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ABSTRACT
In a significant class of sensor-network applications, the iden-
tities of the reporting sensors are an essential part of the
reported information. For instance, in environmental mon-
itoring, the goal is to reconstruct physical quantities over
space and time; these quantities are sampled by the sen-
sors, and the source identity associated with each measure-
ment is necessary for the spatial and temporal reconstruc-
tion. In many practical scenarios, source identities constitute
the bulk of the communicated data, whereas the message it-
self can be as small as a single bit. In these scenarios, the
traditional network-protocol paradigm of separately speci-
fying the source identity and the message in distinct fields
leads to inefficient communication.

In this paper, we re-examine this traditional data separa-
tion and propose a scheme for joint identity-message en-
coding; we use this scheme to design a new efficient col-
lection protocol for identity-aware sensor networks. Com-
pared to conventional data collection, our protocol reduces
the amount of traffic in the network at least by a factor of
two (up to an order of magnitude, in lossy environments),
while its performance scales better with network complex-
ity; we show these results both through theoretical analysis
and extensive simulations.

1. INTRODUCTION
In traditional network protocols, each packet carries its

source identity in a dedicated header field, separately from
the communicated message, which constitutes the packet’s
payload. To increase their information rate, several protocols
use encoding or compression techniques that look to mini-
mize the size of the message; to the best of our knowledge,
none of these techniques consider the source identity as part
of the data that needs to be encoded or compressed—and
for good reasons: First of all, any intelligent source-identity
encoding could come at the cost of increased network com-
plexity, as intermediate network nodes often need to deter-
mine the packet’s source as part of the forwarding process.
Most importantly, in the typical communication scenarios
where encoding or compression makes sense, the message
constitutes the bulk of the communicated data, whereas the
source-identity overhead is relatively insignificant.

The situation is reversed in (ad-hoc) wireless sensor net-
works that monitor the evolution of an environmental vari-
able over time and space: Sensors are often used to track
whetherandwherea certain condition occurs—temperature
exceeds a safety threshold, a perimeter is violated, soil or
water is contaminated etc.; in other cases, they are used to
track (typically small) incremental changes at different loca-
tions, e.g., the evolution of snow height at different moun-
tain peaks for avalanche prediction, or seismic activity for
earthquake prediction. In such scenarios, it makes sense to
associate each sensor with a fixed location and have it re-
port, periodically, its identity and measurement to a collect-
ing sink; assuming a network of tens or hundreds of nodes,
the identities of the reporting nodes now become the bulk
of the communicated data, whereas the message itself (i.e.,
each reported measurement) can be as small as a single bit.
We describe such paradigms asidentity awaresensor net-
works.

Identities are not of the same nature as messages: for a
fixed node, the identity is a constant number that does not
change with every transmission, in contrast to the messages
that do; we leverage this to develop a new method for the ef-
ficient representation and communication of identities, with
the purpose of conserving the limited sensor-network energy
resources.

To the best of our knowledge, our work is the first to de-
velop an energy-efficient collection protocol tailored to iden-
tity aware sensor networks. Our approach has two key el-
ements:(i) Instead of specifying its identity and measure-
ment in separate fields, each reporting nodejointly encodes
the two using a set of fixed-size vectors, which are encapsu-
lated into separate packets.(ii) Intermediate nodes perform
in-network data combination, i.e., when they receive vectors
from multiple sources, they combine them and relay only the
resulting combined vector (which has the same fixed size) to
the sink. The combination is done without requiring the in-
termediate nodes to understand the contents of the packets.

The insight for using joint encoding is straightforward:
when source identities form the bulk of the communicated
data, it makes sense to consider them as part of any en-
coding/compression scheme. The need for in-network data
combination is related to link-layer overhead: sensor net-
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works typically use variations of the IEEE 802.15.4 frame
format, which dictates17 bytes of physical- and MAC-layer
header and footer; when the measurement reported by each
sensor consists of a few bits, using one frame per measure-
ment means paying a17-byte cost to transmit only a few bits
of useful information. Hence, we design our joint-encoding
schemes such that they enable simple, practical in-network
combination of multiple measurements into a single frame,
without requiring any content inspection.

Our approach is based on subspace encoding (§3): nodes
do not convey their identity explicitly, but instead through
the choice of their codebook,i.e., the set of vectors they
transmit. We exploit the invariance properties of subspaces,
such that neither the reporting nodes nor the collecting sink
need any knowledge of either network topology or intermediate-
node operations. Using this approach, we generate practical
codes for different scenarios—good network connectivity,
significant loss rate, and networks with a large number of
nodes where only few of them are active during each report-
ing interval.

We incorporate our joint-encoding scheme into an appro-
priately designed data collection protocol (§4). Our design
objectives are:
•Decentralized Operation:Each sensor has only local knowl-
edge of network connectivity,i.e., information about its neigh-
bors.
• Energy Efficiency and Balancing:We optimize our proto-
col for reducing the number of sensor transmissions; more-
over, we require each sensor to do approximately the same
number of transmissions.
• Error Correction, Scalability and Adaptability: We want
our scheme to gracefully incorporate error protection, scale
with the number of sensors, and be flexible so as accommo-
date specific application requirements.

We implement our data collection protocol as a TinyOs [27]
application for TinyNode [30] motes, and evaluate it using
the TOSSIM [16] simulator (§5). Compared to conventional
data collection, our protocol reduces the number of frame
transmissions (and transmitted bytes) at least by two factors
(up to an order of magnitude, in lossy environments), while
reducing end-to-end message loss. Moreover, it evenly dis-
tributes energy consumption among the nodes, reducing the
variance of per-node transmissions by several factors.

2. SENSOR IDENTIFICATION

2.1 Applications
We consider sensor networks where each node needs to

communicate(i) its identity and(ii) a small (relative to the
identity) measurement to a collecting sink. This is differ-
ent from the typical scenarios discussed and analyzed in the
literature, where sensor networks are used to compute ag-
gregate statistics (e.g.,the average temperature in a building)
that do not require associating each measurement with a spe-
cific sensor. Given our departure from the commonly used

paradigm, to motivate our work, we discuss a few exam-
ples of applications where our conditions hold,i.e., sensor
identity is a critical part, and forms the bulk of the collected
data. These are all cases, where the sensors are used to peri-
odically reconstruct thespatial fieldof the physical quantity
measured by the sensors,i.e., the variation of that quantity
as a function of space [20].

Differential Updates.In many cases of environmental mon-
itoring, to avoid unpleasant surprises, we need to choose
the measurement frequency such that the spatial field under
measurement changes relatively slowly, under normal oper-
ation. For instance, when monitoring the level of snow on
a mountain surface for avalanche prediction, it makes sense
to measure frequently enough, such that, at any location, the
snow level never changes by more than2-4 centimeters be-
tween measurements. In such scenarios, each sensor needs
to communicate only the difference of its new measurement
from the last one, together with its identity. Assuming net-
works of tens or hundreds of nodes, the identity may require
one or two bytes, while the update itself could need only a
few bits [20].

Spatial Correlation.In other cases, the spatial field under
measurement at agiven time, varies smoothly over space.
For instance, the variation of temperature, or pressure etc.,
is governed by physics which gives a smoothness to the spa-
tial field [20, 22]. We can leverage such smooth variation
by having a set of densely deployed sensors communicate
only a few bits of information, and using techniques like dis-
tributed source coding [21] to still be able to represent the
spatial field. This idea takes advantage of “oversampling” of
the sensor field, and collecting coarse information from each
sensor.

Multi-stage Collection.Sometimes we are not interested
in reconstructing an entire spatial field, only a few “interest-
ing” regions. For example, we might want to examine areas,
where the measurements suggest that there is a potential for
an avalanche, more closely. In such scenarios, it makes sense
to collect data in stages: have each sensor communicate its
identity along with few bits of information (just enough to
get a coarse representation of the field) and, if something
interesting is revealed, query the relevant sensors for more
information [5, 24]. In many practical cases, it is enough to
have each sensor send a single bit of information (signaling
whether a threshold was reached, a perimeter was violated,
or an animal was sighted), then query the interesting sub-
set for more precise measurements. Here as well, the sensor
identity is a critical part of the information to be conveyed.

2.2 Basic Idea: Representation of Identities
In the context of the applications discussed above, the tra-

ditional approach of keeping the source identity and the mes-
sage in separate fields leads to inefficient communication.
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Next, we illustrate this inefficiency with a simple example
and introduce the idea of joint identity-message coding.

Sink

AB

S1

[10000000]

S2

[00000000]

S3[00100000]

S4[00000000]

S5[00001000]

S6[00000100]
S7

[00000010]

S8

[00000000]

[10101110]

Figure 1: The sourcesS1, . . . , S8 send their id and one bit of infor-

mation to the sink A through a relay node B.

Consider the simplified network of Fig. 1, where the nodes
communicate over an IEEE 802.15.4-compatible link layer.
Suppose each nodeSi, i = 1, . . . , 8, needs to communicate
1 bit of information to the sinkA; it specifies this single bit
in a packet and sends it through the intermediate nodeB. To
relay this information toA, B could naively forward it the8
packets; this would result in8 wireless frame transmissions,
i.e., 8 × 17 bytes of MAC-layer headers to transmit only8
bits of information. To avoid this overhead,B could com-
bine all information in a single packet: package the8 bits in
a vector, with the understanding that positioni corresponds
to the message sent by nodeSi; this is the simplest example
of using a “code” to represent the identity of a node along
with its message. The problem with such in-network cod-
ing is that it requires the intermediate nodeB to understand
and process the contents of incoming packets; it would be
more practical to develop a coding scheme that operates on
an end-to-end basis,i.e., information is always encoded at its
source and decoded at the sink, while each node is oblivious
to the codes used by other nodes.

Now consider the following alternative: Each nodeSi

sends out an8-bit packet with its message encoded in bit
i and all other bits set to0; nodeB just XORs all incoming
packets and sends the resulting8-bit packet toA. This ap-
proach leads to efficient communication on linkBA, while
keeping node-B functionality simple; the price we pay is a
small decrease in efficiency on theSiB links, which now
have to carry8- (rather than1-) bit packets, which is in-
significant considering the MAC-header overhead1.

In general, the idea is that each nodeSi employs a dif-
ferent codebook, i.e., a different mapping of messages to
packets; the sink knows the codebook used by each source
and, hence, can determine who sent what,i.e., the sender
implicitly communicates its identity through its choice of
codebook. This approach agrees with the insight we have
from information theory: the scenario of Figure 1 is reminis-
cent of the classical multiple-access channel problem, where

1For IEEE 802.15.4-compatible link layer, each MAC packet has
a header of17 bytes, and we would like to avoid changing in link
layer protocols.

multiple users simultaneously transmit to a single receiver
over a common channel; it is well known that the users do
not have to explicitly specify their identities, as long as they
choose distinct enough codebooks that can be disambiguated
at the receiver ([4], chapter 14).

Although simple, the network of Figure 1 captures the be-
havior of all trees (with an arbitrary number of nodes) that
connect8 sources to the sink through the edgeBA. For in-
stance, consider the network of Figure 2 and the following
two communication protocols: In the first one, each source
sends out a packet with a3-bit identity and1-bit message
specified in separate fields; intermediate nodes simply for-
ward incoming packets towards the sink. In the second pro-
tocol, sources jointly encode their identity and message as
described above,i.e.,sourceSi sends an8-bit packet with its
message specified at biti and all other bits set to zero; each
intermediate nodeXORs all incoming packets and forwards
the one resulting packet towards the sink. Note that, using
the second protocol, no matter what the tree looks like, for a
given set of messages, we will have exactly the same coded
packet traversing linkBA. Comparing the two protocols,

SinkA

BC

D

E

F

S1

S2

S3

S4
S5

S6

S7

S8

Figure 2: A tree with 8 sources.

the one that uses joint identity-message coding results in a
smaller number of packets (13 instead of28) and a smaller
number of information (identity+message) bits (104 instead
of 112). Moreover, each node forwards thesamenumber of
packets and bits,i.e.,communication overhead is evenly dis-
tributed across the network. This alleviates the problem of
depleting the battery of the nodes located close to the sink.

The simple scheme we have described illustrates the ba-
sic benefits of joint identity-message coding, but has certain
limitations: First, it does not work well in scenarios with
heavy network loss (where the single8-bit packet forwarded
from B to A has a high probability of being dropped or in er-
ror). Second, it does not scale well to very large networks (in
a500-node network, each node would have to send500 bits
to communicate its single-bit message). We address these
issues in Section 3, where we formally present our codes.

2.3 Model and General Approach
We consider a sensor network, withn nodes each of which

wants to communicate(i) its identity and(ii) a small mea-
surement, to a collecting sink. The measurement is from a
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setMi, where2 |Mi| ≪ n.
Each source nodei maps its message into a set of vec-

tors and forwards them towards the sink in separate packets.
Each intermediate node that receives packets from its neigh-
bors performs linear operations (e.g.,XOR) on their contents
and forwards the result towards the sink. As a result, the
sink, after combining all the received packets, gets a set of
vectors{yi}, representable as

Y =









...
yi

...









=
n

∑

i=1

GiXi =
[

. . . Gi . . .
]









...
Xi

...









, (1)

where eachXi is a matrix having the set of original (row)
vectors{x(j)

i } sent by sourcei as its rows, andGi is a “mix-
ing matrix”, representing the end-to-end transformation of
Xi. That is, the received vectors{yi} are a linear combina-
tion of the original vectors and, hence, lies in theirspan3.

Neither the sink nor the sources know the mixing ma-
trices {Gi}, i.e., the specific set of linear operations per-
formed by the network is unknown to all players. This makes
the scheme robust to topology changes. As a result, each
source can only communicate information using thesub-
space4 spanned by its vectors, which is unaffected by the
linear operations performed on them. Hence, each source
uses asubspace codebook, i.e., maps each message to a set
of vectors that span a different subspace. For instance, in
Figure 1, sourceS1 maps message “1” to vector [1 0 . . . 0]
(which spans a one-dimensional subspace); as long as no
other source uses this subspace, the sink can decodeS1’s
message, independently from how its original vector is com-
bined with other vectors in the network.

Our goal is to design practical subspace codebooks that
enable accurate decoding at the sink (i.e., the sink can eas-
ily tell which source sent what). Moreover, it was recently
shown, in the context of single-source multicast, that sub-
space codebooks can provide5 error correction [15]. We
leverage this and combine identity and message information
such that the sink can perform decoding even in the presence
of adverse network conditions.

2.4 Working with Subspaces
Since in this work the proposed approach extensively re-

lies on use of subspaces, we here give some background ma-
terial and show that working with subspaces amounts to el-
ementary operations (see standard references like [11] for

2The methods could also be useful when|Mi| ≈ n, due to MAC
layer overhead, which encourages transmission of smaller number
of packets.
3The span of a set of vectors are those that are representable as a
linear combination of them (see also§ 2.4).
4A subspace is a subset of the overall space, that forms a vector
space itself [11] (see also§ 2.4).
5Since they considered single source transmission, the issue of con-
veying identity did not arise.

e1 = [1 0 0]

e2 = [0 1 0]

e3 = [0 0 1]

π1

π2

Figure 3: The subspaces π1 =< e1, e2 > and

π2 =< e2 + e3, e1 > in the 3-dimensional spaceF3
2.

more details). The impatient reader is encouraged to skip
ahead, and consult this Section for notation as needed.

Information through our network is transferred through
the exchange of binary vectors of lengthℓ, that belong in
theℓ-dimensional vector spaceFℓ

2. We can treat this vector
space in exactly the same way as the usual vector space over
the reals, the main differences being that we performXOR
instead of real addition operations, and that we have a fi-
nite instead of an infinite number of vectors. For example, if
ℓ = 3, the 3-dimensional spaceF3

2 contains23 = 8 vectors.
Given a set of vectors{v1, . . . ,vn}, their span, denoted

by < v1, . . . ,vn >, is the set of all possible linear combi-
nations of these vectors. More precisely,

< v1, . . . ,vn >= {x : x =

n
∑

i=1

αivi}, (2)

where the summation is taken overF2 (XOR) and the scalars
αi ∈ F2. This set is a vector spaceV generatedby the vec-
tors{v1, . . . ,vn}. Any set of linearly independent vectors
that generate a vector space is called abasis for this vec-
tor space. The dimension of a vector spaceV, denoted as
dim(V ), is the cardinality of a basis, which is the minimum
number of vectors needed to be linearly combined in order
to create all vectors in the vector space. In our example, the
dimension of our space equalsℓ = 3. A basis consists of the
linearly independent vectors

{e1 = [1 0 0], e2 = [0 1 0], e3 = [0 0 1]}.

A subspace is a subset of the vector spaceV that is a vec-
tor space itself. We can think of these subspaces as “planes”
that contain the origin. For example, the spaceF

3
2 (used

in Figure 2.4) contains7 two-dimensional subspaces. One
such subspace isπ1 =< e1, e2 >. Another isπ2 =<
e2 + e3, e1 >. It also contains7 one-dimensional sub-
spaces, one corresponding to each non-zero vector. More-
over, the subspace (plane)π1 =< e1, e2 > contains the
three “line” (one-dimensional) sub-subspacesπ3 =< e1 >,
π4 =< e2 >, π5 =< e1 + e2 >. Therefore, we can define
subspaces of lower dimension as sub-sub-spaces of higher
dimensional subspaces. In the above example, we can see
thatπ3 ⊂ π1 ⊂ F

3
2 = V .

We say that two subspaces aredisjoint if they intersect
only trivially at the all zero vector, and that they aredistinct
if they differ in at least one dimension. For example,π1 =<
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y1
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Figure 4: Linear mixing inside a network does not alter the inserted

subspace.

e1, e2 > andπ2 =< e2+e3, e1 > are distinct, whileπ1 =<
e1, e2 > andπ3 =< e3 > are disjoint.

As in most of this work we will use the binary field, we
will focus our attention on binary operations. However the
same ideas go through when we have linear operations over
an arbitrary fieldFq and a vector spaceFℓ

q. On many occa-
sions we will also give results overF

ℓ
q.

Recall that in Section 2.3 we saw that nodes do linear mix-
ing operations, as seen in (1). Now, the critical observation
is that such linear operationspreserve the subspaces. More
concretely, consider the situation depicted in Figure 2.4.Let
us assume that there are packets represented as vectorsy1,y2

inserted by two sources, which could even be over an ar-
bitrary field F

ℓ
q. NodeA, that receives these two packets

would send out a linear combination of them, and therefore,
its output,z, would lie in the span of these two vectors,i.e.,
z ∈< y1,y2 >. Now, suppose that nodeB receives bothz
as well asy1, its outputu, which is a linear combination of
y1 andz, would still lie in < y1,y2 >. This property holds
even when operations are over arbitrary fieldsFq (not just
binary). Therefore, even though we might get several differ-
ent vectors in the mixing process, the subspace< y1,y2 >
inserted by the sources remains invariant. This is the prop-
erty that makes the use of subspaces for encoding robust to
the topology of the network and to the linear operations per-
formed at the intermediate nodes.

Given these properties of subspaces, our approach described
in § 2.3 shows that we need to encode information through
different subspaces. A natural question is whether there are
enough subspaces for us to work with. As already seen in
the example withF3

2, there are7 distinct two-dimensional
subspaces. In more generality, it can be shown thatKℓ(d),
the number of distinctd dimensional subspaces ofF

ℓ
q equals

Kℓ(d) =

[

ℓ
d

]

q

=
(qℓ − 1) · · · (qℓ−d+1 − 1)

(qd − 1) · · · (q − 1)
, (3)

where

[

ℓ
d

]

q

is called the Gaussian number.

We will use two subspace operations. Consider two sub-
spacesπα andπβ of a vector spaceV .
• Theirsum: πα + πβ = {x + y|x ∈ πα, y ∈ πβ}
is the subspace spanned by the vectors inπα andπβ .
• Their intersection: πα ∩ πβ = {x|x ∈ πα andx ∈ πβ}
is the largest subspaces that belongs in bothπα andπβ .

Moreover, when we compare subspaces, we will need to
measure “how far apart” two subspaces are. We measure the

distance between two subspacesπα andπβ as

d(πα, πβ) , dim(πα + πβ) − dim(πα ∩ πβ). (4)

It is also easy to see that

d(πα, πβ) = 2 dim(πα + πβ) − dim(πα) − dim(πβ). (5)

Table 1 summarizes our notation. In our example overF
3
2, if

πα = π1 =< e1, e2 >, andπβ = π2 =< e2 + e3, e1 >,
thenπα + πβ = F

3
2, πα ∩ πβ = {e1}, andd(πα, πβ) = 2.

3. JOINT IDENTITY AND DATA CODING
We design codes that have the following properties:

1. Identifiable codes:Jointly convey identities and data.
2. Error protection: Can incorporate error correction.
3. Scalability: Scalable to the size of the network.
4. Adaptability: Adaptable to specific application needs.
We address each of these in turn, after describing our model.

3.1 Network Operation
We consider a sensor network withn sensor nodes where

each node conveys to a data collection sink values from a
small message setMi, together with its own identity. The
information transfer comprises of the following basic tasks.
Source encoder: Each sensori translates its data bits (or
equivalently, information messages inMi) into a set of vec-
tors inF

ℓ
q, using a pre-assigned codebookCi. As motivated

in § 2.3 and amplified in§ 2.4, the codebooks consist ofd-
dimensional subspaces6 of F

ℓ
q, i.e.,

Ci = {π
(i)
j : 1 ≤ j ≤ |Mi|}, i = 1, . . . , n.

To transmit information to the sink, sourcei maps a mea-
sured value to one such subspaceπ and inserts in the net-
work d vectors that spanπ.
Relay operation: In relaying information towards the sink,
the sensor linearly combines all packets it has received (in-
cluding that generated by itself) and transmits the combined
packet to the next relays towards to the sink.
Data collector operation: Since each sensor node does the
above encoding operation, the sink will observe vectors from
the union of subspaces inserted by all the sources. In partic-
ular, if sourcei inserts the subspaceπi, the sink will observe
vectors from the subspaceπ1+π2+. . .+πn. In all the codes
we will describe here, the sink collectsd packets and using
the knowledge of the codebooks{Ci}, decodes the sensor
data along with its identity.

To be able to correctly decode at the sink, we need to en-
sure that every combination of sensor data results in adis-
tinct union subspace. Such a condition would be sufficient
for decoding and is called theidentifiable codeproperty.

DEFINITION 1 (I DENTIFIABLE CODE). An identifiable
code is a set ofn codebooksCi = {π

(i)
j : 1 ≤ j ≤ |Mi|},

6Although in principle we can use subspaces of different dimen-
sions, we will for simplicity in most of this paper restrict our code
design to subspaces of equal dimension,d-dimensional subspaces.
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Table 1: Notation
Fq finite field with q elements
F

ℓ
q vector space, where vectors have lengthℓ and elements fromFq

< v1, . . . ,vn >= {x : x =
∑n

i=1 αivi} vector space spanned or generated by the vectorsv1, . . . ,vn

π ⊆ V π is a subspace of the vector spaceV
dim π dimension of subspaceπ

πα + πβ = {x + y|x ∈ πα, y ∈ πβ} sum or union of two subspacesπα, πβ

πα ∩ πβ = {x|x ∈ πα andx ∈ πβ} intersection of two subspacesπα, πβ

d(πα, πβ) , dim(πα + πβ) − dim(πα ∩ πβ) distance beween two subspacesπα, πβ ; see also (5)
πα andπβ are distinct subspaces d(πα, πβ) ≥ 1
πα andπβ are disjoint subspaces πα ∩ πβ = {0}

n total number of sensor nodes
Mi set of data values for sensori
Ci codebook for sensori

Table 2: Coding for two sources
C2/C1 π1 π2 π3

π4 π1 + π4 π2 + π4 π3 + π4

π5 π1 + π5 π2 + π5 π3 + π5

π6 π1 + π6 π2 + π6 π3 + π6

i = 1, . . . , n, with π
(i)
j ⊂ F

ℓ
q such that we haveπi1 + . . . +

πin
6= πj1 + . . . + πjn

when7 (i1, . . . , in) 6= (j1, . . . , jn)
andπik

is the subspace chosen by sensork.

EXAMPLE 1. Assume for simplicity we have two source
nodes,S1 using the codebookC1 = {π1, π2, π3}, while
S2 the codebookC2 = {π4, π5, π6}. Table 2 summarizes
all outcomes. For this code to be identifiable, we want all 9
entries in Table 2 to correspond to distinct subspaces. For
example,π1+π4 should be a distinct subspace fromπ2+π5.

3.2 Identifiable Codes
We develop identifiable codes by decomposing theℓ di-

mensional spaceFℓ
q in disjoint subspaces, and restricting the

codebook of each source inside one such disjoint subspace.
We chooseD-dimensional disjoint subspacesΠ1, . . . ,Πn

such that their union is the whole space,i.e.,
∑n

i=1 Πi = F
ℓ
q

andnD = ℓ. Each sensor nodei is assigned one suchD-
dimensional subspaceΠi. Then, the sensor maps each mea-
surement data to one ofKD(d) distinct subspaces ofΠi of
dimensiond (see also (3) forKD(d)), whered ≤ D.

Orthogonal Identifiable Codes

• Selectn disjoint subspacesΠi with
n

∑

i=1

Πi = F
ℓ
q

• Assign to sensori the subspaceΠi

• Sensori usesCi = {πi|πi ⊂ Πi,dim πi = d}

7This inequality just means that there is at least one sensork such
thatik 6= jk.

We can think of this code construction as allocatingD
bit-positions of a packet to each source. The source em-
ploys only theseD bits, and sends vectors that have zero
value everywhere else apart theseD positions. TheseD-
bits span the disjointD-dimensional space allocated to the
source. For example, the source may use thed = 1 dimen-
sional subspaces inside its space. Then it uses one of the
2D − 1 non-zero vectors (one-dimensional subspaces), and
sends at each round one packet to the sink8. It is also easy
to see that we can adapt our construction to give unequal
number of bit-positions to different sensors in order to ac-
commodate variations in measurement data sizes.

EXAMPLE 2. In the example of Fig. 1 in§ 2.2, we use
binary vectors of lengthn and orthogonal spaces of dimen-
sionsD = 1. Then the codebookCi can be described as
Ci = {< 0 >,< ei >}, whereei is the unit vector with1 in
positioni.

As we discussed, our code construction effectively divides
the packets into portions allocated to each sensor. However,
this is just one approach, and there exist various other meth-
ods to share the vector space among the sources, that rely
more on algebraic properties. As we will see, a more so-
phisticated approach might be needed for constructing iden-
tifiable codes that are scalable and adaptable (§3.4 and§3.5).

3.3 Error Correction
As mentioned in Section 3.1, packets get dropped due to

link congestion or error. In this case, to be able to still de-
liver the sensor data and identity, we need to add error pro-
tection to identifiable codes. One method is to rely on MAC
8One might argue that our construction is slightly inefficient as
we are not using the all-zero vector (that corresponds to a zero-
dimensional subspace). However, we implicitly use the all-zero
vector to convey the fact that a sensor is not active during a par-
ticular round. This allows us to differentiate between “sensor not
active” and “sensor observes value zero”. We can also use the all-
zero vector, by incorporating the trivial subspace< 0 > in the
codebook.
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layer retransmissions to provide resilience to errors. Here we
present an alternative forward error correction approach,that
does not require feedback. This approach is well matched for
the cases where feedback cannot readily be used9, or when
sensors fail, and their lack of transmission would have the
same effect as erasures.

Our code construction builds on the orthogonal identifi-
able code construction, where we allocate one of theD-
dimensional disjoint subspacesΠ1, . . . ,Πn to each sensor.
We want to now construct each codebookCi to no longer
contain all KD(d) distinct d-dimensional subspaces inside
Πi, but instead, a set ofd-dimensional subspaces that are
“far apart”. Indeed, to protect against errors, we need to
introduce “redundancy” into identifiable codebooks, by sep-
arating the subspaces chosen in the codebooks by a certain
“distance”10. To this end, the distance measure between sub-
spaces defined in (4) is useful. We define the minimum dis-
tance of the codebookCi as the closest two subspaces in the
codebook can get. More formally,

D(Ci) , min
πα,πβ∈Ci:πα 6=πβ

d(πα, πβ), (6)

whered(πα, πβ) was defined in (4).
Next, we investigate the erasure correction capabilities of

a code with a given distance. We restrict our attention to the
bit-positions inside the packet that the transmitted subspace
sensori uses. The effect of erasures is to eliminate some of
the “dimensions” from the transmitted subspace, making the
received vectors to lie in a lower dimensional sub-subspace
of the transmitted subspace. That is, the sink, instead of re-
ceiving d packets which at the bit-positions corresponding
to nodei haved linearly independent vectors, it will receive
insteadd− ri such packets, whereri are the erasures nodei
experienced. If the codebook contains two subspaces which
have a common(d−ri)-dimensional subspace (i.e., intersect
in (d − ri) dimensions), they could be potentially indistin-
guishable. Making this intuition formal, Theorem 1 deter-
mines how many erasures our identifiable codes can prov-
ably correct. A more general form of this theorem is proved
in Appendix A.

THEOREM 1. Consider a set of codebooksCi used over
a channel that erasesri packets from sourcei. If

2ri < D(Ci), (7)

whereD(Ci), defined in (6), is the minimum distance of the
codebookCi, then we can recover the messages for sourcei.

9This is also useful when we utilize broadcasting (see§4.1.2).
10Also note that traditional erasure correcting codes (like the Reed-
Solomon code [17]) would not work in our case since the code
would not be oblivious to linear mixing packets emanating from
thesamesource.

Table 3: Code with five codewords, where each codeword
is a 2-dimensional subspace of a 4-dimensional space.

π1 = < [0 1 1 0], [1 0 0 1] >

π2 = < [0 0 1 0], [0 1 0 1] >

π3 = < [1 1 1 0], [1 1 0 1] >

π4 = < [1 0 0 0], [0 1 0 0] >

π5 = < [1 0 1 0], [0 0 0 1] >

Orthogonal Identifiable Code forr Erasures

• Selectn disjoint subspacesΠi with
n

∑

i=1

Πi = F
ℓ
q

• Assign to sensor i the subspaceΠi

• Ci = {πi|πi ⊂ Πi,dim πi = d} with D(Ci) > 2r

The final question is to ask how one would decode an error
correcting identifiable code. Since the only thing preserved
are the subspaces, a natural choice would be to choose the
“allowable” subspace (which is part of the codebook) that is
closest to the received subspace. For example, if the code-
book contains the subspacesCi = {πj} and the sink (al-
ways only considering the bit-positions that sensori uses)
receives a subspaceπR, then the sink will decodêπi =
arg minπi

d(πi, πR). Note that to calculated(πi, πR) we can
create a matrixR that hasd + d − ri rows, with the firstd
rows being anyd basis vectors ofπi and the remainingd−ri

rows being thed−ri received vectors that spanπR. Then we
can calculate the rank of the matrixR to finddim (πi + πR)
and substitute this in (5). All the previous ideas are perhaps
better illustrated through an example.

EXAMPLE 3. Assume we allocate to each sourceD = 4
bits. Within this space, each source can employ the codeC
with 5 codewords described in Table 3. Each codeword ofC
is a 2-dimensional subspace. The distance between any two
codewords equals four, and thusD(C) = 4.

The source, to convey for example the first codewordπ1 =<
[0 1 1 0], [1 0 0 1] >, can insert in the network two packets,
one containing the vector[0 1 1 0], and the other the vector
[1 0 0 1]. Because the codewords consist of non-intersecting
subspaces, if the sink receivesany one vectorin the subspace
π1, it will uniquely identify this subspace. For example, the
receiver may observe the vectory = [1 1 1 1]. To decode,
the receiver needs to check the rank of five matrices, e.g.,

rank





1 1 1 1
0 1 1 0
1 0 0 1



 = 2, while rank





1 1 1 1
0 0 1 0
0 1 0 1



 = 3.

Thusy belongs inπ1 and not inπ2.

3.4 Scalability
In the identifiable code design advocated in Section 3.2,

we see that forn sources, each usingD-dimensions, the vec-
tor length isnD. For scalability, we would like to make this
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more efficient whenn grows.
To make our code construction scalable, we will consider

the case where at mostm vectors get combined. This as-
sumption is motivated through three observations:
(i) The identifiable codes designed in Section 3.2 allowed
us to decode the identity and data even ifall the sources’
vectors get mixed. However, vectors get combined only if
their paths to the sink overlap. For the example in Figure 2
the sink has a single neighbor nodeB and all source vec-
tors get combined. If the sink hask neighbor nodes with the
sources symmetrically deployed along thesek directions, we
can then think of Fig. 2 as the “slice” of the network corre-
sponding to one of these neighbors, and each received packet
at the sink will contain approximatelyn

k
combined vectors.

(ii) Not all sensors may be actively measuring during every
round. For example, when sensing anomalies, we expect a
small fraction of all potential sources to send information.
(iii) We can artificially restrict the number of sources that get
combined, by appending to each packet a few bits to count
the number of combined packets it contains.

Our problem statement can now be summarized as fol-
lows. Givenn sources, the sink is going to observe packets
that contain linear combinations ofat mostm sources. We
want to design codes that allow us, by receiving each com-
bined vector, to determine which is this subset of combined
sources, and what are their transmitted messages.

For simplicity we describe our code construction for the
case where each sensor either transmits a single value or re-
mains silent (to indicate it has perceived a certain event or
not), but the design can be easily extended to a larger mea-
surement set. Before delving into the code construction, we
emphasize that our code utilizes vectors of lengthℓ that is
much smaller than the number of sensor nodesn. For ex-
ample, Fig. 5 plots upper and lower bound onℓ for the case
wherem = 2 and wherem = 20 vectors get combined.

Our code construction proceeds as follows. Select a linear
code of lengthn, minimum distance2m+1, and redundancy
ℓ, with ℓ as small as possible. Consider theℓ × n parity
check matrixH. Assign to each source a codebook with the
1-dimensional subspace spanned by one column ofH.

Scalable Codes form Combined Packets

• Let H be theℓ × n parity check matrix of a binary

code with minimum distance2m + 1

• ThenCi = {< hi >} wherehi is a column ofH

The reason this construction satisfies our design goals,
stems from a well known property the columns of matrix
H satisfy. LetA denote the set of these vectors. Then, if the
code has minimum distance2m + 1, any set of2m vectors
in A are linearly independent[17]. This directly implies the
following properties. For vectors inA:
(P1) Any set of0 < β < 2m vectors span a distinctβ-
dimensional subspace.
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Figure 5: Bounds on the lengthℓ of transmitted vectors whenm = 2

and m = 20 sources get combined, as a function of the number of

sensor nodesn.

(P2) The distance between two subspacesπ1 andπ2, where
each subspace is spanned by a different set of0 < β < 2m
vectors, equalsmin{β, 2m − β}.
From property(P1) we see that the sink receives distinct
subspace foreverydistinct set ofm sources, and therefore
is able to decode the identities and the information. Thus,
even though there aren = |A| possible sources, we do not
need to use vectors of length proportional ton, but instead,
of lengthℓ ≥ 2m.

In order to quantify our savings, we need to examine how
ℓ scales withm. This is related to a well-studied problem in
coding theory, namely, for a given code lengthn , |A|, and
a given minimum distance2m+1, what are upper and lower
bounds on the number of codewordsA(n,m) this code can
have [17]. Using the Gilbert-Varshamov lower bound and
the sphere packing upper bound [17], it can be shown that
for large values ofn,

nH2(
2m + 1

2n
) ≤ ℓ ≤ nH2(

2m + 1

n
), (8)

whereH2 is the binary entropy function, namely,H2(p) =
−p log p− (1− p) log(1− p). Fig. 5 plots the bounds in ( 8)
as a function ofn, for m = 2 and form = 20. We conclude
that our proposed code design results in using a fraction of
the lengthn, that goes to zero as the ratio2m+1

n
goes to zero.

EXAMPLE 4. Using a table of the best codes known [17]
we can see for example that, there exist binary linear codes
of lengthn = 512 with redundancyℓ = 18 and minimum
distance2m + 1 = 5. Thus in a sensor network with512
nodes if at mostm = 2 source vectors get combined, we
need to use vectors of lengthℓ = 18.

We finally note that to incorporate forward error correc-
tion, we can modify our code construction by separating the
subspaces akin to the ideas in§ 3.3.

3.5 Adaptability
The specific applications for which a sensor network could

be deployed might impose a diverse set of requirements for
data collection. In this section we explore how our codes
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Table 4: Code that checks consistency
C2/C1 π1 π2 π3

π4 α β γ
π5 ǫ α δ
π6 ζ θ α

can be easily adapted to suit such requirements. Through
examples, we develop a sense of the flexibility offered by
our network operation architecture, which is the property we
want to highlight.

We consider two different application requirements.(i) Data
dependent identifiability:We need to know about measure-
ment information and identities when certain combinations
of sensor data occur.(ii) Mixing statistics and identifica-
tion: Computing functions of sensor measurements when
data falls in a certain set.

Note that the data collector can send a signal to the sen-
sors to change their operating mode to suit the requirements
above,without changing the relaying (mixing) operation at
the intermediate nodes. This would just make the sensors
operate with a different codebook to map its observations to
the transmitted packet. This flexible end-to-end change of
operation is a distinct advantage of our architecture.

Data dependent identifiability.Suppose that we are inter-
ested in identifying the sensors only when certain combina-
tions of measurement data occurs. For example, we care to
know the sensor identities and measurements when there are
discrepancies in their observations.

EXAMPLE 5. Consider two source sensors each observ-
ing one of three possible values in the setM = {0, 1, 2}.
SourceS1 employs the codebookC1 = {π1, π2, π3}, while
sourceS2 the codebookC2 = {π4, π5, π6}.

If we are interested in learning about identities only when
sensor measurements do not match, then, the function de-
scribed by Table 4, needs to be implemented. Note that when
the two sensors observe the same value, no matter what this
value is, the sink receives the same subspace. To implement
this function we use vectors of sizeℓ = 2d, and codewords
d-dimensional subspaces ofF

ℓ
2. Given anyd-dimensional

subspaceπ ⊂ F
ℓ
2, by definition its complement̄π is also

a d-dimensional subspace that satisfiesπ + π̄ = F
ℓ
2. Se-

lect the codebookC1 to contain threedistinctd-dimensional
subspaces{π1, π2, π3} of F

ℓ
2. We constructC2 by using

π4 = π̄1, π5 = π̄2, andπ6 = π̄3. Note that the sink receives
a vector in the spaceπi,j = πi + π̄j , wheni, j are respec-
tively the measurements in sensorS1, S2. We will then get
the desired property, sinceπi,i = F

ℓ
2 and by construction

πi + π̄j is distinct fori 6= j. Note that each individual node
does not need to know what the other node has observed.
The coding scheme, in a distributed manner, ensures the de-
sired property.

This example illustrates how we can adapt the code to suit
data dependent identifiability requirements. Another exam-
ple could be that of sensor clustering where we want to coarsely
characterize the spatial field into regions of interest. By as-
signing to all the sensors in each group the same codebook,
we can know about groups with interesting measurements,
which can be examined more closely later throughmulti-
stage collection: by asking the subset of sensors to switch to
identifiable codebooks11.

Mixing statistics and identification.In many current ap-
plications of sensor networks, only statistics (like average,
maximum, histograms) are needed and not the sensor iden-
tities. However, one can envisage a situation where we need
to collect statistics when the sensor data is in a certain state
and want to obtain identity/data in other states. This needsto
be done oblivious to the intermediate node operations. We
can adapt our code to satisfy this requirement as seen in the
Example 6.

EXAMPLE 6. Consider an application where the sensor
measurement setM is partitioned into two parts:M =
MI ∪ MH . Identity of a node is important for values in
MI and only statistics (histogram) of nodes observing val-
ues inMH is needed. We use vectors that consist of two
parts: the first partPH collects the histogram statistics for
theMH values, while the second partP I implements one
of our coding schemes for theMI values. The interesting
point is that, we can design our schemes so that intermedi-
ate nodes perform exactly the same operation on both parts
PH andP I of the vector, and are oblivious to this distinc-
tion. To do this, we use operations over a higher fieldFq

that has sizeq of ordern, wheren is the number of sensors.
We can then use|MH | symbols overFq to constructPH ,
where the symbol in positioni will keep track of how many
nodes have observed the corresponding value inMH . Thus
addition of thePH parts of the packet will create the de-
sired histogram; and we can design the partP I , again over
Fq, to allow us to convey the identity of up tom nodes that
observed a given value.

Other adaptations.Up to now, we have examined sensor
networks that employ a single sink, and that create a tree
topology to connect the sources to the sink. However, sensor
networks with a large number of nodes may have more than
one sinks; moreover, our topology may not necessarily be
a tree12. All our code designs are oblivious to the network
structure and the number of sinks; indeed, this is one of the
strengths of our design.

4. DATA COLLECTION PROTOCOL

11We can have further efficiency by using scalable codebooks as
described in Section 3.4.

12See the broadcasting collection protocol in§4.1.2.
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In this section we explain some of the systems issues we
encountered when implementing identifiable codes for energy-
efficient data collection. First, the codes are centrally com-
puted and distributed to the sensors through dissemination.Each
sensor then enters a loop of “reporting rounds,” where it pro-
duces one measurement per round; nodes do not run any ini-
tial synchronization protocol,i.e., each node starts its first
round independently from every other. Each measurement is
jointly encoded with the sensor’s identity to produced vec-
tors of sizeℓ, whered is the dimension of the subspaces in
the codebooks andℓ the employed vector length. We now
describe how, and at what cost, the network relays this infor-
mation to the sink.

4.1 Relaying
Each node maintainsd buffers of lengthℓ, which store

the vectors corresponding to its latest measurement. When-
ever the node receives a packet from a neighbor, itXORs its
contents to one of the buffers. Occasionally (at least once
per round), the node packs the contents of each buffer into a
separate packet and forwards thed packets towards the sink.
The question iswhenandwhereto forward and how to deal
with link-layer losses and collisions; depending on network
characteristics, we follow one of two protocols.

4.1.1 Routing with Retransmissions

The nodes build and maintain a spanning tree rooted at
the sink, as in the Collection Tree Protocol (CTP) [28]. In
each round, an individual node tries to collect information
from all its children,thenforwards everything to its parent,
so that each node transmits exactlyd packets. Losses and
collisions are handled through link-layer acknowledgments
and retransmissions.

More specifically, in the beginning of each round, each
node starts a “transmission timer”; it forwards the contents
of its buffers to its next hop as soon as(i) it has received
packets from all its children, and/or(ii) the transmission timer
expires and the buffer is non empty; packets received after
the timer expires are immediately forwarded to the next hop.
As a result, as long as each node correctly determines the
number of children it should wait for, each node transmits
exactlyd packets per round. Of course, when the tree topol-
ogy changes, a node may unexpectedly hear from (new or
delayed) childrenafter its transmission deadline, in which
case it has to transmit more thand packets.

The advantage of this approach is simplicity—all a node
has to do is count its children. The disadvantage is that effi-
ciency is affected by link-layer errors (losses and collisions)
in two ways: First, errors lead to retransmissions, increas-
ing the number of data/acknowledgment frames and duplica-
tions. Second, they lead to frequent changes in the tree topol-
ogy, causing nodes to send and receive unexpected packets.
Hence, this strategy is suited to low-noise, stable networks.

4.1.2 Broadcasting

Sink
A

B

C

D

E

F

G

I

Figure 6: Nodes divided into two sets (inside and outside the circle)

according to their distance from the sink.

Nodes arrange themselves in different “strides” around
the sink, such that nodes in stridei are better connected to
the sink than nodes in stridei + 1. Each node broadcasts
the contents of each buffer exactly once per round, such that
the nodes in stridei + 1 broadcast before the nodes in stride
i—i.e., information propagates from outer to inner strides
similar to how it propagates from children to parents in Sec-
tion 4.1.1. There are no acknowledgments or retransmis-
sions: to overcome link-layer errors, the protocol relies on
(i) its multi-path nature (at least one neighbor is likely to
hear each node’s transmission) and(ii) the error-correcting
capabilities of the codes.

More specifically, each node schedules its next-round broad-
casts based on the last broadcast it hears from a neighbor
in the current round: if it hears the last neighbor broadcast
at timet, it schedules its own next-round broadcasts in the
interval (t + TR − TS , t + TR), whereTR is round dura-
tion andTS is a “stride slot” on the order of a few seconds.
The idea is best illustrated through the example of Figure 6:
in the first round, the sinkA broadcasts a beacon; nodeB
hears it and schedules its next-round broadcasts within one
stride-slot beforeA’s, i.e.,B arranges itself in stride1; in the
second round, nodeE hearsB’s broadcast and schedules its
next-round broadcasts within one stride-slot beforeB’s, i.e.,
E arranges itself in stride2. Note that a node does not need
to know which specific stride it is in, it just schedules its
next-round broadcasts relative to the last neighbor it hears.

The efficiency of this approach is not affected by link-
layer errors: each node always transmits exactlyd packets
per round, independently from network conditions and with-
out the need to collect and maintain valid routing informa-
tion; this makes it ideal for weakly connected networks with
severe link-layer errors and frequent sensor failures. The
fixed number of per-round transmissions is precisely what
allows us to benefit from the multi-path nature of broadcast-
ing andbe energy efficient at the same time—a conventional
flooding protocol where nodes simply broadcast all incom-
ing packets would be anything but energy efficient.

4.2 Memory and Complexity
We implemented both collection protocols as TinyOS [27]

applications for TinyNode [30] motes. In terms of memory,
each node needsd buffers of sizeℓ, whered depends on
the amount of error correction, whileℓ depends on the num-
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(b) Average per-node byte transmissions

Figure 7: Average per-node frame and byte transmissions per round

as a function of the number of sensors. The sensors are randomly

placed on a square topology,1 sensor per100m2. The channel charac-

teristics are of an indoors environment with low noise.

ber of (mixed) sensors; for practical codes,d varies from
1 to 3, while ℓ is on the order of a few tens of bytes—we
don’t recommend longer than16-byte vectors. Moreover,
each node needs a small (< 8 bits) counter per neighbor
(to store the number of packets received from each neigh-
bor in this round) and a timer for scheduling its transmis-
sions. In terms of operational complexity, each node per-
forms transmissions, receptions, and binaryXOR combina-
tions. In the case of routing with retransmissions, it also runs
CTP’s distance-vector protocol for building and maintaining
the spanning tree, which consists of reading a2-byte routing
gradient from the headers of incoming packets, comparing it
to the local gradient, and updating the latter accordingly.

5. EXPERIMENTAL EVALUATION

5.1 Metrics and Setup
Our goal, for sensor networks, is to reduce the amount of

traffic needed to successfully communicate measurements to
the sink. Hence, our experiments compare data-collection
protocols in terms of(i) the amount of traffic (frames and
bytes) they generate, and,(ii) in scenarios with end-to-end
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Figure 8: Average per-node frame transmissions per round as a func-

tion of topology shape (thex-axis represents the ratio between the two

dimensions of the topology): The sensors are randomly placed, 1 sensor

per 30m2 (we chose this as the lowest density for which conventional

data collection does not suffer end-to-end message loss throughout the

experiment). The channel characteristics are similar withFigure 7.

loss, the percentage of sensors that successfully communi-
cate their message to the sink.

Our baseline is a tree-based collection protocol that does
not perform any joint identity-message coding (we refer to
this as “conventional data collection”): The nodes use CTP [28]
to build and maintain a spanning tree rooted at the sink. In
each round, each node sends out a packet that contains its
identity and measurement, specified in separate fields; when-
ever a node receives a packet from a neighbor, it immediately
forwards it to its next hop. Link-layer errors are handled
through acknowledgments and retransmissions.

For consistency, all the results presented concern a sim-
ple application, where the sensors periodically communicate
their identities and a single-bit message to the sink (we also
ran experiments with2- to 4-bit messages, but the results did
not vary significantly). For each experiment, we choose an
appropriate joint identity-message code, combine it with our
coding-with-routing (§4.1.1) and coding-with-broadcasting
(§4.1.2) protocols, and compare the outcome to the conven-
tional data collection.

We used the TOSSIM simulator [16] to test these three
protocols under different scenarios. Each scenario corre-
sponds to a different set of network characteristics—number
of nodes, sensor density, topology shape, and level of noise.
For each scenario, we use the corresponding characteristics
to generate10 different topologies, then run the protocol un-
der test for10 rounds in each topology; hence, each data
point in our graphs represents an average over100 rounds.
When the variance of the represented value over the100
rounds is significant (Figs 8, 9(a), and 10(a)), instead of the
average, we plot its minimum-maximum range and median.

5.2 Efficiency
We first look at well connected networks with infrequent

link-layer errors—an indoors setting with low noise and one
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sensor every30 to 100 square meters (depending on the ex-
periment). Hence, we use a one-dimensional identifiable
code without error correction (§3.2), where each node maps
its message to a single vector as in Example 2.

We run two sets of experiments: first, we fix the shape
of the topology (to a square), and vary the number of sen-
sors; then we fix the number of sensors (to64), and vary the
shape of the topology, starting from a square and increasing
the ratio between its two dimensions, until we get a narrow
corridor. In both cases, the goal is to gradually increase the
average distance of the sensors to the sink and show how that
affects the behavior of the protocols.

Figures 7 and 8 show the results: Compared to conven-
tional data collection, both our protocols reduce the total
number of frames and bytes generated in each round by a
factor of 2 to 4; the benefit increases with the number of
nodes and as the topology becomes longer and narrower.
This is because, in conventional data collection, interme-
diate nodes simply forward packets; hence, the larger the
average distance to the sink, the larger the number of gener-
ated frames (and bytes). On the contrary, in our protocols,
each intermediate node combines the packets sent by its chil-
dren or neighbors into a single packet; hence, the number of
per-node transmissions remains at1 (in coding with broad-
casting) or close to2 (in coding with routing, which uses
acknowledgments), even as the average distance to the sink
increases.

5.3 Error Resilience
Next, we consider a noisy setting with frequent link-layer

errors. We use two different codes:(i) a one-dimensional
code with no error correction as above, and(ii) a two-dimensional
code with single-error correction (§3.3), where each node
maps its message to two vectors, and the sink can decode
the message as long as it receives one of them. We try four
data-collection methods:(i) conventional data collection,(ii)
coding with routing (without error correction),(iii) coding
with broadcasting with, and(iv) without error correction.

First, we run a set of experiments, where we fix the num-
ber of sensors (to64) and gradually increase the surface of
the covered area,i.e., decrease the sensor density. The goal
is to show how the behavior of the protocols changes with
link-layer quality.

Fig. 9(a) shows the number of frames generated by each
protocol (we do not show the number of generated bytes,
as it follows the same curve): Again, compared to conven-
tional data collection, our protocols reduce the total number
of frames and bytes generated in each round by several fac-
tors. An interesting difference from the low-noise setting
is that, as sensor density decreases, coding with routing be-
comes slightly less efficient; this is due both to link-layerre-
transmissions, as well as frequent changes in the tree topol-
ogy that cause the nodes to make wrong guesses about how
many packets they should combine (§4.1.1).

Coding with broadcasting, on the other hand, generates
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Figure 9: Efficiency and loss as a function of topology surface: The

sensors are randomly placed. The channel characteristics are of an

indoors environment with very high noise (the trace from theStanford

Meyer library included with the TinyOS distribution).

the same amount of traffic independent of link-layer quality—
because it uses no acknowledgments/retransmissions and forces
each node to transmit a fixed number of times per round.
Of course, these two features that make it efficient can also
cause end-to-end message loss. Indeed, as shown in Fig-
ure 9(b), coding with broadcasting and no error correction
suffers more loss than any other method, especially in larger
topologies, where nodes are less likely to be heard by their
neighbors; error correction fixes this problem at the cost ofa
second transmission per node in each round.

We also run a set of “topology stretching” experiments as
in §5.2, i.e.,fix the number of sensors and vary the shape of
the topology from a square to a narrow corridor. The goal
is to create increasingly longer paths and more contention
close to the sink, and show how that affects the behavior of
the protocols.

Figures 10(a) and 10(b) show, respectively, the amount of
generated traffic and end-to-end message loss. The trends
remain the same: conventional data collection generates the
most traffic, coding with broadcasting and no error correc-
tion generates the least—but suffers the biggest end-to-end
message loss, and broadcasting with error correction strikes
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Figure 10: Efficiency and loss as a function of topology shape (thex-

axis represents the ratio between the two dimensions of the topology):

The channel characteristics are similar with Figure 9.

the best balance between efficiency and end-to-end connec-
tivity. We should note that some of the topologies used in
this last experiment are somewhat extreme, which explains
the high levels of loss incurred by all four protocols. For in-
stance, the topology that corresponds to stretch factor100 is
a 400 × 4m2 corridor with heavy noise; we do not suggest
doing data collection in such an environment with64 nodes
and a single sink—we are only showing these results to give
a sense of the protocols’ limits.

5.4 Scalability
Finally, we demonstrate the performance of scalable iden-

tifiable codes developed in§3.4. We consider a network of
256 nodes and three different codes:(i) a scalableℓ = 16-
bit code that allows combinations ofm = 2 sources,(ii) a
scalableℓ = 23-bit code that allows combinations ofm = 3
sources, and(iii) an identifiable32-byte code that allows ar-
bitrary combinations of sources. We combine these codes
with our coding-with-routing protocol and compare the re-
sults against conventional data collection. Figure 11 shows
the trade-off between packet size and overall efficiency.
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Figure 11: Trade-off between packet size and overall efficiency. The

x-axis represents the maximum number of combined packets—1 cor-

responds to conventional data collection.

Recently, techniques inspired from coding and network
coding have been successfully used to harness the broadcast-
ing capabilities of the wireless medium [25, 13, 14, 6, 26,
23], to implement intelligent in-network storage [12], andto
provide resilience in lossy environments [10, 9]. These cod-
ing techniques do not offer a viable solution for the identity-
aware sensing. Indeed, traditional network coding requires
appending to each packet a number of training bits propor-
tional to the number of source packets, which would have
prohibitive communication overhead in our case [3, 7]. These
training bits are necessary for the sink to learn the overall
transfer function13 and thus be able to decode. An essential
motivation for using subspace codes in our work is that they
do not require this knowledge and thus dispense with the use
of training bits.

As far as we know, our work is the first to develop sub-
space codes for sensor networks. Subspace codes have been
studied in the context of non coherent communication over
fading point-to-point wireless channels [19]. Such codes
have also been advocated for quantum communication [2],
and were also recently proposed for use over networks that
employ network coding, to provide error and erasure correc-
tion [15]. All the previous constructions are addressed to
a single source and thus do not encode the source identity.
Moreover, they are designed for large packet information
transfer. In our work, we develop constructions that incor-
porate in the code the identity of multiple sources with low
communication overhead.

Significant research effort has been invested in reducing
the communication overhead, by using distributed data ag-
gregation techniques inside the sensor network. These tech-
niques exploit data correlation to perform compression [21,
22, 18], or, calculate functions of the observed measure-

13Transfer function is the linear operations applied by the network to
the source packets, summarized byGi in (1). Note that the transfer
function changes from round to round, due to topology changes,
different synchronization between nodes, and different operations
nodes perform.
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ments, such as the average value [18, 1]. None of these is
applicable in the case where we need to convey node iden-
tities. A naive aggregation approach would be to package
at each node the identities and information bits received in
a single packet. This would result in unequal length pack-
ets of a size that increases prohibitively as we approach the
sink, and requires sophisticated in network content process-
ing. Also, unlike conventional aggregation techniques, our
approach does not suffer from irregular spatial sampling [8],
as our protocol is oblivious to the network structure.

7. CONCLUSIONS AND OUTLOOK
We formulate the problem of identity aware sensor net-

works to capture applications where, as illustrated in§2.1,
identity of the sensor as well as the measurement is of im-
portance. We propose a data collection protocol based on
combining identity and data through a subspace code. As far
as we know, this is the first such approach. We demonstrate
its effectiveness both through analysis and implementation
on a TinyOS sensor platform, for energy efficiency benefits,
load balancing, loss resilience and scalability.
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Appendix A
The received subspaceπR at the sink node can be expressed as [15]

πR = [Hk1
(π1) + · · · + HkN

(πn)] ⊕ πE , (9)

whereπi is the transmitted subspace by sourceSi, πE is an error
subspace summarizing additive errors, andHki

are erasure oper-
ators. Each such operator acts on subspaceπi as follows. It out-
puts aki-dimensional subspace ofπi randomly if dim(πi) > ki

and does not changeπi otherwise. Ford-dimensional codeword
subspaces,defineri = (d − ki)

+ to be the maximum number of
erasures introduced by the channel onπi. Let alsot , dim(πE).

THEOREM 2. Consider a set of orthogonal identifiable code-
booksCi used over the channel in (9), whereπi ∈ Ci, 1 ≤ i ≤ n,
andπR is the received subspace. If

2(t +
X

ri) < D(C), (10)

then a minimum distance decoder will correctly decode all trans-
mitted subspaces. The codebookC is defined as:C = {π1 +
· · · + πn : π1 ∈ C1, . . . , πn ∈ Cn} and D(C) as: D(C) =
mini: 1≤i≤n D(Ci).

PROOF. Denote byπ = π1 + · · · + πn the overall transmitted
subspace, and byπ′ = π′

1 + · · ·+ π′
n, whereπ′

i = Hki
(πi). Then

d(πR, π)
(a)

≤ d(πR, π
′) + d(π′

, π)
(b)

≤
n

X

i=1

ri + t,

where (a) follows from the triangle inequality and (b) follows be-
cause the codebooksCi are disjoint. ForπW 6= π, πW ∈ C,

D(C) ≤ d(π, πW ) ≤ d(π, πR) + d(πR, πW ).

Combining these two inequalities we can write

d(πR, πW ) ≥ D(C) − (t +
n

X

i=1

ri).

Given (10) a minimum distance decoder choosesπ.

We mention without proof that if2(t + ri) < D(Ci), then a
minimum distance decoder will correctly decode Sourcei.
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