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ABSTRACT The situation is reversed in (ad-hoc) wireless sensor net-
works that monitor the evolution of an environmental vari-
able over time and space: Sensors are often used to track
whetherandwherea certain condition occurs—temperature
exceeds a safety threshold, a perimeter is violated, soil or
water is contaminated etc.; in other cases, they are used to

In a significant class of sensor-network applications, diea
tities of the reporting sensors are an essential part of the
reported information. For instance, in environmental mon-
itoring, the goal is to reconstruct physical quantitiesrove
space and time; these quantities are sampled by the sen X X :

sors, and the source identity associated with each measurelr@cK (typically small) incremental changes at differeua-
ment is necessary for the spatial and temporal reconstruc-ions; €., the evolution of snow height at different moun-
tion. In many practical scenarios, source identities darist ~ (@in peaks for avalanche prediction, or seismic activity fo
the bulk of the communicated data, whereas the message it_earthq_uake prediction. In_such scenarios, it makes sense to
self can be as small as a single bit. In these scenarios, the?SSociate each sensor with a fixed location and have it re-
traditional network-protocol paradigm of separately $pec port, periodically, its identity and measurement to a ale

fying the source identity and the message in distinct fields N9 Sink; assuming a network of tens or hundreds of nodes,
leads to inefficient communication. the identities of the reporting nodes now become the bulk

In this paper, we re-examine this traditional data separa- ©f the communicated data, whereas the message itself (
tion and propose a scheme for joint identity-message en-€ach reperted measurement) can be as small as a single bit.
coding: we use this scheme to design a new efficient col- e describe such paradigms identity awaresensor net-

lection protocol for identity-aware sensor networks. Com- WOTKS.

pared to conventional data collection, our protocol reduce _ 'dentities are not of the same nature as messages: for a
the amount of traffic in the network at least by a factor of fixed node, the identity is a constant nhumber that does not

two (up to an order of magnitude, in lossy environments), change with every tran.smission, in contrast to the messages
while its performance scales better with network complex- that do; we leverage this to develop a new method for the ef-

ity: we show these results both through theoretical anglysi ficient representation a_nd com!’nl_mlcatmn of identitieshwi
and extensive simulations. the purpose of conserving the limited sensor-network gnerg

resources.
1. INTRODUCTION To the best of our 'knowledge', our work is the first te de-
velop an energy-efficient collection protocol tailoreddenm-

In traditional network protocols, each packet carries its tity aware sensor networks. Our approach has two key el-
source identity in a dedicated header field, separately from ements: (i) Instead of specifying its identity and measure-
the communicated message, which constitutes the packet'spent in separate fields, each reporting njmietly encodes
payload. Toincrease their information rate, several mai®  the two using a set of fixed-size vectors, which are encapsu-
use encoding or compression techniques that look to mini- |ated into separate packetéi) Intermediate nodes perform
mize the size of the message; to the best of our knowledge,jn-network data combinatigi.e., when they receive vectors
none of these techniques consider the source identity &s parfrom multiple sources, they combine them and relay only the
of the data that needs to be encoded or compressed—angesulting combined vector (which has the same fixed size) to
for good reasons: First of all, any intelligent source-titgn  ne sink. The combination is done without requiring the in-
encoding could come at the cost of increased network com-termediate nodes to understand the contents of the packets.
plexity, as intermediate network nodes often need to deter- Tpe insight for using joint encoding is straightforward:
mine the packet's source as part of the forwarding process.\yhen source identities form the bulk of the communicated
Most importantly, in the typical communication scenarios gata, it makes sense to consider them as part of any en-

where encoding or compression makes sense, the messagéding/compression scheme. The need for in-network data

source-identity overhead is relatively insignificant.



works typically use variations of the IEEE 802.15.4 frame
format, which dictated7 bytes of physical- and MAC-layer

paradigm, to motivate our work, we discuss a few exam-
ples of applications where our conditions hol@,., sensor

header and footer; when the measurement reported by eaclidentity is a critical part, and forms the bulk of the colledt
sensor consists of a few bits, using one frame per measuredata. These are all cases, where the sensors are used to peri-

ment means payingiy-byte cost to transmit only a few bits
of useful information. Hence, we design our joint-encoding

odically reconstruct thepatial fieldof the physical quantity
measured by the sensorg., the variation of that quantity

schemes such that they enable simple, practical in-networkas a function of space [20].

combination of multiple measurements into a single frame,
without requiring any content inspection.

Our approach is based on subspace encodiByg fodes
do not convey their identity explicitly, but instead thrdug
the choice of their codebook.e., the set of vectors they
transmit. We exploit the invariance properties of subspace
such that neither the reporting nodes nor the collectink sin

Differential Updates.In many cases of environmental mon-
itoring, to avoid unpleasant surprises, we need to choose
the measurement frequency such that the spatial field under
measurement changes relatively slowly, under normal oper-
ation. For instance, when monitoring the level of snow on
a mountain surface for avalanche prediction, it makes sense

need any knowledge of either network topology or intermiedia to measure frequently enough, such that, at any locatien, th
node operations. Using this approach, we generate prhcticasnow level never changes by more tiead centimeters be-

codes for different scenarios—good network connectivity,
significant loss rate, and networks with a large number of
nodes where only few of them are active during each report-
ing interval.

We incorporate our joint-encoding scheme into an appro-
priately designed data collection protoc&4). Our design
objectives are:

e Decentralized OperationEach sensor has only local knowl-
edge of network connectivity,e., information about its neigh-
bors.

e Energy Efficiency and BalancinVe optimize our proto-

col for reducing the number of sensor transmissions; more-

tween measurements. In such scenarios, each sensor needs
to communicate only the difference of its new measurement
from the last one, together with its identity. Assuming net-
works of tens or hundreds of nodes, the identity may require
one or two bytes, while the update itself could need only a
few bits [20].

Spatial Correlation.In other cases, the spatial field under
measurement at given time varies smoothly over space.
For instance, the variation of temperature, or pressure etc
is governed by physics which gives a smoothness to the spa-
tial field [20, 22]. We can leverage such smooth variation

over, we require each sensor to do approximately the sameby having a set of densely deployed sensors communicate

number of transmissions.
e Error Correction, Scalability and AdaptabilityWe want
our scheme to gracefully incorporate error protectionlesca

with the number of sensors, and be flexible so as accommo-

date specific application requirements.

We implement our data collection protocol as a TinyOs [27]

application for TinyNode [30] motes, and evaluate it using
the TOSSIM [16] simulator§s). Compared to conventional
data collection, our protocol reduces the number of frame
transmissions (and transmitted bytes) at least by two facto
(up to an order of magnitude, in lossy environments), while

reducing end-to-end message loss. Moreover, it evenly dis-

only a few bits of information, and using techniques like-dis
tributed source coding [21] to still be able to represent the
spatial field. This idea takes advantage of “oversamplirig” o
the sensor field, and collecting coarse information fronheac
sensor.

Multi-stage Collection.Sometimes we are not interested

in reconstructing an entire spatial field, only a few “intdre

ing” regions. For example, we might want to examine areas,
where the measurements suggest that there is a potential for
an avalanche, more closely. In such scenarios, it makes sens
to collect data in stages: have each sensor communicate its

tributes energy consumption among the nodes, reducing theidentity along with few bits of information (just enough to

variance of per-node transmissions by several factors.
2. SENSOR IDENTIFICATION

2.1 Applications

We consider sensor networks where each node needs t
communicatg(i) its identity and(ii) a small (relative to the
identity) measurement to a collecting sink. This is differ-

ent from the typical scenarios discussed and analyzed in the,

literature, where sensor networks are used to compute ag
gregate statistice(g.,the average temperature in a building)

get a coarse representation of the field) and, if something
interesting is revealed, query the relevant sensors foemor
information [5, 24]. In many practical cases, it is enough to
have each sensor send a single bit of information (signaling
whether a threshold was reached, a perimeter was violated,
or an animal was sighted), then query the interesting sub-

Ret for more precise measurements. Here as well, the sensor

identity is a critical part of the information to be conveyed

2.2 Basic Idea: Representation of Identities
In the context of the applications discussed above, the tra-

that do not require associating each measurement with a speditional approach of keeping the source identity and the mes

cific sensor. Given our departure from the commonly used

sage in separate fields leads to inefficient communication.



Next, we illustrate this inefficiency with a simple example multiple users simultaneously transmit to a single recgeive
and introduce the idea of joint identity-message coding. over a common channel; it is well known that the users do
[00000000] not have to explicitly specify their identities, as long heyt

[10000000] S ; ;
choose distinct enough codebooks that can be disambiguated

(00100000] at the receiver ([4], chapter 14).
Although simple, the network of Figure 1 captures the be-
[00000000] (10101110] havior of all trees (with an arbitrary number of nodes) that

9 @ connect’ sources to the sink through the edgel. For in-
[00001000] Sink stance, consider the network of Figure 2 and the following
[00000100] @ two communication protocols: In the first one, each source
sends out a packet with &bit identity and1-bit message
[00000010] [00000000]

specified in separate fields; intermediate nodes simply for-
ward incoming packets towards the sink. In the second pro-
tocol, sources jointly encode their identity and message as
described above.e.,sourceS; sends ai-bit packet with its
message specified at biaind all other bits set to zero; each
intermediate nodXCORs all incoming packets and forwards
the one resulting packet towards the sink. Note that, using
the second protocol, no matter what the tree looks like, for a
given set of messages, we will have exactly the same coded
packet traversing linkBA. Comparing the two protocaols,

Figure 1: The sourcesS, . .., Ss send their id and one bit of infor-
mation to the sink A through a relay node B.

Consider the simplified network of Fig. 1, where the nodes
communicate over an IEEE 802.15.4-compatible link layer.
Suppose each nodg,i = 1,...,8, needs to communicate
1 bit of information to the sink4; it specifies this single bit
in a packet and sends it through the intermediate ri®d€o
relay this information to4, B could naively forward it the
packets; this would result iwireless frame transmissions,
i.e., 8 x 17 bytes of MAC-layer headers to transmit ordy
bits of information. To avoid this overhead, could com-
bine all information in a single packet: package &gits in
a vector, with the understanding that positiotorresponds
to the message sent by nofig this is the simplest example
of using a “code” to represent the identity of a node along
with its message. The problem with such in-network cod-
ing is that it requires the intermediate noBgo understand
and process the contents of incoming packets; it would be
more practical to develop a coding scheme that operates on Figure 2: A tree with 8 sources.
an end-to-end basike.,information is always encoded at its
source and decoded at the sink, while each node is oblivious
to the codes used by other nodes.

Now consider the following alternative: Each nodg
sends out ams-bit packet with its message encoded in bit
i and all other bits set t0; node B just XORs all incoming
packets and sends the resultigwpit packet toA. This ap-
proach leads to efficient communication on liBk4, while
keeping nodeB functionality simple; the price we pay is a
small decrease in efficiency on ti# B links, which now
have to carry8- (rather thanl-) bit packets, which is in-
significant considering the MAC-header overhtad

the one that uses joint identity-message coding results in a
smaller number of packetdq instead of28) and a smaller
number of information (identity+message) bit94 instead
of 112). Moreover, each node forwards teemenumber of
packets and bitg,e.,communication overhead is evenly dis-
tributed across the network. This alleviates the problem of
depleting the battery of the nodes located close to the sink.
The simple scheme we have described illustrates the ba-
sic benefits of joint identity-message coding, but has gerta
limitations: First, it does not work well in scenarios with
In general, the idea is that each nasleemploys a dif- heavy network Ioss' (where thg'sin@kbit. packet forwarQed
ferentcodebook i.e., a different mapping of messages to from 5 to A has a high probability of being dropped or in er-

packets; the sink knows the codebook used by each sourcéor)' Second, itdoes not scale well to very large networks (i
and. hence. can determine who sent what. the sender a 500-node network, each node would have to s&d@ bits

implicitly communicates its identity through its choice of L© communicate its single-bit message). We address these
codebook. This approach agrees with the insight we haveiSsues in Section 3, where we formally present our codes.
from information theory: the scenario of Figure 1 is reminis

cent of the classical multiple-access channel problemravhe 2.3 Model and General Approach

IFor IEEE 802.15.4-compatible link layer, each MAC packet has V€ consider a sensor network, witmodes each of which

a header ot 7 bytes, and we would like to avoid changing in link ~Wants to communicat§) its identity and(ii) a small mea-
layer protocols. surement, to a collecting sink. The measurement is from a




setM;, wheré |M;| < n.

Each source nodé maps its message into a set of vec-
tors and forwards them towards the sink in separate packets.
Each intermediate node that receives packets from its neigh
bors performs linear operations (e YOR) on their contents
and forwards the result towards the sink. As a result, the
sink, after combining all the received packets, gets a set of
vectors{y, }, representable as

e =[010]

e3=[001]

Figure 3: The subspaces 11 =< ej,ez > and
7y =< ez + eg, e1 > in the 3-dimensional spacé.

Y=y, :ZGiXi:[... G ...]| X |, @
. i=1 . more details). The impatient reader is encouraged to skip
ahead, and consult this Section for notation as needed.

where eachX; is a matrix having the set of original (row) Information thrOI_Jgh our network is transferred thrqugh
vectors{x(j)} sent by sourceas its rows, an@, is a “mix- the exchange of binary vectors of lengththat belong in
i ' . . .
ing matrix”, representing the end-to-end transformatién o theé-d[mensmnal vector spad®. We can treat this vector
X,. That is, the received vectofs,} are a linear combina- space in exactly the same way as the usual vector space over
tion of the original vectors and, hence, lies in trepars. the reals, the main differences being that we perfai@R
Neither the sink nor the sources know the mixing ma- instead of real addition operations, and that we have a fi-
trices {G,}, i.e., the specific set of linear operations per- nite instead of an infinite number of vectors. For example, if
4 b ]

formed by the network is unknown to all players. This makes ¢ = 3 the 3-dimensional spad¥ contains2® = 8 vectors.

the scheme robust to topology changes. As a result, eac% Given a set of ve(_:t0r$v1, <o Vi, the_lrspa}n denoted_

source can only communicate information using tub- y < vi,..., v, >, is the set of all possible linear combi-

spacé spanned by its vectors, which is unaffected by the Nations of these vectors. More precisely,

linear operations performed on them. Hence, each source "

uses assubspace codebopke., maps each message to a set <V, Ve >={xix = Z @;vi}, (2)

of vectors that span a different subspace. For instance, in i=1

Figure 1, sourceéS; maps message™to vector[1 0 ... 0] where the summation is taken oy (XOR) and the scalars

(which spans a one-dimensional subspace); as long as nay; € F,. This set is a vector spadé generatedy the vec-

other source uses this subspace, the sink can deggde tors{vy,...,v,}. Any set of linearly independent vectors

message, independently from how its original vector is com- that generate a vector space is callebazisfor this vec-

bined with other vectors in the network. tor space. The dimension of a vector spdedenoted as
Our goal is to design practical subspace codebooks thatdim(V'), is the cardinality of a basis, which is the minimum

enable accurate decoding at the sink.(the sink can eas- number of vectors needed to be linearly combined in order

ily tell which source sent what). Moreover, it was recently to create all vectors in the vector space. In our example, the

shown, in the context of single-source multicast, that sub- dimension of our space equdls= 3. A basis consists of the

space codebooks can providerror correction [15]. We linearly independent vectors

leverage this and combine identity and message information _ _ _

such that the sink can perform decoding even in the presence {er =100, e=[010], es=[001]}.

of adverse network conditions. A subspace is a subset of the vector spddéat is a vec-
. . tor space itself. We can think of these subspaces as “planes”
2.4 Working with Subspaces that contain the origin. For example, the sp&e(used

Since in this work the proposed approach extensively re- in Figure 2.4) containg two-dimensional subspaces. One
lies on use of subspaces, we here give some background masuch subspace is; =< ey, € >. Ano_ther STy =<
terial and show that working with subspaces amounts to el- €2 + €3,€1 >. It also contains7 one-dimensional sub-
ementary operations (see standard references like [11] forSPaces, one corresponding to each non-zero vector. More-
over, the subspace (plane) =< e;,es > contains the
>The methods could also be useful whe¥t;| ~ n, due to MAC three “line” (one-dimensional) sub-subspaggs=< e; >,
layer overhead, which encourages transmission of smaller numberr, =< e, >, 15 =< e; + e >. Therefore, we can define
of packets. subspaces of lower dimension as sub-sub-spaces of higher

3The span of a set of vectors are those that are representable as Bimensional subspaces. In the above example, we can see
linear combination of them (see al§@.4). 3 ’ ’
thatrs C 7 C F3 = V.

4A subspace is a subset of the overall space, that forms a vector

space itself [11] (see algp2.4). We say that two subspaces afisjoint if they intersect
5Since they considered single source transmission, the issue of conOnly trivially at the all zero vector, and that they afistinct
veying identity did not arise. if they differ in at least one dimension. For exampte,=<



distance between two subspaegsandmg as
d(Te,73) £ dim(my + mg) —dim(me N7g).  (4)

Itis also easy to see that

Figure 4: Linear mixing inside a network does not alter the inserted d(ma, m3) = 2dim(my + mg) — dim(m,) — dim(7g). (5)

subspace. Table 1 summarizes our notation. In our example d@gif
To = T =< €1,ez >, andng = my =< ey + ez, e; >,

3 _ _
e1, e, >andm =< es+es, e; > are distinct, whiler; =< thenro, +mg =y, 7o N7y = {e1}, andd(ma, mp) = 2.

e, e; > andry =< e > are disjoint.
As in most of this work we will use the binary field, we 3. JOINT IDENTITY AND DATA CODING
will focus our attention on binary operations. However the ~ We design codes that have the following properties:
same ideas go through when we have linear operations overl. Identifiable codes: Jointly convey identities and data.
an arbitrary fieldrF,, and a vector spadE{;_ On many occa- 2. Error protection: Can incorporate error correction.
sions we will also give results ov@[ 3. Scalability: Scalable to the size of the network.
Recall that in Section 2.3 we saw that nodes do linear mix- 4. Adaptability: Adaptable to specific application needs.
ing operations, as seen in (1). Now, the critical observatio We address each of these in turn, after describing our model.
is that such Iineqr operatipmsgserve the su'bsp.acelsrlore 3.1 Network Operation
concretely, consider the situation depicted in Figure Pet. . )
us assume that there are packets represented as vegtgrs We consider a sensor network withsensor nodes where
inserted by two sources, which could even be over an ar- €ach node conveys to a data collection sink values from a
bitrary field F4. Node A, that receives these two packets Small message set;, together with its own identity. The
would send out a linear combination of them, and therefore, information transfer comprises of the following basic task
its output,z, would lie in the span of these two vectors., Sou_rce encogler Each sensoi translate§ its data bits (or
z €< y;,y, >. Now, suppose that node receives both equn_/alently, _|nf0rmat|on messages/lrli) into a set c_>f vec-
as well asy, , its outputu, which is a linear combination of ~ tors inFg, using a pre-assigned codebatk As motivated
y, andz, would still lie in < y,,y, >. This property holds N § 2.3 and amplified ir§ 2.4, the codebooks consist @f
even when operations are over arbitrary fiekjs(not just dimensional subspacesf I, i.e.,
binary). Therefore, even though we might get several differ ) . ,
ent vectors in the mixing process, the subspace,,y, > Ci = {Fﬂ' =y < IMif} i=1n.
inserted by the sources remains invariant. This is the prop-To transmit information to the sink, souréemaps a mea-
erty that makes the use of subspaces for encoding robust tasured value to one such subspacand inserts in the net-
the topology of the network and to the linear operations per- work d vectors that span.
formed at the intermediate nodes. Relay operation: In relaying information towards the sink,
Given these properties of subspaces, our approach describge sensor linearly combines all packets it has received (in
in § 2.3 shows that we need to encode information through cluding that generated by itself) and transmits the contbine
different subspaces. A natural question is whether there ar packet to the next relays towards to the sink.
enough subspaces for us to work with. As already seen inData collector operation: Since each sensor node does the
the example withF3, there are7 distinct two-dimensional  above encoding operation, the sink will observe vectomsfro
subspaces. In more generality, it can be shown EKdtl), the union of subspaces inserted by all the sources. In partic
the number of distina dimensional SubspaceS]Eg equals ular, if sourcei inserts the subspaae, the sink will observe
) as g vecto_rs from t_he subspa@efwﬁ. ..+m,. Inall the codc_—zs
Ko(d) = [ 2 } — (¢ =1 (g ) A3) we will describe here, the sink colleaispackets and using
q

(¢ =1)---(¢g—1) ' the knowledge of the codebooKg;}, decodes the sensor
data along with its identity.
where[ ¢ } is called the Gaussian number. To be able to correctly decode at the sink, we need to en-
d sure that every combination of sensor data resultsdisa

We will use two subspace operations. Consider two sub- finct union subspace. Such a condition would be sufficient

spacesr, andr of a vector space’. for decoding and is called thidentifiable codeproperty.

e Theirsum 7w, + 73 ={z+ylr € ma,y € 3}

is the subspace spanned by the vectors,imnd ;. DEFINITION 1 (IDENTIFIABLE CloDE). Anidentifiable
e Theirintersection: m, N7 = {z|zr € 7, andz € 73} code is a set of. codebook®’; = {w@ (1 <5< My},

is the largest subspaces that belongs in batlandm. 6AIthough in principle we can use subspaces of different dimen-
Moreover, when we compare subspaces, we will need to sions, we will for simplicity in most of this paper restrict our code

measure “how far apart” two subspaces are. We measure thelesign to subspaces of equal dimensibdjmensional subspaces.



Table 1: Notation

F, finite field with ¢ elements
]Ffl vector space, where vectors have lengénd elements fror,
<Viyeoo,Vp >={x:x= Z;”Zl v} vector space spanned or generated by the veetars ., v,
TCV m is a subspace of the vector space
dim 7 dimension of subspace
Ta + 73 ={z+ylx € To,y € 73} sum or union of two subspaces, 73
o N7 = {z|z € m,, andz € 7g} intersection of two subspaces, 73
d(7o,75) = dim(m, + m5) — dim(m, N75) distance beween two subspaegsr; see also (5)
7 andmg are distinct subspaces d(ma,m3) >1
7 andmg are disjoint subspaces o Nmg = {0}
n total number of sensor nodes
M; set of data values for sensor
C; codebook for sensar

We can think of this code construction as allocating

Table 2: Coding for two sources bit-positions of a packet to each source. The source em-

C2/Cy m 2 s ploys only theseD bits, and sends vectors that have zero
T4 | mtma | m2hm | T3 value everywhere else apart theBepositions. TheseD-
M5 | mMATms | m2A 75 | T3S bits span the disjoinD-dimensional space allocated to the
m6 | mitme | m2Hm6 | T3 Ao source. For example, the source may usedthe 1 dimen-
sional subspaces inside its space. Then it uses one of the
, . i 2P — 1 non-zero vectors (one-dimensional subspaces), and
i=1,...,n, with 7TJ(' &= ]Ff; such that Yve havefl T ’,+ sends at each round one packet to the&irkis also easy
i, # Ty + .+ T, wherl (i1,...,3,) # (j1,-- - Jn) to see that we can adapt our construction to give unequal
andm;, is the subspace chosen by sensor number of bit-positions to different sensors in order to ac-

o commodate variations in measurement data sizes.
ExamPLE 1. Assume for simplicity we have two source

nodes,S; using the codebook; = {m, m, 73}, while EXAMPLE 2. In the example of Fig. 1 if§ 2.2, we use
S the codebooky = {74, 75, 76}. Table 2 summarizes  pinary vectors of length and orthogonal spaces of dimen-
all outcomes. For this code to be identifiable, we want all 9 sions D = 1. Then the codeboo®; can be described as
entries in Table 2 to correspond to distinct subspaces. For ¢, = {< 0>,< e; >}, wheree, is the unit vector with in
examplesr, +m4 should be a distinct subspace fram+ 5. position.

3.2 ldentifiable Codes As we discussed, our code construction effectively divides
the packets into portions allocated to each sensor. However

We develop identifiable codes by decomposing #fuk- - e i )
mensional spacl@f; in disjoint subspaces, and restricting the this is just one approach, and there exist various other-meth
codebook of each source inside one such disjoint subspace®ds © share the vector space among the sources, that rely

We chooseD-dimensional disjoint subspacés;, .. ., 11, more on algebraic properties. As we will see, a more so-
such that their union is the whole spatce,, 37, II; = F! phisticated approach might be needed for constructing iden
[T} i=1 1

andnD = ¢. Each sensor nodeis assigned one such- tifiable codes that are scalable and adaptafdet(ands3.5).

dimensional subspadé;. Then, the sensor maps each mea- 3.3 Error Correction
surement data to one & (d) distinct subspaces af; of

dimensiond (see also (3) fo p (d)), whered < D. As mentioned in Section 3.1, packets get dropped due to
B link congestion or error. In this case, to be able to still de-
Orthogonal Identifiable Codes liver the sensor data and identity, we need to add error pro-
" tection to identifiable codes. One method is to rely on MAC
e Selectn disjoint subspacel; with ZHz‘ = Ff, 80ne might argue that our construction is slightly inefficient as
i=1 we are not using the all-zero vector (that corresponds to a zero-
e Assign to sensoi the subspacH; dimensional subspace). However, we implicitly use the all-zero
) ] vector to convey the fact that a sensor is not active during a par-
e Sensoti useC; = {m;|m; C II;, dim; = d} ticular round. This allows us to differentiate between “sensor not
active” and “sensor observes value zero”. We can also use the all-
"This inequality just means that there is at least one sdnsach zero vector, by incorporating the trivial subspace0 > in the
thatiy # jk. codebook.



layer retransmissions to provide resilience to errors eher
present an alternative forward error correction approguctt,
does not require feedback. This approach is well matched for

Table 3: Code with five codewords, where each codeword
is a 2-dimensional subspace of a 4-dimensional space.

the cases where feedback cannot readily be% sedvhen m= <[0110], [1001]>

sensors fail, and their lack of transmission would have the m= <[0010], [0101]>

same effect as erasures. m3= <([1110], 1101>
Our code construction builds on the orthogonal identifi- m= <[1000], [0100]>

able code construction, where we allocate one of fhe ms= <[1010], [0001]>

dimensional disjoint subspacék, ..., II,, to each sensor.

We want to now construct each codebagkto no longer

contain all K (d) distinct d-dimensional subspaces inside Orthogonal Identifiable Code for Erasures

IT;, but instead, a set af-dimensional subspaces that are n

“far apart”. Indeed, to protect against errors, we need to | ® Select disjoint subspacel; with Zﬂz‘ =F,
introduce “redundancy” into identifiable codebooks, by-sep i=1

arating the subspaces chosen in the codebooks by a certain | e Assign to sensor i the subspalde

“distance?. To this end, the distance measure between sub- o C; = {m;|m; C II;,dim m; = d} with D(C;) > 2r
spaces defined in (4) is useful. We define the minimum dis-
tance of the codeboak; as the closest two subspaces inthe  The final question is to ask how one would decode an error

codebook can get. More formally, correcting identifiable code. Since the only thing preseérve
are the subspaces, a natural choice would be to choose the
D(C) 2 min d(me, m3), (6) “allowable” subspace (which is part of the codebook) that is
Mo, T ECHTaF g closest to the received subspace. For example, if the code-
book contains the subspacés = {=,} and the sink (al-
whered(n,,, 7g) was defined in (4). ways only considering the bit-positions that sensoises)

Next, we investigate the erasure correction capabilities 0 receives a subspacer, then the sink will decoder; =
a code with a given distance. We restrict our attention to the arg min,, d(w;, 7z). Note that to calculaté(r;, 7z ) we can
bit-positions inside the packet that the transmitted sabsp  create a matriR that hasd + d — r; rows, with the firstd
sensor; uses. The effect of erasures is to eliminate some of rows being any! basis vectors of; and the remaining — r;
the “dimensions” from the transmitted subspace, making the rows being thel—r; received vectors that spaik. Then we
received vectors to lie in a lower dimensional sub-subspacecan calculate the rank of the matiito find dim (r; + 7g)
of the transmitted subspace. That is, the sink, instead-of re and substitute this in (5). All the previous ideas are peshap
ceiving d packets which at the bit-positions corresponding better illustrated through an example.
to nodei haved linearly independent vectors, it will receive
instead! — r; such packets, where are the erasures node EXAMPLE 3. Assume we allocate to each souide= 4

experienced. If the codebook contains two subspaces whichPits- Within this space, each source can employ the code
have a commorid —r;)-dimensional subspace., intersect with 5 codewords described in Table 3. Each codewoid of

in (d — r;) dimensions), they could be potentially indistin- is a 2-dimensional subspace. The distance between any two

guishable. Making this intuition formal, Theorem 1 deter- c0dewords equals four, and thi¥C) = 4.
mines how many erasures our identifiable codes can prov- | N€ Source, to convey for example the first codewrgre: <

ably correct. A more general form of this theorem is proved [0 11 0],[1 00 1] >, can insert in the network two packets,
in Appendix A. one containing the vectd® 1 1 0], and the other the vector

[1 00 1]. Because the codewords consist of non-intersecting
subspaces, if the sink receivasy one vectoin the subspace
w1, it will uniquely identify this subspace. For example, the
receiver may observe the vectpr= [1 1 1 1]. To decode,
the receiver needs to check the rank of five matrices, e.g.,

THEOREM 1. Consider a set of codebooKs used over
a channel that erases packets from source If

2r; < D(Cl), (7)
1111 1111
whereD(C;), defined in (6), is the minimum distance of the rank (1) (1) (1) (1) = 2, while rank 8 (1) (1) (1) =3

codeboolC;, then we can recover the messages for sotrce
Thusy belongs inr; and not inm.

9This is also useful when we utilize broadcasting ($¢4.2). 3.4 Scalability

10 . . i
Also note that traditional erasure correcting codes (like the Reed- . o . . .
Solomon code [17]) would not work in our case since the code In the identifiable code design advocated in Section 3.2,

would not be oblivious to linear mixing packets emanating from We see that fon sources, each using-dimensions, the vec-
the samesource. tor length isn.D. For scalability, we would like to make this



more efficient whem grows.

To make our code construction scalable, we will consider
the case where at most vectors get combined. This as-
sumption is motivated through three observations:

(i) The identifiable codes designed in Section 3.2 allowed
us to decode the identity and data evemlifthe sources’
vectors get mixed. However, vectors get combined only if
their paths to the sink overlap. For the example in Figure 2
the sink has a single neighbor nodeand all source vec-
tors get combined. If the sink h&sneighbor nodes with the
sources symmetrically deployed along théskrections, we
can then think of Fig. 2 as the “slice” of the network corre-

10001
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Length of transmitted packet

400 0 800 1000
Total number of sensor nodes n

Figure 5: Bounds on the length¢ of transmitted vectors whenm = 2

sponding to one of these neighbors, and each received packefng ,» = 20 sources get combined, as a function of the number of

at the sink will contain approximately combined vectors.
(ii) Not all sensors may be actively measuring during every
round. For example, when sensing anomalies, we expect
small fraction of all potential sources to send information
(iii) We can artificially restrict the number of sources that get

combined, by appending to each packet a few bits to count

the number of combined packets it contains.

Our problem statement can now be summarized as fol-

lows. Givenn sources, the sink is going to observe packets
that contain linear combinations af mostm sources. We

want to design codes that allow us, by receiving each com-

bined vector, to determine which is this subset of combined
sources, and what are their transmitted messages.
For simplicity we describe our code construction for the

case where each sensor either transmits a single value or re-
mains silent (to indicate it has perceived a certain event or
not), but the design can be easily extended to a larger mea
surement set. Before delving into the code construction, we

emphasize that our code utilizes vectors of lengjthat is
much smaller than the number of sensor nodes-or ex-
ample, Fig. 5 plots upper and lower boundfor the case
wherem = 2 and wheren = 20 vectors get combined.

Our code construction proceeds as follows. Select a linearwhere Hs is the binary entropy function, namel§i, (p)

code of lengtm, minimum distanc@m -+ 1, and redundancy
£, with ¢ as small as possible. Consider thex n parity
check matrixH. Assign to each source a codebook with the
1-dimensional subspace spanned by one colunt. of

Scalable Codes farn Combined Packets
e Let H be thel x n parity check matrix of a binary
code with minimum distancem + 1
e ThenC; = {< h; >} whereh, is a column ofH

The reason this construction satisfies our design goals,

stems from a well known property the columns of matrix
H satisfy. LetA denote the set of these vectors. Then, if the
code has minimum distan@en + 1, any set oRm vectors

in A are linearly independerfL7]. This directly implies the
following properties. For vectors iA:

(P1) Any set of0 < 5 < 2m vectors span a distingt-
dimensional subspace.

sensor nodesa.

a(PZ) The distance between two subspaceandr,, where

each subspace is spanned by a different sétof3 < 2m
vectors, equalmin{ 3, 2m — 5}.

From property(P1) we see that the sink receives distinct
subspace foeverydistinct set ofm sources, and therefore
is able to decode the identities and the information. Thus,
even though there are = |.A| possible sources, we do not
need to use vectors of length proportionahtdout instead,

of length? > 2m.

In order to quantify our savings, we need to examine how
¢ scales withm. This is related to a well-studied problem in
coding theory, namely, for a given code lengtk: |.A|, and
a given minimum distanc2mn + 1, what are upper and lower
bounds on the number of codewordgn, m) this code can

have [17]. Using the Gilbert-Varshamov lower bound and
the sphere packing upper bound [17], it can be shown that
for large values ofi,
2m +1
2n

2m+1
n

nHQ( ) SES”HQ(

); ©)

—plogp— (1 —p)log(1l —p). Fig. 5 plots the bounds in ( 8)

as a function of, for m = 2 and form = 20. We conclude
that our proposed code design results in using a fraction of
the lengtm, that goes to zero as the raﬁ@;f—l goes to zero.

ExAMPLE 4. Using a table of the best codes known [17]
we can see for example that, there exist binary linear codes
of lengthn = 512 with redundancy = 18 and minimum
distance2m + 1 = 5. Thus in a sensor network wit 2
nodes if at mostn = 2 source vectors get combined, we
need to use vectors of length= 18.

We finally note that to incorporate forward error correc-
tion, we can modify our code construction by separating the
subspaces akin to the ideas;i3.3.

3.5 Adaptability

The specific applications for which a sensor network could
be deployed might impose a diverse set of requirements for
data collection. In this section we explore how our codes



This example illustrates how we can adapt the code to suit

Table 4: Code that checks consistency data dependent identifiability requirements. Another exam

CofCi | m | M2 | 3 ple could be that of sensor clustering where we want to charse
M |a| B characterize the spatial field into regions of interest. By a
5 e la|d signing to all the sensors in each group the same codebook,
6 ¢l we can know about groups with interesting measurements,

which can be examined more closely later throughilti-
stage collectionby asking the subset of sensors to switch to
can be easily adapted to suit such requirements. Throughidentifiable codebooRs.
examples, we develop a sense of the flexibility offered by
our network operation architecture, which is the propery w Mixing statistics and identificationin many current ap-
want to highlight. plications of sensor networks, only statistics (like agera
We consider two different application requiremerisData  maximum, histograms) are needed and not the sensor iden-
dependent identifiabilityWe need to know about measure- tities. However, one can envisage a situation where we need
ment information and identities when certain combinations to collect statistics when the sensor data is in a certate sta
of sensor data occur(ii) Mixing statistics and identifica-  and want to obtain identity/data in other states. This nezds
tion: Computing functions of sensor measurements when be done oblivious to the intermediate node operations. We
data falls in a certain set. can adapt our code to satisfy this requirement as seen in the
Note that the data collector can send a signal to the sen-Example 6.
sors to change their operating mode to suit the requirements
above,without changing the relaying (mixing) operation at ExamPLE 6. Consider an application where the sensor
the intermediate nodes. This would just make the sensorsmeasurement set is partitioned into two parts:M =
operate with a different codebook to map its observations to M! U M. Identity of a node is important for values in
the transmitted packet. This flexible end-to-end change of M’ and only statistics (histogram) of nodes observing val-
operation is a distinct advantage of our architecture. ues inM* is needed. We use vectors that consist of two
parts: the first partP* collects the histogram statistics for
Data dependent identifiabilitySuppose that we are inter-  the M values, while the second paRt! implements one
ested in identifying the sensors only when certain combina- of our coding schemes for thet! values. The interesting
tions of measurement data occurs. For example, we care tgpoint is that, we can design our schemes so that intermedi-
know the sensor identities and measurements when there arate nodes perform exactly the same operation on both parts
discrepancies in their observations. PH and P! of the vector, and are oblivious to this distinc-
tion. To do this, we use operations over a higher figld

) that has size of ordern, wheren is the number of sensors.
EXAMPLE 5. Consider two source sensors each observ- \ne can then useM | symbols oveff, to constructP”
q ’

ing one of three possible values in the dett = {0, 1, 2}. where the symbol in positionwill keep track of how many
SourceS; employs the codebodk = {1, 2, w3}, while nodes have observed the corresponding valu&fifi. Thus
sourceS; the codebooK; = {my, 75, m6}. addition of theP¥ parts of the packet will create the de-

If we are interested in learning about identities only when  gjreq histogram; and we can design the p&t, again over
sensor measurements do not match, then, the function dqu’ to allow us to convey the identity of up o nodes that

scribed by Table 4, needs to be implemented. Note that wher,pserved a given value.
the two sensors observe the same value, no matter what this
value is, the sink receives the same subspace. To implement

this function we use vectors of size= 2d, and codewords  QOther adaptationsUp to now, we have examined sensor
d-dimensional subspaces Bf. Given anyd-dimensional  networks that employ a single sink, and that create a tree
subspacer C F3, by definition its complement is also  topology to connect the sources to the sink. However, sensor
a d-dimensional subspace that satisfies- 7 = F5. Se-  networks with a large number of nodes may have more than
lect the Codebooel to contain thredistinctd-dimensional one Sinks; moreover, our topology may not necessarily be
subspaceq, w2, w3} of F5. We construcC, by using  a tred?. All our code designs are oblivious to the network
T4 = T1, T5 = T2, andmg = 73. Note that the sink receives  structure and the number of sinks; indeed, this is one of the
a vector in the space; ; = m; + 7;, wheni, j are respec-  strengths of our design.

tively the measurements in sengfyr, So. We will then get

the desired property, since; ; = F% and by construction 4. DATA COLLECTION PROTOCOL

m; + 75 is distinct for # j. Note that each individual node '

does not need to know what the other node has observediyye can have further efficiency by using scalable codebooks as
The coding scheme, in a distributed manner, ensures the dedescribed in Section 3.4.

sired property. 2See the broadcasting collection protocogihl.2.




In this section we explain some of the systems issues we
encountered when implementing identifiable codes for energ
efficient data collection. First, the codes are centralljn€o
puted and distributed to the sensors through disseminE&tah
sensor then enters a loop of “reporting rounds,” where i pro
duces one measurement per round; nodes do not run any ini-
tial synchronization protocoi,e., each node starts its first
round independently from every other. Each measurementis
jointly encoded with the sensor’s identity to produteec- Figure 6: Nodes divided into two sets (inside and outside the circle)
tors of sizel, whered is the dimension of the subspaces in according to their distance from the sink.
the codebooks andthe employed vector length. We now
describe how, and at what cost, the network relays this-infor
mation to the sink.

Nodes arrange themselves in different “strides” around
the sink, such that nodes in stridare better connected to
4.1 Relaying the sink than nodes in stride+ 1. Each node broadcasts

the contents of each buffer exactly once per round, such that

Each node maintaing buffers of length/, which store  he nodes in stride+ 1 broadcast before the nodes in stride
the vectors corresponding to its latest measurement. When-__j e information propagates from outer to inner strides
ever the node receives a packet from a neighboORs its  gimjlar to how it propagates from children to parents in Sec-
contents to one of the buffers. Occasionally (at least oncetjgn 4.1.1. There are no acknowledgments or retransmis-
per round), the node packs the contents of each buffer into asjons: to overcome link-layer errors, the protocol relies o
separate packet and forwards thpackets towards the sink.  (j jts multi-path nature (at least one neighbor is likely to
The question isvhenandwhereto forward and how to deal  pnear each node’s transmission) giijithe error-correcting
with link-layer losses and collisions; depending on networ capabilities of the codes.
characteristics, we follow one of two protocols. More specifically, each node schedules its next-round broad
. . . casts based on the last broadcast it hears from a neighbor
4.1.1 Routing with Retransmissions in the current round: if it hears the last neighbor broadcast

The nodes build and maintain a spanning tree rooted atat timet, it schedules its own next-round broadcasts in the
the sink, as in the Collection Tree Protocol (CTP) [28]. In interval (¢ + Tg — Ts,t + Tr), whereTg is round dura-
each round, an individual node tries to collect information tion andTy is a “stride slot” on the order of a few seconds.
from all its children,thenforwards everything to its parent, The idea is best illustrated through the example of Figure 6:
so that each node transmits exacflypackets. Losses and in the first round, the sinkl broadcasts a beacon; nofe
collisions are handled through link-layer acknowledgment hears it and schedules its next-round broadcasts within one
and retransmissions. stride-slot befored’s, i.e., B arranges itself in stridg; in the

More specifically, in the beginning of each round, each second round, nodE hearsB’s broadcast and schedules its
node starts a “transmission timer”; it forwards the corgent next-round broadcasts within one stride-slot befBig i.e.,
of its buffers to its next hop as soon é¥ it has received E arranges itself in strid2. Note that a node does not need
packets from all its children, and/6i) the transmissiontimer  to know which specific stride it is in, it just schedules its
expires and the buffer is non empty; packets received afternext-round broadcasts relative to the last neighbor itdhear
the timer expires are immediately forwarded to the next hop.  The efficiency of this approach is not affected by link-
As a result, as long as each node correctly determines thelayer errors: each node always transmits exaétpackets
number of children it should wait for, each node transmits per round, independently from network conditions and with-
exactlyd packets per round. Of course, when the tree topol- out the need to collect and maintain valid routing informa-
ogy changes, a node may unexpectedly hear from (new ortion; this makes it ideal for weakly connected networks with
delayed) childrerafter its transmission deadline, in which  severe link-layer errors and frequent sensor failures. The
case it has to transmit more thdmpackets. fixed number of per-round transmissions is precisely what

The advantage of this approach is simplicity—all a node allows us to benefit from the multi-path nature of broadcast-
has to do is count its children. The disadvantage is that effi- ing andbe energy efficient at the same time—a conventional
ciency is affected by link-layer errors (losses and cdalisi) flooding protocol where nodes simply broadcast all incom-
in two ways: First, errors lead to retransmissions, increas ing packets would be anything but energy efficient.
ing the number of data/acknowledgment frames and duplica- ]
tions. Second, they lead to frequent changes in the treé topo 4.2 Memory and Complexity
ogy, causing nodes to send and receive unexpected packets. we implemented both collection protocols as TinyOS [27]
Hence, this strategy is suited to low-noise, stable netsiork applications for TinyNode [30] motes. In terms of memory,
each node needs buffers of sizel, whered depends on

4.1.2 Broadcasting the amount of error correction, whiledepends on the num-
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Figure 8: Average per-node frame transmissions per round as a func-

600

e No coding ‘ ‘ ‘ tion of topology shape (thez-axis represents the ratio between the two
—*—— Coding with routing . . . 1
500 Coding with broadeasting ] dimensions of the topology): The sensors are randomly plade1 sensor

per 30m? (we chose this as the lowest density for which conventional
1 data collection does not suffer end-to-end message loss dlughout the
experiment). The channel characteristics are similar withFigure 7.

400
300

200r loss, the percentage of sensors that successfully communi-
cate their message to the sink.

Our baseline is a tree-based collection protocol that does

Average TX bytes per node

100

ol & =—* ‘ ‘ s not perform any joint identity-message coding (we refer to
16 32 64 128 256 . “ . .,

Number of nodes this as “conventional data collection”): The nodes use C&} [

(b) Average per-node byte transmissions to build and maintain a spanning tree rooted at the sink. In

each round, each node sends out a packet that contains its
identity and measurement, specified in separate fields;when
ever a node receives a packet from a neighbor, itimmediately
forwards it to its next hop. Link-layer errors are handled
through acknowledgments and retransmissions.

For consistency, all the results presented concern a sim-
ple application, where the sensors periodically commueica
their identities and a single-bit message to the sink (we als
ran experiments witB- to 4-bit messages, but the results did
not vary significantly). For each experiment, we choose an
_ . appropriate joint identity-message code, combine it with o
(to store the number of packets received from each ”e'gh'coding-with—routing §4.1.1) and coding-with-broadcasting

bor in this round) and a timer for scheduling its transmis- (54.1.2) protocols, and compare the outcome to the conven-
sions. In terms of operational complexity, each node per- isnal data collection.

forms transmissions, receptions, and binAGR combina- We used the TOSSIM simulator [16] to test these three
tions. In the case of routing with retransmissions, itals®r  56t0cols under different scenarios. Each scenario corre-

CTP's distance-vector protocol for building and maina@ii  gonds to a different set of network characteristics—number

the spanning tree, which consists of readimglgyte routing 4 nodes, sensor density, topology shape, and level of noise
gradient from the headers of incoming packets, comparing it por each scenario, we use the corresponding characteristic

to the local gradient, and updating the latter accordingly. to generata 0 different topologies, then run the protocol un-
der test for10 rounds in each topology; hence, each data

Figure 7: Average per-node frame and byte transmissions per round
as a function of the number of sensors. The sensors are randdyn
placed on a square topology] sensor per100m?2. The channel charac-
teristics are of an indoors environment with low noise.

ber of (mixed) sensors; for practical codesyaries from

1 to 3, while ¢ is on the order of a few tens of bytes—we
don’t recommend longer thatt-byte vectors. Moreover,

each node needs a sma#t (8 bits) counter per neighbor

5. EXPERIMENTAL EVALUATION point in our graphs represents an average @werrounds.
. When the variance of the represented value overltie
5.1 Metrics and Setup rounds is significant (Figs 8, 9(a), and 10(a)), instead ef th

Our goal, for sensor networks, is to reduce the amount of average, we plot its minimum-maximum range and median.
traffic needed to successfully communicate measurements to5 ..
the sink. Hence, our experiments compare data-collection .2 Efficiency
protocols in terms ofi) the amount of traffic (frames and We first look at well connected networks with infrequent
bytes) they generate, angi) in scenarios with end-to-end link-layer errors—an indoors setting with low noise and one

11



No coding

Coding with routing

Coding with broadcasting — no error correction
Coding with broadcasting — error correction

%

£ % = £ * ¥ g
g & & & & ©& &

sensor everg0 to 100 square meters (depending on the ex-
periment). Hence, we use a one-dimensional identifiable
code without error correctior$8.2), where each node maps
its message to a single vector as in Example 2.

We run two sets of experiments: first, we fix the shape
of the topology (to a square), and vary the number of sen-
sors; then we fix the number of sensorsd49, and vary the
shape of the topology, starting from a square and increasing
the ratio between its two dimensions, until we get a narrow
corridor. In both cases, the goal is to gradually increase th
average distance of the sensors to the sink and show how that o
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affects the behavior of the protocols. Surface [m?]

Figures 7 and 8 show the results: Compared to conven- (a) Average per-node frame transmissions
tional data collection, both our protocols reduce the total

. —6— No coding
number of frames and bytes generated in each round by a —— Coding with routing
. o H ——8&— Coding with broadcasting — no error correction

factor of 2 to 4; the benefit increases with the number of o Coding with broadeacting — orror cormestion.

nodes and as the topology becomes longer and narrower.
This is because, in conventional data collection, interme-

diate nodes simply forward packets; hence, the larger the
average distance to the sink, the larger the number of gener-
ated frames (and bytes). On the contrary, in our protocols,

each intermediate node combines the packets sent by its chil
dren or neighbors into a single packet; hence, the number of
per-node transmissions remainslgin coding with broad-
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[
o
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casting) or close t@ (in coding with routing, which uses 0180 ® 2560 © a550 ¢ adbo © 5440 6400
. . 2.

acknowledgments), even as the average distance to the sink Surface [m”]

increases. (b) End-to-end message loss

5.3 Error Resilience Figure 9: Efficiency and loss as a function of topology ;urface: The
sensors are randomly placed. The channel characteristicsra of an

Next, we consider a_n0i5y setting _With frequ_ent ”n!('layer indoors environment with very high noise (the trace from theStanford
errors. We use two different code§) a one-dimensional  weyer library included with the TinyOS distribution).

code with no error correction as above, @i two-dimensional

code with single-error correctior3.3), where each node

maps its message to two vectors, and the sink can decoddhe same amount of traffic independent of link-layer quality
the message as long as it receives one of them. We try fourbecause it uses no acknowledgments/retransmissionsiaed fo

data-collection methodgi) conventional data collectiofj) each node to transmit a fixed number of times per round.
coding with routing (without error correctionfiii) coding Of course, these two features that make it efficient can also
with broadcasting with, anflv) without error correction. cause end-to-end message loss. Indeed, as shown in Fig-

First, we run a set of experiments, where we fix the num- ure 9(b), coding with broadcasting and no error correction
ber of sensors (t64) and gradually increase the surface of suffers more loss than any other method, especially inftarge
the covered area.e., decrease the sensor density. The goal topologies, where nodes are less likely to be heard by their
is to show how the behavior of the protocols changes with neighbors; error correction fixes this problem at the cost of
link-layer quality. second transmission per node in each round.

Fig. 9(a) shows the number of frames generated by each We also run a set of “topology stretching” experiments as
protocol (we do not show the number of generated bytes, in §5.2,i.e.,fix the number of sensors and vary the shape of
as it follows the same curve): Again, compared to conven- the topology from a square to a narrow corridor. The goal
tional data collection, our protocols reduce the total neamb is to create increasingly longer paths and more contention
of frames and bytes generated in each round by several fac-close to the sink, and show how that affects the behavior of
tors. An interesting difference from the low-noise setting the protocols.
is that, as sensor density decreases, coding with routing be  Figures 10(a) and 10(b) show, respectively, the amount of
comes slightly less efficient; this is due both to link-layer generated traffic and end-to-end message loss. The trends
transmissions, as well as frequent changes in the tree-topol remain the same: conventional data collection generages th
ogy that cause the nodes to make wrong guesses about hownost traffic, coding with broadcasting and no error correc-
many packets they should combirid (1.1). tion generates the least—but suffers the biggest end-to-end

Coding with broadcasting, on the other hand, generatesmessage loss, and broadcasting with error correctiorestrik
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Figure 11: Trade-off between packet size and overall efficiency. The
—6— No coding . . .
—%— Coding with routing z-axis represents the maximum number of combined packets+-cor-
——8&— Coding with broadcasting — no error correction ] :
—<&— Coding with broadcasting — with error correction responds to conventional data collection.
50
a0} i Recently, techniques inspired from coding and network
= coding have been successfully used to harness the broadcast
2 0T ] ing capabilities of the wireless medium [25, 13, 14, 6, 26,
8 20} 1 23], to implement intelligent in-network storage [12], and
- provide resilience in lossy environments [10, 9]. These cod
Oor g . . . . . .
* ing techniques do not offer a viable solution for the idgmntit
ol g=—=% — aware sensing. Indeed, traditional network coding reguire
1 10 20 30 40 50 60 70 80 90 100 . .. .
Stretch factor appending to each packet a number of training bits propor-
(b) End-to-end message loss tional to the number of source packets, which would have
prohibitive communication overhead in our case [3, 7]. Ehes
Figure 10: Efficiency and loss as a function of topology shape (the- training bits are necessary for the sink to learn the overall
axis represents the ratio between the two dimensions of thepology): tran_Sfer funCt'Oﬁ? and thus be able to_decode. An essential
The channel characteristics are similar with Figure 9. motivation for using subspace codes in our work is that they

do not require this knowledge and thus dispense with the use
o of training bits.
the best balance between efficiency and end-to-end connec- ag far as we know. our work is the first to develop sub-

tivity. We should note that some of the topologies used in gpace codes for sensor networks. Subspace codes have been
this last experiment are somewhat extreme, which explainsgy,gied in the context of non coherent communication over
the high levels of loss incurred by all four protocols. qu in fading point-to-point wireless channels [19]. Such codes
stance, the topology that corresponds to stretch faclois have also been advocated for quantum communication [2],
a400 x 4m? corridor with heavy noise; we do not suggest anq were also recently proposed for use over networks that
doing data collection in such an environment véthnodes e pjoy network coding, to provide error and erasure correc-
and a single sink—we are only showing these results to give tjo [15]. All the previous constructions are addressed to

a sense of the protocols’ limits. a single source and thus do not encode the source identity.
5.4 Scalability Moreover, they are designed for large packet information

) ) transfer. In our work, we develop constructions that incor-
_ Finally, we demonsrate the performance of scalable iden- 4rate in the code the identity of multiple sources with low
tifiable codes developed #8.4. We consider a network of -5 mmunication overhead.

256 nodes and three different code(g: a scalable/ = 16- Significant research effort has been invested in reducing
bit code that allows combinations ef = 2 sources(ii) a the communication overhead, by using distributed data ag-
scalable’ = 23-bit code that allows combinations of = 3 gregation techniques inside the sensor network. These tech

sources, andii) an identifiable32-byte code that allows ar- - piques exploit data correlation to perform compression [21
bitrary combinations of sources. We combine these codesy, 18], or, calculate functions of the observed measure-

with our coding-with-routing protocol and compare the re-
sults against conventional data collection. Figure 11 show **Transfer function is the linear operations applied by the network to

the trade-off between packet size and overall efficiency. the source packets, summarized®yin (1). Note that the transfer
function changes from round to round, due to topology changes,
6. RELATED WORK different synchronization between nodes, and different operations

nodes perform.
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ments, such as the average value [18, 1]. None of these ig21] s. Pradhan, J. Kusuma, and K. Ramchandran, “Distributed compression in a

applicable in the case where we need to convey node iden-

dense sensor networkEEE Signal Processing Magasineol. 19, no. 2,
pp. 51-60, Mar. 2002.

tities. A naive aggregation approach would be to package [22] A. Scaglione and S. D. Servetto, “On the interdependence of routing and data

at each node the identities and information bits received in

compression in multi-hop sensor network@/ireless Networkssol. 11, no.
(1-2), pp. 149-160, 2005.

a single packet. This would result in unequal length pack- [23] s. Sengupta, S. Rayanchu, and S. Banerjee, “An Analysis of Wireless Network

ets of a size that increases prohibitively as we approach the

sink, and requires sophisticated in network content piaces
ing. Also, unlike conventional aggregation techniques, ou
approach does not suffer from irregular spatial samplifg [8
as our protocol is oblivious to the network structure.

Coding for Unicast Sessions: The Case for Coding-Aware Routl&fFE
Conference on Computer Communications (Infocgknghorage, Apr. 2007.
[24] D. Tulone and S. Madden, “PAQ: Time series forecasting for approximate
query answering in sensor network8td European Workshop on Wireless
Sensor Network$p. 21-37, Zurich, Switzerland, Feb. 2006.
[25] Y. Wu, P. A. Chou, and S. Y. Kung, “Minimum-energy multicast in rileb
ad-hoc networks using network codind&EE Transaction on Communicatigns

vol. 53, no. 11, pp. 1906-1918, Nov. 2005.
[26] S. Zhang, S. Liew, and P. Lam, “Physical layer network codidgM
International Conference on Mobile Computing and Networking (MOBWJ.O

7' CONCLUSIONS AN D OUTLOOK pp. 24-29, Los Angeles, USA, Sep. 2006.

We formulate the problem of identity aware sensor net- [27] “TinyOs", http://www.tinyos.net.
works to capture applications where, as illustrated2rt, 28] h‘t‘tTh;meﬁcr:iOgsﬁgstafﬁgcg'xggggﬁﬁme s
Identlty of the sensor as well as the measurement is of im- [29] “gisseminati)(/)n“, http:llszw.tinyos.netjtiny,;s-z.x/dooﬁhilteplls.html.
portance. We propose a data collection protocol based ono] “TinyNode”, http:/ww.tinynode.com/.
combining identity and data through a subspace code. As far
as we know, this is the first such approach. We demonstrateA endix A
its effectiveness both through analysis and implemematio pp
on a TinyOS sensor platform, for energy efficiency benefits, The received subspaee; at the sink node can be expressed as [15]

load balancing, loss resilience and scalability. - My (1) + 4 Haon (10)] & 7 ©)
R — k1 (T1 e kn\Tn E,

wherer; is the transmitted subspace by sou&erg is an error
subspace summarizing additive errors, &gl are erasure oper-
ators. Each such operator acts on subspacas follows. It out-
puts ak;-dimensional subspace af randomly if dim(m;) > k;
and does not change; otherwise. Ford-dimensional codeword
subspaces,defing = (d — k;)™ to be the maximum number of

erasures introduced by the channelgnLet alsot £ dim(7z).
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THEOREM 2. Consider a set of orthogonal identifiable code-
booksC; used over the channel in (9), whete € C;, 1 < i < n,
andrr is the received subspace. If

2(t+ > i) < D(C),

then a minimum distance decoder will correctly decode all trans-
mitted subspaces. The codebdbks defined as:C = {m +

oo+ 7y sm € Ch,...,mn € Ch}andD(C) as: D(C) =
mini; 1<i<n D(CZ)

[ (10)

[7

8

PrROOF Denote byr = m; + - - - 4+ 7, the overall transmitted
subspace, and by = 7} + - - - + 7;,, wherer; = Hy, (7). Then

(a) ) &
d(rr,m) < d(rr,n") +d(n’,7) < E r; +t,
i=1

where (a) follows from the triangle inequality and (b) follows be-
cause the codebooKs are disjoint. Fotry # 7, mw € C,

D(C) <d(m,mw) < d(m,7r) + d(7r, 7w ).

Combining these two inequalities we can write
d(mr,mw) > D(C) = (t+ > ).
i=1

Given (10) a minimum distance decoder chooses[]

We mention without proof that i2(¢t + r;) < D(C;), then a
minimum distance decoder will correctly decode Source
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