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Abstract. During the last decades, reduced basis (RB) methods have been developed to a wide methodology for
model reduction of problems that are governed by parametrized partial differential equations (P2DEs ). In particular
equations of elliptic and parabolic type for linear, low polynomial or monotonic nonlinearities have been treated
successfully by RB methods using finite element schemes. Due to the characteristic offline-online decomposition,
the reduced models often become suitable for a multi-query or real-time setting, where simulation results, such as
field-variables or output estimates, can be approximated reliably and rapidly for varying parameters. In the current
study, we address a certain class of time-dependent evolution schemes with explicit discretization operators that are
arbitrarily parameter dependent. We extend the RB-methodology to these cases by applying the empirical interpo-
lation method to localized discretization operators. The main technical ingredients are: (i) generation of a collateral
reduced basis modelling the effects of the discretization operator under parameter variations in the offline-phase and
(ii) an online simulation scheme based on a numerical subgrid and localized evaluations of the evolution operator.
We formulate an a-posteriori error estimator for quantification of the resulting reduced simulation error. Numeri-
cal experiments on a parametrized convection problem, discretized with a finite volume scheme, demonstrate the
applicability of the model reduction technique. We obtain a parametrized reduced model, which enables parameter
variation with fast simulation response. We quantify the computational gain with respect to the non-reduced model
and investigate the error convergence.
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1. Introduction. General parametrized evolution problems for an unknown function
u(x, t;µ) : Ω× [0, T ] → R depending on a parameter µ ∈ P ⊂ Rp can frequently be found
in the form of a parametrized partial differential equation (P2DE ) for u

∂tu(·, t;µ) + L(µ, t)[u(·, t;µ)] = 0

plus corresponding initial and boundary conditions, where [·] denotes the evaluation of the
spatial differential operator. The parameter domain, where the parameter vector µ stems
from is denoted asP ⊂ Rp. The initial data, denoted by u0(x;µ), and the solution commonly
have some spatial regularity u0(·;µ), u(·, t;µ) ∈ W . Numerical treatment of such evolution
problems is frequently based on a time discretization at a finite number of time instances
0 = t0 < . . . < tK = T by finite differences or higher order Runge-Kutta type time
integration. For the space discretization a finite but frequently high dimensional spaceWH for
approximating the solution at the discrete times is available, i.e. u(·, tk;µ) ≈ uH(·;µ, tk) ∈
WH , where H := dim(WH). Typically, this is a finite element (FE), finite volume (FV) or
discontinuous Galerkin (DG) space.

The motivation for RB-methods is founded on the need to solve a given P2DE repeatedly
in a multi-query setting such as parameter variation for design, optimization, control, inverse
problems or statistical analysis. In the following we abbreviate uk

H(µ) := uH(·, tk;µ).
Numerical evolution schemes of first order mostly consist of implicit and explicit con-

tributions, which compute the sequence uk
H(µ), k = 0, . . . ,K, by starting with a suitable
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projection P : W → WH of the given initial data u0
H(µ) := P [u0(·;µ)] and successively

solving the following equation for uk+1
H (µ), k = 1, . . . ,K − 1:

1

∆t

(

uk+1
H (µ) − uk

H(µ)
)

+ LI(µ, tk)[uk+1
H (µ)] + LE(µ, tk)[uk

H(µ)] = 0.(1.1)

Here LI(µ, tk),LE(µ, tk) : WH → WH denote the implicit and explicit discretization
contributions of the analytical spatial differential operator L(µ, tk).

A general description of the Reduced Basis methodology for stationary cases can be
found in [10, 13]. Time dependent problems are for instance treated in [2, 11]. The general
goal in case of time-dependence is to find a sequence of functions uk

N (µ), k = 0, . . . ,K in a
reduced basis spaceWN ⊂ WH of low dimensionN ' H , which approximates the detailed
solution sequence, i.e. uk

N (µ) ≈ uk
H(µ). In particular, the complexity of the computation

scheme for determining this reduced basis solutions should be independent ofH . In addition
to this general goal further questions in RB-methods deal with general outputs s(uH) derived
from the field variable and their RB-estimation. For many problems, the provision of effective
a-posteriori error estimators is a distinctive feature of RB-methods.

Special instances of evolution schemes of type (1.1) have been treated in literature with
RB-methods: The case of a pure implicit FE space discretization, i.e. LE ≡ 0, and affine LI

has been treated in [4]. The extension to the case of nontrivial explicit operators, e.g. covering
FV schemes, while the operators still are assumed to be affine in u, has been formulated in
[6]. The parabolic case for a monotonic pointwise nonlinearity has been treated in [2, 3].

In the current study we devise an RB-formulation for the pure explicit case. That means
we confine ourselves to the case LI(µ, tk) ≡ 0 and LE(µ, tk) being a general parameter
dependent operator with a certain localized representation. This localized structure allows us
to apply the empirical interpolation technique [1] to approximate the operator evaluations.

In the next section we specify the class of explicit discretization operators, that can be
approximated with our approach and we present the reduced simulation scheme. The reduced
simulation scheme requires a decomposition of the computation in an offline and online-part.
We describe details on this decomposition in § 3. As an analytical result, we present an a-
posteriori error estimator in § 4. Experiments in § 5 on a simple convection model indicate
the applicability of the method. In particular, we investigate the computational gain and the
error convergence. We conclude our study in § 6.

2. RB-Approximation for Explicit Evolution Schemes. In this section we will formu-
late the RB-approximation for the class of evolution schemes that we are interested in. For
this we will first give some general definitions such that we can specify our assumptions on
the discretization spaceWH and the discretization operators.

DEFINITION 2.1 (Local Basis ofWH ). LetΨ := {ψi|i = 1, . . . ,H} be the basis ofWH

on which the evolution scheme and space-discretization is based. For a function φ ∈ WH

we denote (φ)i to be the coefficient or degree of freedom (DOF) corresponding to ψi in the
basis-expansion φ =

∑H
i=1(φ)iψi. The set of basis-function indices, that support the value of

functions φ ∈ WH in a given point x ∈ Ω is denoted as I(x) = {i|ψi ∈ Ψ and ψi(x) )= 0}.
We call Ψ a local basis if the size of these index sets is bounded by a constant independent of
H , i.e. there exists a J such that card(I(x)) ≤ J for almost all x ∈ Ω. For any set of DOF-
indices S ⊂ {1, . . . ,H} we further define the projection πS : WH → span{ψi ∈ Ψ|i ∈ S}
on the corresponding subspace via πS(ψi) = ψi for all i ∈ S and πS(ψi) = 0 otherwise.
Finally, let XH ⊂ Ω be a set of H points, such that the restricted functions ψi|XH

allow
pointwise evaluations and are linearly independent.

Trivially, J is upper bounded by H . But our approximation scheme will depend on
the fact, that the basis is a local basis in the sense, that this number J is much smaller and
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independent of H . This is typical for FE or FV basis functions, which have support only in
few grid elements, and the number J only depends on the shape of the grid elements and not
on the overall number of cells. For convenience, we exemplify the notation for a FV space in
2 dimensions, as this also will be used in the experiments.

EXAMPLE 2.2 (Local Basis of Finite Volume Space). Assume a non-degenerate tri-
angulation T = {Ti} of a polygonal bounded domain Ω ⊂ R2 with H disjoint triangles
Ti, i = 1, . . . ,H . After choosing an elementwise constant Ansatz space, a corresponding
basis is simply given by the indicator functions ψi := χTi

of the triangles. We easily verify
that this is a local basis in the sense of Def. 2.1: For x ∈ Ti only the single basis function ψi

has support in x, hence I(x) = {i} with upper bound on the cardinality J := 1. This value
is especially independent of H . As the point set XH ⊂ Ω we simply can use the centroids
of the triangles, XH := {c(Ti)|i = 1, . . . ,H}, as the values of piecewise constant functions
are well defined in the triangle centers and the restrictions ψi|XH

are linearly independent.
The main requirement for efficient approximation of evolution schemes, is a small stencil

of the discretization operators. Intuitively this means, that the value of LE(µ, tk)[u] in a
certain point in space only depends on a small (µ, tk and H-independent) number of at most
JE point-evaluations of u, or more generally, only JE DOFs of u. For this, we will assume
the following general structure of the explicit discretization operator, which will be relevant
for efficient approximation.

DEFINITION 2.3 (Localized Discretization Operator). A discretization operator LE :
WH → WH can be expressed as

LE [u] :=
H

∑

i=1

li(u)ψi,(2.1)

with suitable functionals li : WH → R which represent the coefficients of the operator
evaluation. Each of these functionals li has a set of DOFs Si ⊂ {1, . . . ,H} on which it
depends and all other DOFs do not influence the result, i.e.

li(u) = li(πSi
[u]) for all u ∈ WH .(2.2)

We call the operator LE a localized operator, if there exists a constant JE independent of
H with card(Si) ≤ JE for all i and the computation of a single li(πSi

[u]) has complexity
polynomial in JE , i.e. O(Jα

E) for low integer α.
Again, JE is trivially upper bounded byH . In the following, however, the computational

gain will depend on a small value of JE ' H . For example, first order FV operators are
localized operators in this sense, which we again make explicit in the following example.

EXAMPLE 2.4 (Finite Volume Discretization Operator as Localized Operator). Assume
a conform triangulation and a piecewise constant function space as given in Example 2.2.
Let uk

H =
∑H

i=1 uk
i ψi ∈ WH denote a piecewise constant function at time k with element-

wise values uk
i ∈ R. A first order explicit finite volume time evolution for computing uk+1

H =
∑H

i=1 uk+1
i ψi is defined by

uk+1
i = uk

i −
∆t

|Ti|

∑

j∈N (i)

gij(u
k
i , uk

j ),(2.3)

where |Ti| denotes the area of triangle Ti,N (i) denotes the set of triangle-indices that share
an edge with Ti, and gij(u, v) : R2 → R denotes a suitable choice of numerical flux functions
[7]. For simplification of the presentation, we omit the boundary treatment here. Comparing
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(2.3) with (1.1), we can identify LI = 0 and LE [uk
H ] =

∑H
i=1 li(uk

H)ψi by the coefficient
functionals

li(u
k
H) :=

1

|Ti|

∑

j∈N (i)

gij(u
k
i , uk

j ).

In particular the value of li(uk
H) only depends on the element values on Ti and its neighbours.

Consequently, the sets of DOF-dependency are simply given by Si = N (i) ∪ {i}. Obviously
every triangle has a maximum of 3 neighbours, hence card(Si) ≤ JE := 4 independent of
H and the computation of the functionals li(uk

H) has complexity linear in JE .
Another example of localized operators are FE operators using basis-functions with small

support, e.g. nodal bases, where the number JE is the maximum number of basis-functions,
which have common support on some mesh element.

The empirical interpolation method [1] has been proposed for approximation of non-
affinely parameter dependent or nonlinear analytical functions which allows a fast online-
interpolation scheme. Geometry variation has been treated in RB-literature, e.g. [8], and in
particular by this interpolation scheme [12, 14]. We will adopt this procedure to approximate
discretization operator evaluations.

DEFINITION 2.5 (Empirical Interpolation of Localized Operator Evaluations). For a lo-
calized discretization operator LE(µ, tk) we assume to have given a (µ and tk-independent)
collateral basis space WM ⊂ WH of dimension M , spanned by snapshots of the operator
evaluation WM := span{LE(µi, t

ki)[uki

H (µi)]|i = 1, . . . ,M} for suitably chosen µi and
ki. We further assume the availability of a set of interpolation points TM := {x1, . . . , xM} ⊂
XH in Ω and corresponding nodal basis ξM := {ξ1, . . . , ξM} ⊂ WM satisfying ξj(xi) =
δij . We denote the corresponding interpolation operator as IM : WH → WM which is
consequently given by IM [v] =

∑M
m=1 v(xm)ξm and satisfies IM [v](xm) = v(xm) for all

m = 1, . . . ,M and v ∈ WH .
The DOF-index set that supports a numerical function in any of these points is given

as IM :=
⋃

x∈TM
I(x) ⊂ {1, . . . ,H} where I(x) is given in Def. 2.1. The larger set of

DOF-indices which are required for the computation of these target DOFs by the coefficient
functionals is obtained as SM :=

⋃

i∈IM
Si.

For any given µ ∈ P, k ∈ {0, . . . ,K − 1} and u ∈ WH we can determine the desired
interpolation values in the interpolation points

ym(u,µ, tk) := LE(µ, tk)[u](xm) for m = 1, . . . ,M(2.4)

and obtain the empirical interpolation of the operator evaluation as

IM [LE(µ, tk)[u]] =
M
∑

m=1

ym(u,µ, tk)ξm(x).(2.5)

The motivation for the notion empirical interpolation stems from the fact that the collat-
eral reduced basis space WM is constructed from simulation results, i.e. “empirical” data.
The construction of the interpolation basis ξM and interpolation points TM will be adressed
in the subsequent section. The key observation for the use of the empirical interpolation
in RB-methods is that it results in an effective separation of space-independent coefficients
yi(u,µ, tk) and parameter-independent functions ξi(x). This enables an efficient offline-
online decomposition.

The core for a (Lagrangian) reduced basis approximation of the evolution equation (1.1)
with LI ≡ 0 is the availability of a reduced basis space WN ⊂ WH of low dimension
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N := dimWN constructed from snapshots of the unknown field variable uki

H (µi) for suitable
parametersµi and time-indices ki. These parameters may very well be different from the ones
used for constructing the collateral reduced basis spaceWM . For computational reasons, it
is beneficial to work with an orthonormal basis ΦN := {ϕ1, . . . ,ϕN} ofWN . Here, proper
orthogonal decomposition methods could be used, which result in an orthonormal basis by
construction. A Galerkin projection of the explicit evolution scheme onto this subspace leads
to the following weak formulation of the problem: start with a suitable projection of the initial
data by determining u0

N (µ) ∈ WN such that

(u0
N (µ), v) = (P [u0(µ)], v) ∀v ∈ WN

and then subsequentially find uk+1
N (µ) ∈ WN for all k = 0, . . . ,K − 1 such that

(

uk+1
N (µ), v

)

+
(

(∆tLE(µ, tk) − Id)[uk
N (µ)], v

)

= 0 ∀v ∈ WN .(2.6)

Here Id denotes the identity operator.
For an effective offline-online decomposition in the next section, we will additionally

require a so called affine parameter dependence of the initial data, i.e.

u0(µ) =

Qu0
∑

q=1

σq
u0

(µ)uq
0(x)(2.7)

with a small number Qu0 of parameter-independent functions uq
0(x) and space-independent

coefficients σq
u0

(µ). If this decomposition is not available in a given model-problem, an
additional empirical interpolation of the initial data can provide an arbitrarily accurate ap-
proximation. If we replace the evaluations LE(µ, tk)[uk

N ] by the empirical interpolations
IM [LE(µ, tk)[uk

N ]]we can formulate the RB-approximation of the explicit evolution scheme
as follows:

DEFINITION 2.6 (Reduced Basis Approximation with Empirical Interpolation of LE ).
We assume that we have given an explicit evolution scheme, where LE(µ, tk) is assumed to
be an arbitrary explicit discretization operator. We assume that an appropriate empirical
interpolation scheme is defined by means of interpolation basis ξM and interpolation points
TM ⊂ Ω, and a reduced basis ΦN is available. We then define the following scheme for
sequentially computing uk

N (µ) :=
∑

n ak
n(µ)ϕn by specifying its coefficient vectors ak =

(ak
1 , . . . , ak

N )T ∈ RN for k = 0, . . . ,K:

a0 := ((P [u0(µ)],ϕ1), . . . , (P [u0(µ)],ϕN ))T ,(2.8)
ak+1 = ak −∆tCElE(µ, tk)[ak].(2.9)

Here, the corresponding vectors and matrices are defined as

(CE)nm := (ξm,ϕn) ,(2.10)
(

lE(µ, tk)[ak]
)

m
:= IM [LE(µ, tk)[uk

N ]](xm)(2.11)

for n = 1, . . . , N and m = 1, . . . ,M . The resulting sequence of functions {uk
N (µ)}K

k=0
finally defines the reduced basis approximation uN (x, t;µ) to coincide with uk

N (x;µ) in the
time-slab [tk, tk+1).

Due to the well-definedness of the empirical interpolation for a given vector ak all quan-
tities are uniquely defined.
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3. Offline-Online Decomposition. A fundamental ingredient in reduced basis approxi-
mation of P2DEs is the effective decomposition of the computations in an offline- and online-
phase. The offline phase prepares parameter-independent quantities, the computation of
which is (typically heavily) depending onH . The online phase assembles the final parameter-
dependent matrices and vectors for the RB-simulation, which is ideally independent of the
complexity H .

3.1. Offline-Phase. Certain quantities are computed in the offline-phase as they are in-
dependent of the parameter µ, which is only available in the online-stage. We discriminate
between two steps in the offline-phase.

3.1.1. Offline-Phase Step 1. The first step derives possibly H-dependent quantities,
which therefore may not be used in the online-simulation as such. This step is largely based on
running detailed simulations for different parameters, and hereby contributes the dominating
part to the computation time.

The empirical interpolation of the operator evaluation is the main new component in the
RB-scheme, though it largely follows the standard formulation of the empirical interpolation
of functions [1]. To start, a set of snapshots of the operator evaluation is generated by

Ltrain = {LE(µ, tk)[uk
H(µ)]|k = 0, . . . ,K,µ ∈ Mtrain} ⊂ WH(3.1)

for some finite training set Mtrain ⊂ P . Thus, for each µ ∈ Mtrain the whole trajectory
{uk

H(µ)}K
k=0 is contained in Ltrain. This dense sampling in time turned out to be necessary

for good empirical interpolation of these trajectories. Now, for all m = 1, . . . ,M (or an
earlier stop at point 4, if a certain approximation accuracy on Ltrain is obtained) we consec-
utively determine functions qm ∈ WH and interpolation points xm ∈ XH by the following,
starting withm = 1:

1. DefineWm−1 := span{qi|i = 1, . . . ,m − 1} (withWm−1 := {0} ifm = 1).
2. For all v ∈ Ltrain determine the best approximation v∗ inWm−1 by

v∗ := arg min
w∈Wm−1

‖v − w‖2
L2(Ω) .(3.2)

3. Determine the snapshot in Ltrain that has the worst error

vm := arg max
v∈Ltrain

‖v − v∗‖L2(Ω) .(3.3)

4. If the error for vm is less than a prescribed εtol stop the loop withM := m − 1.
5. Otherwise, if m > 1 solve the following equation system to obtain interpolation
coefficients σm−1 := (σm−1

j )m−1
j=1 ∈ Rm−1

m−1
∑

j=1

σm−1
j qj(xi) = vm(xi) for i = 1, . . . ,m − 1.(3.4)

6. Compute the residual function, i.e. error between vm and its current interpolant

rm := vm −
m−1
∑

j=1

σm−1
j qj .

Note, in particular, that in case ofm = 1 the sum is empty, so rm = vm.
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7. Search the maximizer of rm as new interpolation point and normalize to obtain the
new interpolation function

xm := arg sup
x∈XH

|rm(x)|, qm := rm/rm(xm).(3.5)

8. Increasem := m + 1 and ifm ≤ M repeat starting with step 1.
Note, that apart from different and slightly simplified notation the above algorithm is

mainly the so called surrogate method [3] of empirical interpolation, as we use the L2-error
for choosing the worst approximation in (3.2) and (3.3). This is known to be computationally
more efficient than L∞-norm approximation, which requires a solution of a linear program
for each training parameter vector in each extension step.

Differences to the formulation in [3] lie in the choice of the initial function, which is
not random in our case, and in the restriction of the search space for the interpolation points
xm ∈ XH . These are considered minor natural modifications for the case of dealing with
discrete functions. It might happen, that the minimization/maximization operations have non-
unique optima. In this case, refined selection criteria can be defined based on enumerations of
the finite search spaces. In case of multiple maxima of (3.3), choose an enumeration of the set
L and take the vm from the set of worst approximated functions that has smallest index in the
enumeration. In case of multiple maxima in (3.5) we again obtain a unique point involving
an enumeration of the set. E.g. in case of nodal basis functions, the maximization can be
restricted to the set of these nodes. The setQM := {q1, . . . , qM} of functions is a non-nodal
basis for the interpolating spaceWM . We additionally introduced the nodal basis ξM in Def.
2.5. Formally both are equivalent, as they both spanWM . Computationally the basis QM is
used for all interpolation steps, whereas for ease of intuition, the subsequent argumentation
mainly uses the nodal basis ξM .

The remaining crucial quantity is the construction of a reduced basis ΦN spanningWN .
In RB-approaches such schemes frequently are based on a given training set of parameters
Mtrain ⊂ P and an incremental basis extension procedure involving a greedy search [10].
This means, given a current small reduced basis, reduced simulations are run for all param-
eters µ ∈ Mtrain, the parameter µ∗ with the worst error ‖uH(µ∗) − uN (µ∗)‖L∞(L2) (or
estimate thereof) is determined, a new basis vector is constructed from the detailed simu-
lation uH(µ∗), and the current reduced basis is extented by this. In the present study we
choose the approach as described in detail in [6]. Instead of an a-posteriori error estimator
which was used there for estimating the error, we compute the true error as we have the de-
tailed simulations uH(µ) for all µ ∈ Mtrain available. More sophisticated procedures such
as adaptive training set extension can also be applied [5]. Note that such incremental reduced
basis construction requires reduced simulations for assessing the quality of the current basis.
So repeated evaluation of all subsequent online-steps in §3.2 and returning to this offline-step
1 is required until the final basis is obtained.

3.1.2. Offline-Phase Step 2. The above quantities are partially dependent onH , so the
second step of the offline-phase provides the final quantities, that are used in the subsequent
online-simulation. Their computation may very well still be H-dependent, but the quantities
themselves are independent ofH and parameter independent.

• We compute component-vectors {aq
0}

Qu0
q=1 for the initial data by

a
q
0 := ((P [uq

0(µ)],ϕ1), . . . , (P [uq
0(µ)],ϕN ))

T for q = 1, . . . , Qu0 .

• We compute the cross-gram-matrixCE between the reduced basisΦN and the nodal
basis ξM of the collateral space by (2.10).
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• We define an arbitrary enumeration ι : {1, . . . , card(IM )} → IM of the set IM

from Def. 2.5 and compute

J ∈ R
M×card(IM ) with (J)mj = ψι(j)(xm).(3.6)

• The projections πSM
[ϕn] for all reduced basis vectors ϕn ∈ ΦN are computed and

stored in such a way that linear combinations can be computed efficiently with com-
plexity O(card(SM )N), i.e. in particularH-independently. This can be realized by
storing the Ψ-basis expansion coefficients (ϕn)i for i ∈ SM in a matrix along with
a corresponding enumeration of the set SM .

• Depending on the implementation of the localized operator, further numerical quan-
tities may be required for the online stage. E.g. in our implementation a numerical
subgrid is extracted from the the detailed grid that contains the elements supporting
the basis-functions ψi for i ∈ SM .

It can easily be verified, that the memory complexity of these quantities is independent
of H , which is the basic requirement for anH-independent online-phase.

3.2. Online-Phase. In the online-phase, the parameter µ ∈ P is specified and the
offline-quantities are combined by H-independent operations to realize the RB-approxima-
tion of Def. 2.6. The start of the simulation is quite obvious: The parameter dependent
projection (2.8) is replaced by a linear combination of offline-quantities while making use of
the affine-parameter dependence (2.7) of u0(µ):

a0 =

Qu0
∑

q=1

σq
u0

(µ)aq
0.

This is an overall operation of complexity O(Qu0N), independent of H . The main ingre-
dient in the online-phase is the online-computation of the empirical interpolation in case of
localized operators. This is the main new component of the present scheme.

PROPOSITION 3.1 (Online Empirical Interpolation). We assume to have an explicit evo-
lution scheme and corresponding RB-approximation according to Def. 2.6. If the explicit
operator LE(µ, tk) is a localized operator, then the computation of the empirical interpo-
lation Eqn. (2.11) for a coefficient vector ak of a function uk

N =
∑

n ak
nϕn ∈ WN can be

performed by the following steps:
(i) Determine the partial reconstruction v := πSM

[uk
N ] of the RB solution by

v =
N

∑

n=1

ak
nπSM

[ϕn].(3.7)

(ii) Let li(µ, tk) denote the parameter-dependent coefficient functionals of the localized
representation (2.1) of LE(µ, tk) and compute these for i ∈ IM by

l(µ, tk) := (lι(j)(µ, tk)[v])card(IM )
j=1 .(3.8)

(iii) Perform the interpolation by

lE(µ, tk) = Jl(µ, tk)(3.9)

with J given as in (3.6).
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In particular, the complexity of these computations is independent of H , only polynomial in
N , M , J and JE .

Proof. We verify by definitions, that the above computational scheme indeed results in
the interpolation property (2.11). For this we first recall from (2.4), (2.5) that for all x ∈ Ω

IM [LE(µ, tk)[uk
N ]](x) =

M
∑

m=1

(

LE(µ, tk)[uk
N ]

)

(xm)ξm(x).

As ξm are nodal basis functions, an evaluation in an interpolation point xm ∈ TM is obtained
(abbreviating li = li(µ, tk)) by

IM [LE(µ, tk)[uk
N ]](xm) =

(

LE(µ, tk)[uk
N ]

)

(xm) =
H

∑

i=1

li(u
k
N )ψi(xm).

As LE is a localized discretization operator and ψi(xm) = 0 for i )∈ IM we obtain

IM [LE(µ, tk)[uk
N ]](xm) =

∑

i∈IM

li(u
k
N )ψi(xm).(3.10)

Def. 2.1 implies πSi
◦ πSM

= πSi
for i ∈ IM . Then, using (2.2) yields

li(u
k
N ) = li(πSi

[uk
N ]) = li(πSi

◦ πSM
[uk

N ]) = li(πSM
[uk

N ]) = li(v),

as v is defined by (3.7). Inserting this in (3.10), rewriting the summation and using (3.8) and
(3.9) yields

IM [LE(µ, tk)[uk
N ]](xm) =

card(IM )
∑

j=1

lι(j)(v)ψι(j)(xm) =
(

Jl(µ, tk)
)

m
=

(

lE(µ, tk)
)

m
.

This concludes the proof of the interpolation property (2.11).
Concerning the computational complexity, we see that (i) requires O(Ncard(SM )) op-

erations, (ii) grows as O(card(IM )Jα
E) and (iii) has complexity O(Mcard(IM )). Due to the

definition of IM and the assumption of a local basis, we can upper bound card(IM ) ≤ MJ
and card(SM ) ≤ card(IM )JE = MJJE . Overall, we therefore obtain a complexity es-
timate for all three steps of O(NMJJE + MJJα

E + M2J), which is linear in N and J ,
quadratic inM and polynomial in JE . In particular, the complexity is independent ofH .

We indeed obtainH-independent complexity for the complete online stage, in particular
for the empirical interpolation of a localized operator evaluation. So the method is suitable
for the online-phase in RB-methods.

We want to comment on some implementational issues, which make our approach dis-
tinct from existing RB-approaches. The first comment addresses the fact, that the online-
phase is tightly connected to the numerical environment producing the detailed simulations.
The reason is, that the local functionals li(u) must be evaluated, which usually is much more
complex than a simple operation of a scalar function operating on u as in [2]. The function-
als are operating on discrete functions and therefore require knowledge of the geometry, the
numerical grid, neighborhood between cells, data functions, etc. These numerical structures
must be available during the reduced simulation. This directly leads to an implementational
issue related to the numerical grid. As mentioned earlier, the main nontrivial requirement
for complete H-independent computation in the online-phase is indeed depending on a fast
evaluation of the coefficient functionals li independent of H . Therefore, the grid structure
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must allow the selection of subgrids, i.e. access to a part of the grid and access-complexities
that are independent of H . The last implementational comment is important for the coeffi-
cient functionals li: usually these are evaluated simultaneously for all DOFs, i.e. producing
the new values from the given ones. In the online-phase however, this evaluation must be
limited to a local evaluation, i.e. working on the subgrid, involving all DOFs of the input
function corresponding to the degrees of freedom in SM , but only producing values for the
target DOF-indices IM .

Note that the offline-online decomposition as presented here, can be easily extended such
that the online-phase not only allows the choice of a parameter µ, but also the choice of an
N ∈ {1, . . . , Nmax} and an M ∈ {1, . . . ,Mmax} for some large Nmax,Mmax ∈ N. The
advantage of this is interactive choice of approximation accuracy.

4. A-Posteriori Error Estimate. As a first analytical backup for the presented scheme,
we derive an a-posteriori L2-error estimate. The bound is effectively computable in com-
plexity polynomial in N and M during the reduced simulation. This is due to the fact,
that the crucial ingredients in the bound are based on the residual Rk := (uk

N − uk+1
N −

∆tIM [LE [uk
N ]])/∆t. The L2-norm of this can be computed as

∆t2
∥

∥Rk
∥

∥

2

L2(Ω)
=

∥

∥uk
N − uk+1

N −∆tIM [LE [uk
N ]]

∥

∥

2

L2(Ω)

=

∥

∥

∥

∥

∥

N
∑

i=1

(ak
i − ak+1

i )ϕi −∆t
M
∑

m=1

IM [LE [uk
N ]](xm)ξm

∥

∥

∥

∥

∥

2

L2(Ω)

=
∥

∥ak − ak+1
∥

∥

2
− 2∆t(ak − ak+1)T CElE [ak] +∆t2(lE [ak])T MlE [ak](4.1)

with vectors and matrices from the RB-simulation scheme and the mass-matrixM ∈ RM×M

of the interpolation basis given as (M)m,m′ = (ξm, ξm′). Additionally, in the following
estimate we use an extended interpolation space WM+1 and a corresponding interpolation
point xM+1 obtained by the collateral reduced basis generation algorithm of §3.1.1.

PROPOSITION 4.1 (A-Posteriori L2-Error Bound). We assume that for all µ, tk the
operator Id−∆tLE(µ, tk) is Lipschitz-continuous in L2 with known Lipschitz-constant CE ,
i.e. for all u, u′ ∈ WH holds

∥

∥u − u′ −∆t(LE(µ, tk)[u] − LE(µ, tk)[u′])
∥

∥

L2(Ω)
≤ CE ‖u − u′‖L2(Ω) .(4.2)

We assume, that LE(µ, tk)[uk
N ] ∈ WM+1. We require, that the reduced basis space contains

the projections of the initial data components P [uq
0] ∈ WN for q = 1, . . . , Qu0 . Then for

given µ the RB evolution error at time tk can be upper bounded by
∥

∥uk
H(µ) − uk

N (µ)
∥

∥

L2(Ω))
≤ ∆k

N,M (µ),(4.3)

with

∆k
N,M (µ) :=

k−1
∑

k′=0

∆tCk−1−k′

E

(

|θk
′

M+1(µ)| ‖qM+1‖L2(Ω) + ‖Rk′

(µ)‖L2(Ω)

)

,(4.4)

and the empirical interpolation error estimator

θk
′

M+1(µ) = LE(µ, tk
′

)[uk′

N ](xM+1) − IM [LE(µ, tk
′

)[uk′

N ]](xM+1).(4.5)

In particular, the upper bound∆k
N,M (µ) can be effectively computed.
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Proof. From the construction of the scheme we obtain for given µ and given k (abbrevi-
ating LE(µ, tk) by LE)

uk+1
H = uk

H −∆tLE [uk
H ],(4.6)

uk+1
N = uk

N −∆tIM [LE [uk
N ]] −∆tRk.(4.7)

By the difference of the two equations we obtain an evolution equation for the error ek :=
uk

H − uk
N

ek+1 = ek −∆t
(

LE [uk
H ] − IM [LE [uk

N ]]
)

+∆tRk

= ek −∆t
(

LE [uk
H ] − LE [uk

N ]
)

+∆t
(

IM [LE [uk
N ]] − LE [uk

N ]
)

+∆tRk.

The interpolated operator evaluation can be written in the non-nodal basisQM expansion as

IM [LE [uk
N ]] =

M
∑

m=1

σmqm,(4.8)

where the coefficients σm are obtained from solving (3.4) for index range i = 1, . . . ,M . Due
to assumption, the exact evolution LE [uk

N ] is contained inWM+1 and can be written as

LE [uk
N ] =

M+1
∑

m=1

θkmqm.(4.9)

We recall that by construction of the functions qm in the collateral basis construction phase,
qm(xm′) = 0 for m′ < m. Comparing the values of (4.8) and (4.9) in the points xi for
i = 1, . . . ,M + 1 yields that θkm = σm for m = 1, . . . ,M and θkM+1 = LE [uk

N ](xM+1) −
∑M

m=1 σmqm(xM+1). Therefore, we obtain
∥

∥∆t
(

IM [LE [uk
N ]] − LE [uk

N ]
)
∥

∥

L2(Ω)
= ∆t|θkM+1| ‖qM+1‖L2(Ω) .

Together with the assumption of the boundedness of the discretization operator (4.2) and the
residual norm decomposition (4.1) we arrive at

∥

∥ek+1
∥

∥

L2(Ω)
≤ CE

∥

∥ek
∥

∥

L2(Ω)
+∆t(|θkM+1| ‖qM+1‖L2(Ω) +

∥

∥Rk
∥

∥

L2(Ω)
).

We assumed, that the initial data components are contained in WN , therefore P [u0(µ)] ∈
WN for all µ with the affine parameter dependence (2.7), hence e0 = 0. Thus we can resolve
the recursion of the error evolution and obtain the claimed a-posteriori error bound (4.3) and
(4.4).

Note, that in absence of an interpolation error (|θkM+1| = 0) we reproduce the estimate
for the linear and affine parameter dependent case [6]. Here, we do not assume linearity of
the operator and allow a more general parameter dependence.

We briefly comment on the plausibility of the assumptions: The boundedness of the
evolution operator (4.2) is realistic. For instance, if LE is linear and coercive and ∆t is suf-
ficiently small, this can even be bounded by a suitable CE ≤ 1 [6]. The main restricting and
unrealistic assumption is found frequently in empirical interpolation estimates [9, 2], which is
the approximation quality of the collateral spaceWM+1. RequiringLE(µ, tk)[uk

N ] ∈ WM+1

is unrealistic, as not the LE(µ, tk)[uk
N ] are used in the collateral basis generation procedure,

but the LE(µ, tk)[uk
H ]. To improve this estimate, extensions similar to [9] are possible. This

means, that not only WM+1 is used in the estimate, but by involving larger WM+M ′ for
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FIGURE 5.1. Illustration of the geometry and velocity field.
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FIGURE 5.2. Illustration of numerical solutions uk
H(µ) forµ = (cinit, β)T = (1, 0)T at a) start-time k = 0

and at b) end-time k = 200.

M ′ > 1, an extended error estimator can be devised. The last assumption, the condition on
the initial data, is trivially satisfied, if we include the projections of the initial data components
in the reduced basis space.

The error estimator readily allows an offline-online decomposition: In the offline-phase
the interpolation mass matrix M in (4.1) must be computed. For the error estimate, the
collateral reduced basis must be extended by one further function qM+1 and interpolation
point xM+1. The norm ‖qM+1‖ and the values of the interpolation basis functions qm(xM+1)
must be stored. The online-phase then evaluates the interpolated operator IM [LE [uk

N ]] in the
point xM+1, computes θkM+1, assembles the residual norm (4.1) and the final bound (4.4).

The relevance of a-posteriori error estimates in RB-schemes is that they provide a certi-
fied quality measure for the reduced simulation. This can be used for example in the offline-
stage of basis-generation, where the error estimator can be used as an indicator, how good
certain regions of the parameter space are resolved with a current RB-model [10, 6]. Pa-
rameters µ with large error estimators can then be chosen for basis-extension, such that the
extended model becomes more accurate on these parameters.

5. Experiments. As a model example, we choose the geometry, the P2DE and the FV
discretization from [6] and transform the example to a pure explicit evolution scheme by omit-
ing the diffusion. The resulting equation is a convection equation ∂tu(µ, t)+∇·(vu(µ, t)) =
0 in Ω× [0, T ] with Ω = [0, 1 ·10−3]× [0, 2 ·10−4], T = 0.5 and a space-dependent precom-
puted velocity field v(x) as illustrated in Fig. 5.1. The boundary segments are assigned dif-
ferent types: noflow-Neumann conditions in Γ3,Γ6 at the middle of the top and the bottom,
outflow conditions at Γ5 and Dirichlet-conditions at the remaining segments. We consider
initial data u0(x) = 1

2cinit(sin(10000πx) + 1) with a parameter cinit ∈ [0, 1] interpolating
between homogeneous zero initial data and the full sine-wave. The Dirichlet boundary values
are set as bdir(x, t) = βχΓ2 + (1 − β)χΓ4 , where χΓi

denote the indicator functions of the
corresponding boundary segments. Thus, bdir is parametrized by β ∈ [0, 1], which models
concentration differences between the inlet Γ2 and outlet Γ4. The Neumann-boundary values
are chosen as bneu = χΓ5(vu)·n. The space discretization is a cartesian grid of 40×200 cells,
the time range is t ∈ [0, T = 0.5] discretized withK = 200 equally sized time-intervals.

By this we have specified our P2DEwith parameter vectorµ = (cinit,β)T being variable
in the range P := [0, 1] × [0, 1]. We choose a first order explicit finite volume scheme with
Lax-Friedrichs-flux for the discretization. A resulting detailed solution for cinit = 1,β =
0 is illustrated at start- and end-time in Fig. 5.2 a) and b). Lowering cinit diminishes the
sinusoidal data, enlarging β increases the Γ2 Dirichlet value and lowers the Γ4 value. For
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details concerning the numerical scheme and the model example we refer to [6].
As concluded in that study, the case without diffusivity is to some extent a hard case for

parametrized model reduction. First, the solution variety is larger, as the smoothing diffusivity
is missing. Secondly, the pure explicit time-step only requires O(H) − O(H2) operations
in contrast to O(H3) for matrix inversions for parabolic or elliptic problems. Still we will
be able to demonstrate the computational gain. This linear convection problem is inherently
affine in u due to the non-homogeneous boundary conditions. This is a good benchmark
problem to demonstrate the applicability of the operator interpolation.

In this section we will first demonstrate the results of the empirical interpolation method,
then the approximation quality of the proposed RB-scheme, and finally the runtime gain of
the reduced over the detailed simulation.

5.1. Empirical Interpolation. We constructed the collateral reduced basis spaceWM

with nodal interpolation basis ξM and interpolation points TM as described in § 3.1.1, setting
M = 100 andMtrain = {( i

4 , j
4 )|i, j = 0, . . . , 4} ⊂ P .

Insights into the interpolation process are obtained from the distribution of the selected
interpolation snapshots in the parameter-time space P × [0, T ], which we plot in Fig. 5.3 a).
The first observation is, that most interpolation points are almost exclusively gathered at the
edges corresponding to the corners of P , i.e. the extreme values of the parameters. This is
in accordance with the intuition, that due to the simple parameter dependence, these extreme
values produce the most characteristic solutions. So the empirical interpolation automatically
detected, that the coarse 5 × 5 grid of parameter space sampling actially was too fine. A
further observation is, that the edge corresponding to µ = (0, 0)T is resolved with only few
snapshots. This is due to the fact, that this trajectory has snapshots, that are zero in most
of the domain, do not change much in time and therefore are already approximated well
with few basis functions. The last observation is that the time-sampling is very dense and
more concentrated at early times. This may be due to the fact, that the numerical flux has
a considerable numerical viscosity, which smoothens the solution. This results in smaller
L2-differences between subsequent snapshots at later times.

A further interesting quantity produced in the offline phase is the distribution of the
interpolation points TM in the computational domain. In our case of piecewise constant
functions, the set XH for selecting the interpolation points is chosen as the cell-centroids.
Therefore, we plot the grid-cells corresponding to the selected interpolation points TM in
Fig. 5.3 b). Comparing with Fig. 5.2 we indeed see, that the impirical interpolation selects
interpolation points that are discriminative for the evolution process. In particular, regions
with large gradients are important, as they result at discontinuities, in our case at the upper
Dirichlet-boundaries. This importance is reflected in the more dense choice of interpolation
points in these regions. In case of piecewise constant finite volume spaces, the DOFs can also
be identified with grid-cells, so the marked cells in plot b) particularly represent the set IM

of DOFs that are to be computed by every online-step during the empirical interpolation. In
plot c) we plot the larger DOF-index set SM , which is the set of DOFs, that must be available
to perform the local evaluation of the evolution operator. For these online-computations also
the geometry of the cells must be available. So, equivalently, the marked cells are exactly
the subgrid, that is extracted from the detailed grid, and used in the online evaluation of the
localized operator. We see, that these subsets of elements are very small compared to the
global grid (593 of 8000 elements), guaranteeing the efficient online-evaluation.

We now investigate quantitative aspects of the empirical interpolation. A natural measure
for the quality of this is the criterion used in the construction of the collateral basis,

max
v∈Ltrain

min
v∗∈span{qi}m

i=1

‖v − v∗‖L2(Ω)
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FIGURE 5.3. Illustration of empirical interpolation offline-quantities. a) Selected empirical-interpolation
snapshots in the parameter-time domainP× [0, T ] with time index k growing in vertical direction, b) grid-cells that
contain interpolation points TM (≡ DOF-index-set IM ), c) subgrid that is extracted and used in the online stage
(≡ DOF-index-set SM ).
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FIGURE 5.4. Error convergence of empirical interpolation and the resulting RB-scheme. a) Decrease of
maximum projection and interpolation error with increasing dimensionality of the interpolation space WM in the
offline phase. b) Convergence of the overall RB-scheme, where the maximum error ‖uH − uN‖L∞([0,T ],L2) over
Mtrain is plotted for varying values N and M .

with increasing number m = 1, . . . ,M . This error measures the maximum L2-projection
error over the training set. Additionally, the maximum interpolation error is an interesting
quantity, as this is real error resulting during the interpolation. In Fig. 5.4 a) we plot the
maximal L2-projection error over the training set of operator-evaluation-snapshots Ltrain

and the maximal interpolation error for increasing dimensionality of the interpolating space
m = 1, . . . ,M .

The exponential error decrease in the curves is obvious. So indeed, by minimizing the
approximation error over the training set of operator evaluations, the interpolation error is
also kept small. In the current simple example, this training error is indeed a very reliable
predictor for errors on previously unseen parameters. The diagrams for independent test-sets
are almost identical. The test-errors are even frequently smaller, i.e. the training set seems to
contain the most difficult parameters in our simple example.

5.2. RB Error Convergence. After the empirical interpolation, we construct a reduced
basis ΦN for N = 50 based on a greedy search over the solution-trajectories of the same set
Mtrain as used in the empirical interpolation step. We now assess the error convergence of the
final reduced basis scheme, i.e. considering the L∞([0, T ], L2(Ω)) error between the detailed
and the reduced simulation. We vary several values of N and M and for each resulting
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RB-scheme determine the maximum error over the training setMtrain

max
µ∈Mtrain

‖uN (µ) − uH(µ)‖L∞([0,T ],L2(Ω)) .

The resulting errors are depicted in Fig. 5.4 b). The results indicate that it is useful to require a
certain minimal and maximal ratio ofN/M . IfN is chosen too large with respect toM , then
large errors occur due to the (relatively) bad approximation of the discretization operator. If
M is taken too large with respect toN , then the approximation error remains almost constant,
so too large M is possible, but a waste of computational time. Similar investigations of the
test-error reveal, that the error surfaces are almost identical, which again indicates, that our
coarse choice of Mtrain is sufficient. The necessary balancing of N and M can also be
concluded from theoretical considerations: Let uH,M denote the detailed simulation using the
interpolated instead of the exact evolution operator, i.e. u0

H,M := u0
H and uk+1

H,M = uk
H,M −

∆tIM [LE [uk
H,M ]] for k = 1, . . . ,K − 1. Then the overall RB-approximation error can be

decomposed in an empirical interpolation component and a Galerkin-projection component:
∥

∥uk
H − uk

N

∥

∥

L2(Ω)
≤

∥

∥uk
H − uk

H,M

∥

∥

L2(Ω)
+

∥

∥uk
H,M − uk

N

∥

∥

L2(Ω)
.

The first term is determined solely by M , for fixed M the second term is mainly depending
onN . The regions in theN,M -plane, where either the first or the second term is dominating
is nicely reflected in the diagram.

5.3. Computational Gain. The main goal of RB-approaches is an accelerated online-
phase compared to the full simulation. Based on a MATLAB-implementation run on an
IBM Lenovo Notebook (Intel Centrino Duo, 2.0 GHz, 1024 MB RAM), we obtain the time-
measurements as given in Tab. 5.1. We compute the averaged runtimes for a detailed simu-
lation and reduced simulations for varying choices of N and M with fixed ratio. The mean
runtimes are determined from 10 single simulations. The detailed simulation with full eval-
uation of the explicit operator in each timestep requires 26.65 seconds, whereas the reduced
simulations are computed in 2.83 to 4.22 seconds. For visually indiscriminable solutions, the
choice N = 20,M = 30 is sufficient which gives speedup of factor 8.5 in our case. Recall
from an earlier comment that this acceleration will be more expressive in combination with
implicit discretization components, where the operation count for a single step grows with
O(H3) instead of O(H) as in our case of localized explicit evolution operators.

The gain of the RB-approach will be obtained in application settings where the online-
time complexity is crucial irrespective of a possibly expensive offline-phase. But also in
applications, where the cost for the offline-phase must remain decent, RB-approaches can be
beneficial, if it is a multi-query setting with sufficient number of requests: In our example,
the runtimes of the offline-phase are about 60 minutes for construction ofWM andWN . For
N = 20, M = 30, we save 23s for each online simulation compared to the detailed model.
Hence, after roughly 150 simulation runs with different parameters, the offline-phase pays
off.

The results indicate, that the reduced model indeed is so fast, that it can be applied in an
interactive setting. We realized this by incorporating the reduced simulation in an interactive
MATLAB-GUI, which allows online-parameter variation by the user.

6. Conclusion. We have presented a reduced basis method for evolution schemes which
have a localized explicit discretization operator. As main ingredient, the empirical interpo-
lation method was adopted to the interpolation of discretization operator evaluations. This
required an extensive offline-phase for constructing a collateral reduced basis space, an in-
terpolation scheme based on a subgrid of the detailed grid, and an online reduced simulation
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TABLE 5.1
Runtime-Comparison of detailed simulation and online phase of reduced basis simulations for different ap-

proximation levels N, M . The mean over 10 simulations is reported.

Simulation Approximation Mean Runtime [s]
detailed H = 8000 26.65
reduced N = 10,M = 15 2.83
reduced N = 20,M = 30 3.15
reduced N = 30,M = 45 3.56
reduced N = 40,M = 60 3.86
reduced N = 50,M = 75 4.22

scheme. We derived an a-posteriori error estimator with certain restrictions. On a simple
model example we have demonstrated the applicability of the RB-method. We obtain a run-
time gain of factor 6-10 in the reduced model, which allows parameter variation without
visible degradation of the solution over the parameter domain. Hereby we demonstrate, that
RB-methods are not only useful in implicit discretizations of evolution problems, as done
so far, but also in the more time-critical case of explicit discretizations. This speedup is ex-
pected to be more expressive in presence of implicit discretization contributions and higher
order time-integration schemes. A further perspective is the application to nonlinear evolu-
tion schemes. As we did not explicitly assume linearity of the evolution operator, the current
method will be the crucial ingredient for treating the nonlinear case. Examples for such opera-
tors are FV schemes or LDG schemes of higher order in space (reconstruction steps, limiters).
Further numerical analysis aspects also seem interesting. On one hand this comprises stability
statements of the empirical interpolation and the reduced scheme. On the other hand, more
general a-posteriori error estimates would be required for certified approximation statements
of the reduced simulation.
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