm, is an iterative algorithm for computing marginal probabilities,
“beliefs” about possible diagnoses, of nodes on a probabilistic graphical
model such as Bayesian networks. A Bayesian network is a directed acyclic
graph of nodes representing variables and edges representing dependence
relations among the variables. If there is an edge from node A to node
B, then node B’s state depends on node A’s state. This is specified by a
conditional probability distribution for node B, conditioned on the state
of node A. A Bayesian network is a representation of the joint distribution
over all the variables represented by nodes in the graph. We assume that
the joint probability distribution factors into a product of terms involv-
ing node pairs and single nodes. These factors are called edge potentials
Yij(xs,25) and local potentials ¢;(x;). Evidence nodes are nodes with a
known value. A node can represent any kind of variable, e.g., an observed
measurement, a parameter, a latent variable, or a hypothesis. For ex-
ample, consider the simple Bayesian network in Figure 5.1 consisting of
3 variables OS1, Driverl and Appl. The dependencies are as follows: if
the hardware driver Driverl is installed on the operating system OS1, the
application Appl is likely to run smoothly with 90% probability. If the
driver is missing, the application runs only to 40% and if OS1 is not in-
stalled, then the application does not run at all independent of the driver.
If it is known that OS1 is installed, then its probability would be set to
1 and the probabilities for Appl to run would only depend on Driverl

thereafter.
| True False | True False
Installed| 0.2 0.8 Installed| 0.2 0.8

0Os1 Driver1| Runs  Error

T T 09 0.1
T F 04 06
F T 00 1.0
F F 00 1.0

Figure 5.1: Bayesian network example
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The belief propagation algorithm is provably efficient on trees and
experiments demonstrate its applicability to arbitrary network topologies
using loopy belief propagation for loopy networks [Wei00], which we will
present in the following. The algorithm is currently used with success
in numerous applications including low-density parity-check codes, turbo
codes, free energy approximation, and computer vision.

5.2.1 The Message Passing Algorithm

The algorithm passes messages across the edges in the graphical model,
i.e., in each iteration, a node sends a message to an adjacent node if it
has received messages from all of its other adjacent nodes at the previous
iteration. In the first iteration, nodes send an initial message, usually
set to 1, to all adjacent nodes. In subsequent iterations, messages passed
from node z; to node z; are updated using the following rule:

mij(x;) = > i(xi) i (i, w5) [ ] mna(z:)
i k#j

where ¢;(x;) are the local potentials of node x; and v;;(x;, x;) are the edge
potentials. The product of messages excludes the message received in the
previous iteration from node j, the node we are passing the message to.
The messages m;j(x;) and the local potentials ¢;(z;) are vectors whose
length corresponds to the number of states a node x; can be in. The edge
potentials 1;;(x;, z;) are N x M matrices where N is the number of states
node z; can be in and M is the number of states for node ;.

Finally, the marginal probabilities of nodes, called the beliefs, can be
computed by multiplying all received messages by the local potentials:

k

The beliefs are normalized by « to avoid numerical underflow. The
algorithm converges if none of the beliefs in successive iterations changes
by more than a small threshold. For singly connected graphs, it is
proved [Pea88] that beliefs at nodes converge to the marginal probability
at that node, which is:

bi(zi) = a Y plx) = pi(x;)

xj/x;

In networks with loops, evidence is counted multiple times. As all evi-
dence is double counted in equal amounts, Pearl’s belief propagation also
provides good approximations of the marginal probabilities in loopy net-
works.
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5.3 The Inference Architecture

Our idea of providing a generic distributed inference system is based on
two fundamental design decisions: (i) no central coordination of the vari-
ables in the system and their dependencies; (ii) no global knowledge and
only pair-wise interactions between nodes. Both requirements are satisfied
by the P-Grid overlay infrastructure and Bayesian networks together with
belief propagation. P-Grid is used to store the structure of the Bayesian
network by indexing all variables of the probabilistic network and all de-
pendencies between them. This is achieved by indexing the following
information tuples:

o (#(v;),P(v;)): enables applications to find all variables of the
Bayesian network as the variable identifier (v;) is hashed by
P-Grid’s hash function(#()). It further contains the information
on which peer P(v;) the value of variable v; is currently maintained
for inference. The value of P(v;) can change over time and has to
be updated every time variable v; is moved to a different peer to
improve reasoning performance.

o (#(v;),vj) and (#(vj),v;): represents the edge e;; required to find
all correlated variables of v; respectively v;. As the edge is non-
directional, an edge has to be indexed twice.

The advantage of storing a Bayesian network in a distributed infras-
tructure is that any user of the system can add variables and edges to the
probabilistic network. Thus, the Bayesian network can be maintained by
a user community and is not subject to supervision by a single authority,
i.e, administrator.

Learning a Bayesian network structure and probabilities from dis-
tributed data is studied in various papers [Yam97, Hec95, CSKO04]. In
this thesis we assume an existing Bayesian network stored in P-Grid and
do not further study the possibility of Bayesian learning. Belief propaga-
tion requires multiple message-passing iterations between all nodes of the
Bayesian network which are stored at physical P-Grid nodes. P-Grid’s
index structure allows to locate all correlated variables by simply per-
forming a lookup. If correlations (v;,v;) and variable locations P(v;) do
not change frequently, these system lookups can be economized by local
lookups in a cache, holding the necessary information. This means that
peers responsible for a variable cache the location of correlated variables
for direct communication during the reasoning process. This avoids repet-
itive lookup operations during distributed inference to locate the current
peer responsible for a variable and all correlations of a variable. To keep
the cached information up-to-date, a peer should periodically query for
the latest set of correlations for its locally maintained variables to be aware
of the latest updates. The second cached information, the current peer
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responsible for a variable value P(v;), can be obtained on demand. If a
peer p; during the reasoning process contacts a peer P(v;) for the value of
a variable v;, and P(v;) is no longer responsible for v;, then p; can lookup
the current location P(v;) using P-Grid’s index.

On a global scale, this can still lead to scalability problems for our
system as distributed inference requires to send messages between all cor-
related variables located at different peers. To reduce network access
and thereby processing delays, we uncouple variable values, the local po-
tentials, from the P-Grid index and allow them to be stored at different
physical P-Grid nodes to improve the efficiency of belief propagation. This
relocation of variable values is stored in the index by the reference to P(v;),
the currently responsible peer for v;’s local potential. An open problem is
how those local potentials are stored close to each other, in the best case
even on the same physical P-Grid node, without central coordination and
knowledge, to achieve the desired network access reduction.

5.4 The Relaxation Algorithm

In this section we describe the relaxation algorithm based on the spring
relaxation technique that we developed. We assume that Bayesian vari-
ables are connected by springs and the Bayesian network forms a spring
network which has to be relaxed, i.e., the network has to be in a state
requiring least possible energy. The energy a spring requires is directly
proportional to the distance between the two P-Grid nodes the Bayesian
variables are stored at. In P-Grid, the distance between two nodes can
be defined by which routing table level has to be used to reach a peer.
For example, Table 5.1 shows the distance to several peers based on the
peer’s routing table.

Table 5.1: P-Grid distance for a peer with path 010

Level ‘ Prefix ‘ Peers ‘ Distance
0 1* 1010, 110, 111, ... 3
1 00* 000, 0010, 0010 2
2 011* | 00110, 00111 1
Replicas | 010 010 0

The distance between two nodes is indirectly proportional to the level
of the routing table as the expected routing cost (hops) to lower levels is
higher than to higher levels, i.e., closer levels. Peers have proportionally
more references to closer levels and can therefore route to peers in these
levels with less hops. The spring between two variables remaining at
the same node requires no energy. Therefore, the optimal solution of
the spring relaxation algorithm would be to place all variables at one
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node. This is of course not desirable because P2P systems are based
on the idea of load sharing which is in contradiction with the optimal
solution mentioned before. Thus, the spring relaxation algorithm also has
to consider load balancing of variables among participating nodes. P-Grid
provides already heuristic statistics about the current load of each level of
the trie represented by a peer’s routing table. These statistics are required
by P-Grid itself to provide load-balancing of stored index information and
are used in the following for our approach too. The statistics are based on
periodic interactions with random peers of the routing table to sample the
current load distribution. The periodic sampling enables peers to estimate
the current load of a routing table level and the global average load.

Figure 5.2 illustrates our idea for the example presented in Figure 3.4.
The data layer shows correlated variables (data items) connected by
springs representing the attractive force between these items. The
strength of the force is thereby proportional to the distance among
data items, i.e., the distance of the peers in the P-Grid network as
shown above. The relaxation algorithm presented in this section aims
at relaxing all springs between correlated variables to map them in a
way onto the P-Grid network leading to a minimum remaining energy
in the spring network. A spring network with minimal stored energy
also represents the optimal solution for our initial aim to minimize
in-network processing costs of distributed inference. The reasoning costs
are minimal as the number of variables at the same peer was maximized
by the relaxation algorithm, leading to a minimal number of physical
messages required to send across the network. The number of inference
messages sent between probabilistic variables thereby remains the same
as before the relaxation step. We are only interested in reducing the
number of physical messages sent between peers, i.e., between variables
stored at different peers.

Data layer

Figure 5.2: Illustration of the spring relaxation approach
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The algorithm used to relax the Bayesian network is shown in Al-

gorithm 5.5. The algorithm is executed by each node iteratively till no
improvement is achieved anymore, i.e., if the tension a node observes for
its variables increases between two steps, or a maximum number of itera-
tions is reached. The algorithm obviously also terminates if no node has
variables to move anymore, i.e., the load is balanced among all nodes. The
following list provides an overview of the used variables in the algorithm:

e localVars: list of variables the local node maintains

e avgload: local estimate of the global average load

e currentLoad: the current load of the local node

e routingTable: the routing table of the local node

e routingTable.levels: the number of levels in the local routing table

e candidate(j).tension(i): the tension at level i for candidate variable j

e candidate(j).tension: all tensions at all levels for candidate variable j

Algorithm 5.5 The spring relaxation algorithm

NN RNNINDNIDND — /= s e e
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—_
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freeVars = length(localVars) — avgLoad/2;

if (freeVars <=0) then
return;

end if

undirVars = variables having a tension only at one level;

while ((freeVars > 0) and (length(unidirVars) > 0)) do
move variable to a peer from the level with the tension;
removeFirst(unidirVars);
freeVars = freeVars — 1;

end while

: multidirVars = variables having tensions to multiple levels;

: while ((currentLoad > avgLoad) and (length(multidirVars) > 0)) do

for ¢ = routingT able.levels to 1 do
if (level 7 is underpopulated) then
candidates = variables having a tension at level i;
for j =1 to length(candidates) do
if (candidate(j).tension(i) >= maxz(candidate(j).tension)) then
move variable to a peer from level 7;
remove(multidirVars, candidate(j));
currentLoad = currentLoad — 1;
if (currentLoad <= avgLoad) then
break;
end if
end if
end for
end if
end for
end while
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First, in line 1 to 4, each node checks if it has “free” variables it can
move to other nodes or not. Currently, nodes are allowed to move variables
as long as they have more than avgLoad/2 variables. The limit was chosen
by us to ensure that all peers contribute a minimum amount of storage
to the system to share the storage load collaboratively amongst all peers
in the network. P-Grid obtains an estimate for the current average load
in the system but the accuracy of this estimate is not crucial for the
algorithm. In line 5, nodes determine those local variables which have a
tension to other nodes remaining at the same level of the local routing
table leading to one tension at one level. Ideally, variables have a tension
to only one node and not to different nodes at the same level. If the
local node can move variables and it found such unidirectional variables,
it moves them directly to the corresponding level or node (line 6 to 10).
Nodes can refuse to maintain new variables if their load is already greater
or equal to twice the average load. In such a case, the variable is moved
to another node at the same level. Moving a variable always requires only
one message between the two involved peers.

A node can try to balance the load in the system if it maintains above
average many variables. It therefore uses all non-unidirectional variables,
i.e., variables which have tensions at multiple levels (line 12 and 13). Next,
the node tries to balance each level of its routing table, starting with the
highest level, i.e., its closest neighbors (line 14). Starting with the closest
neighbors allows nodes to balance load first locally before they try to
balance load on peers further away from them, i.e., on peers stored in lower
levels. If a level is underpopulated (line 15), i.e., a level maintains below
average many variables, then the node first selects candidate variables out
of its local variables (line 16). Candidates are all variables which have a
tension at the current level. Next, starting from line 17, the node checks if
the tension at the current level for the candidate variable is the strongest
tension the variable has considering all levels. This ensures that variables
are moved to levels with their strongest tension. This process continues
as long as candidates are available and the node has enough variables to
move.

5.5 Evaluation

The presented relaxation algorithm was implemented in Matlab and eval-
uated with diverse Bayesian networks. We present results for Bayesian
networks resembling the topology of random networks, binary trees and
scale-free networks with up to 2048 variables, stored in P-Grid networks
with up to 512 nodes. As the ratio between number of variables and
number of P-Grid nodes is the most dominant factor for the achieved per-
formance, we will present results for 2048 variables in a P-Grid network
of 64, 128, 256 and 512 nodes. Considering the motivating scenarios we
have in mind for our system, tree-based belief networks and scale-free net-
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works are the most realistic network topologies. The network size and the
number of variables is difficult to estimate but the evaluation shows that
our approach scales well even though no proof can be given so far. All
experiments were repeated 10 times and the figures show the average of
those 10 repetitions with their standard deviation. Each time a new belief
network was created and variables were assigned randomly to nodes.

5.5.1 Network Topologies

We briefly describe some properties of the network topologies we used for
our evaluation. The networks were visualized with the Pajek tool [Bat01]
using the 2D Fruchterman Reingold layout for random networks and the
Kamada-Kawai layout for the others. Additionally, we show the node
degree distribution by sorting nodes according to their node degree and
plotting their degree in log-log scale.

Random Networks

We constructed random networks by adding for each node degree/2 edges
to other nodes with equal probability to reach the desired average node
degree. Figure 5.3 shows a network of 1024 nodes with an average node
degree of 4, nodes have between 2 and 10 edges. The degree distribution
indicates that most of the nodes have a degree around the average.
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(a) Network visualization (b) Node degree distribution

Figure 5.3: A random network: 1024 nodes with average node degree 4

Binary Trees

The second used topology is a binary tree with each node having exactly
two children excluding leaf nodes. KEach node has exactly one parent
excluding the root of the tree. Therefore, the node degree varies between
1 and 3 with an average around 2. Figure 5.4 shows a binary tree with
1023 nodes. The degree distribution shows the leave nodes (half of the
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nodes) at the bottom with 1 edge, the root with 2 edges in the middle
and the intermediate nodes with 3 edges at the top.
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(a) Network visualization (b) Node degree distribution

Figure 5.4: A binary tree: 1023 nodes

Scale-Free Networks

The last used network topology is a scale-free network with the prop-
erty that the number of links k originating from a given node exhibits a
power law distribution P(k) ~ k~99"™%  The network is constructed by
progressively adding nodes to an existing network and introducing links
to existing nodes with preferential attachment so that the probability of
linking to a given node i is proportional to the number of existing links k;
that that node has, i.e.,

k;

>k

J

P(linking to node i) ~

Scale-free networks occur in many areas of science and engineering,
e.g., including the topology of web pages (where the nodes are individual
web pages and the links are hyper-links), and are therefore a good model
for our scenario. Figure 5.5 presents a scale-free network on the left side
with highly connected nodes in the center and loosely connected nodes at
the periphery. The node degree varies between 1 and 62 with an average
around 4. The node degree distribution follows a power-law distribution.

5.5.2 Message Reduction

The most interesting evaluation criterion is of course the message reduc-
tion achieved by redistributing the variables close to each other in the
P-Grid network. Figures 5.7 — 5.9 present the results obtained for the
three network topologies. The plots show the achieved message reduc-
tion after each iteration of the spring relaxation algorithm by relating the
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(a) Network visualization (b) Node degree distribution

Figure 5.5: A scale-free network: 1024 nodes with average node degree 4.

number of required messages to run one iteration of the belief propagation
algorithm. At the beginning, 100% of the messages are required, while
after each iteration of the spring relaxation algorithm, less messages are
required. The message reduction is given with the standard deviation
of 10 repeated simulations for each setup. Each run required different
numbers of iterations to terminate the relaxation algorithm, therefore the
figures show up to 20 iterations, the maximum number of iterations. Most
runs finished after around 10 iterations and only a few reached the max-
imum number of executed iterations. Figure 5.6 shows the distribution
of iterations for 100 runs of the relaxation algorithm for 1024 variables
in a scale-free network and 128 P-Grid nodes. The figure shows that the
algorithm terminated a few times already after 4 iterations and only a few
required up to 16 iterations. Almost 90 percent, i.e., 90 runs out of 100
performed, were finished after 10 iterations.

Figure 5.7 shows that the algorithm does not perform well for any eval-
uated random network as expected. The random correlations of variables
in these networks makes it difficult for the spring relaxation algorithm to
cluster variables close to each other to reduce the message effort. The
figures show that the message reduction increases with larger P-Grid net-
works but the achieved message reduction does not exceed 25% as achieved
for 512 P-Grid nodes. As random networks are not considered as the most
realistic model for our use case, this result is tolerable in our opinion. Ran-
dom networks also require more iterations than other network topologies
before the relaxation algorithm terminates, i.e., for 256 nodes, the algo-
rithm even reached the maximum number of iterations (20). The average
number of required iterations was between 10 and 15, slightly increasing
with the number of P-Grid nodes.

For binary trees, see Figure 5.8, the relaxation algorithm is able to
reduce the number of required messages to around 35% of the initially
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Figure 5.6: Distribution of required iterations of 100 runs for a scale-free net-
work of 1024 variables on 128 P-Grid nodes.
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Figure 5.7: Message reduction for random networks with different numbers of
P-Grid nodes and 2048 variables.
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required number before running the relaxation algorithm. The obtained
results seem to be independent of the number of nodes in the P-Grid
network. Binary-tree based networks also require less iterations of the
relaxation algorithm. The average was for all networks around 10 and
none of the 40 runs reached the maximum number of iterations of 20.
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Figure 5.8: Message reduction for binary tree-based networks with different
numbers of P-Grid nodes and 2048 variables.

Finally, we observe similar results for the scale-networks as shown in
Figure 5.9. The relaxation algorithm is able to reduce the message cost by
up to 75% for the smallest P-Grid network of 64 nodes still up to 55% for
the largest P-Grid network of 512 nodes. The average number of required
iterations is compared to the other two network topologies also smaller,
around 10 and even less for larger networks.

The standard deviation is small for all network topologies and net-
work sizes which is an indicator that the algorithm scales well. In all
experiments, the algorithm was iterated up 20 times but the main reduc-
tion is achieved already in the first 10 iterations. Again, this seems to
be independent of the number of nodes and number of variables in the
networks.
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Figure 5.9: Message reduction for scale-free networks with different numbers
of P-Grid nodes and 2048 variables.
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5.5.3 Load Balancing

Apart from the reduction of required messages for the message-passing
algorithm, it is important that the storage load of variables is balanced
among the participating nodes. The storage load further corresponds to
the message load during distributed inference as all variables are accessed
exactly once per reasoning iteration. Figures 5.10 — 5.12 present the cor-
responding results obtained again for random networks, binary trees and
scale-free networks. All figures show the average variable load which re-
mains constant over all iterations as the number of variables and nodes
does not change. The standard deviation indicates the load balance in the
system. Additionally, the maximum load of nodes is given by the dotted
line.

Whereas the relaxation algorithm did not perform well for random
networks to reduce the number of required messages, it was more suc-
cessful to balance the load among the nodes, as shown in Figure 5.10.
The standard deviation is decreasing for all network sizes as well as the
maximum number of variables per node (dotted line). For small networks,
where the average variable load is higher compared to larger networks, the
maximum load was even less than the maximum load of twice the average
load nodes are willing to accept. This limit was more dominant for larger
networks.

Similar results were obtained for the binary tree-based networks (see
Figure 5.11).

Figure 5.12 shows that scale-free networks cause a slight increase of
unbalance and at least one node reaches the maximum tolerable variable
load independent of the network size. This is due to the fact that 1 or
2 nodes usually have very high degrees and therefore “attract” a lot of
other variables causing the high load at the P-Grid node maintaining
such highly-connected variables.

5.5.4 Reduction Effort

The accomplished message reduction for distributed inference achieved by
the relaxation algorithms comes with the cost of moving around variables
in the P-Grid network requiring one direct message between two peers for
each movement. In the following, we will present the number of variables
moved at each iteration for P-Grid networks of different size and 2048
variables in the Bayesian network.

Figure 5.13 shows the number of variables moved per iteration of the
spring relaxation algorithm for random networks. Most of the variables
are moved in the first iterations and more variables have to be moved
in larger P-Grid networks as nodes store less variables on average. The
variance increase at the end can be explained by the fact that some out of
the 10 runs already terminated and therefore did not move any variables
at those iterations anymore. In the end, around 65% of the variables
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Figure 5.10: Variables per node for random networks with different numbers
of P-Grid nodes and 2048 variables.
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numbers of P-Grid nodes and 2048 variables.
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Figure 5.12: Variables per node for scale-free networks with different numbers
of P-Grid nodes and 2048 variables.
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remained at the original node for the 64 node network and around 37%
for the P-Grid network with 512 nodes.
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Figure 5.13: Variables moved per iteration for random networks with different
numbers of P-Grid nodes and 2048 variables.

More variables are moved if they form a binary tree-based Bayesian
network as seen in Figure 5.14). More than twice as many variables are
already moved at the first iteration compared to the random networks
though the number of moved variables decreases faster. The size of the P-
Grid network has less influence as the overall number of variables moved
is more or less equal for all network sizes. This is also reflected by the fact
that the difference of variables remaining at their originators is smaller,
from around 30% for the smallest network to around 26% for the largest
evaluated network.

Similar numbers are observed for random networks as shown in Fig-
ure 5.15. The number of moved variables is similar to the tree-based
networks as well as the fast decrease per iteration. In contradiction to
the other two network topologies, only 22% of the variables remained at
the orginating peer for the P-Grid network with 64 nodes and around
33% variables in largest network of 512 nodes. This result proves once
more that the relaxation algorithm is able to cluster variables close to
each other better if the ratio between variables in the Bayesian network
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Figure 5.14: Variables moved per iteration for binary tree-based networks with
different numbers of P-Grid nodes and 2048 variables.
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and number of P-Grid nodes is larger, i.e., on average more variables are
mainted per P-Grid node.
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Figure 5.15: Variables moved per iteration for scale-free networks with different
numbers of P-Grid nodes and 2048 variables.

5.5.5 Discussion

The results obtained from the Matlab evaluations look very promising.
The relaxation algorithm is able to move correlated variables close to
each other to reduce the message cost for distributed inference down to
30% of the original cost for some network topologies. Binary tree-based
and scale-free network based Bayesian networks enable the largest mes-
sage reductions by moving most of the variables away from their original
nodes. Most of them are moved in the first iterations and the required
communication effort will pay-off soon if the Bayesian network remains
unchanged and a lot of inferences are performed. The performed evalua-
tion also shows that the presented relaxation algorithm terminates already
after a few iterations and only in few cases had to be stopped by the set
maximum iteration limit of 20.
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5.6 Related Work

Generalized Belief Propagation [YFWO00] reduces the number of messages
by clustering correlated variables together and sending only one mes-
sage between those clusters. This approach has three drawbacks: (i) the
message sizes increase exponentially (number of states™odes in the cluster)
because the exchanged messages now contain the joint probabilities of
all nodes and states in the cluster; (ii) the complexity of processing the
messages and beliefs at nodes also increases considerable with increasing
number of nodes in a cluster; (iii) it is not obvious for us how clusters
are formed in a distributed way without central coordination and knowl-
edge which is essential in peer-to-peer systems. Though Generalized Belief
Propagation provides more accurate beliefs than Pearl’s belief propaga-
tion, it is currently not applicable for large-scale networks.

Reference [PGMO5] presents an inference architecture for sensor net-
works based on message-passing on a junction tree. For this approach,
a distributed algorithm is first used to form a spanning tree of nodes
which is used later to construct the junction tree for inference. Junction
trees group variables into cliques and their size determines the computa-
tion costs at nodes whereas the separator size between cliques determines
the communication costs. The approach was evaluated with 54 sensor
motes in a local experiment showing spanning tree optimizations and the
communication costs of the junction tree. Inference on junction trees is
exact and always results in the exact marginals at the cost of requiring
building a tree with larger messages and higher computation costs. Belief
propagation only provides approximate inference on lower overheads.

Spring relaxation is used in various domains and we will only present
two examples for peer-to-peer systems. Vivaldi [DCKMO04] is a decen-
tralized network coordinate system using a spring-mass model to position
nodes in a virtual coordinate system according to their latencies. Nodes
run the distributed spring relaxation algorithm as soon as a new latency
measurement was performed to reduce the distance error between nodes.
An application of Vivaldi is described in [PSWT04] to optimize the path
in stream-based overlay networks. Services are placed on nodes close to
each other in the virtual latency space.

5.7 Conclusions

This chapter has shown a clustering approach for probabilistically corre-
lated data items in a Bayesian network used for distributed inference. We
used the data correlations given by the Bayesian network to reorganize the
index of the structured overlay of P-Grid. Variables were moved close to
their correlated variables and if possible even on the same peer. The con-
sequence of this step for distributed inference is that less messages have
to be sent in the network to perform the reasoning step. The presented
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evaluation has shown that, depending on the topology of the Bayesian
network, a reduction of more than 50% can be achieved by our relaxation
algorithm.



102 Chapter 5: Distributed Inference




Chapter 6

Multi-Term Queries

A common practice in current information systems is the use of multiple
keywords to search for information, as currently very successfully demon-
strated by web search engines. The idea behind it is that information,
such as web pages on the Internet, are indexed by distinctive keywords
which are used later to resolve user queries consisting of one or multiple
keywords. The simplicity and user-friendliness of this approach is respon-
sible for its success as users do not have to struggle with complex query
languages. But this simplicity on the user side leads to several challeng-
ing problems the field of information retrieval deals with. These problems
have recently also gained popularity in the P2P community in the context
of P2P web search engines.

The P2P community has tried to adopt approaches from information
retrieval to build distributed information systems and P2P web search en-
gines. The basic infrastructure of one of these systems will be presented
later in this chapter. We will not focus on the indexing part, i.e., how
distinctive keywords are extracted from documents, and rather focus on
how a structured overlay network can be (re-)organized to efficiently re-
solve multi-term queries on the indexed information. Multi-term queries
require to search for multiple keywords and return the intersection of the
multiple result sets, i.e., all documents containing all given keywords. In
structured overlay networks we have the problem that the multiple key-
words are usually not maintained by the same peer requiring to gather
all documents matching all keywords at one peer first before an intersec-
tion of the result set can be returned, if a complete answer including all
matching answers is desired.

This chapter first presents an overview of how such intersections can
be currently processed in distributed systems using a distributed index.
We will then reuse our relaxation algorithm from Chapter 5 to reorganize
the distributed index to more efficiently process multi-term queries on a
single overlay index. An evaluation of the optimized algorithm with a
real-life data set is given at the end of this chapter.
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6.1 Motivation

A structured overlay network maintains a distributed index stored at peers
in the network holding information about their shared data. The dis-
tributed index thereby holds references to the actually shared data re-
maining at providing peers. Whereas this approach works well for single-
key lookups, multi-term queries require to intersect multiple result sets
before a final result can be returned. The distribution of the ind<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>