
Toward a Theory of Input Acceptance

for Transactional Memories

Vincent Gramoli†‡∗ Derin Harmanci‡

Pascal Felber‡

† EPFL LPD, CH-1015, Switzerland
‡ University of Neuchâtel, CH-2009, Switzerland

Technical Report LPD-REPORT-2008-009

Abstract

As opposed to database transactional systems, transactional mem-
ory (TM) systems are constrained by real-time while treating their
input workload. Nevertheless, there is no clear formalization of how
a TM should react regarding to a specific input. While TM perfor-
mance is often measured in terms of throughput, i.e., commit-rate (by
time unit), we consider the commit-abort ratio of a TM for a given
input, as the number of transactions this TM commits over the total
number of input transactions. Building onto this, this paper defines
the input acceptance of TMs depending on their commit-abort ratio
on input classes. To this end, we exhibit several classes of workloads
and identify bounds on the input acceptance of existing TM designs.
Additionally, we propose a serializable STM that presents high in-
put acceptance at the cost of a more complex algorithm than existing
STMs. Finally, experimental validation compares the presented TM
designs in terms of input acceptance with realistic workloads.

Keywords. Transactional Memory, Workload, Commit-abort ratio,
Input class, Acceptance.

∗Corresponding author. Address: EPFL-IC-LPD, Station 14, CH-1015, Lausanne,
Switzerland. Phone: +41 21 693 8125.

1

1 Introduction

The role of a transactional system is to receive as an input a stream of events
called a workload, to reschedule it with respect to several constraints, and
to output a consistent history. In traditional database systems transac-
tional events can be buffered on the server-side before treatment and the
response to the client can be delayed. In contrast, Transactional Memory
(TM) dedicated to multi-core architectures requires numerous events to be
treated upon reception. In fact, the transactional code executed by a core is
a stream of events whose interruption would waste cycles. In this paper, we
formalize the notion of TM workload into classes of input patterns, whose
acceptance helps understanding the performance of a given TM.

TMs are often evaluated in terms of latency and number of commits
by time unit (a.k.a. throughput). The performance limitation induced by
aborted transactions has, however, been neglected. TM optimistically exe-
cutes a transaction and commits it if no conflict has been detected during
its execution. If there exists any risk that a transaction violates consistency,
then the transaction is aborted (and its changes are rolled-back) before be-
ing restarted. Not only, restarting a transaction raises the probability of
conflicts by increasing the total number of executed operations, but the
time spent running an aborting transaction is wasted. Hence, lowering the
proportion of aborts over commits may increase performance.

p1 p2
w(x)

r(x)
c

c

input−→ DSTM
output−→

p1 p2
W (x, v1)

R(x)
A

C

Figure 1: A simple input pattern for which DSTM produces a commit-abort
ratio of τ = 0.5 (transaction of p2 aborts in any case).

Interestingly, many existing TMs unnecessarily abort transactions that
could commit without violating consistency. For example, consider the in-
put pattern depicted on the left-hand side of Figure 1, whose pattern events
are ordered from top to bottom. DSTM [9], a well-known Software Trans-
actional Memory (STM), would output the series of events on the right-
hand side, aborting the transaction executed by thread (or processor) p2 .1

1For the sake of simplicity, we assume in this paper a simple contention manager that

2

Clearly, the read operation applied to variable x could indifferently return
value v1 or the value overwritten without violating serializability [12], opac-
ity [7], or even linerarizability [10]. Nevertheless, since DSTM would assume
that the transaction of p1 owns object x until its commit-time, the read op-
eration of p2 transaction detects a conflict and aborts.

There are two important observations. First, this pattern appears in
many realistic workloads and classical TM benchmarks (e.g., when a trans-
action deletes an element of a linked list). Second, the proportion of com-
mitting transactions among all attempted transactions may degrade signif-
icantly for some workloads (e.g., two transactions may repeatedly conflict
with each other).

Contributions. This paper defines the notion of commit-abort ratio as
the number of committing transactions over the total number of transactions
that have completed (either aborted or committed). More importantly, this
paper characterizes the workload by presenting inputs and classifying them.
This allows us to bound the input acceptance of five existing TM designs:

1. Visible read (VWVR): this design used for instance by SXM [6] let the
other threads know of a read operation immediately after the corre-
sponding read request is received;

2. Visible write (VWIR): this design used for instance by DSTM [9] and
TinySTM [5] makes the effect of a write operation visible to other
threads immediately after the corresponding write request is received;

3. Invisible write (IWIR): this design used by WSTM [8] and by TL2 [3]
delays the effect of a write operation until reception of the commit
request of the same transaction;

4. Commit-time relaxation (CTR): this design used in TSTM [1] allows
to order transactions independently from the time a commit request
is received.

5. Real-time relaxation (RTR): this design relaxes the following con-
straint: if a transaction t1 ends before another transaction t2 starts,
then all the operations of t1 must precede operations of t2.

aborts the offending transaction upon conflict. More sophisticated strategies can help in
specific scenarios, e.g., by having a thread wait upon conflict, but in the general case our
results do not depend on the contention manager being used.

3

Finally, we propose a Serializable STM (SSTM) that implements the last
design and presents a higher input acceptance than other STMs at the cost
of heavy mechanisms to reschedule the input. We validate our results by
comparing experimentally the commit-abort ratio of our designs.

Related work. The question whether a set of input transactions can
be accepted without being rescheduled has already been studied by Yan-
nakakis [14]. Similarly to our work, this paper considers that the scheduler
receives the workload and reschedules it into a sequentially-equivalent out-
put. More precisely however, this paper focuses on the expressiveness of
concurrency when using locks, and does not take into account any real-time
constraint. In contrast here, we especially concentrate on TMs where some
operation requests must be treated immediately for efficiency reasons.

Some software transactional memories (STMs) present desirable features
that we also target in this paper. Among these STMs, CS-STM permits
weaker consistency for the output than serializability in order to accept a
wider set of workloads, including long read-only transactions [13], in con-
trast, we consider only serializable STMs. Other existing STMs are serial-
izable [1, 11] but it is unclear that they do not achieve stronger consistency
criteria than serializability. The STM of [11] uses global parameters that
may suffer from congestion with many cores, while the input acceptance of
TSTM [1] can be improved, as shown here.

The rest of the paper is organized as follows. Section 2 presents the
model and some preliminary definitions. Section 3 introduces TM designs
and input classes, and upper-bounds the input acceptance of TM designs.
Section 4 compares the input classes and Section 5 validates this generaliza-
tion experimentally. Section 6 discusses the results and concludes.

2 Model and Definitions

The role of a TM is to receive a workload and to produce efficiently an asso-
ciated history that satisfies consistency. This section formalizes the notions
of workload and history as TM input and TM output, respectively. In this
model, we assume that a transaction abort implies to retry the transaction
later—the retried transaction is then considered as a distinct one.

TM input. First, we introduce TM input as a formalization of the notion
of workload. An input event is either a start request, an operation call on a

4

shared variable, or a commit request. Here, we only admit read and write
operations. We denote a start request, a read call on x, a write call on x,
and a commit request as part of the same transaction t by st , r(x)t (or rx

t

for short), w(x)t (or wx
t for short), and ct , respectively. In the definition

of TM input, accessed variables are of particular interest since they order
operations of distinct transactions. However, the values read and written
are of no interest here and they are omitted from the notations of input
events. We use πt to refer indifferently to a read or a write operation: either
rt or wt .

An input pattern P of a TM is a pair 〈I,≺〉 where I is a set of input events
and ≺ is a total order defined over I. The relation ≺ corresponds intuitively
to the real-time order, and for the sake of simplicity we assume that no
two distinct events occur at the same time. Observe that this assumption is
reasonable since two operations on the same shared variables will be ordered
by the TM (e.g., using a compare-and-swap) and non-conflicting concurrent
events can be arbitrarily ordered. An input class C can be an infinite set of
input patterns. An input transaction executed by thread (or processor) p
refers to a sub-pattern of the input composed of all events between a start
request and the first following commit request c applied to thread p (both
start and commit event are included).

TM output. Second, we define TM output as the classical notion of his-
tory. This history is produced by the TM as a result of a given input. An
output event is a complete read or write operation, a commit, or an abort.
We refer to the complete read operation of transaction t that accesses shared
variable x and returns value v0, as R(x)t : v0. Similarly, we refer to a com-
plete write operation of t writing value v1 on variable x as W (x, v1)t . In the
output definition, written values are necessary to decide upon the output
correctness. We refer indifferently to Πt as either a complete read operation
or a complete write operation executed by t , and to C and A as a commit
and abort, respectively. A history H of a transactional memory is a pair
〈O,≺〉 where O is a set of output events and ≺ is a total order defined over
O. A projection of a history H on a thread p is a sub-history Hp = 〈Op ,≺〉
where Op is the set of all events of O executed by thread p. We omit the
operation subscript t and the history subscript p when the associated thread
and transaction are clear from the context.

As mentioned earlier, the ordering ≺ corresponds simply to the real-time
order of the instants at which the events occur. For short, we say that an
operation Π1 “precedes” another operation Π2 if and only if Π1 ≺ Π2 and

5

we assume that any two distinct events occur at distinct time instants. An
output transaction executed by thread p is a sub-history of Hp composed
of all events between a commit/abort (excluded) or the first event of H
(included) and the first following commit/abort event (included). For each
input transaction t, there exists exactly one associated output transaction
t′ whose sequence of operations results from a subsequence of operation
requests of t and that commit or abort. By abuse of notation, we refer
indifferently to a transaction as an input transaction or its associated output
transaction.

Consistency. The consistency criterion considered in this paper is seri-
alizability. More precisely, the TMs presented here output histories that
satisfy conflict-serializability [4].

A complete history is a history where all events are part of a committed
transaction, i.e., a transaction whose last event is C. Hence, no transactions
are unfinished or aborted in a complete history. The complete history C(H)
of H is the history H where all events that are not part of a committed
transaction have been removed.

Two operations π1 and π2 conflict if and only if (i) they are part of
different transactions, (ii) they access the same variable x, and (iii) at least
one of them is a write operation. We denote a conflict by π1 −→ π2 if π1

precedes π2 with respect to the sequential specification of variable x, i.e., π2

reads the value of x written by π1, π2 overwrites the value of x read by π1,
or π2 overwrites the value of x written by π1. (Otherwise, if π2 precedes π1

with respect to the sequential specification of x, then the conflict is denoted
by π2 −→ π1.)

A transaction t1 precedes a transaction t2 if and only if π1 and π2 are
operations of t1 and t2, respectively, and there is a conflict π1 −→ π2. We
denote this precedence relation by t1

W−→ t2 if π1 is a write operation and
by t1

R−→ t2 if π1 is a read operation, or indifferently by t1 −→ t2. We refer
to a path p as an ordered sequence of precedences between transactions:
p = t1 −→ t2 −→ ... −→ tk. A serializability graph of a history H is the
graph SG(H) whose nodes are the committed transactions of H and where
an edge exists between transactions t1 and t2 if and only if t1 −→ t2. A
history H is serializable if and only if the serializability graph of its complete
history C(H) is acyclic [2,4]. By extension, a TM is serializable if and only
if it outputs only serializable histories.

6

Classification. An input is composed of a set of events that are totally
ordered. Therefore, we can consider an input pattern as a word whose al-
phabet contains events and an input class as a regular language defined over
the alphabet of possible events. We use regular expressions to represent the
possible input patterns of a class. In our regular expressions, parentheses,
‘(’ and ‘)’, are used to group a set of events. The star notation, ‘∗’, indicates
the Kleene closure and applies to the preceding set of events. The negation
notation, ‘¬’, indicates that any event of the following set is prohibited. Fi-
nally, the choice notation, ‘|’, denotes the occurrence of either the preceding
or the following set of events. Operators are ordered by priority as ¬, ∗, |.

Commit-abort ratio. The commit-abort ratio, denoted by τ , is the ratio
of the number of committing transactions over the total number of com-
plete transactions (committed or aborted). This metric captures the no-
tion of success of a TM by giving the percentage of transactions that the
TM committed versus the total number of transactions the TM attempted
to commit. That is, the commit-abort ratio is an important measure of
“achievable concurrency” for TM performance, especially from a theoretical
point-of-view.

Throughput is a metric of performance traditionally used in TM to mea-
sure the number of transactions a TM commits per time unit. Throughput
is, however, not sufficient to identify the cause of TM efficiency: one TM
may be efficient either because it aborts very few transactions or because
it retries transactions very rapidly. The commit-abort ratio is complemen-
tary to the throughput since it determines whether a TM is simply fast or
whether it has a high input acceptance. Evaluating how likely a TM aborts
transactions is a crucial issue since aborting can be very costly. First, this
cost depends on the efforts wasted in executing the transaction before abort-
ing it: typically, a long transaction will be generally costly to retry. Second,
abort side-effects might be dramatic for performance: take, as an example,
an aborting transaction that has previously forced several other transactions
to also abort, this transaction may create further conflicts upon retry.

In the remaining of the paper, we say that a TM accepts an input pattern
if it commits all of its transactions, i.e., τ = 1. More generally, we say that
a TM does not accept an input class if it accepts no pattern of this class. In
other words, the TM does not accept a class if for each of its patterns, the
TM aborts at least one transaction, i.e., τ < 1.

7

3 On the Input Acceptance of TM Designs

This section identifies several TM designs and upper-bounds their input ac-
ceptance. All the designs considered here are non-blocking (no transactions
wait for a conflict to possibly disappear) and there is at most one version
for each shared variable. We will discuss multi-version in Section 6.

TM constraints. When processing a given operation of the input, the
TM has to take an appropriate action. Upon read, the TM has to return
some value (which might be the latest committed version, an older version in
a multi-version TM, or a yet-uncommitted version). Similarly, upon write,
the TM can make the written value visible to other threads or delay the
publication of the value until some point in the future (typically commit-
time). These broad decisions define designs of TM.

TM designs. The TM designs that we consider always provide a con-
sistent view of the memory to the application and guarantee sequentially
consistent executions (serializability). They may or may not be linearizable:
this is typically not important from an application programmer’s perspective
(although it has some impact on the implementation of the TM).

We identify some TM designs and we exhibit their performance bounds
by defining input classes that they do not accept. To illustrate our dis-
cussion, we use five different TM designs: (i) a design with visible reads
and visible writes similar to SXM [6]; (ii) a design with visible writes and
invisible reads that resembles DSTM [9] and TinySTM [5]; (iii) a design
with invisible (delayed) writes and invisible reads similar to WSTM [9] and
TL2 [3]; (iv) a design alike the recently proposed TSTM [1] that allows
serialization points to precede commit-time; (v) a design that keeps track
of all variables involved in a possible conflict (we propose a new STM that
implements this design).

For each of these designs, we define one input class capturing a set of
patterns that are not accepted (although these patterns are accepted by
subsequent designs). While we do not claim that these classes are maxi-
mal we claim that their patterns are realistic and express important design
limitations in terms of commit-abort ratio. For the sake of clarity of the
design presentations, we assume in the pseudocode of the algorithms that
each function is atomic and we do not specify how shared variables are
updated. Typical solutions include compare-and-swap [9] or in-order lock
acquisition [8]. We refer to T as the set of transaction identifiers, to X as

8

the set of all variable identifiers, and to V as the set of possible variable
values.

3.1 VWVR Design

This section introduces a TM design with visible writes and visible reads,
called VWVR, and shows its acceptance limitation by defining a class of
input patterns that this design never accepts. The pseudocode is given in
Algorithm 1 and is similar to SXM [6]. For simplicity of presentation, we
assume that variables are versioned.

Algorithm 1 VWVR Design

1: State of transaction t:
2: read-set ⊂ X, initially ∅
3: write-set ⊂ X × V , initially ∅

4: State of variable x:
5: val ∈ V , initially default value
6: writer ∈ T , initially ⊥
7: readers ⊂ T , initially ∅

8: read(x)t:
9: if 〈x, v′〉 ∈ write-set then v ← v′

10: else
11: if x .writer 6= ⊥ then abort()

12: v ← last committed value of x
13: read-set ← read-set ∪ {x}
14: x .readers ← x .readers ∪ {t}
15: return v

16: write(x, v)t:
17: if x .readers \ {t} 6= ∅ then abort()

18: if x .writer = t then
19: write-set ← write-set \{〈x, ∗〉}∪{〈x, v〉}
20: else
21: if x .writer 6= ⊥ then abort()

22: write-set ← write-set ∪ {〈x, v〉}
23: x .writer ← t

24: commit()t:
25: for each 〈x, v〉 ∈ write-set do
26: x .val ← v
27: x .writer ← ⊥
28: for each 〈x〉 ∈ read-set do
29: x .readers ← x .readers \ {t}

30: abort()t:
31: for each 〈x, v〉 ∈ write-set do
32: x .writer ← ⊥
33: for each 〈x〉 ∈ read-set do
34: x .readers ← x .readers \ {t}

If a read request is input, the TM records the transaction in x .readers
(Line 14), thus, the set of variables read is visible to all threads. Similarly,
the write operations are made visible in that when a write request is input
the updating transaction registers itself in x .writer (Line 23).

It turns out that common input patterns are not accepted by this design.
For a classical example of write-after-read pattern by two transactions, con-
sider the example proposed in Figure 2. If a transaction t2 writes a variable
that has already been read by another transaction t1 that is still active,
then a conflict is detected by t2 while writing. This leads to aborting a
transaction. As stated in the following theorem, an input class including
this pattern is not accepted by this design.

9

p1 p2
r(x)

w(x)
c

c

input−→ SXM
output−→

p1 p2
R(x) : v0

W (x, v1)
A

C

Figure 2: An input pattern for which SXM produces a commit-abort ratio
of τ = 0.5 (transaction of p2 aborts upon writing).

Theorem 1 There is no TM implementing VWVR design that accepts any
input pattern of the following class:

C1 = π∗(πx
i ¬c∗i w

x
j | wx

j¬c∗j π
x
i)π∗.

Proof. The proof of this impossibility relies on the existence of two sub-
patterns, of which at least one is common to any pattern of class C1 and
that is not accepted by any VWVR STM. Consider the input pattern P1 =
π(x)1w(x)2 and P1′ = w(x)1π(x)2.

First, since a write operation on variable x verifies that neither a write
operation nor a read operation is accessing x and aborts a transaction if this
verification fails, C1 does not accept P1. Second, since both read and write
operations on variable x verify that x is not currently written and abort a
transaction if the verification fails, C1 does not accept P1′. That is, neither
P1 nor P1′ are accepted by C1.

Finally, observe that any additional event added to P1 or P1′ that results
in a pattern of C1 is not accepted by VWVR STMs for the same reason as
above. As a result, class C1 is not accepted by VWVR STMs. �

3.2 VWIR Design

This section introduces a TM design with visible writes and invisible reads,
called VWIR, that is similar to DSTM [9] with a contention manager that
aborts the transaction detecting a conflit. The limitations of this design are
shown by giving a class of inputs that it never accepts. The pseudocode
is given in Algorithm 2 and presents the same functions as in the previous
Algorithm except that we we specify additionally the function validate. If a
read request is input, the TM records locally the opened read variable, thus,
the set of variables read is visible only to the current thread. Conversely,
the write operations are made visible in that when a write request is input
the updating transaction registers itself in x .writer (Line 21).

10

Algorithm 2 VWIR Design

1: State of transaction t:
2: read-set ⊂ X, initially ∅
3: write-set ⊂ X × V , initially ∅

4: State of variable x:
5: val ∈ V , initially default value
6: writer ∈ T , initially ⊥

7: read(x)t:
8: if 〈x, v′〉 ∈ write-set then v ← v′

9: else
10: if x .writer 6= ⊥ then abort()

11: validate()
12: v ← last committed value of x
13: read-set ← read-set ∪ {x}
14: return v

15: write(x, v)t:
16: if x .writer = t then
17: write-set ← write-set \{〈x, ∗〉}∪{〈x, v〉}
18: else
19: if x .writer 6= ⊥ then abort()

20: write-set ← write-set ∪ {〈x, v〉}
21: x .writer ← t

22: commit()t:
23: validate()
24: for each 〈x, v〉 ∈ write-set do
25: x .val ← v
26: x .writer ← ⊥

27: abort()t:
28: for each 〈x, v〉 ∈ write-set do
29: x .writer ← ⊥

30: validate()t:
31: for each x ∈ read-set do
32: x′ ← last committed version of x
33: if x 6= x′ then abort()

Common input patterns are neither accepted by this design. Consider
the input pattern depicted in Figure 1 that may arise for instance when
concurrent operations (searches, insertions) are executed on a linked list.
This is a classical example of read-after-write pattern by two transactions,
with the written value being visible and uncommitted. If a transaction t2
reads a variable previously modified by another transaction t1 that is still
active, then a conflict is detected by t2 while reading. In any case, this leads
to aborting a transaction: while in this design the transaction t2 aborts due
to this conflict, any alternative contention manager aborts one of the current
transactions.2 As stated in the following theorem, an input class including
this pattern is not accepted by this design.

Theorem 2 There is no TM implementing VWIR design that accepts any
input pattern of the following class:

C2 = π∗(rx
i ¬c∗i wx

j ¬c∗i cj | wx
j ¬c∗j rx

i)π∗.

2Observe that the algorithm could be extended to detect read-only transaction, allowing
transaction of thread p2 to commit in this specific scenario. In the general case, however,
one of the transactions will abort.

11

Proof. The proof is similar to the proof of Theorem 1 but with the following
patterns P2 = r(x)1w(x)2c2 and P2′ = w(x)1r(x)2 .

Since in P2, t2 writes and commits the value of x after the time at which
t1 reads x and before the time at which t1 commits, t1 fails in validating
right before commit-time and aborts. As a result, P2 is not accepted by
C2. Since in P2′, t2 reads the value of x after the time at which t1 writes x
and before the time at which t1 commits, the read operation fails because
t2 knows that t1 is still the writer of the object. As a result, P2′ is not
accepted by C2.

Next, observe that any additional event added to P2 or P2′ that results
in a pattern of C2 is not accepted by VWIR STMs for the same reason as
above. �

As mentioned earlier, this input class captures realistic workloads com-
posed of common read and update transactions.

3.3 IWIR Design

Here, we propose a second design that accepts patterns of the preceding
class, i.e., for which the previous impossibility result does not hold. We do
not claim that all patterns of C1 are accepted by this design. This design,
inspired by WSTM [8], uses invisible writes and invisible reads with a lazy
acquire technique that postpones effects until commit-time, thus it is called
IWIR. While a main constraint of TMs is that a read must return without
being postponed, TMs allow us to postpone a write operation, thus delaying
its visibility. The idea is different from previous designs due to the invisibility
of writes: while modifications are recorded at write-time in the write-set ,
these modifications are made visible no sooner than at commit-time. The
corresponding functions and states are presented in Algorithm 3.

Even IWIR design does not accept some very common input patterns.
As illustrated in Figure 3, assume that a transaction t2 writes a variable
x and commits after another transaction t1 reads x but before t1 commits.
Because t1 has read the previous value, it fails its validation at commit-time
and aborts. This is a classical example of a transaction reading a value that
is later overwritten by another transaction. Such a pattern also arises when
performing concurrent operations on a linked list. The following theorem
gives a set of input patterns that are not accepted by STMs of the IWIR
design.

Theorem 3 There is no TM implementing IWIR design that accepts any

12

Algorithm 3 IWIR Design

1: State of transaction t:
2: read-set ⊂ X, initially ∅
3: write-set ⊂ X × V , initially ∅

4: State of variable x:
5: val ∈ V , initially default value

6: read(x)t:
7: if 〈x, v′〉 ∈ write-set then v ← v′

8: else
9: validate()

10: v ← last committed value of x
11: read-set ← read-set ∪ {x}
12: return v

13: write(x, v)t:
14: write-set ← write-set \ {〈x, ∗〉} ∪ {〈x, v〉}

15: commit()t:
16: validate()
17: for each x ∈ write-set do
18: x′ ← last committed version of x
19: if x 6= x′ then abort()

20: for each 〈x, v〉 ∈ write-set do
21: x .val ← v

22: abort()t: —

23: validate()t:
24: for each x ∈ read-set do
25: x′ ← last committed version of x
26: if x 6= x′ then abort()

p1 p2
r(x)

w(x)
c

c

input−→ WSTM
output−→

p1 p2
R(x) : v0

W (x, v1)
C

A

Figure 3: A simple input pattern for which STMs implementing IWIR design
produce a commit-abort ratio of τ = 0.5 (transaction of p2 aborts in any
case).

input pattern of the following class:

C3 = π∗(rx
i ¬c∗i wx

j | wx
j ¬c∗jrx

i)¬c∗i cjπ∗.

Proof. The proof relies on the existence of two minimal patterns belonging
to C3 that IWIR STMs never accept. We show, by contradiction, that each
of these patterns is not accepted.

First, consider the following input pattern: P3 = r(x)iw(x)jcj (P3 ∈
C3), and assume by contradiction that its two transactions commit. Upon
invocation of r(x)i, transaction i records the variable in its read-set for later
validation. At the time tj commits, the variable x is updated with the new
value written by tj . Since ti has not committed yet when the write becomes
visible, upon committing, ti fails in validating its read-set leading to an
abort.

13

Second, consider the following input pattern: P3′ = w(x)jr(x)icj (P3′ ∈
C3), and assume by contradiction that the two transactions commit. Since
writes are invisible and r(x)i occurs before cj , the value written by tj is
not read by ti. That is, P3′ and P3 becomes indistinguishable from ti
standpoint. As above and upon committing, ti fails in validating leading to
an abort.

Both patterns lead to an abort that contradicts the assumption. Clearly,
adding any sequence of operations between the three events of P3 and P3′

would lead also to non-accepted patterns. Since all possible patterns of C3
contain one of these two sub-patterns, input class C3 is not accepted by
IWIR STMs. �

Note that this impossibility result also holds for the class C1, since C1 is
a subset of C3 as we indicate in Section 4.

3.4 CTR Design

The following design has, at its core, a technique that makes as if the commit
occurred earlier than the time the commit request was input. In this sense,
this design relaxes the commit time and we call it Commit-Time Relaxation
(CTR). More precisely, it allows to advance the commit time of transactions.
To this end, the TM uses scalar clocks that determine the serialization order
of transactions. The pseudocode appears in Algorithm 4 and is inspired
by the recently proposed TSTM [1] in its single-version mode. The first
particularity is that a read(x) request forces the clock of the transaction to
be at least as large as the clock of the last transactions that committed x
(which also corresponds to the version of x). The second particularity is
that committing a transaction t1 that writes x forces active readers of x to
have a clock lower than t1’s. Due to the second particularity, even though
a transaction t2 is not yet completed, an already committed transaction t1
may force t2 to be serialized before.

TSTM is claimed to achieve conflict-serializability, however, it might not
accept all possible conflict-serializations. Figure 4 presents an input pattern
that TSTM does not accept: since transactions choose their clock depending
on the last committed version of the object they access, two transactions
may choose the same clock and forces another to abort. In this example,
transactions of p2 and p3 chooses the same clock and force p1 transaction
to abort.

This pattern typically happens when a long transaction t runs concur-
rently with short update transactions that update the variables read by t.
Note that, if the update transactions do not conflict, they do not need to be

14

Algorithm 4 CTR Design
1: State of transaction t:
2: status ∈ {active, inactive}, initially active
3: read-set ⊂ X, initially ∅
4: write-set ⊂ X × V , initially ∅
5: clock-int , a record with fields:
6: lb ∈ N, initially 0
7: ub ∈ N, initially ∞
8: clock ∈ N ∪ {⊥}, initially ⊥
9: n ∈ N, the number of threads

10: State of variable x:
11: val ∈ V
12: clock ∈ N, initially 0
13: active-readers ⊂ T , initially ∅

14: read(x)t:
15: x .active-readers ← x .active-readers ∪ {t}
16: clock-int .lb ← max(x .clock , clock-int .lb)
17: if clock-int .ub < clock-int .lb then abort()

18: read-set ← read-set ∪ {x}
19: return x

20: write(x, v)t:
21: write-set ← write-set \ {〈x, ∗〉} ∪ {〈x, v〉}

22: commit()t:
23: for any 〈x, ∗〉 ∈ write-set do
24: clock-int .lb ← max(x .clock , clock-int .lb)
25: if clock-int .ub 6=∞ then
26: clock ← clock-int .ub
27: if clock < clock-int .lb then abort()

28: else
29: clock ← clock-int .lb + n
30: if clock > clock-int .ub then abort()

31: for any r ∈ x .active-readers do
32: if r .status 6= active then
33: x .active-readers ← x .active-readers \ {r}
34: else
35: r .clock-int .ub ← clock − 1

36: for 〈x, v〉 ∈ write-set do
37: x .clock ← clock
38: x .val ← v
39: status ← inactive

40: abort()t:
41: status ← inactive

ordered according to real-time order. The following theorem generalizes this
result by showing that STMs implementing CTR design does not accept a
new input class.

15

p1 p2 p3
r(x)

w(x)
c

s
w(y)

c
r(y)

c

input−→ TSTM
output−→

p1 p2 p3
R(x) : v0

W (x, v1)
C

W (y, v2)
C

R(y) : v2

A

Figure 4: An input pattern that TSTM does not accept. The commit-abort
ratio obtained for TSTM is τ = 2

3 (transactions of p2 and p3 commit but
transaction of p1 aborts).

Theorem 4 There is no TM implementing CTR design that accepts any
input pattern of the following class:

C4 = (¬wx)∗rx
i ¬c∗i wx

j ¬c∗i cj¬c∗i sk¬(ci |ck | rx
k)∗wy

k¬(ci |ck | rx
k)∗ck¬c∗i ry

i π
∗.

Proof. The proof relies on the existence of a sub-pattern P4 common
to any pattern of C4 that is not accepted by CTR-STM. Let P4 be
r(x)iw(x)jcjskw(y)kr(y)i. First, observe that when tj commits, it chooses
clock n, where n is the number of threads and upper-bounds the clock of
ti to n − 1. Second, when tk commits it sets its clock to n so that ti sets
its lower-bound to n too, when committing. Consequently, ti has a larger
lower-bound n than its upper-bound n− 1, that is, ti aborts.

Next, we show that for any other pattern of C4, ti aborts for the same
reason. By the definition of C4, variable x cannot be written before P4 in
any pattern of C4. As a result, the upper-bound of ti cannot be larger than
n − 1. Since tk does not read, while committing, tk cannot choose a lower
clock than n. Hence, when ti commits, it sets its lower-bound to n, and ti
aborts similarly as above. �

Observe that we use the notation sk in this class definition to prevent
transactions tj and tk from being concurrent.

3.5 RTR Design

This design, called Real-Time Relaxation (RTR), presents a technique that
relaxes the real-time order requirement. The real-time order requires that

16

given two transactions t1 and t2, if t1 ends before t2 starts, then t1 must
be ordered before t2. The design presented here outputs only serializable
histories but does not preserve real-time order. More precisely, it outputs
non real-time ordered histories as we can see in Figure 4 (center and right-
hand side). These outputs result from inputs that cannot be accepted by
any TM ensuring real-time order (including all TMs that are opaque [7] or
linearizable [10]). We illustrate this design by the following STM.

SSTM, standing for Serializable STM, is an STM with a high commit-
abort ratio: SSTM accepts all patterns presented so far (including the ones of
Figures 3, 2, 1, and 4). Moreover, SSTM is conflict-serializable but neither
opaque nor linearizable as shown below, and it avoids cascading abort, since
whenever a transaction t1 reads a value from another transaction t2, t2 has
already committed [2]. Finally, SSTM is also fully decentralized, i.e., it
does not use global parameters as opposed to other serializable STMs [1,11]
that may experience congestion when scaling to large numbers of cores.
Figure 5 presents the pseudocode of SSTM. As mentioned earlier and like
previous designs, functions are assumed to execute atomically for the sake
of simplicity in the presentation.

During the execution of SSTM, a transaction records the accessed vari-
ables locally and registers itself as a potentially future conflicting transaction
in the accessed variables. These records help SSTM keeping track of all po-
tential conflicts. More precisely, a transaction t accessing variable x keeps
track of all transactions that may both precede it and follow it. Only trans-
actions that read and that are concurrent with t (namely, the active readers
of t) can both precede and follow t. This is due to invisible writes that can
only be observed by other transactions after commit. When detected, the
preceding transactions are recorded in t .past-tx . Transaction t detects those
transactions either because they are in x .active-readers (Line 38) or precede
one of these (Line 37), or because they are in x .write-fc (Lines 23 and 38) or
precede one of these (Lines 22 and 37). Transaction t also keeps track of its
succeeding transactions in t .future-tx so that it can inform them as soon as
it discovers a new preceding transaction. Hence, each transaction t′ keeps
up-to-date records of t ′.past-tx and t ′.future-tx . Transaction t may abort
for two reasons. First, if it appears to precede itself in the conflict graph
(Lines 21 and 36). Second, if there exists a transaction that t precedes but
that also precedes t (Lines 26 and 41). Finally, the a-clean function aims
at garbage collecting all metadata associated with the current transaction
if it aborts whereas the c-clean functions garbage collect only the metadata
corresponding to the past committed transactions that have nothing in their
past, as it is sure these transactions will not create a cycle in the conflict

17

Algorithm 5 SSTM (Serializable STM) - Part 1
1: State of transaction t:
2: status ∈ {active, inactive}, initially active
3: write-set ⊂ X × V , initially ∅
4: read-set ⊂ X, initially ∅
5: past-tx ⊂ T , initially ∅ // the previous tx in the conflict graph
6: future-tx ⊂ T , initially ∅ // the next tx in the conflict graph

7: State of shared variable x:
8: write-fc ⊂ T , initially ∅ // the write future conflicts
9: active-readers ⊂ T , initially ∅ // the active reader tx

10: val ∈ V , initially the default value

11: write(x, v)t:
12: write-set ← (write-set \ {〈x, ∗〉}) ∪ {〈x, v〉}

13: read(x)t:
14: read-set ← read-set ∪ {x}
15: if 〈x, v′〉 ∈ write-set then
16: v ← v′

17: else
18: x .active-readers ← x .active-readers ∪ {t}
19: for all t′ in x .write-fc do
20: for all t′′ ∈ t ′.past-tx do
21: if t = t′′ then abort()

22: past-tx ← past-tx ∪ {t′′}
23: past-tx ← past-tx ∪ {t′}
24: for all t′ in past-tx do
25: for all t′′ ∈ future-tx do
26: if t′ = t′′ then abort()

27: t ′.future-tx ← t ′.future-tx ∪ {t′′}
28: t ′.future-tx ← t ′.future-tx ∪ {t}
29: v ← x .val
30: return v

graph later.
Tracking all conflicts is known to be a difficult task [7] while it is easy

to check linearizability in a composed manner [10], and SSTM may suffer
from the induced memory overhead. TSTM presented, however, encour-
agingly low overhead when tracking a subpart of the conflicts [1] SSTM
track. Even though SSTM is not expected to be the fastest STM on today’s
architectures, we believe that hardware support may help tracking these
predominant conflicts in a near future, and its design would benefit from
this, as it presents already a higher input acceptance than other designs. As
an example, Figure 4 (center and right-hand side) presents an input pattern
that SSTM accepts while other STMs that ensure real-time order do not
accept. This is illustrated by the non-acceptance of the same pattern by

18

Algorithm 6 SSTM - Part 2
31: commit()t:
32: for all 〈x, v〉 ∈ write-set do
33: x .write-fc ← x .write-fc ∪ {t}
34: for all t′ ∈ x .active-readers ∪ x .write-fc do
35: for all t′′ ∈ t ′.past-tx do
36: if t = t′′ then abort()

37: past-tx ← past-tx ∪ {t′′}
38: if t 6= t′ then past-tx ← past-tx ∪ {t′}
39: for all t′ in past-tx do
40: for all t′′ ∈ future-tx do
41: if t′ = t′′ then abort()

42: t ′.future-tx ← t ′.future-tx ∪ {t′′}
43: t ′.future-tx ← t ′.future-tx ∪ {t}
44: for all 〈x, v〉 ∈ write-set do
45: x .val ← v
46: status ← inactive
47: c-clean()

48: abort()t:
49: status ← inactive
50: a-clean()

51: a-clean()t:
52: for all x such that 〈x, ∗〉 ∈ write-set or x ∈ read-set do
53: x .write-fc ← x .write-fc \ {t}
54: x .active-readers ← x .active-readers \ {t}
55: for all t′ ∈ past-tx do
56: t ′.future-tx ← t ′.future-tx \ {t}
57: for all t′ ∈ future-tx do
58: t ′.past-tx ← t ′.past-tx \ {t}
59: free(t)

60: c-clean()t:
61: for all x such that 〈x, ∗〉 ∈ read-set do
62: x .active-readers ← x .active-readers \ {t}
63: for all t′ ∈ T do
64: if t ′.status = inactive and t ′.past-tx = ∅ then
65: past-tx ← past-tx \ {t′}
66: for all t′′ ∈ t′.future-tx do
67: t ′′.past-tx ← t ′′.past-tx \ {t′}
68: for all x such that 〈x, ∗〉 ∈ t ′.write-set do
69: x .write-fc ← x .write-fc \ {t′}
70: free(t′)

TSTM, in Figure 4 (center and left-hand side).

Theorem 5 SSTM is not constrained by real-time order.

Proof. A simple counter-example is presented in Figure 5. Clearly, the

19

p1 p2 p3
r(x)

w(x)
c

s
w(y)

c
r(y)

c

input−→ SSTM
output−→

p1 p2 p3
R(x) : v0

W (x, v1)
C

W (y, v2)
C

R(y) : v2

C

Figure 5: An input pattern that SSTM accepts while TSTM does not accept
it. (The commit-abort ratio obtained for SSTM is 1.)

input (right) is accepted by SSTM resulting in the output on the left-hand
side. This output is neither opaque nor linearizable. More precisely, let t1,
t2, and t3 be the transactions of p1, p2, and p3, respectively. It is clear that
t3

W−→ t1 and t1
R−→ t2 implying by transitivity that t3 −→ t2, however,

because of the real-time order requirement common to both opacity and
linearizability, t3 6−→ t2 is necessary for the output to be opaque or lin-
earizable. In contrast, this output is equivalent to the sequential execution
t3 −→ t1 −→ t2, thus it is conflict-serializable. �

SSTM presents promising input acceptance compared to numerous ex-
isting STMs. The drawback is the high cost of rescheduling the input into
a serializable output. In fact, this is due to the large number of shared
variables that must be recorded as being part of a potential conflict to iden-
tify cycles in the serialization graph. In terms of memory space this cost
is upper-bounded by the maximal number of shared variables and by the
maximal number of concurrent transactions. That is, the memory cost is
proportional to the minimum of these two factors.

3.6 Correctness Proof

Here we show that SSTM, presented above, is conflict-serializable.

Lemma 6 If there exists a conflict p = t0 −→ t1, t0 and t1 are both com-
mitted and t0 .past-tx 6= ∅ then t1 ∈ t0 .future-tx .

Proof. Observe by definition that t0 −→ t1 holds only if there is a conflict
between t0 and t1, and note that t0 .past-tx 6= ∅ prevents t0 from being

20

cleaned. There are two cases to consider whether the conflicting operations
of t0 is a write. Without loss of generality let x be the common location on
which both transactions conflict.

First if t0 writes x and commits, then t0 adds itself to x.write-fc at
Line 33. Hence, if t1 reads x afterwards, then it inserts t0 in its t1.past-tx
set at Line 23 and symmetrically inserts itself in t0.future-tx at Line 28.
Otherwise, if t1 writes x afterwards, it inserts t0 in its t1.past-tx set at
Line 38 and symmetrically adds itself in t0.future-tx at Line 43.

Second if t0 does not write but reads x before t1 writes x, then t0 adds
itself to x .active-reader at Line 18 so that t1 adds it to t1.past-tx at Line 38.
Again symmetrically, t1 inserts itself into t0.future-tx at Line 43. The result
follows. �

The next lemma shows that the relation, defined by set t.future-tx , be-
tween t and the transactions it contains is transitive. Transitivity is neces-
sary to show that a cycle in the conflict graph exists only if a transaction t
is in its own t.future-tx .

Lemma 7 Let t0, t1, t2 be three committed transactions. If t2 ∈ t1.future-tx
and t1 ∈ t0.future-tx then t2 ∈ t0.future-tx .

Proof. Let τ and τ ′ be the times at which the second operation of the
conflict between t0 and t1 and the second operations of the conflict between
t1 and t2 start, respectively. By the assumption of function atomicity, we
know that τ 6= τ ′, hence we focus on the two following cases.

In case τ ′ < τ , t2 ∈ t1.future-tx and t1 ∈ t2.past-tx at time τ . Hence,
when the conflict between t0 and t1 happens by a read (resp. a write) of
t1, t1 adds not only t0 in its past-tx at Line 23 (resp. at Line 38) and itself
to t0.future-txat Line 28 (resp. at Line 43) but also t2 at Line 27 (resp. at
Line 42), which belongs to its t1.future-tx , to t0.future-tx .

In case τ < τ ′, t0 ∈ t1.past-tx at time τ ′. Assume t2 conflicting operation
is a read (resp. a write). Transactions t0, which belongs to t1.past-tx , and
t1 are inserted in t2.past-tx at Line 23 (resp. at Line 38), at time τ ′. As a
result, t2 inserts itself to the future-tx of both t0 and t1 at Line 28 (resp. at
Line 43). �

Lemma 8 t /∈ t.future-tx .

Proof. Assume that t ∈ t.future-tx holds, we proceed by contradiction.
Transaction t can only be inserted in t.future-tx at Line 28 or at Line 43
because neither reaching Line 27 nor Line 42 with t = t′ is possible as

21

transaction t would abort prior to that (Lines 26 and 41). As a result, t was
already in t.past-tx when Line 28 or 43 has been reached.

Now we show that t cannot be inserted in t.past-tx leading to the con-
tradiction. If t already belongs t ∈ x .write-fc, then this means that t is
executing its commit and all its read operations are past, hence, there is
no chance that t can be added to t.past-tx during its read operation. Fi-
nally, during the execution of a write operation past-tx remains unchanged,
and during the execution of the commit t cannot be inserted into t.past-tx
because t = t′ (Line 38). �

The following corollary shows that for any history H of SSTM there is
no cycle in the serialization graph SG(H) of committing transactions.

Corollary 9 In all histories H of SSTM, there is no path p = t1 −→ ... −→
tk −→ t1 such that all ti commit (0 < i ≤ k).

Proof. By absurd, assume that this is possible. We show that this leads
to a contradiction. First, by Lemma 6 we know that p = t1 −→ ... −→
tk −→ t1 implies that ti+1 ∈ ti.future-tx for all i such that 0 < i ≤ k − 1
and t1 ∈ tk.future-tx . Second, by the transitivity property of Lemma 7 we
obtain that ti ∈ ti.future-tx (0 < i ≤ k) which contradicts Lemma 8. �

Theorem 10 SSTM is conflict-serializable.

Proof. The proof follows from the conjunction of Corollary 9 and Theorem
2.1 of [2]. �

4 Class Comparison

The previous section gives some impossibility results on the input acceptance
by identifying input classes. Here, we use this classification to compare input
acceptance of TM designs: if all patterns of a class C belong also to another
class C′, then designs that do not accept C′ neither accept C.

Looking at the class definitions, we identify interesting dependencies.
Let C0 = π∗ be a special class that represents all possible patterns, and let
C5 = ∅ be the empty class. Observe that any pattern of class C4 is also a
pattern of classes C0, C1, C2, and C3, and any pattern of class C3 is also
a pattern of class C0, C1, and C2. For instance, as stated in Theorem 2,
STMs implementing the VWIR design (like DSTM) do not accept C2 but
C5 ⊆ C4 ⊆ C3 ⊆ C2, hence DSTM accepts none of classes C2 to C5. To

22

¬C4
¬C2¬C1

VWIR Design
(e.g. DSTM)

IWIR Design
(e.g. WSTM)

CTR Design
(e.g. TSTM)

¬C3
¬C5

RTR Design
(e.g. SSTM)

VWVR Design
(e.g. SXM)

Figure 6: Hierarchization of classes. The VWVR design accepts no input
patterns of the presented classes, the VWIR design accepts inputs that are
not in classes ranging from C2 to C4, the IWIR design accepts inputs that
are neither in C3 nor in C4, the CTR design accepts input patterns only
outside C4. Finally, we have not yet identified patterns not accepted by
design RTR.

represent that a TM accepts patterns that are out of a class, we draw the
sets ¬C1, ¬C2, ¬C3, ¬C4, and ¬C5 that represent C0 \ C1, C0 \ C2, C0 \ C3,
C0 \ C4, and C0 \ C5, respectively. We omit to represent ¬C0 since according
to our definition it would be ∅.

Given this hierarchy, we are able to draw the input acceptance of VWVR,
VWIR, IWIR, CTR, and RTR designs restricted to patterns that are in ¬C1,
¬C2, ¬C3, ¬C4, and ¬C5, respectively. The hierarchy shown in Figure 6
compares the input acceptance of these TM designs.

5 Experimental Validation

We have implemented the VWIR, IWIR, CTR and RTR designs and run
some experiments on an 8-core Intel Xeon machine. We have chosen the
following sorted linked list benchmark to contrast the performance of those
designs: Initially, the benchmark inserts 256 elements in the linked list.
Then, each thread starts and executes either a contains or an update trans-
action. We call the probability of executing an update transaction update
probability. Contain transactions look for a value in the linked list and read
through all elements in order until it finds the searched value. The update
transactions alternatively insert a new element or delete the last inserted
element, thus maintaining the size of the linked list roughly constant during
the experiment. Since the linked list is sorted, update transactions will also
read the elements of the linked list in sequence, until it finds the location

23

where to insert/delete the element to be updated. Thus, update transac-
tions perform write operations at the end of the transaction right before
commit.

The first type of experiments we have performed is to contrast the accep-
tance of the designs under different workload conditions and to validate the
hierarchy presented in Figure 6. For this experiment, the sorted linked list
benchmark is run with all the different designs and we recorded the average
commit-abort ratio of each design for different update probabilities. The
results obtained are depicted in Figure 7.

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 20 30 40 50 60 70 80

Co
m

m
it-

ab
or

t r
at

io

Update probability (%)

VWIR
IWIR
CTR
RTR

Figure 7: Analysis of acceptance under different workload conditions. Com-
parison of average commit-abort ratio of VWIR, IWIR, CTR and RTR
designs, on a 256 element linked list as the update probability varies.

The figure shows, for the RTR, CTR and IWIR classes, that the higher
a design in the hierarchy the higher its commit-abort ratio (thus the higher
its acceptance). In other words, the figure shows how classes C4 and C3
distinguish between the acceptances of RTR, CTR and IWIR classes. We
observe, on the other hand, that the acceptance of VWIR and IWIR classes
is practically the same for all the update probabilities. That is because
the sorted linked list benchmark has a very low probability of generating
patterns of class C2 which separates those designs in the hierarchy. For a C2

24

class pattern to occur, a r(x) operation should be performed by a transaction
some time after a w(x) operation of an update transaction, which is very
seldom since update transactions are committed right after a w(x) operation
they perform.

 0

 0.2

 0.4

 0.6

 0.8

 1

 20 30 40 50 60 70 80

Co
m

m
it-

ab
or

t r
at

io

Update probability (%)

VWIR
IWIR

Figure 8: Analysis of acceptance under different workload conditions. Com-
parison of average commit-abort ratio of VWIR and IWIR, on a 256 element
linked list as the number of cores varies.

Since the first experiment does not distinguish between the acceptance
of VWIR and IWIR designs, we have performed a second experiment specif-
ically to contrast the acceptance of those two designs. This experiment
ensures the occurrence of patterns in class C1 by introducing the following
modification to the first experiment: the update transactions after having
updated the list looks for a value in the linked list. The results obtained for
this second experiment are illustrated in Figure 8. This figure shows that
for all the update probabilities the IWIR design has a higher acceptance
than the VWIR design. Consequently, the results of this figure together
with Figure 7 validates the hierarchy presented in Figure 6.

We have designed a third experiment to analyze the scalability of each
design. In this experiment, we use the sorted linked list benchmark used
in the first experiment, measure the average commit-abort ratio by varying

25

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1 2 3 4 5 6 7 8

Co
m

m
it-

ab
or

t r
at

io

Number of threads

VWIR
IWIR
CTR
RTR

Figure 9: Comparison of average commit-abort ratio scalability of VWIR,
IWIR, CTR and RTR designs under 20% update probability workload
(linked-list size is again 256).

the number of threads for a fixed update probability of 20%. The results
of the experiment are shown in Figure 9. This figure clearly illustrates that
the acceptance of RTR design is practically not affected by the increasing
number of threads, while the other designs have a decreasing acceptance as
the number of threads increase. This result indicates how well RTR design
copes with conflicts that span transactions of multiple threads.

6 Discussion and Conclusion

Discussion. The purpose of commit-abort ratio is not to capture the ab-
solute performance of a TM but rather to outline important causes of the
lack of performance. As already mentioned, the classes described here are
not maximal in the sense that they do not represent all non-accepted pat-
terns. A next step is to identify, for each given design, all the patterns
that are not accepted. This identification, together with the hierarchization
proposed in this paper, would outline the best design in all circumstances.

26

Our study has only taken into account designs with a single current ver-
sion by shared object at any time. A way of extending designs is to tolerate
multi-version, i.e., letting multiple versions of the same object cohabit at
the same time. As an example, this technique, well-known in the database
community, can extend VWIR design to accept class C2.

Conclusion. We defined the input acceptance for transactional memories
using a hardware-independent performance metric, called commit-abort ra-
tio. This metric led us to investigate the behavior of TMs in response to
classified workloads and to upper-bound the input acceptance of some TM
designs proposed in the STM literature. Our conclusion is that accepting
various workloads requires important TM overheads to test the input and
to possibly reschedule it before outputting a consistent history. This obser-
vation is illustrated by a new STM, SSTM, that may exhibit long latency in
practical settings, but provides a much larger commit-abort ratio compared
to existing designs. We expect this result to encourage further research on
the best tradeoff between low latency and high commit-abort ratio.

References

[1] Utku Aydonat and Tarek S. Abdelrahman. Serializability of transac-
tions in software transactional memory. In TRANSACT ’08: Proceed-
ings of the 3rd ACM SIGPLAN Workshop on Transactional Computing.
ACM, 2008.

[2] Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman. Con-
currency Control and Recovery in Database Systems. Addison-Wesley,
1987.

[3] Dave Dice, Ori Shalev, and Nir Shavit. Transactional locking II. In
DISC ’06: Proceedings of the 20th International Symposium on Dis-
tributed Computing, volume 4167 of LNCS, pages 194–208. Springer
Berlin / Heidelberg, 2006.

[4] Kapali P. Eswaran, Jim N. Gray, Raymond A. Lorie, and Irving L.
Traiger. The notions of consistency and predicate locks in a database
system. Commun. ACM, 19(11):624–633, 1976.

[5] Pascal Felber, Torvald Riegel, and Christof Fetzer. Dynamic perfor-
mance tuning of word-based software transactional memory. In PPoPP

27

’08: Proceedings of the 13th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, February 2008.

[6] Rachid Guerraoui, Maurice Herlihy, and Bastian Pochon. Polymorphic
contention management. In DISC ’05: Proceedings of the nineteenth
International Symposium on Distributed Computing, LNCS, pages 303–
323. Springer, sep 2005.

[7] Rachid Guerraoui and Micha l Kapa lka. On the correctness of transac-
tional memory. In PPoPP ’08: Proceedings of the 13th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, pages
175–184, February 2008.

[8] Tim Harris and Keir Fraser. Language support for lightweight transac-
tions. SIGPLAN Not., 38(11):388–402, 2003.

[9] Maurice Herlihy, Victor Luchangco, Mark Moir, and William N.
Scherer III. Software transactional memory for dynamic-sized data
structures. In PODC ’03: Proceedings of the twenty-second annual
symposium on Principles of distributed computing, pages 92–101, New
York, NY, USA, 2003. ACM.

[10] Maurice Herlihy and Jeannette M. Wing. Linearizability: A correctness
condition for concurrent objects. ACM Trans. Program. Lang. Syst.,
12(3):463–492, 1990.

[11] Jeff Napper and Lorenzo Alvisi. Lock-free serializable transactions.
Technical Report TR-05-04, Department of Computer Sciences, Uni-
versity of Texas at Austin, 2005.

[12] Christos H. Papadimitriou. The serializability of concurrent database
updates. J. ACM, 26(4):631–653, 1979.

[13] Torval Riegel, Christof Fetzer, Heiko Sturzrehm, and Pascal Felber.
From causal to z-linearizable transactional memory. In PODC ’07:
Proceedings of the 26th annual ACM symposium on Principles of dis-
tributed computing, pages 340–341, New York, NY, USA, 2007. ACM.

[14] Mihalis Yannakakis. Serializability by locking. J. ACM, 31(2):227–244,
1984.

28

