The Link Between the Infinite Mapping Class Group of the Disk and the Braid Group on Infinitely Many Strands

THÈSE No 4132 (2008)
PRÉSENTÉE LE 8 JUILLET 2008
À LA FACULTE SCIENCES DE BASE
GROUPE HESS BELLWALD
PROGRAMME DOCTORAL EN MATHÉMATIQUES
\title{ ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE }

POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

PAR

Jan BRUNNER

ingénieur mécanicien diplômé EPF
de nationalité suisse et originaire de Schmiedrued (AG)
acceptée sur proposition du jury:
Prof. T. Mountford, président du jury
Prof. K. Hess Bellwald, directrice de thèse
Prof. K. Mitchell, rapporteur
Prof. L. Paris, rapporteur
Prof. M. Troyanov, rapporteur

Abstract

For all finite $n \in \mathbb{N}$, there is a well-known isomorphism

$$
\pi_{0} \bar{\varphi}_{n}: \pi_{0} H_{n} \xrightarrow{\cong} B_{n}
$$

between the standard braid group B_{n} and the mapping class group $\pi_{0} H_{n}$. This isomorphism has been exhaustively studied in literature, and generalized in many ways. For some basic topological reason, this strong link between finite braid groups and finite mapping class groups can-not be extended to the infinite case in a straightforward way, and, in particular, is not yet well studied in literature.
In our work, we define the infinite braid group B_{∞} to be the group of braids with infinitely many strands, all of which can be possibly nontrivial, i.e., not straight. In particular, this definition does not correspond to the group of finitary infinite braids, which is just the union of all finite braid groups. Similar to the maps $\pi_{0} \bar{\varphi}_{n}$ for finite n, we introduce a map

$$
\pi_{0} \bar{\varphi}_{\infty}: \pi_{0} H_{\infty} \rightarrow B_{\infty}
$$

that, in particular, turns out not to be an isomorphism. However, we prove its injectivity, and identify its image in B_{∞}.
The study of the link between mapping class groups and braid groups in the infinite case is motivated by the study of homeomorphisms in H_{∞} that give rise to a homoclinic tangle. In fact, the map $\pi_{0} \bar{\varphi}_{\infty}$ attributes to each isotopy class of such a homeomorphism an element of the infinite braid group B_{∞}, and so, allows us to describe the isotopy classes of these homeomorphisms in terms of their image in B_{∞}. Using the fact that the map $\pi_{0} \varphi_{\infty}$ is injective, we prove a result that can be applied to the study of the topological structure of homoclinic tangles.

Keywords: Infinite braid group, infinite mapping class group, infinite permutation group, homoclinic tangles.

Version abrégée

Il est bien connu que, pour tout $n \in \mathbb{N}$, il existe un isomorphisme

$$
\pi_{0} \bar{\varphi}_{n}: \pi_{0} H_{n} \xrightarrow{\cong} B_{n}
$$

entre le groupe de tresses B_{n} et le mapping class group $\pi_{0} H_{n}$. Cet isomorphisme est etudié en profondeur dans la littérature, et largement généralisé dans divers contextes. Pour des raisons de topologie de base, il n'existe pas une façon directe détendre ce lien entre les groupes de tresses et mapping class groups finis au cas infini, et, en particulier, n'a pas encore été étudié dans littérature.
Dans notre travail, nous définissons le groupe de tresses infini B_{∞} par le groupe de tresses d'une infinité de brins, qui peuvent être simultanément nontriviaux, c'est à dire non droits. En particulier, cette définition ne correspond pas au groupe de tresses finitairement infini, qui est simplement la réunion de tous les groupes de tresses finis. Semblable aux applications $\pi_{0} \bar{\varphi}_{n}$ pour n fini, nous introduisons une application

$$
\pi_{0} \bar{\varphi}_{\infty}: \pi_{0} H_{\infty} \rightarrow B_{\infty}
$$

qui, en particulier, n'est pas un isomorphisme. Toutefois, nous prouvons son injectivité, et nous identifions son image dans B_{∞}.
L'étude du lien entre le mapping class groupe du disque et le groupe de tresses infinis est motivé par l'étude des homéomorphismes dans H_{∞} qui donnent lieu à un entrelacement homocline. En effet, l'application $\pi_{0} \bar{\varphi}_{\infty}$ attribue à chaque classe d'isotopie d'un tel homéomorphisme un élément du groupe de tresses infini B_{∞}. De cette manière, l'application $\pi_{0} \bar{\varphi}_{\infty}$ permet de décrire les classes d'isotopie des ces homeomorphismes en termes de leur image dans B_{∞}. En utilisant l'injectivité de $\pi_{0} \varphi_{\infty}$, nous démontrons un résultat qui peut être appliqué à l'étude de la structure topologique des enchevêtrements homoclines.

Mots clés: Groupe de tresses infini, mapping class group infini, groupe de permutations infinies, enchevêtrements homoclines.

Acknowledgments

First, I would like to express my gratitude to my thesis advisor Professor K. Hess Bellwald for her commitment and availability. I am very grateful to her for having given me the opportunity to be her student, in a subject very different from my education as a mechanical engineer, and for having supported me in my entry into the field of mathematics. I greatly appreciated the freedom I enjoyed under her supervision, while at the same time she closely and actively followed the course of the project.
My PhD project was initiated in collaboration with Professor K. A. Mitchell from the University of California, Merced. I would like to thank him for his visit to the EPFL in 2005 and for his assistance in getting my research project under way.
It is my pleasure to thank Professor L. Paris from the University of Bourgogne for having invited me to Dijon, to spend a day of discussions about my work. His comments and his preprint "Braid groups and Artin groups" have been helpful for the completion of my thesis.
After my studies in mechanical engineering, I had the opportunity to work as an assistant in mathematics with Professor C. Stuart and Dr. Metzener, to whom I want to express my gratitude.
Furthermore, I want to thank Professor M. Troyanov and Professor T. Mountford for having accepted to take part in my PhD committee. I would also like to thank my family, my working collegues, of both sides of the "Röstigraben", and my friends for their support.

Contents

1 Foundations 1
1.1 Introduction 1
1.1.1 Basic definitions and elementary results 6
1.1.2 The direct system of braid groups 11
1.1.3 The inverse system of pure braid groups 12
1.1.4 General remarks 15
2 Comparision between $\pi_{0} \bar{\varphi}_{\infty}$ and $\pi_{0} \varphi_{\infty}$ 19
2.1 On the infinite permutation group Σ_{∞} 20
2.1.1 Decomposition of infinite permutations into sequences of transpositions 20
2.1.2 Identification of Σ_{∞} in \mathbb{N}^{∞} 22
2.2 Reducing the map $\pi_{0} \varphi_{\infty}$ to $\pi_{0} \bar{\varphi}_{\infty}$ 31
2.2.1 Conclusions 33
3 The injectivity of the maps $\pi_{0} \varphi_{\infty}$ and $\pi_{0} \bar{\varphi}_{\infty}$ 35
3.1 Definition of a suitable contracting homotopy of the space H_{0} 35
3.2 Proof of the injectivity of $\pi_{0} \varphi_{\infty}$ 41
4 The image of the maps $\pi_{0} \varphi_{\infty}$ and $\pi_{0} \bar{\varphi}_{\infty}$ 52
4.1 Description of the image of $\pi_{0} \varphi_{\infty}$ in terms of representatives 53
4.2 Algebraic description of $P B_{\infty}$ 62
4.2.1 Introduction of the braid groups of the punctured disk $P B_{n}^{\prime}$ 63
4.2.2 Identification of $\pi_{1} F_{n}^{\prime}$ with $P B_{n}^{\prime}$. 64
4.2.3 Canonical representatives of the generators of the groups $P B_{n}^{\prime}$ for finite n 66
4.2.4 Inverse system of pure braid groups revisited 70
4.2.5 Semidirect product decomposition of the pure braid groups 75
4.2.6 Canonical representatives of the elements of the groups $\left\{P B_{n}^{\prime}\right\}_{n \in \mathbb{N}}$ 77
4.3 Towards an identification of $\operatorname{Im} \pi_{0} \varphi_{\infty}$ in $\ltimes_{i \in \mathbb{N}} U_{i}^{\prime}$. 81
4.4 Generalization of the choice of \mathcal{T}_{∞} 84
5 An application to homoclinic tangles 86

A Various technical results

Chapter 1

Foundations

1.1 Introduction

The foundation of the mathematical theory of braids goes back to 1925 , when E. Artin introduced in [1] the classical braid groups B_{n} for finite $n \in \mathbb{N}$.

For each $n \in \mathbb{N}, B_{n}$ is defined by

$$
B_{n}:=\pi_{1} C_{n} \quad \forall n \in \mathbb{N},
$$

for some given basepoint in C_{n}, which is the space of unordered sequences of n pairwise distinct points in the interior of the disk $\stackrel{\circ}{D}^{2}$. More precisely, writing F_{n} for the space of ordered sequences of pairwise distinct points in $\stackrel{\circ}{D}^{2}, C_{n}$ is the orbit space

$$
C_{n}:=F_{n} / \Sigma_{n},
$$

where Σ_{n} is the group of n-permutations, which acts on F_{n} by permutation of ordered sequences. A representative in ΩC_{n} of an element of B_{n} can thus be seen as a set of n strands in the cylinder $\stackrel{\circ}{D}^{2} \times I$ that connects a given set $\left\{\left(\tau_{i}, 1\right)\right\}_{i \in[1, n]}$ of n pairwise distinct points on $\stackrel{\circ}{D}^{2} \times\{1\}$ to the corresponding point set on

$$
\left\{\left(\tau_{i}, 0\right)\right\}_{i \in[1, n]} \in \stackrel{\circ}{D}^{2} \times\{0\}
$$

without intersecting each other, where, in particular, $\left(\tau_{i}\right)_{i \in[1, n]}$ is the basepoint of the space F_{n}.

Similarly to the definition of the braid group B_{n}, the pure braid group $P B_{n}$ is defined by

$$
P B_{n}:=\pi_{1} F_{n} \quad \forall n \in \mathbb{N} .
$$

In particular, each element $b \in P B_{n}$ is represented by a pure braid $\left(\beta_{i}\right)_{i \in[1, n]} \in$ ΩF_{n}, which can be seen as a braid in a cylinder for each strand for which each strand has equal initial- and endpoint.

Moreover, the composition of elements of the groups B_{n} and $P B_{n}$ is given by the concatenation of representative braids.
An important feature of the braid groups is their close connection to mapping class groups, which was already observed by Artin in [1, 2]. The mapping class group of the n-punctured unit disk D^{2} is the group of path connected components $\pi_{0} H_{n}$, where H_{n} is the topological group of all homeomorphisms $h: D^{2} \rightarrow D^{2}$, that fix the boundary pointwise,

$$
\left.h\right|_{\partial D^{2}}=\mathrm{Id},
$$

and that satisfy

$$
h\left(\left\{\tau_{i}\right\}_{i \in[1, n]}\right)=\left\{\tau_{i}\right\}_{i \in[1, n]},
$$

where the ordered sequence $\left(\tau_{i}\right)_{i \in[1, n]}$ corresponds to the basepoint of F_{n}. Similarly, for all $n \in \mathbb{N}$, the space $P H_{n}$ is given by all homeomorphisms $h \in H_{0}$, that fix the set $\left\{\tau_{i}\right\}$ pointwise, i.e.,

$$
h\left(\tau_{i}\right)=\tau_{i} \quad \forall i \in[1, n] .
$$

The group $\pi_{0} P H_{n}$ of pathwise connected components of $P H_{n}$ is called the pure mapping class group of the n-punctured disk.
For each $n \in \mathbb{N}$, there are maps

$$
\bar{\varphi}_{n}: H_{n} \rightarrow \Omega C_{n}, \quad \varphi_{n}: P H_{n} \rightarrow \Omega F_{n},
$$

that induce isomorphisms

$$
\pi_{0} \bar{\varphi}_{n}: \pi_{0} H_{n} \xrightarrow{\cong} B_{n}, \quad \pi_{0} \varphi_{n}: \pi_{0} P H_{n} \cong \xrightarrow{\cong} P B_{n},
$$

respectively. A detailed introduction to this close connection between finite braid groups and finite mapping class groups is given in [3]
In our work, we consider the link between braid theory and mapping class groups in the infinite case. Similarly to the finite case, we define the infinite pure braid group by

$$
P B_{\infty}:=\pi_{1} F_{\infty},
$$

where F_{∞} is the space of ordered sequences of infinitely many pairwise distinct points in $\stackrel{\circ}{D}^{2}$. As in the finite case, we define the space C_{∞} of unordered sequences of pairwise distinct points in $\stackrel{\circ}{D}^{2}$ by the orbit space

$$
C_{\infty}:=F_{\infty} / \Sigma_{\infty}
$$

where Σ_{∞} is the group of bijections from \mathbb{N} to itself that acts on F_{∞} by permutation of ordered sequences of points. We have not yet been able to determine whether one can associate an unordered sequence of strands in ${ }_{D}^{D}$ to any loop in C_{∞}. To avoid this problem, we consider instead $\mathcal{O} C_{\infty} \subseteq \Omega C_{\infty}$, the space of those loops in C_{∞} that to which one can associate such an unordered sequence of paths in $\stackrel{\circ}{D}^{2}$, and define the infinite braid group by

$$
B_{\infty}:=\pi_{0} \mathcal{O} C_{\infty}
$$

Unlike the finitary infinite braid group, which is simply the union of all finite braid groups, the infinite braid group B_{∞}, i.e., the group of braids with infinitely many strands, all of which can be nontrivial simultaneously, seems rarely to have been considered in the literature, in particular not in the context of mapping class groups.
On the other hand, the infinite mapping class group and the infinite pure mapping class group of the disk are given by the groups of path connected components $\pi_{0} P H_{\infty}$ and $\pi_{0} H_{\infty}$ of the spaces

$$
\begin{aligned}
P H_{\infty} & :=\left\{h \in \mathcal{H}\left(D^{2}, D^{2}\right)|h|_{\partial D^{2}}=\mathrm{Id}, \quad h\left(\tau_{i}\right)=\tau_{i} \quad \forall i \in \mathbb{N}\right\} \\
H_{\infty} & :=\left\{h \in \mathcal{H}\left(D^{2}, D^{2}\right)|h|_{\partial D^{2}}=\mathrm{Id}, \quad h\left(\left\{\tau_{i}\right\}_{i \in \mathbb{N}}\right)=\left\{\tau_{i}\right\}_{i \in \mathbb{N}}\right\}
\end{aligned}
$$

respectively.
For all finite $n \in \mathbb{N}$, the groups $P B_{n}, B_{n}, \pi_{0} P H_{n}$ and $\pi_{0} H_{n}$ do not depend
on the choice of the point set $\left(\tau_{i}\right)_{i \in[1, n]}$. In the infinite case, this is is still the case for the (pure) braid group $\left(P B_{\infty}\right) B_{\infty}$, whereas, given two choices $\left(\tau_{i}\right)_{i \in \mathbb{N}},\left(\widetilde{\tau}_{i}\right)_{i \in \mathbb{N}} \in F_{\infty}$ of the the basepoint of F_{∞} where the underlying point sets $\left\{\tau_{i}\right\}_{i \in \mathbb{N}}$ and $\left\{\widetilde{\tau}_{i}\right\}_{i \in \mathbb{N}}$ have different numbers of accumulation points in D^{2}, the resulting (pure) mapping class groups $\left(\pi_{0} P H_{\infty}, \pi_{0} \widetilde{P H}_{\infty}\right)\left(\pi_{0} H_{\infty}, \pi_{0} \widetilde{H}_{\infty}\right)$ are not isomorphic.
As in the finite case, there are maps

$$
\bar{\varphi}_{\infty}: H_{\infty} \rightarrow \mathcal{O C} \infty, \quad \varphi_{\infty}: P H_{\infty} \rightarrow \Omega F_{\infty}
$$

where H_{∞} is the space of homeomorphisms $h: D^{2} \xrightarrow{\cong} D^{2}$ that fix the boundary of D^{2} pointwise, and that fix a given point set $\left\{\tau_{i}\right\}_{i \in \mathbb{N}}$, and $P H_{\infty}$ is the subspace of H_{∞} of homeomorphisms that fix the set $\left\{\tau_{i}\right\}_{i \in \mathbb{N}}$ pointwise. The main objective of our work is to investigate the induced maps

$$
\pi_{0} \bar{\varphi}_{\infty}: \pi_{0} H_{\infty} \rightarrow B_{\infty}, \quad \pi_{0} \varphi_{\infty}: \pi_{0} P H_{\infty} \rightarrow P B_{\infty}
$$

For basic topological reasons, the approach to prove that the maps $\pi_{0} \bar{\varphi}_{n}$ and $\pi_{0} \varphi_{n}$ are isomorphisms for finite n cannot be extended to the infinite case. In particular, it turns out that, in contrast to the finite case, the maps $\pi_{0} \bar{\varphi}_{\infty}$ and $\pi_{0} \varphi_{\infty}$ are injective, but not surjective.
For the generalization of the maps $\pi_{0} \bar{\varphi}_{n}$ and $\pi_{0} \varphi_{n}$ to $n=\infty$, it would seem natural to use inverse systems of topological spaces and of groups. However, as we point out in section 1.1.3, there isn't any natural way to define an inverse system of braid groups

$$
\cdots \rightarrow B_{n+1} \rightarrow B_{n} \rightarrow \ldots
$$

nor of mapping class groups

$$
\cdots \rightarrow \pi_{0} H_{n+1} \rightarrow \pi_{0} H_{n} \rightarrow \ldots
$$

On the other hand, there is an inverse system of projection maps

$$
P B_{\infty} \rightarrow \cdots \rightarrow P B_{n+1} \rightarrow P B_{n} \rightarrow \ldots
$$

with limit $P B_{\infty}$, and an inverse system of subspace inclusions

$$
P H_{\infty} \hookrightarrow \ldots \hookrightarrow P H_{n+1} \hookrightarrow P H_{n} \hookrightarrow \ldots
$$

with limit $P H_{\infty}$.
Moreover, we show that there is a commutative diagram (see Theorem 2.19).

Indeed, this diagram allows us to reduce the study of the map $\pi_{0} \bar{\varphi}_{\infty}$ to the study of the map $\pi_{0} \varphi_{\infty}$, which is easier to handle than $\pi_{0} \bar{\varphi}_{\infty}$, because its source and target are limits of inverse systems.
To prove the isomorphisms $B_{\infty} \cong \Sigma_{\infty} \ltimes P B_{\infty}$ and $\pi_{0} H_{\infty} \cong \Sigma_{\infty} \ltimes \pi_{0} P H_{\infty}$, which is given by Propositions 2.17, and 2.16, 2.18, respectively, requires knowledge of the group Σ_{∞}. In particular, Σ_{∞} is not equal to the union of all finite permutation groups, and does not seem to have been well studied in the literature. We show how to canonically attribute to each element $\sigma \in \Sigma_{\infty}$ an infinite sequence of natural numbers $\left(s_{\sigma, i}\right)_{i \in \mathbb{N}}$, such that, within a given topology of Σ_{∞},

$$
\sigma=\lim _{n \rightarrow \infty}\left[\left(n, s_{n}\right) \circ \cdots \circ\left(1, s_{1}\right)\right]
$$

where, for each $i \in \mathbb{N},\left(i, s_{i}\right)$ is the transposition of i and s_{i}. In other words, we canonically decompose the elements of Σ_{∞} into infinite sequences of transpositions (see section 2.1).
Thereafter, in chapter 3, we show that the map $\pi_{0} \varphi_{\infty}$ is injective (Theorem 3.7), which, by the above diagram, means that the map $\pi_{0} \bar{\varphi}_{\infty}$, too, is injective. In chapter 4 , we identify the image of the map $\pi_{0} \varphi_{\infty}$. First, this is done by giving characteristic representatives in ΩF_{∞} of the elements of the image of $\pi_{0} \varphi_{\infty}$ in $P B_{\infty}$ (Corollary 4.6). Furthermore, we work towards an algebraic characterization of $\operatorname{Im} \pi_{0} \varphi_{\infty}$ within a suitable codification of the group $P B_{\infty}$ (see Section 4.3). In particular, for the codification of $P B_{\infty}$, we make use of the braid groups of the punctured disk $\stackrel{\circ}{D}{ }^{2} \backslash 0$, where 0 is the center of D^{2}.
Once the image of $\pi_{0} \varphi_{\infty}$ is known, the above diagram allows us again to deduce that

$$
\operatorname{Im} \pi_{0} \bar{\varphi}_{\infty} \cong \Sigma_{\infty} \ltimes \operatorname{Im} \pi_{0} \varphi_{\infty}
$$

The original motivation for the research in this thesis was its possible application to a particular branch of dynamical systems theory: the study of homoclinic tangles (see section 1.1.4 and chapter 5 for more details). A homoclinic tangle associated to a self-homeomorphism h of the unit disk is given by two onedimensional manifolds in D^{2} that intersect each other. Their intersection is a union of non-periodic, biassymptotic orbits of the homeomorphism in D^{2}, i.e., orbits $\left(h^{i}(\widehat{x})\right)_{i \in \mathbb{N}}$ with

$$
\lim _{i \rightarrow \pm \infty} h^{i}(\widehat{x})=x
$$

for some $x \in D^{2}$. When we define H_{∞} such that the point set in $\stackrel{\circ}{D}^{2}$ that is fixed by the elements in H_{∞} corresponds to such a non-periodic orbit of h, then, the map

$$
\bar{\varphi}_{\infty}: H_{\infty} \rightarrow \Omega C_{\infty}
$$

associates an infinite braid to h. As the topological structure of a homoclinic tangle depends to a large extent on these non-periodic orbits, the study of the underlying homeomorphism in terms of infinite braid might be very useful. More precisely, knowledge of the map

$$
\pi_{0} \bar{\varphi}_{\infty}: \pi_{0} H_{\infty} \rightarrow B_{\infty}
$$

may provide interesting information about self-homeomorphisms of the disk that give rise to homoclinic tangles, or, more generally, to non-periodic orbits. A first approach to such an application is given in chapter 5 .

1.1.1 Basic definitions and elementary results

Let D^{2} be the unit disk with interior $\stackrel{\circ}{D}^{2}$. We usually write

$$
[1, n]:=\{1, \ldots, n\}, \quad \text { and, for convenience, } \quad[1, \infty]:=\mathbb{N} .
$$

Definition 1.1. For all $n \in \mathbb{N} \cup \infty$ and any space X, endow $\prod_{i=1}^{n} X$ with the product topology, and define a subspace $F_{n}(X)$ by

$$
F_{n}(X):=\left\{\left(x_{i}\right)_{i \in[1, n]} \subset \prod_{i=1}^{n} X \mid x_{i} \neq x_{j} \forall i \neq j\right\} .
$$

This space is called the configuration space of n points in X.
Definition 1.2. For all $n \in \mathbb{N}$, let Σ_{n} be the symmetric group, and, as a set, define Σ_{∞} to be given by the bijections of the underlying set of \mathbb{N}. Endow the mapping space \mathbb{N}^{∞} with the topology of pointwise convergence, and topologize Σ_{∞} as a subspace of \mathbb{N}^{∞}. For all $n \in \mathbb{N} \cup \infty$, define the group structure on Σ_{n} as usual by

$$
\left(\sigma_{1} \cdot \sigma_{2}\right)(i)=\sigma_{2}\left(\sigma_{1}(i)\right) \quad \forall i \in[1, n], \quad \forall \sigma_{1}, \sigma_{2} \in \Sigma_{n}
$$

Observe that, for any space X and for each $n \in \mathbb{N} \cup \infty$, the symmetric group Σ_{n} acts on the right of $\prod_{i \in[1, n]} X$ by permutation of components, which, in particular, induces a right action of Σ_{n} on the subspace $F_{n}(X) \subset \prod_{i \in[1, n]} X$.
Definition 1.3. Let X be a topological space, and write, for all $n \in \mathbb{N} \cup \infty$,

$$
C_{n}(X):=F_{n}(X) / \Sigma_{n}
$$

for the orbit space by factoring out the right action of the group Σ_{n}. Moreover, endow $C_{n}(X)$ with the quotient topology, and write

$$
p_{n}: F_{n}(X) \rightarrow C_{n}(X)
$$

for the quotient map. As we often work with the space $\stackrel{\circ}{D}^{2}$, we write

$$
F_{n}:=F_{n}\left(\stackrel{\circ}{D}^{2}\right), \quad \text { and } \quad C_{n}\left(\stackrel{\circ}{D}^{2}\right):=C_{n}\left(\stackrel{\circ}{D}^{2}\right) \quad \forall n \in \mathbb{N} \cup \infty
$$

for notational convenience.
Notation 1.4. Choose an arbitrary basepoint $\mathcal{T}_{\infty}=\left(\tau_{i}\right)_{i \in \mathbb{N}}$ of F_{∞}, and let $\overline{\mathcal{T}}_{\infty}:=p_{\infty}\left(\mathcal{T}_{\infty}\right)$ be the basepoint of C_{∞}. Moreover, define

$$
\mathcal{T}_{n}:=\left(\tau_{1}, \ldots, \tau_{n}\right) \quad \text { and } \quad \overline{\mathcal{T}}_{n}:=p_{n}\left(\mathcal{T}_{n}\right)
$$

to be the basepoints of the spaces F_{n} and C_{n} for all finite n.

Later in this text, we make a particular choice for \mathcal{T}_{∞} in order to simplify the proof of certain results (see Definition 2.1). Thereafter, these results are generalized to a basepoint $\mathcal{T}_{\infty}=\left(\tau_{i}\right)_{i \in \mathbb{N}}$ such that, in D^{2}, the set $\left\{\tau_{i}\right\}_{i \in \mathbb{N}}$ has a single accumulation point $\tau_{\infty} \in \stackrel{\circ}{D}^{2}$.
Generally, F_{n} means the pointed space $\left(F_{n}, \mathcal{I}_{n}\right)$. When we endow F_{n} with a different basepoint $\widetilde{\mathcal{T}}$, we explicitly write $\left(F_{n}, \widetilde{\mathcal{T}}_{n}\right)$. Note that, by the pathconnectedness of these spaces (see Proposition A.1), a change of the basepoint induces an isomorphism on their homotopy groups.

Proposition 1.5. (Birman [3, Prop 1.1]) For every $n \in \mathbb{N}$, the quotient map

$$
p_{n}: F_{n} \rightarrow C_{n}
$$

is a covering map with fiber Σ_{n}.
This means in particular that the projection $p_{n}: F_{n} \rightarrow C_{n}$ has the path lifting property. Thus, to any given braid $\beta \in \Omega C_{n}$, we can associate a unique path $\left(\beta_{i}\right)_{i \in[1, n]} \in \mathcal{C}\left(I, F_{n}\right)$, such that

$$
\beta=p_{n} \circ\left(\beta_{i}\right)_{i \in[1, n]}, \quad \beta_{i}(0)=\tau_{i} \quad \forall i \in[1, n]
$$

Moreover, writing

$$
\left(\tau_{i_{1}}, \ldots, \tau_{i_{n}}\right):=\left(\beta_{1}(1), \ldots, \beta_{n}(1)\right)
$$

we can associate to β the permutation $\sigma_{\beta} \in \Sigma_{n}$ defined by

$$
\sigma_{\beta}:=\left(\begin{array}{ccc}
1, & \ldots, & n \\
i_{1}, & \ldots, & i_{n}
\end{array}\right)
$$

Moreover, by the uniqueness of the lifting $\left(\beta_{i}\right)_{i \in[1, n]}$, this defines a well defined map

$$
\begin{aligned}
\Omega C_{n} & \rightarrow \Sigma_{n} \\
\beta & \mapsto \sigma_{\beta}
\end{aligned}
$$

for any fixed choice of $\left(\tau_{i}\right)_{i \in[1, n]}$.
Note that Proposition 1.5 does not extend to $n=\infty$. Moreover, it seems that the projection $p_{\infty}: F_{\infty} \rightarrow C_{\infty}$ does not have the path lifting property, although we didn't yet find a counter example. On the other hand, if $\bar{\beta} \in \Omega C_{\infty}$ that lifts to a path β in F_{∞}, it is clear that

$$
\beta \in \mathcal{C}\left((I, 0,1),\left(F_{\infty}, \mathcal{T}_{\infty} \sigma_{0}, \mathcal{T}_{\infty} \sigma_{1}\right)\right)
$$

for some $\sigma_{0}, \sigma_{1} \in \Sigma_{\infty}$. Moreover, every $\beta \in \Omega F_{\infty}$ can be seen as a list $\left(\beta_{i}\right)_{i \in \mathbb{N}}$ of paths in $\stackrel{\circ}{D}^{2}$, whereas an element $\bar{\beta} \in \Omega C_{\infty}$ can be seen as the Σ_{∞}-orbit of a list of paths only if it lifts to a path β in $\mathcal{C}\left((I, 0,1),\left(F_{\infty}, \mathcal{T}_{\infty} \sigma_{0}, \mathcal{T}_{\infty} \sigma_{1}\right)\right)$. In order to bypass this difficulty, we introduce a space $\mathcal{O} C_{\infty}$ as follows.

Definition 1.6. Writing $\mathcal{T}_{\infty} \Sigma_{\infty}$ for the corresponding right coset of \mathcal{T}_{∞}, introduce a space

$$
\mathcal{O} C_{\infty}:=\mathcal{C}\left((I, \dot{I}),\left(F_{\infty}, \mathcal{T} \Sigma_{\infty}\right)\right) / \Sigma_{\infty}
$$

where $\dot{I}:=\{0,1\}$, and equip it with the quotient topology.
This definition allows for the following proposition, that is used repeatedly in the sequel.

Proposition 1.7. Each element $\bar{\beta} \in \mathcal{O} C_{\infty}$ lifts to a unique path $\beta=:\left(\beta_{i}\right)_{i \in \mathbb{N}} \in$ $\mathcal{C}\left(I, F_{\infty}\right)$, such that

$$
\bar{\beta}=p_{\infty} \circ \beta, \quad \text { and } \quad \beta_{i}(1)=\tau_{i} \quad \forall i \in \mathbb{N} .
$$

Proof. Pick an element $\bar{\beta} \in \mathcal{O} C_{\infty}$, and let $\widehat{\beta}=:\left(\widehat{\beta}_{i}\right)_{i \in \mathbb{N}}$ be a coset representative in $\mathcal{C}\left((I, \dot{I}),\left(F_{\infty}, \mathcal{T}_{\infty} \Sigma_{\infty}\right)\right)$, i.e., $\bar{\beta}=\widehat{\beta} \Sigma_{\infty}$. In particular,

$$
\left\{\widehat{\beta}_{i}(0)\right\}_{i \in \mathbb{N}}=\left\{\widehat{\beta}_{i}(1)\right\}_{i \in \mathbb{N}}=\left\{\tau_{i}\right\}_{i \in \mathbb{N}}
$$

Thus, there is a unique sequence of natural numbers $\left(j_{i}\right)_{i \in \mathbb{N}}$ such that

$$
\widehat{\beta}_{j_{i}}(1)=\tau_{i} \quad \forall i \in \mathbb{N},
$$

which means that $\left(\beta_{i}\right)_{i \in \mathbb{N}}:=\left(\widehat{\beta}_{j_{i}}\right)_{i \in \mathbb{N}}$ is the unique coset representative of $\bar{\beta}$ that satisfies

$$
\beta_{i}(1)=\tau_{i} \quad \forall i \in \mathbb{N} .
$$

Notation: The fundamental group $\pi_{1} C_{n}\left(\pi_{1} F_{n}\right)$, for all $n \in \mathbb{N} \cup \infty$, is called the (pure) braid group on n strands in the disk. We introduce the common notation

$$
P B_{n}:=\pi_{1} F_{n}, \quad B_{n}:=\pi_{1} C_{n} \quad \forall n \in \mathbb{N}
$$

Moreover,

$$
P B_{\infty}:=\pi_{1} F_{\infty}, \quad B_{\infty}:=\pi_{0} \mathcal{O} C_{\infty}
$$

For all $n \in \mathbb{N} \cup \infty$, the loop space $\Omega C_{n}\left(\Omega F_{n}\right)$ is called the space of (pure) braids on n strands.

Remark 1.8. Notice that, in [3] and [8], the braid group B_{n} is defined by

$$
B_{n}:=\pi_{1} F_{n}\left(\mathbb{E}^{2},\left(\tau_{i}\right)_{i \in[1, n]}\right)
$$

where \mathbb{E}^{2} is the euclidean plane, and $\left(\tau_{i}\right)_{i \in[1, n]}$ is arbitrary. As \mathbb{E}^{2} is homeomorhpic to $\stackrel{\circ}{D}^{2}$, the resulting braid groups are isomorphic. We prefer to work with configurations in $\stackrel{\circ}{D}^{2}$ rather than with configurations in \mathbb{E} because the closure of $\stackrel{\circ}{D}^{2}$ is simply D^{2}, which makes it technically easy to work with infinite configurations, and with infinite sequences. On the other hand, as the sequence
$\left(\tau_{i}\right)_{i \in \mathbb{N}}$ is in $\stackrel{\circ}{D}^{2}$ and doesn't accumulate on ∂D^{2}, one can show that, for all $n \in \mathbb{N} \cup \infty$,

$$
B_{n} \cong \pi_{1}\left(F_{n}\left(D^{2}\right),\left(\tau_{i}\right)_{i \in[1, n]}\right)
$$

However, it is preferable to work with $F_{n}\left({ }_{D}{ }^{2}\right)$ rather than with $F_{n}\left(D^{2}\right)$, because Theorem 1.12 doesn't hold when replacing $F_{n}\left(\stackrel{\circ}{D}^{2}\right)$ by $F_{n}\left(D^{2}\right)$.

To fix the notation, write $\mathcal{C}(X, Y)(\mathcal{H}(X, Y))$ for the space of continuous functions (homeomorphisms) from X to Y, where X and Y are arbitrary spaces, and endow both spaces with the compact-open topology.

Definition 1.9. For all $n \in \mathbb{N} \cup \infty$, define

$$
\begin{aligned}
H_{0} & :=\left\{f \in \mathcal{H}\left(D^{2}, D^{2}\right)|f|_{\partial D^{2}}=I d_{\partial D^{2}}\right\} \\
H_{n} & :=\left\{f \in \mathcal{H}\left(D^{2}, D^{2}\right)|f|_{\partial D^{2}}=I d_{\partial D^{2}}, f\left(\left\{\tau_{i}\right\}_{i \in[1, n]}\right)=\left\{\tau_{i}\right\}_{i \in[1, n]}\right\}, \\
P H_{n} & :=\left\{f \in \mathcal{H}\left(D^{2}, D^{2}\right)|f|_{\partial D^{2}}=I d_{\partial D^{2}}, f\left(\tau_{i}\right)=\tau_{i} \forall i \in[1, n]\right\}
\end{aligned}
$$

equipped with the subspace topology.
Note that

$$
P H_{n} \subset H_{n} \quad \forall n \in \mathbb{N} \cup \infty
$$

and, furthermore,

$$
\begin{equation*}
P H_{n} \subseteq P H_{m} \quad \forall n \geq m \tag{1.1}
\end{equation*}
$$

On the other hand, H_{n} is not a subspace of H_{m} for any $n \neq m$.
Proposition 1.10. (Birman [3, Thm 4.4]) The spaces H_{0} and H_{1} are contractible.

This is not true if an arbitrary closed surface replaces D^{2}. For example, consider the torus $(\mathbb{R} \bmod 2 \pi) \times(\mathbb{R} \bmod 2 \pi)$. The homeomorphism defined by

$$
\left(\left[t_{1}\right],\left[t_{2}\right]\right) \mapsto\left(\left[t_{1}\right],\left[-t_{2}\right]\right)
$$

is not homotopic to the identity.
Definition 1.11. For every $n \in \mathbb{N} \cup \infty$, define evaluation maps

$$
\begin{array}{rlccccc}
e v_{n}: & H_{0} & \rightarrow & F_{n} & \overline{e v}_{n}: & H_{0} & \rightarrow
\end{array} c C_{n},
$$

Theorem 1.12. (Birman [4]) For all $n \in \mathbb{N}$, the maps

$$
e v_{n}: H_{0} \rightarrow F_{n}, \quad \overline{e v}_{n}: H_{0} \rightarrow C_{n}
$$

are fiber bundles with fiber $P H_{n}$ and H_{n}, respectively.
Note that this result does not hold for $n=\infty$. See the subsection 1.1.4 for more comments.

Definition 1.13. According to Proposition 1.10, let

$$
K: H_{0} \times I \rightarrow H_{0}, \quad K(f, 0)=f, K(f, 1)=I d_{D^{2}} \forall f \in H_{0}
$$

be an arbitrary contracting homotopy of the space H_{0}. For all $n \in \mathbb{N} \cup \infty$, define maps

$$
\begin{aligned}
\varphi_{n}: P H_{n} & \rightarrow \Omega F_{n} \\
h & \mapsto e v_{n}(K(h, \cdot))=\left(K(h, \cdot)\left(\tau_{i}\right)\right)_{i \in[1, n]}, \\
\bar{\varphi}_{n}: H_{n} & \rightarrow \Omega C_{n} \\
h & \mapsto \overline{e v}_{n}(K(h, \cdot))=\left[\left(K(h, \cdot)\left(\tau_{i}\right)\right)_{i \in[1, n]}\right] .
\end{aligned}
$$

Remark 1.14. Notice that the definition of the maps φ_{n} and $\bar{\varphi}_{n}$ depends on the contracting homotopy $K: H_{0} \times I \rightarrow H_{0}$. However, by Lemma A.3, the induced maps

$$
\pi_{0} \bar{\varphi}_{n}: \pi_{0} H_{n} \rightarrow B_{n} \quad \text { and } \quad \pi_{0} \varphi_{n}: \pi_{0} P H_{n} \rightarrow P B_{n}
$$

do not depend on K.
Observe that, for all $n \in \mathbb{N} \cup \infty$, the group structure of $P H_{n}$ and H_{n} induces a group structure on $\pi_{0} P H_{n}$ and $\pi_{0} H_{n}$, respectively. In fact, these groups are called the mapping class groups of H_{n} and $P H_{n}$, resectively. Moreover, recall that the concatenation of paths " \star " induces an H-space structure on the loop spaces ΩF_{n} and ΩC_{n}.

Proposition 1.15. For all $n \in \mathbb{N} \cup \infty$, the maps

$$
\varphi_{n}: P H_{n} \rightarrow \Omega F_{n} \quad \text { and } \quad \bar{\varphi}_{n}: H_{n} \rightarrow \Omega C_{n}
$$

are maps of H-spaces, and thus induce homomorphisms

$$
\pi_{0} \varphi_{n}: \pi_{0} P H_{n} \rightarrow \pi_{1} F_{n} \quad \text { and } \quad \pi_{0} \bar{\varphi}_{n}: \pi_{0} H_{n} \rightarrow \pi_{1} C_{n}
$$

respectively.
Proof. We only prove the case $n=\infty$, whereas the case $n \in \mathbb{N}$ is proved in [1, 2]. Pick any elements $g, h \in P H_{\infty}$, and observe that

$$
\begin{aligned}
\varphi_{\infty}(g \circ h) & =\left(K(g \circ h, \cdot)\left(\tau_{i}\right)\right)_{i \in \mathbb{N}} \\
& \stackrel{*}{\simeq}\left((K(g, \cdot) \circ h) \star K(h, \cdot)\left(\tau_{i}\right)\right)_{i \in \mathbb{N}} \\
& =\left((K(g, \cdot) \circ h)\left(\tau_{i}\right)\right)_{i \in \mathbb{N}} \star\left(K(h, \cdot)\left(\tau_{i}\right)\right)_{i \in \mathbb{N}} \\
& \stackrel{* *}{=}\left(K(g, \cdot)\left(\tau_{i}\right)\right)_{i \in \mathbb{N}} \star\left(K(h, \cdot)\left(\tau_{i}\right)\right)_{i \in \mathbb{N}} \\
& =\varphi_{\infty} g \star \varphi_{\infty} h,
\end{aligned}
$$

where $(*)$ is given by Lemma A.3, because the paths $K(g \circ h, \cdot)$ and $(K(g, \cdot) \circ$ $h) \star K(g, \cdot)$ both have the same initial- and endpoint. The equality $(* *)$ comes
from the fact that $h\left(\tau_{i}\right)=\tau_{i}$ for all $i \in \mathbb{N}$. Applying π_{0} to the resulting equation shows that $\pi_{0} \varphi_{\infty}$ is a homomorphism.
On the other hand, pick elements $g, h \in H_{\infty}$, and, recalling the natural projection $p_{\infty}: F_{\infty} \rightarrow C_{\infty}$, verify that

$$
\begin{aligned}
\bar{\varphi}_{\infty}(g \circ h) & =p_{\infty} \circ\left(K(g \circ h, \cdot)\left(\tau_{i}\right)\right)_{i \in \mathbb{N}} \\
& \stackrel{*}{\simeq} p_{\infty} \circ\left((K(g, \cdot) \circ h) \star K(h, \cdot)\left(\tau_{i}\right)\right)_{i \in \mathbb{N}} \\
& =p_{\infty} \circ\left((K(g, \cdot) \circ h)\left(\tau_{i}\right)\right)_{i \in \mathbb{N}} \star p_{\infty} \circ\left(K(h, \cdot)\left(\tau_{i}\right)\right)_{i \in \mathbb{N}} \\
& \stackrel{* *}{=}\left(p_{\infty} \circ\left(K(g, \cdot)\left(\tau_{i}\right)\right)_{i \in \mathbb{N}}\right) \star\left(p_{\infty} \circ\left(K(h, \cdot)\left(\tau_{i}\right)\right)_{i \in \mathbb{N}}\right) \\
& =\bar{\varphi}_{\infty} g \star \bar{\varphi}_{\infty} h,
\end{aligned}
$$

where $(*)$ is given again by Lemma A.3, and $(* *)$ comes from the fact that, as sets, $\left\{h\left(\tau_{i}\right)\right\}_{i \in \mathbb{N}}=\left\{\tau_{i}\right\}_{i \in \mathbb{N}}$. Thus, $\pi_{0} \bar{\varphi}_{\infty}$ is a homomorphism, as required.

Theorem 1.16. (E. Artin [1, 2]) For all $n \in \mathbb{N}$, the maps φ_{n} and $\bar{\varphi}_{n}$ are weak equivalences, and therefore induce isomorphisms

$$
\pi_{0} \varphi_{n}: \pi_{0} P H_{n} \xlongequal{\rightrightarrows} \pi_{1} F_{n} ; \quad \pi_{0} \bar{\varphi}_{n}: \pi_{0} H_{n} \xlongequal{\rightrightarrows} \pi_{1} C_{n}
$$

Moreover, as

$$
\pi_{k} F_{n}=\pi_{k} C_{n}=1 \quad \forall k \geq 2, \forall n \in \mathbb{N}
$$

it follows that

$$
\pi_{k} H_{n}=\pi_{k} P H_{n}=1 \quad \forall k \geq 1, \forall n \in \mathbb{N}
$$

1.1.2 The direct system of braid groups

A presentation of the groups B_{n} for finite n was first found by E. Artin in 1925. For each $n \in \mathbb{N}$, it is given by generators

$$
\sigma_{1}, \ldots, \sigma_{n-1}
$$

and relations

$$
\begin{align*}
\sigma_{i} \sigma_{j} & \sim \sigma_{j} \sigma_{i} & \text { if }|i-j| \geq 2,1 \leq i, j \leq n-1 \tag{1.2}\\
\sigma_{i} \sigma_{i+1} \sigma_{i} & \sim \sigma_{i+1} \sigma_{i} \sigma_{i+1}, & 1 \leq i \leq n-2 . \tag{1.3}
\end{align*}
$$

The particular notation for the generators comes from the fact that, if some given element $b \in B_{n}$ is represented by a word $\sigma_{i_{1}} \cdots \sigma_{i_{k}}$, then, the representative loops $\beta \in \Omega C_{n}$, satisfying

$$
b=[\beta] \quad \text { in } \pi_{1} C_{n}=B_{n},
$$

have associated permutation $\sigma_{i_{1}} \cdots \sigma_{i_{k}}$ in Σ_{n}, where, for each $j \in[1, n-1]$, $\sigma_{j} \in \Sigma_{n}$ is given by

$$
\sigma_{j}=\binom{1, \ldots, j, j+1, \ldots, n}{1, \ldots, j+1, j, \ldots, n}
$$

Artin's group presentation of the braid group B_{n} allows us to consider B_{m} as a subgroup of B_{n} for all $m<n$, with inclusion map

$$
i_{m, n}: B_{m} \hookrightarrow B_{n}
$$

Moreover, through the isomorphisms $\left\{\pi_{0} \bar{\varphi}_{n}\right\}_{n \in \mathbb{N}}$, we can define injective maps $\left\{j_{n}\right\}_{n \in \mathbb{N}}$ such that the following diagram commutes for all $n \in \mathbb{N}$

This corresponds to an isomorphism of direct systems, yieding an isomorhpism of colimits

$$
\operatorname{colim}_{n}\left\{\pi_{0} H_{n}, j_{n}\right\} \xrightarrow{\cong} \operatorname{colim}_{n}\left\{B_{n}, i_{n, n+1}\right\} .
$$

As the maps $\left(i_{n, n+1}\right)_{n \in \mathbb{N}}$ are group inclusions, the colimit of the braid groups is actually the union of the finite braid groups, which is called the finitary infinite braid group.

$$
B_{\infty}^{f}:=\bigcup_{n \in \mathbb{N}} B_{n}=\operatorname{colim}_{n}\left\{B_{n}, i_{n, n+1}\right\} .
$$

As, in particular,

$$
B_{\infty}^{f} \neq B_{\infty}, \quad \text { and } \quad B_{\infty}^{f} \neq \pi_{1} C_{\infty}
$$

the approach of direct systems is not useful in the context of our work.

1.1.3 The inverse system of pure braid groups

Recall Artin's presentation of the finite braid groups, and consider the projection map of free groups

$$
\begin{aligned}
\widehat{r}_{n}: \mathcal{F}\left(\left\{\sigma_{1}, \ldots, \sigma_{n-1}\right\}\right) & \rightarrow \mathcal{F}\left(\left\{\sigma_{1}, \ldots, \sigma_{n-2}\right\}\right) \\
\sigma_{i} & \mapsto \begin{cases}\sigma_{i}, & i<n-1 \\
1, & i=n-1\end{cases}
\end{aligned}
$$

Factoring out Artin's relations, given by Eqs. 1.2 and 1.3 , in $\mathcal{F}\left(\left\{\sigma_{1}, \ldots, \sigma_{n-1}\right\}\right)$ and $\mathcal{F}\left(\left\{\sigma_{1}, \ldots, \sigma_{n-2}\right\}\right)$, the map \widehat{r}_{n} induces a map $r_{n}: B_{n} \rightarrow B_{n-1}$. Note that this map is not a homomorphism, as the following example shows.

In fact, within Artin's presentation of the finite braid groups, there does not seem to exist a natural way to define homomorphisms $B_{n} \rightarrow B_{n-1}$. Also, there doesn't seem to be a straightforward way to define a continuous underlying map

$$
C_{n} \rightarrow C_{n-1} \quad \text { or } \quad \Omega C_{n} \rightarrow \Omega C_{n-1}
$$

Thus, an inverse system of braid groups does not seem to exist.
Considering the pure braid groups $P B_{n} \equiv \pi_{1} F_{n}$, things work better, as we show next.

Definition 1.17. For all $n, n^{\prime} \in \mathbb{N} \cup \infty$ with $n^{\prime}>n$, introduce projection maps

$$
\begin{array}{ll}
s_{n^{\prime}, n}: F_{n^{\prime}} & \rightarrow F_{n} \\
\left(x_{i}\right)_{i \in\left[1, n^{\prime}\right]} & \mapsto\left(x_{i}\right)_{i \in[1, n]} .
\end{array}
$$

Observe that, for all $n>1$, the inclusion

$$
\iota_{n, n-1}: P H_{n} \hookrightarrow P H_{n-1}
$$

makes the diagram

$$
\begin{aligned}
& P H_{n} \xrightarrow{\iota_{n, n-1}} P H_{n-1} \\
& \varphi_{n}|\sim \sim|_{\downarrow} \sim \varphi_{n-1} \\
& \Omega F_{n} \xrightarrow{\Omega s_{n, n-1}} \Omega F_{n-1}
\end{aligned}
$$

commute for all $n \in \mathbb{N}$. All maps in this diagram are maps of H-spaces (ι_{n} is a map of topological groups, φ_{n} and φ_{n-1} are maps of H-spaces by Proposition 1.15 , and $\Omega s_{n, n-1}$ is a map of H -spaces). This allows us to conclude as follows.

Proposition 1.18. There is an isomorphism of inverse systems

Proposition 1.19. The inverse system of inclusions $\left\{P H_{n}, \iota_{n, n-1}\right\}_{n \in \mathbb{N}}$ has the limit

$$
P H_{\infty}=\lim _{n}\left\{P H_{n}, \iota_{n, n-1}\right\}_{n \in \mathbb{N}} .
$$

Proof. As the limit of an inverse system of group inclusions is just the intersection of the groups, the result is given by observing that

$$
P H_{\infty}=\bigcap_{n \in \mathbb{N}} P H_{n} .
$$

Proposition 1.20. The inverse system $\left\{F_{n}, s_{n, n-1}\right\}_{n \in \mathbb{N}}$ has the limit

$$
F_{\infty}=\lim _{n}\left\{F_{n}, s_{n, n-1}\right\}_{n \in \mathbb{N}} .
$$

Proof. Assume there is a topological space S, and maps $\eta_{n}: S \rightarrow F_{n}$, such that the following diagram commutes for all $n \in \mathbb{N}$.

Define a map

$$
\begin{aligned}
\eta: S & \rightarrow F_{\infty} \\
s & \mapsto\left(\left(\eta_{i}(s)\right)_{i}\right)_{i \in \mathbb{N}}
\end{aligned}
$$

and observe that the diagram

commutes for all $n \in \mathbb{N}$.
Corollary 1.21. The inverse system of loop spaces $\left\{\Omega F_{n}, \Omega s_{n, n-1}\right\}_{n \in \mathbb{N}}$ has the limit

$$
\Omega F_{\infty}=\lim _{n}\left\{\Omega F_{n}, \Omega s_{n, n-1}\right\}_{n \in \mathbb{N}}
$$

Proof. In the category $\mathbf{T o p}_{*}$, the functor Ω has a left adjoint, and thus, preserves limits.

Theorem 1.22. (Fadell, Neuwirth [5], also proved in [3, p. 12]) For each $n \in \mathbb{N}$, there is a fiber bundle

$$
\stackrel{\circ}{D}^{2} \backslash\left\{\tau_{i}\right\}_{i \in[1, n-1]} \hookrightarrow F_{n} \xrightarrow{s_{n, n-1}} F_{n-1}
$$

where the fiber inclusion is given by

$$
\begin{aligned}
\stackrel{\circ}{D}^{2} \backslash\left\{\tau_{i}\right\}_{i \in[1, n-1]} & \hookrightarrow F_{n} \\
x & \mapsto\left(\tau_{1}, \ldots, \tau_{n-1}, x\right) .
\end{aligned}
$$

Corollary 1.23. The following equations hold.

$$
\begin{gathered}
\pi_{1} F_{\infty}=\lim _{n}\left\{\pi_{1} F_{n}, \pi_{1} s_{n, n-1}\right\} \\
\pi_{1} \operatorname{holim}_{n} P H_{n}=\lim _{n}\left\{\pi_{1} P H_{n}, \pi_{1} \iota_{n, n-1}\right\} .
\end{gathered}
$$

Moreover, for all $k \in \mathbb{N}$,

$$
\pi_{k} F_{\infty} \cong \pi_{k-1} \operatorname{holim}_{n} P H_{n} \quad(=1 \quad \forall k \geq 2)
$$

Proof. Consider the following isomorphism of exact sequences, which follows by Proposition 1.18.

As, by Theorem 1.22 , the maps $s_{n, n-1}: F_{n} \rightarrow F_{n-1}$ are, in particular, fibrations, it follows that, by Proposition 1.20,

$$
\begin{equation*}
\operatorname{holim}_{n} F_{n}=\lim _{n} F_{n}=F_{\infty} \tag{A}
\end{equation*}
$$

Moreover, observe that, by Theorem 1.22, there is a long exact homotopy sequence

$$
\cdots \rightarrow \pi_{1}\left(\stackrel{\circ}{D}^{2} \backslash\left\{\tau_{i}\right\}_{i \in[1, n-1]}\right) \rightarrow \pi_{1} F_{n} \xrightarrow{\pi_{1} s_{n, n-1}} \pi_{1} F_{n-1} \rightarrow \pi_{0}\left(\stackrel{\circ}{D}^{2} \backslash\left\{\tau_{i}\right\}_{i \in[1, n-1]}\right)
$$

As

$$
\pi_{0}\left(\stackrel{\circ}{D}^{2} \backslash\left\{\tau_{i}\right\}_{i \in[1, n-1]}\right)=1
$$

it follows that the map

$$
\pi_{1} F_{n} \xrightarrow{\pi_{1} s_{n, n-1}} \pi_{1} F_{n-1}
$$

is surjective, whereas, for all $k \geq 2, \pi_{k} F_{n}=1$, such that, according to [12, Prop. 1.67],

$$
\lim _{n}^{1} \pi_{k} F_{n}=1 \quad \forall k \geq 2
$$

The required results can now be directly read from the above diagram, by replacing holim ${ }_{n} F_{n}$ with F_{∞} according to (A).

1.1.4 General remarks

In the proof of Theorem 1.16, we used the fact that there is a fiber bundle

$$
H_{n} \hookrightarrow H_{0} \xrightarrow{\overline{\operatorname{ev}}_{n}} C_{n}\left(\stackrel{\circ}{D}^{2}\right)
$$

to prove that the map $\pi_{0} \bar{\varphi}_{n}$ is an isomorphism. This proof method does not extend to $n \rightarrow \infty$, as the map $\overline{\mathrm{ev}}_{\infty}$ is not a fiber bundle, and is not even
surjective, and thus, in particular, does not have the path lifting property. This can be seen by the fact that, for each $h \in H_{0}$, the unordered point set

$$
\overline{\mathrm{ev}}_{\infty}(h)=\left[\left(h\left(\tau_{i}\right)\right)_{i \in \mathbb{N}}\right]
$$

contains as many accumulation points as the set $\left\{\tau_{i}\right\}_{i \in \mathbb{N}}$ does, whereas the space C_{∞} contains unordered point sets with any number of accumulation points. This makes the maps φ_{∞} and $\bar{\varphi}_{\infty}$ considerably more difficult to handle than the corresponding maps in the finite case. In particular, the map

$$
\pi_{0} \bar{\varphi}_{\infty}: \pi_{0} H_{\infty} \rightarrow \pi_{1} C_{\infty}
$$

turns out not to be an isomorphism, so that we are interested in finding its image and kernel, which is done in the subsequent sections.
The initial motivation for the study of the link between the infinite mapping class group $\pi_{0} H_{\infty}$ and the infinite braid group $\pi_{1} C_{\infty}\left(\stackrel{\circ}{D}^{2}\right)$ is its application to diffeomorphisms with a hyperbolic fixed point, a term that we briefly explain here. A fixed point x of a diffeomorphism $h \in \operatorname{Diff}\left(D^{2}, D^{2}\right)$ is called hyperbolic, if the matrix of the linearization of h at x has eigenvalues λ_{1}, λ_{2} with

$$
\left|\lambda_{1}\right|>1, \quad\left|\lambda_{2}\right|<1
$$

Then, there are two smooth one-dimensional manifolds in D^{2} that are invariant by the action of h, and that intersect at the fixed point x. This is given by the Invariant Manifold Theorem (See, e.g., [9]). On these manifolds, that are called the stable and the unstable manifold, the maps h and h^{-1}, respectively, move the points assymptotically towards the fixed point x. These manifolds cannot intersect themselves, but, in case they intersect each other transversely in some point other than in x, they necessarily meander in a complicated pattern, yielding an infinity of other intersection points that are called homoclinic intersection points, whereas the union of the stable and the unstable manifolds is called a homoclinic tangle. This subject was introduced by Poincaré, and is a field of current research, with many applications in physics and chemistry. In particular, the classification of homoclinic tangles is still an unsolved problem. The following drawing shows how a homoclinic tangle may look like.

Choose some $h \in H_{0}$, and let $x \in \stackrel{\circ}{D}^{2}$ be an arbitrary point. If the orbit

$$
\left\{h^{i}(x)\right\}_{i \in \mathbb{N}}
$$

is periodic, then, there is some finite set $\left\{\widehat{\tau}_{i}\right\}_{i \in[1, n]}$ of pairwise distinct points, such that

$$
\left\{h^{i}(x)\right\}_{i \in \mathbb{N}}=\left\{\widehat{\tau}_{i}\right\}_{i \in[1, n]}
$$

Recalling the arbitrariness of $\left(\tau_{i}\right)_{i \in[1, n]}$, we may identify $\tau_{i}:=\widehat{\tau}_{i}$ for all $i \in[1, n]$, which allows us, in particular, to consider h as an element of H_{n}. If the orbit of x is not periodic, then, similarly, h can be considered as an element of H_{∞}, and thus be evaluated by $\bar{\varphi}_{\infty}$. For technical reasons, the study of the maps $\bar{\varphi}_{\infty}$ and φ_{∞} depends on the number of accumulation points of the set $\left\{\tau_{i}\right\}_{i \in \mathbb{N}}$, so that we prove most of the subsequent results using a particularly simple choice for $\left(\tau_{i}\right)_{i \in \mathbb{N}}$, that contains a single accumulation point in D^{2}. Thereafter, our main results are generalized to any choice of $\left(\tau_{i}\right)_{i \in \mathbb{N}} \in F_{\infty}$, such that, in D^{2} the point set $\left\{\tau_{i}\right\}_{i \in \mathbb{N}}$ accumulates at a single point $\tau_{\infty} \in \stackrel{\circ}{D}^{2}$. As this is the case for any homoclinic orbit, the above described procedure allows us to study homeomorphisms in H_{0} with a hyperbolic fixed point. In particular, a codification of the image of the map $\pi_{0} \bar{\varphi}_{\infty}$ can thus be used to codify the classes in $\pi_{0} H_{\infty}$ of homeomorphisms with a hyperbolic fixed point, which might be useful for the investigation of such homeomorphisms, and for the study of homoclinic tangles themselves. Finally, note that, given any homeomorphism $h \in H_{0}$ with a hyperbolic fixed point τ_{∞}, h doesn't fix any of the points of the associated homoclinic orbit $\left\{h^{i}\left(\tau_{0}\right)\right\}_{i \in \mathbb{N}}$ (where τ_{0} is any homoclinic intersection
point). In other words, this permutation is not finitary. This motivates the fact that we consider Σ_{∞} to be the group of all permutations of \mathbb{N}, and not only the union of all finite permutation groups.

Chapter 2

Comparision between $\pi_{0} \bar{\varphi}_{\infty}$ and $\pi_{0} \varphi_{\infty}$

As we observed in the preceeding chapter, the map $\pi_{0} \varphi_{\infty}: \pi_{0} P H_{\infty} \rightarrow P B_{\infty}$ is easier to study than the map $\pi_{0} \bar{\varphi}_{\infty}: \pi_{0} H_{\infty} \rightarrow B_{\infty}$, because both $\pi_{0} P H_{\infty}$ and $P B_{\infty}$ are limits of inverse systems. In the present chapter, we develop a result that allows us to study the map $\pi_{0} \bar{\varphi}_{\infty}$ in terms of the map $\pi_{0} \varphi_{\infty}$ (see Theorem 2.19). The proof of this result requires some knowledge of the infinite permutation group Σ_{∞}. In particular, we show in section 2.1 how to decompose the elements of Σ_{∞} into infinite sequences of transpositions. Appart from the use in our particular context, these results are of interest themselves and might also be used for other purposes.
While in the preceding chapter, the basepoint $\mathcal{T}_{\infty}=\left(\tau_{i}\right)_{i \in \mathbb{N}} \in F_{\infty}$ was arbitrary, we restrict ourselves in the sequel to the case where the point set $\left\{\tau_{i}\right\}_{i \in \mathbb{N}}$ has a single accumulation point in D^{2} that lies in $\stackrel{\circ}{D}^{2}$. Moreover, a particularly simple choice for \mathcal{T}_{∞} turns out to be useful in many proofs.

Definition 2.1. For every $i \in \mathbb{N}$ write

$$
\tau_{i}=\left(-\frac{1}{i+1}, 0\right) \in \mathbb{R}^{2}
$$

and, for the remainder of this text, let the basepoint $\mathcal{T}_{\infty} \in F_{\infty}$ be

$$
\mathcal{T}_{\infty}:=\left(\tau_{i}\right)_{i \in \mathbb{N}}
$$

unless specified otherwise.

We proceed by first proving our results using the chosen canonical basepoint \mathcal{T}_{∞}, and thereafter generalizing the main results to an arbitrary choice of $\mathcal{T}_{\infty}:=$ $\left(\tau_{i}\right)_{i \in \mathbb{N}}$ where the point set $\left\{\tau_{i}\right\}_{i \in \mathbb{N}}$ contains a single accumulation point in D^{2}, that lies in $\stackrel{\circ}{D}^{2}$, as we pointed out above.
We first show a combinatorial result concerning the group Σ_{∞}, which allows us thereafter to define a continuous map $\pi_{\Sigma H}: \Sigma_{\infty} \rightarrow H_{\infty}$, that satisfies

$$
\pi_{\Sigma H}(\sigma)\left(\tau_{i}\right)=\tau_{\sigma(i)} \quad \forall i \in \mathbb{N}, \quad \forall \sigma \in \Sigma_{\infty}
$$

Using this map, we can then prove the main result of this chapter, given by Theorem 2.19.

2.1 On the infinite permutation group Σ_{∞}.

2.1.1 Decomposition of infinite permutations into sequences of transpositions.

Recall that the group structure of Σ_{n}, for all $n \in \mathbb{N} \cup \infty$ is given by

$$
\left(\sigma \sigma^{\prime}\right)(i)=\sigma^{\prime} \circ \sigma(i) \quad \forall \sigma, \sigma^{\prime} \in \Sigma_{n}, \quad \forall i \in[1, n]
$$

Definition 2.2. Given any $\sigma \in \Sigma_{\infty}$, define sets $\left\{\nu_{\sigma, i}\right\}_{i \in \mathbb{N}} \subseteq \mathbb{N}$ and $\left\{[\sigma]_{i}\right\}_{i \in \mathbb{N}} \subseteq$ Σ_{∞} inductively by

$$
\begin{array}{ccc}
\nu_{\sigma, 1}:= & \sigma^{-1}(1), & {[\sigma]_{1}:=} \\
\nu_{\sigma, n}:= & \left(1, \nu_{\sigma, 1}\right), \\
{[\sigma]_{n-1}\left(\sigma^{-1}(n)\right),} & {[\sigma]_{n}:=} & \left(n, \nu_{\sigma, n}\right) \circ[\sigma]_{n-1}
\end{array}
$$

for all $n \geq 2$, where (i, j) means the transposition of i and j.
Observe that these notations imply that, for all $\sigma \in \Sigma_{\infty}$,

$$
[\sigma]_{n}=\left(n, \nu_{\sigma, n}\right) \circ \cdots \circ\left(1, \nu_{\sigma, 1}\right) \quad \forall n \in \mathbb{N} .
$$

Lemma 2.3. Pick any $\sigma \in \Sigma_{\infty}$.

$$
\begin{array}{lll}
\text { (a) } & \nu_{\sigma, n} \geq n & \forall n \in \mathbb{N}, \\
\text { (b) } & {[\sigma]_{n}^{-1}(i)=\sigma^{-1}(i)} & \forall n \in \mathbb{N}, \forall i \in[1, n], \\
(c) & {[\sigma]_{j}(i)=\sigma(i)} & \forall i \in \mathbb{N}, \forall j \geq \sigma(i) .
\end{array}
$$

Proof. Proceding by induction, observe that the case $n=1$ is trivial, and assume that $(a),(b)$ and (c) are satisfied for some $n \geq 2$. To prove the inductive step for (a), assume that, by contradiction, $\nu_{\sigma, n}<n$. Applying $\left[\sigma_{n-1}\right]^{-1}$ to the left of the equation $[\sigma]_{n-1} \sigma^{-1}(n)=\nu_{\sigma, n}$ gives

$$
\sigma^{-1}(n)=[\sigma]_{n-1}^{-1}\left(\nu_{\sigma, n}\right) \stackrel{*}{=} \sigma^{-1}\left(\nu_{\sigma, n}\right)
$$

where $(*)$ is given by the inductive hypothesis for (b). This means that $\nu_{\sigma, n}=n$, which contradicts our assumption.
To verify (b), observe that, for all $i \in[1, n-1]$,

$$
\begin{aligned}
{[\sigma]_{n}^{-1}(i) } & =\left(\left(1, \nu_{\sigma, 1}\right) \circ \cdots \circ\left(n-1, \nu_{\sigma, n-1}\right) \circ\left(n, \nu_{\sigma, n}\right)\right)(i) \\
& \stackrel{*}{=}\left(\left(1, \nu_{\sigma, 1}\right) \circ \cdots \circ\left(n-1, \nu_{\sigma, n-1}\right)\right)(i) \\
& =[\sigma]_{n-1}^{-1}(i) \\
& \stackrel{* *}{=} \sigma^{-1}(i),
\end{aligned}
$$

where $(*)$ and $(* *)$ are given by the induction hypothesis (a) and (b), respectively. It remains to show that this also holds for $i=n$.

$$
\begin{aligned}
{[\sigma]_{n}^{-1}(n) } & =\left(\left(1, \nu_{\sigma, 1}\right) \circ \cdots \circ\left(n-1, \nu_{\sigma, n-1}\right) \circ\left(n, \nu_{\sigma, n}\right)\right)(n) \\
& =\left(\left(1, \nu_{\sigma, 1}\right) \circ \cdots \circ\left(n-1, \nu_{\sigma, n-1}\right) \circ\left(n,[\sigma]_{n-1} \sigma^{-1}(n)\right)(n)\right. \\
& \left.=\left(\left(1, \nu_{\sigma, 1}\right) \circ \cdots \circ\left(n-1, \nu_{\sigma, n-1}\right)\right)\right)\left([\sigma]_{n-1} \sigma^{-1}(n)\right) \\
& =[\sigma]_{n-1}^{-1}[\sigma]_{n-1} \sigma^{-1}(n) \\
& =\sigma^{-1}(n)
\end{aligned}
$$

To prove (c), observe that, for all $k \geq \sigma(i)$,

$$
\begin{aligned}
{[\sigma]_{k}(i) } & =\left(\left(k, \nu_{k}\right) \circ \cdots \circ\left(\sigma(i)+1, \nu_{\sigma(i)+1}\right) \circ[\sigma]_{\sigma(i)}\right)(i) \\
& \stackrel{*}{=}\left(\left(k, \nu_{k}\right) \circ \cdots \circ\left(\sigma(i)+1, \nu_{\sigma(i)+1}\right)\right)(\sigma(i)) \\
& \stackrel{* *}{=} \sigma(i),
\end{aligned}
$$

where ($*$) holds because, writing $n:=\sigma(i)$ in Eq. (b), it follows that

$$
\begin{aligned}
{[\sigma]_{\sigma(i)}^{-1}(\sigma(i)) } & =\sigma^{-1}(\sigma(i)) \\
& =i
\end{aligned}
$$

On the other hand, Eq. (**) is given by Eq. (a).

Recall that the space Σ_{∞} has the topology of pointwise convergence.
Proposition 2.4. For all $\sigma \in \Sigma_{\infty}$,

$$
\sigma=\lim _{n \rightarrow \infty}\left(\left(n, \nu_{\sigma, n}\right) \circ \cdots \circ\left(1, \nu_{\sigma, 1}\right)\right),
$$

where the integers $\left\{\nu_{\sigma, i}\right\}_{i \in \mathbb{N}}$ are defined as above.
Proof. By Eq. (c) of Lemma 2.3, we know that, for every $i \in \mathbb{N}$

$$
\sigma(i)=\left(\left(n, \nu_{\sigma, n}\right) \circ \cdots \circ\left(1, \nu_{\sigma, 1}\right)\right)(i)=:[\sigma]_{n}(i) \quad \forall n \geq \sigma(i)
$$

Thus, it follows from [Munkres, Thm. 46.1], that the sequence $\left(\left(n, \nu_{\sigma, n}\right) \circ \cdots \circ\right.$ $\left.\left(1, \nu_{\sigma, 1}\right)\right)_{n \in \mathbb{N}}$ converges to σ.

2.1.2 Identification of Σ_{∞} in \mathbb{N}^{∞}

In the last subsection, we showed how to decompose an infinite permutation into a convergent sequence of products of transpositions. We now consider the inverse problem, which is to see under what conditions a sequence of natural numbers $\left(\nu_{i}\right)_{i \in \mathbb{N}}$ gives rise to a sequence of products of transpositions

$$
\ldots\left(n, \nu_{n}\right) \circ \cdots \circ\left(1, \nu_{1}\right)
$$

that converges in \mathbb{N}^{∞}, i.e., yields a well defined element of Σ_{∞}. This allows us thereafter to find a criterion to identify the sequences $\left(\nu_{\sigma, i}\right)_{i \in \mathbb{N}}$ for all $\sigma \in \Sigma_{\infty}$.

Definition 2.5. Recalling Definition 2.2, define a map by

$$
\begin{aligned}
\text { Seq: } \Sigma_{\infty} & \rightarrow \mathbb{N}^{\infty} \\
\sigma & \mapsto\left(\nu_{\sigma, i}\right)_{i \in \mathbb{N}} .
\end{aligned}
$$

Moreover, for any given $n \geq 1$ and $\left(\nu_{i}\right)_{i \in[1, n]} \in \mathbb{N}^{n}$, introduce the notation

$$
\begin{aligned}
{\left[\sigma_{\nu}\right]_{0} } & :=\operatorname{Id}_{\mathbb{N}}, \quad \text { and } \\
{\left[\sigma_{\nu}\right]_{n} } & :=\left(n, \nu_{n}\right) \circ \cdots \circ\left(1, \nu_{1}\right) \quad \forall n \geq 1
\end{aligned}
$$

and notice that this notation is consistent with the expression for $[\sigma]_{n}$, for some given σ, that is given immediately after Definition 2.2.

Proposition 2.6. Let $\left(\nu_{i}\right)_{i \in \mathbb{N}}$ be a sequence of integers satisfying

$$
\nu_{i} \geq i \quad \forall i \in \mathbb{N}
$$

and define sequences $\left(\lambda_{i, n}\right)_{n \in \mathbb{N}}$ inductively by

$$
\lambda_{i, 1}:=i, \quad \lambda_{i, 2}:=\nu_{i}, \quad \lambda_{i, 3}:=\nu_{\nu_{i}}, \quad \lambda_{i, n}=\nu_{\lambda_{i, n-1}}
$$

for all $i \in \mathbb{N}$.
The sequence $\left(\left[\sigma_{\nu}\right]_{k}\right)_{k \in \mathbb{N}}$ converges in \mathbb{N}^{∞} if and only if, for each $i \in \mathbb{N}$, there is an $n_{i} \in \mathbb{N}$, such that either
(a) $\lambda_{i, n_{i}}=\lambda_{i, n_{i}+1}, \quad$ or
(b) $\lambda_{i, n_{i}}=\nu_{j}$, for some $j \in\left[\lambda_{i, n_{i}-1}+1, \lambda_{i, n_{i}}-1\right]$,

Remark: If, for some $i \in \mathbb{N}$, the sequence $\left(\lambda_{i, n}\right)_{n \in \mathbb{N}}$ satisfies $\lambda_{i, n}=\lambda_{i, n+1}$ for some $n \in \mathbb{N}$, then,

$$
\lambda_{i, n}=\lambda_{i, n+k} \quad \forall k \geq 1
$$

Proof. Pick any sequence of integers $\left(\nu_{i}\right)_{i \in \mathbb{N}}$, satisfying

$$
\nu_{i} \geq i \quad \forall i \in \mathbb{N}
$$

fix some $i \in \mathbb{N}$ and define the sequence $\left(\lambda_{i, n}\right)_{n \in \mathbb{N}}$ as required. Recall that, by [11, Thm. 46.1] the sequence $\left(\left[\sigma_{\nu}\right]_{n}\right)_{n \in \mathbb{N}}$ converges if and only if the sequence $\left(\left[\sigma_{\nu}\right]_{n}(i)\right)_{n \in \mathbb{N}}$ converges for all $i \in \mathbb{N}$.
Note that, as $\nu_{i} \geq i$ for all $i \in \mathbb{N}$,

$$
\lambda_{i, n+1} \geq \lambda_{i, n} \quad \forall n \in \mathbb{N} .
$$

Fix some $i \in \mathbb{N}$, and observe that

$$
\left[\sigma_{\nu}\right]_{\lambda_{i, 0}}(i)=i=\lambda_{i, 1}
$$

Assuming that $\left[\sigma_{\nu}\right]_{\lambda_{i, n}}(i)=\lambda_{i, n+1}$ for some $n \geq 0$, write

$$
\begin{aligned}
{\left[\sigma_{\nu}\right]_{\lambda_{i, n+1}}(i) } & =\left(\lambda_{i, n+1}, \nu_{\lambda_{i, n+2}}\right) \circ \cdots \circ\left(\lambda_{i, n}+1, \nu_{\lambda_{i, n}+1}\right) \circ\left[\sigma_{\nu}\right]_{\lambda_{i, n}}(i) \\
& =\left(\lambda_{i, n+1}, \nu_{\lambda_{i, n+1}}\right) \circ \cdots \circ\left(\lambda_{i, n}+1, \nu_{\lambda_{i, n}+1}\right)\left(\lambda_{i, n+1}\right),
\end{aligned}
$$

which shows that, by our assumption,

$$
\begin{equation*}
\left[\sigma_{\nu}\right]_{\lambda_{i, n+1}}(i)=\lambda_{i, n+2} \quad \Leftrightarrow \quad \lambda_{i, n+1} \neq \nu_{j} \quad \forall j \in\left[\lambda_{i, n}+1, \lambda_{i, n+1}-1\right] . \tag{A}
\end{equation*}
$$

Notice that, if $\lambda_{i, n}=\lambda_{i, n+1}$, the interval $\left[\lambda_{i, n}+1, \lambda_{i, n+1}-1\right]$ is empty. We continue our inductive procedure separately in two different cases.

First case: (b) holds. Let n be the least integer such that $\lambda_{i, n+1}=\nu_{\hat{j}}$ for some $\widehat{j} \in\left[\lambda_{i, n}+1, \lambda_{i, n+1}-1\right]$, and let j be the least among these \widehat{j}. According to (A), we know that

$$
\left[\sigma_{\nu}\right]_{\lambda_{i, n}}(i)=\lambda_{i, n+1},
$$

such that

$$
\begin{aligned}
{\left[\sigma_{\nu}\right]_{\lambda_{i, n+1}}(i) } & =\left(\lambda_{i, n+1}, \nu_{\lambda_{i, n+2}}\right) \circ \cdots \circ\left(\lambda_{i, n}+1, \nu_{\lambda_{i, n}+1}\right) \circ\left[\sigma_{\nu}\right]_{\lambda_{i, n}}(i) \\
& =\left(\lambda_{i, n+1}, \nu_{\lambda_{i, n+1}}\right) \circ \cdots \circ\left(\lambda_{i, n}+1, \nu_{\lambda_{i, n}+1}\right)\left(\lambda_{i, n+1}\right) \\
& \stackrel{*}{=}\left(\lambda_{i, n+1}, \nu_{\lambda_{i, n+1}}\right) \circ \cdots \circ\left(j, \nu_{j}\right)\left(\lambda_{i, n+1}\right) \\
& =\left(\lambda_{i, n+1}, \nu_{\lambda_{i, n+1}}\right) \circ \cdots \circ\left(j, \nu_{j}\right)\left(\nu_{j}\right) \\
& \stackrel{* *}{=} j,
\end{aligned}
$$

where $(*)$ holds by our particular choice of j, and $(* *)$ comes from the fact that $\nu_{k} \geq k$ for all $k \in \mathbb{N}$. A generalisation of the same argument shows that

$$
\left[\sigma_{\nu}\right]_{m}(i)=j \quad \forall m \geq \lambda_{i, n+1}
$$

i.e., the sequence $\left(\left[\sigma_{\nu}\right]_{n}(i)\right)_{n \in \mathbb{N}}$ converges.

Second case: (b) doesn't hold. In this case, the statement (A) admits the induction step, which means that

$$
\left[\sigma_{\nu}\right]_{\lambda_{i, n}}(i)=\lambda_{i, n+1} \quad \forall n \in \mathbb{N}
$$

Thus, the sequence $\left(\left[\sigma_{\nu}\right]_{\lambda_{i, n}}(i)\right)_{n \in \mathbb{N}}$, converges if and only if (a) holds.
Thus, $\left(\left[\sigma_{\nu}\right]_{n}\right)_{n \in \mathbb{N}}$ converges if and only if (a) or (b) holds for all $i \in \mathbb{N}$.
With a little more effort, we can prove the following stronger result.
Theorem 2.7. The map Seq: $\Sigma_{\infty} \rightarrow \mathbb{N}^{\infty}$ induces a bijection

$$
\left.\begin{array}{rl}
\text { Seq }: \Sigma_{\infty} \stackrel{ }{\cong} \quad\left\{\left(\nu_{i}\right)_{i \in \mathbb{N}} \in \mathbb{N}^{\infty} \quad \mid \quad \nu_{i} \geq i \quad \forall i \in \mathbb{N},\right. \\
\text { and } \forall i \in \mathbb{N}, \exists n_{i} \in \mathbb{N}, \text { such that }
\end{array}\right\} \begin{aligned}
& \text { (a) } \lambda_{i, n_{i}}=\lambda_{i, n_{i}+1}, \text { or } \\
& \text { (b) } \left.\lambda_{i, n_{i}}=\nu_{j}, \text { for some } j \in\left[\lambda_{i, n_{i}-1}+1, \lambda_{i, n_{i}}-1\right]\right\},
\end{aligned}
$$

where the integers $\lambda_{i, j}$ are defined as in the proposition above.
Proof. To shorten the notation, write

$$
\begin{aligned}
\mathcal{S}:= & \left\{\left(\nu_{i}\right)_{i \in \mathbb{N}} \in \mathbb{N}^{\infty} \quad \mid \quad \nu_{i} \geq i \quad \forall i \in \mathbb{N},\right. \\
& \text { and } \forall i \in \mathbb{N}, \quad \exists n_{i} \in \mathbb{N}, \text { such that }
\end{aligned}
$$

(a) $\lambda_{i, n_{i}}=\lambda_{i, n_{i}+1}$, or
(b) $\lambda_{i, n_{i}}=\nu_{j}$, for some $\left.j \in\left[\lambda_{i, n_{i}-1}+1, \lambda_{i, n_{i}}-1\right]\right\}$.

We show that the inverse of Seq is given by

$$
\begin{aligned}
\text { Per : } \mathcal{S} & \rightarrow \Sigma_{\infty} \\
\left(\nu_{i}\right)_{i \in \mathbb{N}} & \mapsto \sigma_{\nu}
\end{aligned}
$$

where σ_{ν} denotes the limit of the sequence $\left(\left[\sigma_{\nu}\right]_{n}\right)_{n \in \mathbb{N}}$, which exists by Proposition 2.6 .
Pick an element $\left(\nu_{i}\right)_{i \in \mathbb{N}} \in \mathcal{S}$. By Proposition 2.6, we know that σ_{ν} is in \mathbb{N}^{∞}. To see that σ_{ν} is actually a bijection, i.e., an element of Σ_{∞}, pick some $i \in \mathbb{N}$, and observe that, for every $k>i$,

$$
\begin{aligned}
{\left[\sigma_{\nu}\right]_{k}\left(\left[\sigma_{\nu}\right]_{i}^{-1}(i)\right) } & =\left(\left(k, \nu_{k}\right) \circ \cdots \circ\left(1, \nu_{1}\right) \circ\left(1, \nu_{1}\right) \circ \cdots \circ\left(i, \nu_{i}\right)\right)(i) \\
& =\left(\left(k, \nu_{k}\right) \circ \cdots \circ\left(i+1, \nu_{i+1}\right)\right)(i) \\
& =i .
\end{aligned}
$$

Thus, σ_{ν} is surjective. The injectivity of σ_{ν} is shown by the fact that, if

$$
\sigma_{\nu}(i)=\sigma_{\nu}(j) \text {, i.e., } \lim _{k \rightarrow \infty}\left[\sigma_{\nu}\right]_{k}(i)=\lim _{k \rightarrow \infty}\left[\sigma_{\nu}\right]_{k}(j)
$$

for some $i, j \in \mathbb{N}$, then,

$$
\left[\sigma_{\nu}\right]_{k}(i)=\left[\sigma_{\nu}\right]_{k}(j),
$$

for some $k \in \mathbb{N}$, which means that $i=j$, because $\left[\sigma_{\nu}\right]_{k}$ is a bijection. This shows that Per : $\mathcal{S} \rightarrow \Sigma_{\infty}$ is well defined.
It remains to show that Seq and Per are mutually inverse. By Proposition 2.4, it follows directly that

$$
\operatorname{Per} \circ \operatorname{Seq}(\sigma)=\sigma \quad \forall \sigma \in \Sigma_{\infty}
$$

To see that Seq $\circ \operatorname{Per}=\operatorname{Id}_{\mathcal{S}}$, pick any $\left(\nu_{i}\right)_{i \in \mathbb{N}} \in \mathcal{S}$, and write $\sigma_{\nu}:=\operatorname{Per}\left(\left(\nu_{i}\right)_{i \in \mathbb{N}}\right)$. Proceeding by induction, observe that

$$
\left(\operatorname{Seq}\left(\sigma_{\nu}\right)\right)_{1}=\sigma_{\nu}^{-1}(1) \stackrel{*}{=}\left[\sigma_{\nu}\right]_{1}^{-1}(1)=\left(1, \nu_{1}\right)(1)=\nu_{1},
$$

where $(*)$ is given by Lemma 2.3. Now, assume that

$$
\left(\operatorname{Seq}\left(\sigma_{\nu}\right)\right)_{i}=\nu_{i} \quad \forall i \in[1, n-1] .
$$

Then,

$$
\begin{aligned}
\left(\operatorname{Seq}\left(\sigma_{\nu}\right)\right)_{n} & =\left[\sigma_{\nu}\right]_{n-1}\left(\sigma_{\nu}^{-1}(n)\right) \\
& \stackrel{*}{=}\left[\sigma_{\nu}\right]_{n-1}\left[\sigma_{\nu}\right]_{n}^{-1}(n) \\
& =\left(n-1, \nu_{n-1}\right) \circ \cdots \circ\left(1, \nu_{1}\right) \circ\left(1, \nu_{1}\right) \circ \cdots \circ\left(n-1, \nu_{n-1}\right) \circ\left(n, \nu_{n}\right)(n) \\
& =\left(n, \nu_{n}\right)(n) \\
& =\nu_{n}
\end{aligned}
$$

where $(*)$ is given by Lemma 2.3. Thus,

$$
\operatorname{Seq} \circ \operatorname{Per}\left(\left(\nu_{i}\right)_{i \in \mathbb{N}}\right)=\operatorname{Seq}\left(\sigma_{\nu}\right)=\left(\nu_{i}\right)_{i \in \mathbb{N}},
$$

which finishes the proof.
Definition 2.8. For all $i \in \mathbb{N}$, write

$$
\varrho_{i}:=\left\|\tau_{i}-\tau_{\infty}\right\| .
$$

Proposition 2.9. By our choice of the basepoint $\mathcal{T}_{\infty}=\left(\tau_{i}\right)_{i \in \mathbb{N}}$,

$$
\varrho_{i} \geq \varrho_{i+1} \quad \forall i \in \mathbb{N}, \quad \lim _{i \rightarrow \infty} \varrho_{i}=0, \quad \text { and } \quad \tau_{j} \in B\left(\tau_{\infty}, \varrho_{i}\right) \forall j \geq i
$$

where $B(x, r)$ is the open ball, centered at x, with radius r.
Definition 2.10. Define a map

$$
\pi_{H \Sigma}: H_{\infty} \rightarrow \Sigma_{\infty}, \quad g \mapsto \sigma_{g}
$$

where σ_{g} is the unique element of Σ_{∞}, that satisfies

$$
g\left(\tau_{i}\right)=\tau_{\sigma_{g}(i)} \quad \forall i \in \mathbb{N} .
$$

Lemma 2.11. For each pair of integers $i \leq j$, there is an element $\widehat{f}_{i, j} \in H_{\infty}$, satisfying the following conditions.

$$
\widehat{f}_{i, j}\left(\tau_{k}\right)= \begin{cases}\tau_{j}, & \text { if } k=i \\ \tau_{i}, & \text { if } k=j \\ \tau_{k}, & \text { else },\end{cases}
$$

i.e.,

$$
\pi_{H \Sigma}\left(\widehat{f}_{i, j}\right)=(i, j)
$$

and

$$
\left.\widehat{f}_{i, j}\right|_{D^{2} \backslash B\left(\tau_{\infty}, 2 \varrho_{i}\right)}=I d
$$

Proof. The proof of this result involves Dehn twists. For a detailed introduction to this construction, see [13]. Throughout the proof, we identify S^{1} as follows

$$
S^{1}:=\left\{z \in \mathcal{C}^{2} \mid\|z\|=1\right\}
$$

Pick any pair of integers (i, j) with $i \leq j$, let

$$
a_{i, j}: S^{1} \rightarrow B\left(\tau_{\infty}, 2 \varrho_{i}\right) \backslash\left\{\tau_{k}\right\}_{k \geq N_{i}, k \neq i, j}
$$

be a simple closed curve where $N_{i}:=\min _{k \in \mathbb{N}}\left\{\tau_{k} \in B\left(\tau_{\infty}, \varrho_{i}\right)\right\}$. Knowing that neither τ_{i} nor τ_{j} is an accumulation point of the set $\left\{\tau_{k}\right\}_{k \in \mathbb{N}}$, we can assume that, moreover,

$$
a_{i, j}(1)=\tau_{i}, \quad a_{i, j}(-1)=\tau_{j} .
$$

Furthermore, let

$$
v_{i, j}: S^{1} \times I \rightarrow B\left(\tau_{\infty}, 2 \varrho_{i}\right) \backslash\left\{\tau_{k}\right\}_{k \geq N_{i}}
$$

be a tubular neighbourhood of $a_{i, j}$, i.e., an oriented embedding satisfying

$$
v_{i, j}(z, 1 / 2)=a_{i, j}(z) \quad \forall z \in S^{1}
$$

Then, the map $\widehat{f}_{i, j}: D^{2} \rightarrow D^{2}$ defined by

$$
\left(\widehat{f}_{i, j} \circ v_{i, j}\right)(z, t):=v_{i, j}\left(e^{2 i \pi t} z, t\right) \quad \forall(z, t) \in S^{1} \times I
$$

and

$$
\widehat{f}_{i, j}(x)=x \quad \forall x \in D^{2} \backslash \operatorname{Im} v_{i, j}
$$

satisfies the required properties. Note that, under this definition, $\widehat{f}_{i, j}$ is called a Dehn twist along $a_{i, j}$.

Theorem 2.12. The map $\pi_{H \Sigma}: H_{\infty} \rightarrow \Sigma_{\infty}$ has a right inverse

$$
\begin{aligned}
\pi_{\Sigma H}: \Sigma_{\infty} & \rightarrow H_{\infty} \\
\sigma & \mapsto f_{\sigma}
\end{aligned}
$$

i.e.,

$$
\pi_{H \Sigma} \circ \pi_{\Sigma H}=\operatorname{Id}_{\Sigma_{\infty}}
$$

In other words, for every element $\sigma \in \Sigma_{\infty}$, there is a map $f_{\sigma} \in H_{\infty}$, such that

$$
f_{\sigma}\left(\tau_{i}\right)=\tau_{\sigma(i)} \quad \forall i \in \mathbb{N} .
$$

Proof. Pick any $\sigma \in \Sigma_{\infty}$. To define a homeomorphism $f_{\sigma} \in H_{\infty}$ with $\pi_{H \Sigma}\left(f_{\sigma}\right)=$ σ, we make use of Proposition 2.4 that allows us to decompose σ into a sequence of transpositions, i.e.,

$$
\sigma=\lim _{n \rightarrow \infty}[\sigma]_{n}
$$

where

$$
[\sigma]_{n}:=\left(n, \nu_{\sigma, n}\right) \circ \cdots \circ\left(2, \nu_{\sigma, 2}\right) \circ\left(1, \nu_{\sigma, 1}\right),
$$

and $\left(\nu_{\sigma, n}\right)_{n \in \mathbb{N}}=\operatorname{Seq}(\sigma)$. Recall that, by Lemma $2.3(a)$,

$$
\nu_{\sigma, n} \geq n \quad \forall n \in \mathbb{N},
$$

and let $\left(\widehat{f}_{n, \nu_{\sigma, n}}\right)_{n \in \mathbb{N}}$ be elements of $P H_{\infty}$ as given by Lemma 2.11. Thus, writing

$$
f_{[\sigma]_{n}}:=\widehat{f}_{n, \nu_{\sigma, n}} \circ \cdots \circ \widehat{f}_{2, \nu_{\sigma, 2}} \circ \widehat{f}_{1, \nu_{\sigma, 1}}
$$

for all $n \in \mathbb{N}$, it follows in particular that

$$
\begin{equation*}
f_{[\sigma]_{n}}\left(\tau_{i}\right)=\tau_{[\sigma]_{n}(i)} \quad \forall i \in \mathbb{N} \tag{A}
\end{equation*}
$$

We show that the limit

$$
f_{\sigma}:=\lim _{n \rightarrow \infty} f_{[\sigma]_{n}}
$$

exists, that it is in H_{∞}, and that $\pi_{H \Sigma}\left(f_{\sigma}\right)=\sigma$, which finishes the proof. To prove the existence of the limit $f_{\sigma}:=\lim _{n \rightarrow \infty} f_{[\sigma]_{n}}$, pick any $x \in D^{2}$, and observe that, for every $n \in \mathbb{N}$,

$$
\begin{aligned}
\left\|f_{[\sigma]_{n+1}}(x)-f_{[\sigma]_{n}}(x)\right\| & =\left\|\widehat{f}_{n+1, \nu_{\sigma, n+1}}\left(f_{[\sigma]_{n}}(x)\right)-f_{[\sigma]_{n}}(x)\right\| \\
& \leq 4 \varrho_{n+1} .
\end{aligned}
$$

As $\lim _{i \rightarrow \infty} \varrho_{i}=0$, it follows that $\left(f_{[\sigma]_{n}}(x)\right)_{n \in \mathbb{N}}$ is a Cauchy sequence. By the completeness of the unit disk, the pointwise convergence of the sequence $\left(f_{[\sigma]_{n}}(x)\right)_{n \in \mathbb{N}}$ follows, which allows us to define a map

$$
\begin{aligned}
f_{\sigma}: D^{2} & \rightarrow D^{2} \\
x & \mapsto \lim _{n \rightarrow \infty} f_{[\sigma]_{n}}(x) .
\end{aligned}
$$

We show that, moreover, the sequence $\left(f_{[\sigma]_{n}}(x)\right)_{n \in \mathbb{N}}$ converges uniformly. Observe that, for all $x \in D^{2}$, and for all integers n, n^{\prime} with $n^{\prime} \geq n$,

$$
\begin{aligned}
\left\|f_{[\sigma]_{n^{\prime}}}(x)-f_{[\sigma]_{n}}(x)\right\| & =\|\left(\widehat{f}_{n^{\prime}, \nu_{\sigma, n^{\prime}}} \circ \cdots \circ \widehat{f}_{n, \nu_{\sigma, n}} \circ f_{[\sigma]_{n}}(x)-f_{[\sigma]_{n}}(x) \|\right. \\
& \stackrel{*}{<} \sup _{k \in\left[n+1, n^{\prime}\right]}\left\{4 \varrho_{k}\right\} \\
& =4 \varrho_{n+1},
\end{aligned}
$$

where $(*)$ is given by Lemma 2.11. Thus, for any $n \in \mathbb{N}$,

$$
\left\|f_{\sigma}(x)-f_{[\sigma]_{n}}(x)\right\| \leq 4 \varrho_{n+1} \quad \forall x \in D^{2} .
$$

As $\lim _{n \rightarrow \infty} \varrho_{n}=0$, this means that, for every $\varepsilon>0$, there is a $N_{\varepsilon} \in \mathbb{N}$, such that

$$
\left\|f_{\sigma}(x)-f_{[\sigma]_{n}}(x)\right\|<\varepsilon \quad \forall x \in D^{2}, \quad \forall n \geq N_{\varepsilon}
$$

which means that the sequence $\left(f_{[\sigma]_{n}}\right)_{n \in \mathbb{N}}$ converges uniformly to f_{σ}. Thus, by [11, Thms 46.5, 46.7, 46.8], it follows that f_{σ} is continuous. Similarly, one can show that the sequence $\left(f_{[\sigma]_{n}}^{-1}\right)_{n \in \mathbb{N}}$ converges uniformly to f_{σ}^{-1}, which thus is continuous. Thus f_{σ} is a homeomorphism. Finally, observing that

$$
f_{[\sigma]_{n}} \in H_{\infty} \quad \forall n \in \mathbb{N}
$$

shows that $f_{\sigma} \in H_{\infty}$.
To show that $\pi_{H \Sigma}\left(f_{\sigma}\right)=\sigma$, observe that, by Lemma 2.3,

$$
[\sigma]_{n}(i)=\sigma(i) \quad \forall n \geq \sigma(i) \quad \forall i \in \mathbb{N}
$$

such that, by (A),

$$
f_{[\sigma]_{n}}\left(\tau_{i}\right)=\tau_{\sigma(i)} \quad \forall n \geq \sigma(i) \quad \forall i \in \mathbb{N} .
$$

Thus,

$$
f_{\sigma}\left(\tau_{i}\right)=\lim _{n \rightarrow \infty}\left(f_{[\sigma]_{n}}\left(\tau_{i}\right)\right)=\tau_{\sigma(i)} \quad \forall i \in \mathbb{N},
$$

which means that

$$
\pi_{H \Sigma}\left(f_{\sigma}\right)=\sigma
$$

Theorem 2.13. The maps $\pi_{\Sigma H}, \pi_{H \Sigma}$ are continuous.
Proof. As $\mathcal{H}\left(D^{2}, D^{2}\right)$ has the uniform topology, which is metric, its subspace H_{∞} is metric too. Thus, by [Munkres, Thm. 21.3], the map $\pi_{H \Sigma}$ is continuous if (and only if) it maps convergent sequences to convergent sequences. Pick any convergent sequence $\left(g_{i}\right)_{i \in \mathbb{N}}$ in H_{∞}, such that

$$
g:=\lim _{i \rightarrow \infty} g_{i}
$$

and write

$$
\sigma:=\pi_{H \Sigma}(g), \quad \sigma_{i}:=\pi_{H \Sigma}\left(g_{i}\right) \quad \forall i \in \mathbb{N} .
$$

Observe that, for all $n \in \mathbb{N}$,

$$
\begin{equation*}
\lim _{i \rightarrow \infty} \tau_{\sigma_{i}(n)}=\lim _{i \rightarrow \infty} g_{i}\left(\tau_{n}\right)=g\left(\tau_{n}\right)=\tau_{\sigma(n)} \tag{A}
\end{equation*}
$$

By assumption, the sequence $\left(\tau_{i}\right)_{i \in \mathbb{N}}$ converges to τ_{∞} in such a way that for all $i \in \mathbb{N}, \tau_{i}$ is not an accumulation point of the set $\left\{\tau_{i}\right\}_{i \in \mathbb{N}}$. Thus, it follows from (A) that for every $n \in \mathbb{N}$, there is a $N_{n} \in \mathbb{N}$, such that

$$
\tau_{\sigma_{i}(n)}=\tau_{\sigma(n)} \quad \forall i \geq N_{n}
$$

i.e.,

$$
\sigma_{i}(n)=\sigma(n) \quad \forall i \geq N_{n} .
$$

This proves that $\pi_{H \Sigma}$ maps convergent sequences to convergent sequences, because Σ_{∞} has the topology of pointwise convergence.
Note that in Appendix, Lemma A.4, we prove that Σ_{∞} is metric. Thus, again, the map $\pi_{\Sigma H}$ is continuous if it maps convergent sequences to convergent sequences.
Let $\left(\sigma_{i}\right)_{i \in \mathbb{N}}$ be an arbitrary sequence in Σ_{∞} that converges to an element $\sigma \in \Sigma_{\infty}$. We need to show that

$$
\lim _{i \rightarrow \infty} \pi_{\Sigma H}\left(\sigma_{i}\right)=\pi_{\Sigma H}(\sigma)
$$

As, given any $n \in \mathbb{N}$,

$$
\lim _{i \rightarrow \infty} \sigma_{i}(n)=\sigma(n)
$$

there is an integer N_{n}^{+}, such that

$$
\sigma_{i}(n)=\sigma(n) \quad \forall i \geq N_{n}^{+} .
$$

Also, for every $n \in \mathbb{N}$, there is a $N_{n}^{-} \in \mathbb{N}$, such that

$$
\sigma_{i}^{-1}(n)=\sigma^{-1}(n) \quad \forall i \geq N_{n}^{-} .
$$

By definition,

$$
\nu_{\sigma_{i}, n}:=\left[\sigma_{i}\right]_{n-1} \sigma_{i}^{-1}(n) \quad \forall n \in \mathbb{N} .
$$

It follows that, for every $n \in \mathbb{N}$,

$$
\begin{equation*}
\nu_{\sigma_{i}, n}=\nu_{\sigma, n} \quad \forall i \geq \max \left\{N_{\sigma^{-1}(n)}^{+}, N_{n}^{-}\right\} \tag{B}
\end{equation*}
$$

Recall the definition

$$
\pi_{\Sigma H}(\sigma)=f_{\sigma}:=\lim _{n \rightarrow \infty} f_{[\sigma]_{n}}
$$

in the proof of Theorem 2.12, where

$$
f_{[\sigma]_{n}}:=\widehat{f}_{n, \nu_{\sigma, n}} \circ \cdots \circ \widehat{f}_{2, \nu_{\sigma, 2}} \circ \widehat{f}_{1, \nu_{\sigma, 1}}
$$

for all $\sigma \in \Sigma_{\infty}$ and all $n \in \mathbb{N}$. We need to show that

$$
\lim _{i \rightarrow \infty} f_{\sigma_{i}}=f_{\sigma}
$$

Recall that, by [11, Thms 46.7, 46.8], the compact-open topology on H_{0} coincides with the topology of uniform convergence. Thus, for every $\varepsilon>0$, we need to find an integer N_{ε}, such that

$$
\left\|f_{\sigma_{i}}(x)-f_{\sigma}(x)\right\|<\varepsilon \quad \forall x \in D^{2} \forall i \geq N_{\varepsilon}
$$

Pick some $\varepsilon>0$, and fix an integer n_{0}, such that

$$
\begin{equation*}
8 \varrho_{n_{0}+1}<\varepsilon \tag{C}
\end{equation*}
$$

Write

$$
N_{\varepsilon}:=\max _{n \leq n_{0}}\left\{\max \left\{N_{\sigma^{-1}(n)}^{+}, N_{n}^{-}\right\}\right\},
$$

and, by (B), observe that

$$
\left[\sigma_{i}\right]_{n_{0}}=[\sigma]_{n_{0}} \quad \forall i \geq N_{\varepsilon},
$$

and therefore

$$
\begin{equation*}
f_{\left[\sigma_{i}\right]_{n_{0}}}=f_{[\sigma]_{n_{0}}} \quad \forall i \geq N_{\varepsilon} . \tag{D}
\end{equation*}
$$

Also, we showed in the proof of Theorem 2.12, that, for any $\widetilde{\sigma} \in \Sigma_{\infty}$,

$$
\left\|f_{\widetilde{\sigma}}(x)-f_{[\widetilde{\sigma}]_{n}}(x)\right\| \leq 4 \varrho_{n+1} \quad \forall x \in D^{2}, \quad \forall n \in \mathbb{N} .
$$

Thus, in particular,

$$
\begin{equation*}
\left\|f_{\sigma}(x)-f_{[\sigma]_{n}}(x)\right\| \leq 4 \varrho_{n+1}, \quad \forall x \in D^{2} \quad \forall n \in \mathbb{N} \tag{E}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|f_{\sigma_{i}}(x)-f_{\left[\sigma_{i}\right]_{n}}(x)\right\| \leq 4 \varrho_{n+1}, \quad \forall x \in D^{2} \quad \forall n \in \mathbb{N} \tag{F}
\end{equation*}
$$

Finally, for all $i \geq N_{\varepsilon}$,

$$
\begin{aligned}
&\left\|f_{\sigma_{i}}(x)-f_{\sigma}(x)\right\| \leq\left\|f_{\sigma_{i}}(x)-f_{\left[\sigma_{i}\right]_{n_{0}}}(x)\right\|+\left\|f_{\left[\sigma_{i}\right]_{n_{0}}}(x)-f_{\sigma}(x)\right\| \\
& \stackrel{D}{=}\left\|f_{\sigma_{i}}(x)-f_{\left[\sigma_{i}\right]_{n_{0}}}(x)\right\|+\left\|f_{[\sigma]_{n_{0}}}(x)-f_{\sigma}(x)\right\| \\
& \stackrel{E, F}{\leq} 8 \varrho_{n_{0}+1} \\
& \stackrel{C}{<} \\
& \varepsilon, \quad \forall x \in D^{2},
\end{aligned}
$$

which finishes the proof.
Finally, there is another map that will be useful below.
Definition 2.14. Consider the set $\mathcal{T}_{\infty} \Sigma_{\infty}:=\left\{\mathcal{T}_{\infty} \sigma \mid \sigma \in \Sigma_{\infty}\right\}$ as a subspace of F_{∞}, and define a map

$$
\begin{aligned}
\pi_{T \Sigma}: \mathcal{T}_{\infty} \Sigma_{\infty} & \rightarrow \Sigma_{\infty} \\
\mathcal{T}_{\infty} \sigma & \mapsto \sigma
\end{aligned}
$$

Proposition 2.15. The map $\pi_{T \Sigma}$ is continuous.
Proof. By [11, p. 280, Exercise 1], the product topology on $\prod_{i \in \mathbb{N}} \stackrel{\circ}{D}^{2}$ is metric. As the space F_{∞} is topologized as a subspace of $\prod_{i \in \mathbb{N}} \stackrel{\circ}{D}^{2}$, it is metric too. As, thus, $\mathcal{T}_{\infty} \Sigma_{\infty} \subset F_{\infty}$ is itself metric, the proposition follows from the fact that $\pi_{T \Sigma}$ maps convergent sequences to convergent sequences. (see [11, Thm. 21.3]).

2.2 Reducing the map $\pi_{0} \varphi_{\infty}$ to $\pi_{0} \bar{\varphi}_{\infty}$

In this section, we develop a commutative diagram, given in Theorem 2.19, that shows how the maps $\pi_{0} \bar{\varphi}_{\infty}$ and $\pi_{0} \varphi_{\infty}$ are related to each other.

Recall the space

$$
\mathcal{O} C_{\infty}:=\mathcal{C}\left((I, \dot{I}),\left(F_{\infty}, \mathcal{T} \Sigma_{\infty}\right)\right) / \Sigma_{\infty}
$$

and observe that

$$
\operatorname{Im}\left(\bar{\varphi}_{\infty}\right) \subseteq \mathcal{O} C_{\infty}
$$

Thus, we use the same notation for $\bar{\varphi}_{\infty}: H_{\infty} \rightarrow \Omega C_{\infty}$ and its corestriction $\bar{\varphi}_{\infty}: H_{\infty} \rightarrow \mathcal{O} C_{\infty}$.

Proposition 2.16.

$$
\pi_{0} \Sigma_{\infty}=\Sigma_{\infty}
$$

Proof. Pick a path $\gamma: I \rightarrow \Sigma_{\infty}$, and define, for all $i \in \mathbb{N}$,

$$
\left.\begin{array}{rl}
\gamma_{i}: I & \rightarrow \mathbb{N} \\
t & \mapsto
\end{array}\right) \gamma(t)(i) .
$$

By [11, Thm. 21.3], we know that γ maps convergent sequences to convergent sequences, which thus is also the case for the maps γ_{i}. As I is metric, it follows by the same theorem that γ_{i} is continuous for all $i \in \mathbb{N}$. As \mathbb{N} is discrete, this shows that γ_{i} is constant for all $i \in \mathbb{N}$, which implies that γ is also constant.

Proposition 2.17. There is a continuous bijection

$$
\begin{aligned}
& \xi: \Sigma_{\infty} \times P H_{\infty} \xrightarrow{\cong} H_{\infty} \\
&(\sigma, h) \mapsto \\
& \pi_{\Sigma H}(\sigma) \circ h .
\end{aligned}
$$

Proof. The continuity is given by Theorem 2.13. Moreover, we know by Proposition 2.12 that there is a split short exact sequence

$$
1 \longrightarrow P H_{\infty} \longrightarrow H_{\infty} \stackrel{k^{\pi_{\Sigma H}}-}{\pi_{H \Sigma}} \Sigma_{\infty} \longrightarrow 1,
$$

which proves the result (see [14, Prop 10.5]).
Proposition 2.18. The map

$$
\left.\begin{array}{rl}
\zeta: \Sigma_{\infty} \times \Omega F_{\infty} & \longrightarrow \mathcal{O} C_{\infty} \\
(\sigma, \beta) & \mapsto
\end{array} p_{\infty} \circ\left(K\left(\pi_{\Sigma H}(\sigma), \cdot\right)\left(\tau_{i}\right)\right)_{i \in \mathbb{N}} \star \beta(\cdot)\right)
$$

induces a bijection

$$
\pi_{0} \zeta: \Sigma_{\infty} \times \pi_{1} F_{\infty} \xrightarrow{\cong} \pi_{0} \mathcal{O} C_{\infty}
$$

Proof. Notice that Proposition 1.7 allows us to define a map

$$
\begin{aligned}
l: \mathcal{O} C_{\infty} & \rightarrow \mathcal{C}\left((I, 0,1),\left(F_{\infty}, \mathcal{T}_{\infty} \Sigma_{\infty}, \mathcal{T}_{\infty}\right)\right) \\
\bar{\beta} & \mapsto \beta
\end{aligned}
$$

where β is the unique lifting of $\bar{\beta}$ into $\mathcal{C}\left((I, 0,1),\left(F_{\infty}, \mathcal{T}_{\infty} \Sigma_{\infty}, \mathcal{T}_{\infty}\right)\right)$ that satisfies $p_{\infty} \circ \beta=\bar{\beta}$. To see that this map is continuous, pick an open subset $U \subset$ $\mathcal{C}\left((I, 0,1),\left(F_{\infty}, \mathcal{T}_{\infty} \Sigma_{\infty}, \mathcal{T}_{\infty}\right)\right)$, and observe that $l^{-1}(U)$ is open in $\mathcal{O} C_{\infty}$, because, writing

$$
q: \mathcal{C}\left((I, \dot{I}),\left(F_{\infty}, \mathcal{T}_{\infty} \Sigma_{\infty}\right)\right) \rightarrow \mathcal{O} C_{\infty}
$$

for the quotient map, the preimage

$$
q^{-1}\left(l^{-1}(U)\right)=\bigcup_{\sigma \in \Sigma_{\infty}}\left(\pi_{\Sigma H}(\sigma)\right)(U)
$$

is open in $\mathcal{C}\left((I, \dot{I}),\left(F_{\infty}, \mathcal{T}_{\infty} \Sigma_{\infty}\right)\right)$.
Introduce maps

$$
\begin{aligned}
\phi_{p}: \mathcal{O} C_{\infty} & \rightarrow \Sigma_{\infty} \\
\gamma & \mapsto \pi_{T \Sigma}(l([\gamma])(0))
\end{aligned}
$$

and

$$
\begin{aligned}
\phi_{l}: \Sigma_{\infty} & \rightarrow \mathcal{O} C_{\infty} \\
\sigma & \mapsto p_{\infty} \circ\left(K\left(\pi_{\Sigma H}(\sigma), \cdot\right)\left(\tau_{i}\right)\right)_{i \in \mathbb{N}}
\end{aligned}
$$

and observe that they are continuous, because all maps of which they are composed are continuous. (The continuity of the maps $\pi_{T \Sigma}$ and $\pi_{\Sigma H}$ is given by Theorem 2.13 and Proposition 2.15, respectively).
To verify that $\pi_{0} \zeta$ is a bijection, observe first that, for any $\sigma \in \Sigma_{\infty}$

$$
\begin{aligned}
\phi_{p} \circ \phi_{l}(\sigma) & =\pi_{T \Sigma}\left(l \circ p_{\infty}\left(K\left(\pi_{\Sigma H}(\sigma), \cdot\right)\left(\tau_{i}\right)\right)(0)\right) \\
& =\pi_{T \Sigma}\left(K\left(\pi_{\Sigma H}(\sigma), 0\right)\left(\tau_{i}\right)\right)_{i \in \mathbb{N}} \\
& =\pi_{T \Sigma}\left(\pi_{\Sigma H}(\sigma)\right) \\
& =\sigma .
\end{aligned}
$$

In particular, there is thus a split exact sequence of sets

$$
1 \longrightarrow \Omega F_{\infty} \xrightarrow{\Omega p_{\infty}} \mathcal{O} C_{\infty}^{\kappa} \stackrel{\stackrel{\phi_{l}}{-}}{\phi_{p}} \Sigma_{\infty} \longrightarrow 1
$$

Recalling that $\pi_{0} \Sigma_{\infty}=\Sigma_{\infty}$, the result follows directly by considering the induced split exact sequence

$$
1 \longrightarrow \pi_{1} F_{\infty} \xrightarrow{\pi_{1} p_{\infty}} \pi_{0} \mathcal{O} C_{\infty}^{\stackrel{\pi_{0} \phi_{l}}{L}} \xrightarrow[\pi_{0} \phi_{p}]{\longrightarrow} \Sigma_{\infty} \longrightarrow 1
$$

because

$$
\pi_{0} \zeta(\sigma, b)=\pi_{0} \phi_{l}(\sigma) \cdot b
$$

(see [14, Prop 10.5]).
Theorem 2.19. There is a commutative diagram of sets

Proof. First, we show that the following diagram of topological spaces commutes up to homotopy.

Pick any $(\sigma, h) \in \Sigma_{\infty} \times P H_{\infty}$ and verify.

$$
\begin{aligned}
\bar{\varphi}_{\infty} \circ \xi(\sigma, h) & =\bar{\varphi}_{\infty}\left(f_{\sigma} \circ h\right) \\
& \stackrel{*}{\simeq} \bar{\varphi}_{\infty}\left(f_{\sigma}\right) \star \bar{\varphi}_{\infty}(h) \\
& =p_{\infty} \circ\left(K\left(f_{\sigma}, \cdot\right)\left(\tau_{i}\right)\right)_{i \in \mathbb{N}} \star p_{\infty} \circ\left(K(h, \cdot)\left(\tau_{i}\right)\right)_{i \in \mathbb{N}} \\
& =p_{\infty} \circ\left(K\left(f_{\sigma}, \cdot\right)\left(\tau_{i}\right)_{i \in \mathbb{N}} \star K(h, \cdot)\left(\tau_{i}\right)_{i \in \mathbb{N}}\right) \\
& =\zeta\left(\sigma, K(h, \cdot)\left(\tau_{i}\right)_{i \in \mathbb{N}}\right) \\
& =\zeta \circ\left(\operatorname{Id} \times \varphi_{\infty}\right)(\sigma, h),
\end{aligned}
$$

where $(*)$ is given by the fact that $\pi_{0} \bar{\varphi}_{\infty}$ is a homomorphism by Proposition 1.15. Thus, applying π_{0} yields the required commutative diagram, because $\pi_{0} \Sigma_{\infty}=$ Σ_{∞} by Proposition 2.16, and because the vertical maps are isomorphisms by Propositions 2.17 and 2.18.

This is a very useful result, because it reduces the question of the image and the kernel of $\pi_{0} \bar{\varphi}_{\infty}: \pi_{0} H_{\infty} \rightarrow \pi_{0} \mathcal{O} C_{\infty}$ to the analogous question for the map $\pi_{0} \varphi_{\infty}: \pi_{0} P H_{\infty} \rightarrow \pi_{1} F_{\infty}$.

2.2.1 Conclusions

For finite $n \in \mathbb{N}$, the pure braid group $P B_{n}$ is just a subgroup of the (full) braid group B_{n}, and in our context, the properties of the $P B_{n}$ are analogous to those of the B_{n}. In the infinite case, the full braid group $\pi_{1} C_{\infty}$ is more difficult to handle than the group of pure braids $\pi_{1} F_{\infty}$, because there is an inverse system of pure braid groups $P B_{n}$ with $\pi_{1} F_{\infty}$ as its (category theoretic) limit, whereas the full
braid groups B_{n} do not fit together as an inverse system. To solve the question of the image and the kernel of the homomorphism $\pi_{0} \bar{\varphi}_{\infty}: \pi_{0} H_{\infty} \rightarrow \pi_{1} C_{\infty}$, Theorem 2.19 allows us to bypass this difficulty, however, because the image and the kernel of $\pi_{0} \bar{\varphi}_{\infty}: \pi_{0} H_{\infty} \rightarrow \pi_{1} C_{\infty}$ are given directly in terms of the image and the kernel of $\pi_{0} \varphi_{\infty}: \pi_{0} P H_{\infty} \rightarrow \pi_{1} F_{\infty}$.

Chapter 3

The injectivity of the maps $\pi_{0} \varphi_{\infty}$ and $\pi_{0} \bar{\varphi}_{\infty}$

3.1 Definition of a suitable contracting homotopy of the space H_{0}

Definition 3.1. Write $t_{1}:=0$, and, for every $i \geq 2$,

$$
t_{i}:=\sum_{k=1}^{i-1} \frac{1}{2^{k}} .
$$

In particular, observe that $\lim _{i \rightarrow \infty} t_{i}=1$. Recall that, by Definition 2.8,

$$
\varrho_{i}:=\left\|\tau_{i}-\tau_{\infty}\right\| .
$$

Lemma 3.2. There is a continuous map

$$
\kappa:[0,1) \rightarrow \mathcal{C}\left(D^{2}, D^{2}\right)
$$

with the following properties.
(i) $\quad \kappa(t): D^{2} \rightarrow D^{2}$ is a homeomorphism onto its image $\forall t \in[0,1)$.
(ii) $\quad \operatorname{Im} \kappa\left(t_{i}\right)=\overline{B\left(\tau_{\infty}, \varrho_{i-1}\right)}, \quad \forall i \in \mathbb{N}$,
(iii) $\operatorname{Im} \kappa(t) \subset B\left(\tau_{\infty}, \varrho_{i-1}\right) \quad \forall t>t_{i}, \forall i \in \mathbb{N}$,
(iv) $\quad \kappa(t)(x)=x \quad \forall x \in \overline{B\left(\tau_{\infty}, \varrho_{i}\right)}, \forall t \in\left[0, t_{i}\right], \forall i \in \mathbb{N}$.
(v) $\quad \kappa(0)=I d_{D^{2}}$

Moreover, κ contracts D^{2} along radii, so that, for each $t \in I$, there is an $r \in[0,1]$ with

$$
\operatorname{Im} \kappa(t)=\overline{B\left(\tau_{\infty}, r\right)}, \quad \text { and } \quad \partial \operatorname{Im} \kappa(t)=\partial \overline{B\left(\tau_{\infty}, r\right)}
$$

Proof. For each $i \in \mathbb{N}$, define a map

$$
R_{i}: I \rightarrow \mathcal{C}\left([0,1],\left[0, \varrho_{i-1}\right]\right)
$$

by

$$
R_{1}(t)(r)= \begin{cases}\varrho_{2}+\left(r-\varrho_{2}\right)\left(1-t \frac{1-\varrho_{1}}{1-\varrho_{2}}\right) & , \text { if } r \in\left[\varrho_{2}, 1\right] \\ r & , \text { if } r \in\left[0, \varrho_{2}\right],\end{cases}
$$

for $i=1$, and

$$
R_{i}(t)(r)= \begin{cases}\varrho_{i+1}+\left(R_{i-1}(1)(r)-\varrho_{i+1}\right)\left(1-t \frac{\varrho_{i-1}-\varrho_{i}}{\varrho_{i-1}-\varrho_{i+1}}\right) & , \text { if } r \in\left[\varrho_{i+1}, 1\right] \\ r & , \text { if } r \in\left[0, \varrho_{i+1}\right]\end{cases}
$$

for $i \geq 2$, and for all $t \in I$. Note that for each $t \in I, R_{1}(t)$ is well defined at ϱ_{2}, because

$$
R_{1}(t)\left(\varrho_{2}\right)=\varrho_{2}+\left(\varrho_{2}-\varrho_{2}\right)\left(1-t \frac{1-\varrho_{1}}{1-\varrho_{2}}\right)=\varrho_{2} \quad \forall t \in I
$$

Also, for all $i \geq 2, t \in I, R_{i}(t)$ is well defined at ϱ_{i+1}, because, as $R_{i-1}(1)\left(\varrho_{i+1}\right)=$ ϱ_{i+1},

$$
R_{i}(t)\left(\varrho_{i+1}\right)=\varrho_{i+1}+\left(\varrho_{i+1}-\varrho_{i+1}\right)\left(1-t \frac{\varrho_{i-1}-\varrho_{i}}{\varrho_{i-1}-\varrho_{i+1}}\right)=\varrho_{i+1}
$$

For each $i \in \mathbb{N}$, the map R_{i} has the following properties:
(A) $\operatorname{Im} R_{i}(1)=\left[0, \varrho_{i}\right]$,
(B) $\operatorname{Im} R_{i}(t) \subset\left[0, \varrho_{i-1}\right) \quad \forall t \in(0,1]$,
(C) $\quad R_{i}(t)(r)=r \quad \forall r \in\left[0, \varrho_{i+1}\right], \quad \forall t \in I$.
(D) $\quad R_{i}(1)=R_{i+1}(0)$

The properties (C) and (D) follow directly from the definition of R_{i}. To verify the properties (A) and (B), observe that

$$
R_{i}(0)(0)=0,
$$

and, by induction,

$$
\begin{aligned}
& R_{i}(1)(1)=\varrho_{i} \text { and } \\
& R_{i}(0)(1)=\varrho_{i-1},
\end{aligned}
$$

and that, moreover, $R_{i}(t)(r)$ is strictly increasing in r and strictly decreasing in t.

Now, define a continuous map

$$
\widetilde{\kappa}:[0,1) \rightarrow \mathcal{C}\left(I \times \mathbb{R}_{\bmod 2 \pi}, I \times \mathbb{R}_{\bmod 2 \pi}\right)
$$

piecewise by

$$
\begin{aligned}
\left.\widetilde{\kappa}\right|_{\left[t_{i}, t_{i+1}\right]}:\left[t_{i}, t_{i+1}\right] & \rightarrow \mathcal{C}\left(I \times \mathbb{R}_{\bmod 2 \pi}, I \times \mathbb{R}_{\bmod 2 \pi}\right) \\
t & \mapsto\left((r, \phi) \mapsto\left(R_{i}\left(\frac{t-t_{i}}{t_{i+1}-t_{i}}\right)(r), \phi\right)\right)
\end{aligned}
$$

for all $i \in \mathbb{N}$. This map is well defined, because, at each t_{i},

$$
\begin{aligned}
\left.\widetilde{\kappa}\right|_{\left[t_{i-1}, t_{i}\right]}\left(t_{i}\right)(r, \phi) & =\left(R_{i-1}\left(\frac{t_{i}-t_{i-1}}{t_{i}-t_{i-1}}\right)(r), \phi\right) \\
& =\left(R_{i-1}(1)(r), \phi\right) \\
& \stackrel{(D)}{=}\left(R_{i}(0)(r), \phi\right) \\
& =\left.\widetilde{\kappa}\right|_{\left[t_{i}, t_{i+1}\right]}\left(t_{i}\right)(r, \phi)
\end{aligned}
$$

for all $(r, \phi) \in I \times \mathbb{R}_{\bmod 2 \pi}$. Identifying $I \times \mathbb{R}_{\bmod 2 \pi}$ with the polar coordinates of D^{2} turns $\widetilde{\kappa}$ into a map

$$
\kappa:[0,1) \rightarrow \mathcal{C}\left(D^{2}, D^{2}\right)
$$

For each $i \in \mathbb{N}$, the restricted map $\left.\kappa\right|_{\left[t_{i}, t_{i+1}\right]}$ is represented as follows, where the grey zones are mapped by the identity.

As, for each $i \in \mathbb{N}$, the map $R_{i}(t)$ is open and injective for all $t \in I$, it follows that $\kappa(t)$ too is open and injective for all $t \in[0,1)$. Moreover, by the definition of κ, the properties $(i i),(i i i)$ and (iv) follow from $(A),(B)$ and (C), respectively, and (v) follows from the fact that, at $t_{1} \equiv 0,\left.\widetilde{\kappa}\right|_{\left[t_{1}, t_{2}\right]}(0)=\operatorname{Id}_{I \times \mathbb{R}_{\text {mod } 2 \pi}}$

Theorem 3.3. There is a contracting homotopy $K: H_{0} \times I \rightarrow H_{0}$, i.e., for all $f \in H_{0}$,

$$
K(f, 0)=f, \quad K(f, 1)=I d_{D^{2}}
$$

with the following properties. For all $h \in P H_{\infty}$ and $i \in \mathbb{N}$,
(a) $K\left(h, t_{i}\right) \in P H_{\infty}$,
(b) $K(h, t)\left(\tau_{i}\right)=\tau_{i} \quad \forall t \in\left[0, t_{i}\right] \cup\left[t_{i+1}, 1\right]$,

For each $h \in H_{0}$ that satisfies $h\left(\tau_{\infty}\right)=\tau_{\infty}$, in particular for all $h \in H_{\infty}$,

$$
\text { (c) } K(h, t)\left(\tau_{\infty}\right)=\tau_{\infty} \quad \forall t \in I
$$

Furthermore, for all $f \in H_{0}$ and $i \in \mathbb{N}$,

$$
\text { (d) } K(f, t)(x)=x \quad \forall x \in D^{2} \backslash B\left(\tau_{\infty}, \varrho_{i}\right), \quad \forall t \geq t_{i+1}
$$

$$
\text { (e) } K(f, t)(x) \in B\left(\tau_{\infty}, \varrho_{i}\right) \quad \forall x \in B\left(\tau_{\infty}, \varrho_{i}\right), \quad \forall t \geq t_{i+1}
$$

Finally,

$$
(f) K\left(I d_{D^{2}}, t\right)=I d_{D^{2}} \quad \forall t \in I
$$

Proof. Recalling the injectivity of $\kappa(t): D^{2} \rightarrow D^{2}$ for all $t \in I$, define a map

$$
\begin{aligned}
K: H_{0} \times I & \rightarrow H_{0} \\
(h, t) & \mapsto\left(x \mapsto\left\{\begin{array}{ll}
\left(\kappa(t) \circ h \circ \kappa^{-1}(t)\right)(x) & , \forall x \in \operatorname{Im} \kappa(t), \quad \forall t \in[0,1) \\
x & , \text { else }
\end{array}\right) .\right.
\end{aligned}
$$

We show that K is a contraction of H_{0} with the required properties. First, we verify that K is well defined.
Observe that, for any $(h, t) \in H_{0} \times[0,1)$, and $x \in \partial \operatorname{Im} \kappa(t)$,

$$
\begin{aligned}
K(h, t)(x) & =\left(\kappa(t) \circ h \circ \kappa^{-1}(t)\right)(x) \\
& =\kappa(t)\left(h\left(\kappa^{-1}(t)(x)\right)\right) \\
& \stackrel{*}{=} \kappa(t)\left(\kappa^{-1}(t)\right)(x) \\
& =x
\end{aligned}
$$

where $(*)$ is given by the fact that $\kappa^{-1}(t)(x) \in \partial D^{2}$, and because h fixes ∂D^{2} pointwise. To see that, moreover, $\operatorname{Im} K \subset H_{0}$, pick some arbitrary $(h, t) \in$ $H_{0} \times I$. As $\kappa(t): D^{2} \rightarrow D^{2}$ is open, $K(h, t): D^{2} \rightarrow D^{2}$ is continuous, and, observing that $K(h, t)$ is mutually inverse to $K\left(h^{-1}, t\right)$, it follows that $K(h, t) \in$ $\mathcal{H}\left(D^{2}, D^{2}\right)$. Moreover, by the definition of K, we know that

$$
\left.K(h, t)\right|_{\partial D^{2}}=\operatorname{Id}_{\partial D^{2}}
$$

i.e.,

$$
K(h, t) \in H_{0}
$$

To verify that $K: H_{0} \times I \rightarrow H_{0}$ is a continuous map, notice that $H_{0} \times I$ is metric, as, by [11, Thms. 46.7/46.8] H_{0} has the uniform topology, which in particular is metric. Thus, by [11, Thm. 21.3], we can verify the continuity of K by showing that, for any convergent sequence $\left(h_{i}, s_{i}\right)_{i \in \mathbb{N}}$ with

$$
\lim _{i \rightarrow \infty}\left(h_{i}, s_{i}\right)=:(h, s),
$$

the sequence $\left\{K\left(h_{i}, s_{i}\right)\right\}_{i \in \mathbb{N}}$ converges to $K(h, s)$ for $i \rightarrow \infty$.
Observe that K is continuous at all $(h, s) \in H_{0} \times[0,1)$, and pick a sequence $\left(h_{i}, s_{i}\right)_{i \in \mathbb{N}}$ that converges to $(h, 1)$ for some $h \in H_{0}$. We need to prove that

$$
\lim _{i \rightarrow \infty} K\left(h_{i}, s_{i}\right)=\operatorname{Id}_{D^{2}}
$$

Recalling Definition 3.1, note that, by Lemma 3.2 (ii),

$$
\left\|x-K\left(h, t_{i}\right)(x)\right\|<2\left\|\tau_{\infty}-\tau_{i-1}\right\| \quad \forall x \in D^{2} \quad \forall h \in H_{0}
$$

Write

$$
k_{i}:=\max \left\{j \in \mathbb{N} \mid t_{j}<s_{i}\right\},
$$

and observe that

$$
\lim _{i \rightarrow \infty} k_{i}=\infty
$$

because $\lim _{i \rightarrow \infty} s_{i}=1$. Thus, it follows by Lemma 3.2 (iii) that

$$
\left\|x-K\left(h_{i}, s_{i}\right)(x)\right\|<2\left\|\tau_{\infty}-\tau_{k_{i}}\right\| \quad \forall x \in D^{2} \quad \forall i \in \mathbb{N} .
$$

In particular, as $\lim _{i \rightarrow \infty} \tau_{i}=\tau_{\infty}$, there is, for every $\varepsilon>0$, an integer N_{ε} such that

$$
\left\|x-K\left(h_{i}, s_{i}\right)(x)\right\|<\varepsilon \quad \forall x \in D^{2} \quad \forall i \geq N_{\varepsilon}
$$

This proves that the sequence $\left(K\left(h_{i}, s_{i}\right)\right)_{i \in \mathbb{N}}$ converges uniformly to $\mathrm{Id}_{D^{2}}$ which means that, as H_{0} has the uniform topology,

$$
\lim _{i \rightarrow \infty} K\left(h_{i}, s_{i}\right)=\operatorname{Id}_{D^{2}} .
$$

Thus,

$$
K \in \mathcal{C}\left(H_{0} \times I, H_{0}\right)
$$

Moreover, it is easy to see by the definition of K that, for every $h \in H_{0}$,

$$
K(h, 0)=h, \quad K(h, 1)=\operatorname{Id}_{D^{2}}
$$

Fix some $h \in P H_{\infty}$ and $i \in \mathbb{N}$, and observe as follows that the homotopy K has the required properties.

Verification of (a). It follows from part (ii) of Lemma 3.2 that, for all $j \in$ $[1, i-2], \tau_{j} \notin \operatorname{Im} \kappa\left(t_{i}\right)$, and thus, by the definition of K,

$$
K\left(h, t_{i}\right)\left(\tau_{j}\right)=\tau_{j} \quad \forall j \in[1, i-2] .
$$

Moreover, $\tau_{i-1} \in \partial \operatorname{Im} \kappa\left(t_{i}\right)$, which, by the definition of K, means that

$$
K\left(h, t_{i}\right)\left(\tau_{i-1}\right)=\tau_{i-1}
$$

Finally, for every $j \geq i, \tau_{j} \in \operatorname{Im} \kappa\left(t_{i}\right)$, which means that

$$
\begin{aligned}
K\left(h, t_{i}\right)\left(\tau_{j}\right) & =\left(\kappa\left(t_{i}\right) \circ h \circ \kappa\left(t_{i}\right)^{-1}\right)\left(\tau_{j}\right) \\
& \stackrel{*}{=} \kappa\left(t_{i}\right)\left(h\left(\tau_{j}\right)\right) \\
& \stackrel{* *}{=} \kappa\left(t_{i}\right)\left(\tau_{j}\right) \\
& \stackrel{*}{=} \tau_{j},
\end{aligned}
$$

where $(*)$ follows from part (iv) of Lemma 3.2, and ($* *$) is given by the fact that $h \in P H_{\infty}$.

Verification of (b). By part (iii) of Lemma 3.2, we know that, for each $j \in[1, i-2]$,

$$
\tau_{j} \notin \operatorname{Im} \kappa(t) \quad \forall t \in\left[t_{i}, t_{i+1}\right]
$$

and so, by the definition of K,

$$
K(h, t)\left(\tau_{j}\right)=\tau_{j} \quad \forall j \in[1, i-2], \quad \forall t \in\left[t_{i}, t_{i+1}\right] .
$$

Again, $\tau_{i-1} \in \partial \operatorname{Im} \kappa\left(t_{i}\right)$, which means that, by the definition of K,

$$
K(h, t)\left(\tau_{i-1}\right)=\tau_{i-1} \quad \forall t \in\left[t_{i}, t_{i+1}\right]
$$

Furthermore, for each $j \geq i+1, \tau_{j} \in \overline{B\left(\tau_{\infty}, \varrho_{i+1}\right)}$, such that, by part (iv) of Lemma 3.2,

$$
\kappa(t)\left(\tau_{j}\right)=\tau_{j} \quad \forall t \in\left[0, t_{i+1}\right]
$$

Thus, by the definition of K, for all $t \in\left[t_{i}, t_{i+1}\right]$,

$$
\begin{aligned}
K(h, t)\left(\tau_{j}\right) & =\left(\kappa(t) \circ h \circ \kappa(t)^{-1}\right)\left(\tau_{j}\right) \\
& =\kappa\left(t_{i}\right)\left(h\left(\tau_{j}\right)\right) \\
& \stackrel{*}{=} \kappa\left(t_{i}\right)\left(\tau_{j}\right) \\
& =\tau_{j},
\end{aligned}
$$

where $(*)$ is given by the fact that $h \in P H_{\infty}$.
Verification of (c). Observe that, by part (iv) of Lemma 3.2,

$$
\kappa(t)\left(\tau_{\infty}\right)=\tau_{\infty} \quad \forall t \in I
$$

As, moreover, $h\left(\tau_{\infty}\right)=\tau_{\infty}$, it follows by the definition of $K: H_{0} \times I \rightarrow H_{0}$ that

$$
K(h, t)\left(\tau_{\infty}\right)=\tau_{\infty} \quad \forall t \in I
$$

Finally, we check the properties (d) and (e) for a given $f \in H_{0}$.
Verification of (d). Pick some $\widehat{t} \geq t_{i+1}$ and $\widehat{x} \in D^{2} \backslash B\left(\tau_{\infty}, \varrho_{i}\right)$. If $\widehat{t}=t_{i+1}$, then, by part (ii) of Lemma 3.2,

$$
\widehat{x} \notin \operatorname{Int} \operatorname{Im} \kappa(\widehat{t})
$$

and, if $\widehat{t}>t_{i+1}$, then, this same fact holds by part (iii) of Lemma 3.2. Thus, by the definition of K,

$$
K(f, \widehat{t})(\widehat{x})=\widehat{x} .
$$

Verification of (e). Pick any $f \in H_{0}, \widehat{t} \geq t_{i+1}$ and $\widehat{x} \in B\left(\tau_{\infty}, \varrho_{i}\right)$. If $\widehat{x} \notin \operatorname{Im} \kappa(\widehat{t})$, then, by the definition of K,

$$
K(f, \widehat{t})(\widehat{x})=\widehat{x} \quad \in B\left(\tau_{\infty}, \varrho_{i}\right)
$$

On the other hand, if $\widehat{x} \in \operatorname{Im} \kappa(\hat{t})$, then, as

$$
K(f, \widehat{t})(\widehat{x})=\left(\kappa(\widehat{t}) \circ f \circ \kappa(\widehat{t})^{-1}\right)(\widehat{x}) \quad \in \operatorname{Im} \kappa(\widehat{t})
$$

it follows that

$$
K(f, \widehat{t})(\widehat{x}) \in B\left(\tau_{\infty}, \varrho_{i}\right)
$$

which is given by part ($i i$) of Lemma 3.2 if $\hat{t}=t_{i+1}$, and by part (ii) of Lemma 3.2 if $t>t_{i+1}$. Thus, resuming these facts,

$$
K(f, t)(x) \in B\left(\tau_{\infty}, \varrho_{i}\right) \quad \forall f \in H_{0}, \quad \forall x \in B\left(\tau_{\infty}, \varrho_{i}\right), \quad \forall t \geq t_{i+1}
$$

Finally, the property (f) follow directly from the definition of K.

3.2 Proof of the injectivity of $\pi_{0} \varphi_{\infty}$

Given two elements $f, g \in P H_{\infty}$ such that

$$
\pi_{0} \varphi_{\infty}[f]=\pi_{0} \varphi_{\infty}[g]
$$

we need to prove that there is a path in $P H_{\infty}$ from f to g. Our construction of such a path, which is given in the proof of Theorem 3.7, requires some preliminary work.
Henceforth, the map

$$
\begin{aligned}
\varphi_{\infty}: P H_{\infty} & \rightarrow \Omega F_{\infty} \\
h & \mapsto\left(K(h, \cdot)\left(\tau_{i}\right)\right)_{i \in \mathbb{N}}
\end{aligned}
$$

is assumed to be given in terms of the homotopy K defined in Theorem 3.3. For all $x \in D^{2}$, let $p_{x}: I \rightarrow D^{2}$ be the constant path at x.

Lemma 3.4. Assume that

$$
\pi_{0} \varphi_{\infty}[h]=1
$$

for some $h \in P H_{\infty}$. Then,

$$
\left[\left(K(h, \cdot)\left(\tau_{i}\right)\right)_{i \in[1, n] \cup \infty}\right]=\left[\left(p_{\tau_{i}}\right)_{i \in[1, n] \cup \infty}\right],
$$

for all $n \in \mathbb{N}$.
Proof. Fix some $n \in \mathbb{N}$, and write

$$
\left(\beta_{i}\right)_{i \in \mathbb{N}}:=\left(K(h, \cdot)\left(\tau_{i}\right)\right)_{i \in \mathbb{N}}, \quad \text { and } \quad \beta_{\infty}:=K(h, \cdot)\left(\tau_{\infty}\right)
$$

By point (c) of Theorem $3.3, \beta_{\infty}=p_{\tau_{\infty}}$, which implies that $\beta_{i}(t) \neq \tau_{\infty}$ for all $t \in I$ and all $i \in \mathbb{N}$. Thus, by the tube lemma, there is an $\varepsilon>0$ that satisfies

$$
\begin{equation*}
\beta_{i}(t) \notin B\left(\tau_{\infty}, 4 \varepsilon\right) \quad \forall t \in I, \forall i \in[1, n] . \tag{A}
\end{equation*}
$$

Notice that, by the continuity of the map $K(h, \cdot): I \times D^{2} \rightarrow D^{2}$, the subset

$$
K(h, \cdot)^{-1}\left(B\left(\tau_{\infty}, \varepsilon\right)\right) \subset I \times D^{2}
$$

is an open neighbourhood of $I \times\left\{\tau_{\infty}\right\}$, such that, by the tube lemma, there is an $r>0$ that satisfies

$$
I \times \overline{B\left(\tau_{\infty}, r\right)} \subset K(h, \cdot)^{-1}\left(B\left(\tau_{\infty}, \varepsilon\right)\right)
$$

i.e.,

$$
\begin{equation*}
K(h, t)\left(\overline{B\left(\tau_{\infty}, r\right)}\right) \subset B\left(\tau_{\infty}, \varepsilon\right) \quad \forall t \in I \tag{B}
\end{equation*}
$$

Pick some $N \in \mathbb{N}$ with

$$
\tau_{N} \in B\left(\tau_{\infty}, r\right)
$$

and observe that, by (B),

$$
\beta_{N}(t) \in B\left(\tau_{\infty}, \varepsilon\right) \quad \forall t \in I
$$

Thus, in particular,

$$
B\left(\beta_{N}(t), 2 \varepsilon\right) \subset B\left(\tau_{\infty}, 3 \varepsilon\right) \quad \forall t \in I
$$

which means that, by (A),

$$
\begin{equation*}
\left\|\beta_{i}(t)-\beta_{N}(t)\right\| \geq 2 \varepsilon \quad \forall i \in[1, n], \forall t \in I \tag{C}
\end{equation*}
$$

As $\pi_{0} \varphi_{\infty}[h]=1$, there is a path $\widehat{\Lambda}:=\left(\widehat{\Lambda}_{i}\right)_{i \in \mathbb{N}}: I \rightarrow \Omega\left(F_{\infty}, \mathcal{T}_{\infty}\right)$ with

$$
\widehat{\Lambda}_{i}(0)=\beta_{i}, \quad \widehat{\Lambda}_{i}(1)=p_{\tau_{i}} \quad \forall i \in \mathbb{N}
$$

Using this path, we construct a path Λ in the following way. Let

$$
\begin{equation*}
\xi: D^{2} \backslash 0 \xrightarrow{\cong} D^{2} \backslash B(0, \varepsilon) \tag{E}
\end{equation*}
$$

be a homeomorphism that satisfies

$$
\begin{equation*}
\left.\xi\right|_{D^{2} \backslash B(0,2 \varepsilon)}=\mathrm{Id}, \tag{F}
\end{equation*}
$$

Clearly, such a homeomorphism exists. For the sequel of this proof, keep in mind that

$$
\tau_{\infty}=0 \quad\left(=(0,0) \in \mathbb{R}^{2}\right)
$$

Define a path $\Lambda:=\left(\Lambda_{i}\right)_{i \in[1, n] \cup \infty}: I \rightarrow \Omega\left(F_{n+1}\left(\overline{B\left(\tau_{\infty}, 2\right)}\right),\left(\tau_{1}, \ldots, \tau_{n}, \tau_{\infty}\right)\right)$ by

$$
\begin{aligned}
\Lambda_{i}(s)(t) & :=\widehat{\Lambda}_{N}(s)(t)+\xi\left(\widehat{\Lambda}_{i}(s)(t)-\widehat{\Lambda}_{N}(s)(t)\right) \quad \forall i \in[1, n] \\
\Lambda_{\infty}(s)(t) & :=\widehat{\Lambda}_{N}(s)(t)+(1-s)\left(\tau_{\infty}-\beta_{N}(t)\right)+s\left(\tau_{\infty}-\tau_{N}\right)
\end{aligned}
$$

for all $s, t \in I$. First, we verify that $\Lambda(s)$ is a well defined loop in $\left(F_{n+1}\left(\overline{B\left(\tau_{\infty}, 2\right)}\right),\left(\tau_{1}, \ldots, \tau_{n}, \tau_{\infty}\right)\right)$ for all $s \in I$. Clearly,

$$
\Lambda_{i}(s)(t) \in \overline{B\left(\tau_{\infty}, 2\right)} \quad \forall t \in I, \forall s \in I
$$

Fix some $s \in I$, and observe that, for all $i \in[1, n]$,
$\Lambda_{i}(s)(0)=\Lambda_{i}(s)(1)=\tau_{N}+\xi\left(\tau_{i}-\tau_{N}\right) \stackrel{*}{=} \tau_{N}+\tau_{i}-\tau_{N}=\tau_{i} \quad \forall s \in I, \forall i \in[1, n]$,
where $(*)$ is given by (F), because, by (C),

$$
\left\|\tau_{i}-\tau_{N}\right\|>2 \varepsilon \quad \forall i \in[1, n]
$$

Also,
$\Lambda_{\infty}(s)(0)=\Lambda_{\infty}(s)(1)=\tau_{N}+(1-s)\left(\tau_{\infty}-\tau_{N}\right)+s\left(\tau_{\infty}-\tau_{N}\right)=\tau_{\infty} \quad \forall s \in I$.
Thus, $\Lambda(s)(0)=\Lambda(s)(1)=\left(\tau_{1}, \ldots, \tau_{n}, \tau_{N}, \tau_{\infty}\right)$. Furthermore, it is easy to see that, for every $s, t \in I$, the points $\left.\left(\Lambda_{i}(s)(t)\right)\right)_{i \in[1, n]}$ are pairwise distinct, i.e.,

$$
\left.\left(\Lambda_{i}(s)(t)\right)\right)_{i \in[1, n]} \quad \in \quad F_{n}\left(\overline{B\left(\tau_{\infty}, 2\right)}\right) \quad \forall s, t \in I
$$

By (E), we know that $\operatorname{Im} \xi \cap B(0, \varepsilon)=\varnothing$, which shows that, in particular,

$$
\left\|\xi\left(\widehat{\Lambda}_{i}(s)(t)-\widehat{\Lambda}_{N}(s)(t)\right)\right\|>\varepsilon \quad \forall s, t \in I, \forall i \in[1, n]
$$

Thus, by the definition of the Λ_{i} 's,

$$
\begin{equation*}
\Lambda_{i}(s)(t) \notin B\left(\widehat{\Lambda}_{N}(s)(t), \varepsilon\right) \quad \forall s, t \in I, \forall i \in[1, n] . \tag{G}
\end{equation*}
$$

Now, observe that, by (B), and by the choice of τ_{N},

$$
\left\|\tau_{\infty}-\tau_{N}\right\|<\varepsilon, \text { and }\left\|\tau_{\infty}-\beta_{N}(t)\right\|<\varepsilon \quad \forall t \in I
$$

which means that

$$
\Lambda_{\infty}(s)(t):=\widehat{\Lambda}_{N}(s)(t)+(1-s)\left(\tau_{\infty}-\beta_{N}(t)\right)+s\left(\tau_{\infty}-\tau_{N}\right) \in B\left(\widehat{\Lambda}_{N}(s)(t), \varepsilon\right) \quad \forall s, t \in I
$$

Thus, by (G),

$$
\Lambda_{\infty}(s)(t) \cap\left\{\Lambda_{i}(s)(t)\right\}_{i \in[1, n]}=\varnothing \quad \forall s, t \in I
$$

i.e., $\Lambda(s)$ is a well defined loop in $\left(F_{n+1}\left(\overline{B\left(\tau_{\infty}, 2\right)}\right),\left(\tau_{1}, \ldots, \tau_{n}, \tau_{\infty}\right)\right)$.

Notice that, as I is compact, there is, for all $i \in[1, n]$, a $\widehat{t_{i}} \in I$, such that

$$
\left\|\beta_{i}(t)-\tau_{\infty}\right\| \leq\left\|\beta_{i}\left(\widehat{t_{i}}\right)-\tau_{\infty}\right\| \quad \forall i \in[1, n], \forall t \in I
$$

by the extreme value theorem [11, Thm. 27.4]. As

$$
\beta_{i}(t) \in \stackrel{\circ}{D}^{2} \quad \forall t \in I, \forall i \in[1, n]
$$

there is some \widehat{r} with

$$
\max _{i \in[1, n]}\left\|\beta_{i}\left(\widehat{t}_{i}\right)-\tau_{\infty}\right\|<\widehat{r}<1
$$

such that, in particular,

$$
\sup _{t \in I, i \in[1, n]}\left\|\beta_{i}(t)-\tau_{\infty}\right\|<\widetilde{r}<1
$$

Let $\chi: \overline{B\left(\tau_{\infty}, 2\right)} \rightarrow D^{2}$ be a homeomorphism such that

$$
\left.\chi\right|_{\overline{B\left(\tau_{\infty}, \widetilde{r}\right)}}=\mathrm{Id} .
$$

Clearly, $\chi \circ \Lambda$ is a well defined path in $\left(F_{n+1},\left(\tau_{1}, \ldots, \tau_{n}, \tau_{\infty}\right)\right)$. We show that, furthermore, $\chi \circ \Lambda(0)=\left(\beta_{i}\right)_{i \in[1, n] \cup \infty}$ and $\chi \circ \Lambda(1)=\left(p_{\tau_{i}}\right)_{i \in[1, n] \cup \infty}$, which proves the lemma.
For all $i \in[1, n]$,

$$
\begin{aligned}
\chi \circ \Lambda_{i}(0)(t) & =\chi \circ\left(\widehat{\Lambda}_{N}(0)(t)+\xi\left(\widehat{\Lambda}_{i}(0)(t)-\widehat{\Lambda}_{N}(0)(t)\right)\right) \\
& =\chi \circ\left(\beta_{N}(t)+\xi\left(\beta_{i}(t)-\beta_{N}(t)\right)\right) \\
& \stackrel{C, F}{=} \chi \circ\left(\beta_{N}(t)+\beta_{i}(t)-\beta_{N}(t)\right) \\
& \stackrel{H}{=} \beta_{i}(t) .
\end{aligned}
$$

On the other hand, again for all $i \in[1, n]$,

$$
\begin{aligned}
\chi \circ \Lambda_{i}(1)(t) & =\chi \circ\left(\widehat{\Lambda}_{N}(1)(t)+\xi\left(\widehat{\Lambda}_{i}(1)(t)-\widehat{\Lambda}_{N}(1)(t)\right)\right) \\
& =\chi \circ\left(\tau_{N}+\xi\left(\tau_{i}-\tau_{N}\right)\right) \\
& \stackrel{C, F}{=} \quad \chi \circ\left(\tau_{N}+\tau_{i}-\tau_{N}\right) \\
& \stackrel{H}{=} \tau_{i} .
\end{aligned}
$$

Finally,

$$
\begin{aligned}
\chi \circ \Lambda_{\infty}(0)(t) & =\chi \circ\left(\widehat{\Lambda}_{N}(0)(t)+\tau_{\infty}-\beta_{N}(t)\right) \\
& =\chi \circ\left(\beta_{N}(t)+\tau_{\infty}-\beta_{N}(t)\right) \\
& \stackrel{H}{=} \tau_{\infty},
\end{aligned}
$$

and

$$
\begin{aligned}
\chi \circ \Lambda_{\infty}(1)(t) & =\chi \circ\left(\widehat{\Lambda}_{N}(1)(t)+\tau_{\infty}-\tau_{N}\right) \\
& =\chi \circ\left(\tau_{N}+\tau_{\infty}-\tau_{N}\right) \\
& \stackrel{H}{=} \tau_{\infty} .
\end{aligned}
$$

Corollary 3.5. Let h be an element of $P H_{\infty}$ that satisfies

$$
\pi_{0} \varphi_{\infty}[h]=1
$$

Then, for every $n \in \mathbb{N}$, there is a path $\Gamma_{n}: I \rightarrow H_{0}$ such that

$$
\Gamma_{n}(0)=I d, \quad \Gamma_{n}(1)=h^{-1}, \quad \Gamma_{n}(t)\left(\tau_{i}\right)=\tau_{i} \quad \forall i \in[1, n] \cup \infty .
$$

Proof. Fix some $n \in \mathbb{N}$, and define a point in F_{n+1} by

$$
\widetilde{\mathcal{T}}_{n+1}:=\left(\tau_{i}\right)_{i \in[1, n] \cup \infty} .
$$

Also, define a space \widetilde{F}_{n+1} similarly to F_{n+1}, by replacing \mathcal{T}_{n+1} by $\widetilde{\mathcal{T}}_{n+1}$. Also, define a map

$$
\widetilde{\varphi}_{n+1}: P H_{n+1} \rightarrow \Omega \widetilde{F}_{n+1}
$$

by

$$
\widetilde{\varphi}_{n+1}([h])=\left(K(h, \cdot)\left(\tau_{i}\right)\right)_{i \in[1, n] \cup \infty} .
$$

As we pointed out earlier, the map $\pi_{0} \varphi_{i}: \pi_{0} P H_{i} \rightarrow P B_{i}$ is an isomorphism for all $i \in \mathbb{N}$, independently of the choice of the basepoint \mathcal{T}_{i} of F_{i}. In particular, the map

$$
\pi_{0} \widetilde{\varphi}_{n+1}: \pi_{0} P H_{n+1} \rightarrow \pi_{1} \widetilde{F}_{n+1}
$$

is an isomorphism. Furthermore, observe that, for all $h \in P H_{\infty}$

$$
\pi_{0} \widetilde{\varphi}_{n+1}[h]=\left[\left(K(h, \cdot)\left(\tau_{i}\right)\right)_{i \in[1, n] \cup \infty}\right] \stackrel{*}{=}\left[\left(p_{\tau_{i}}\right)_{i \in[1, n] \cup \infty}\right]=\pi_{0} \widetilde{\varphi}_{n+1}\left[\operatorname{Id}_{D^{2}}\right],
$$

where $(*)$ follows from Lemma 3.4, because $\pi_{0} \varphi_{\infty}[h]=1$. As the map $\pi_{0} \widetilde{\varphi}_{n+1}$: $\pi_{0} \widetilde{P H}_{n+1} \rightarrow \pi_{1} \widetilde{F}_{n+1}$ is injective, it thus follows that

$$
[h]=[\mathrm{Id}] \quad \text { in } \quad \pi_{0} P H_{n+1},
$$

i.e., there is a path $\widehat{\Gamma}_{n}: I \rightarrow H_{0}$ such that

$$
\widehat{\Gamma}_{n}(0)=h, \quad \widehat{\Gamma}_{n}(1)=\mathrm{Id}, \quad \widehat{\Gamma}_{n}(t)\left(\tau_{i}\right)=\tau_{i} \quad \forall i \in[1, n] \cup \infty .
$$

Thus, the path

$$
\Gamma_{n}:=h^{-1} \circ \widetilde{\Gamma}_{n}
$$

satisfies the required properties, because h is in $P H_{\infty}$.
Lemma 3.6. Let h be an element of $P H_{\infty}$ that satisfies

$$
\pi_{0} \varphi_{\infty}[h]=1
$$

Then, for every $i \in \mathbb{N}$, there is a path $\Gamma_{i}: I \rightarrow P H_{\infty}$, such that
(i) $\Gamma_{i}(0)=h$,
(ii) $K\left(\Gamma_{i}(1), t\right) \in P H_{\infty} \quad \forall t \in\left[t_{i}, t_{i+1}\right]$.

Proof. We show the existence of such a path Γ_{i} for some arbitrary, fixed $i \in \mathbb{N}$. Recall that, by part (iv) of Lemma 3.2, the map

$$
\kappa:[0,1) \rightarrow \mathcal{C}\left(D^{2}, D^{2}\right)
$$

satisfies

$$
\kappa(t)\left(\tau_{\infty}\right)=\tau_{\infty} \quad \forall t \in[0,1), \forall i \in \mathbb{N}
$$

Thus, in particular

$$
\kappa(t)^{-1}\left(\tau_{i}\right) \neq \tau_{\infty}, \quad h^{-1}\left(\kappa(t)^{-1}\right)\left(\tau_{i}\right) \neq \tau_{\infty} \quad \forall t \in[0,1)
$$

By the continuity of both $\kappa(\cdot)^{-1}\left(\tau_{i}\right): I \rightarrow D^{2}$ and $h^{-1}\left(\kappa(\cdot)^{-1}\right)\left(\tau_{i}\right): I \rightarrow D^{2}$, and by the fact that D^{2} is normal, it follows that there is a large enough $N \in \mathbb{N}$ that satisfies

$$
\begin{array}{lll}
(A) & \kappa(t)^{-1}\left(\tau_{i}\right) \quad \in D^{2} \backslash B\left(\tau_{\infty}, \varrho_{N}\right) & \forall t \in\left[t_{i}, t_{i+1}\right] \\
(B) & h^{-1}\left(\kappa(t)^{-1}\right)\left(\tau_{i}\right) \in D^{2} \backslash B\left(\tau_{\infty}, \varrho_{N}\right) & \forall t \in\left[t_{i}, t_{i+1}\right]
\end{array}
$$

because $\lim _{j \rightarrow \infty} \varrho_{j}=0$. Moreover, according Corollary 3.5, there is a path

$$
\widehat{\Gamma}_{i}: I \rightarrow P H_{N}, \quad \text { s.t. } \quad \widehat{\Gamma}_{i}(0)=\mathrm{Id}, \quad \widehat{\Gamma}_{i}(1)=h^{-1}, \quad \widehat{\Gamma}_{i}(t)\left(\tau_{\infty}\right)=\tau_{\infty} \quad \forall t \in I .
$$

Choose reals $\widetilde{\varrho}_{o}, \widetilde{\varrho}_{m}, \widetilde{\varrho}_{i}$ with

$$
\varrho_{N}>\widetilde{\varrho}_{o}>\widetilde{\varrho}_{m}>\widetilde{\varrho}_{i}>\varrho_{N+1},
$$

and write

$$
D_{o}:=B\left(\tau_{\infty}, \widetilde{\varrho}_{o}\right), \quad D_{m}:=B\left(\tau_{\infty}, \widetilde{\varrho}_{m}\right), \quad D_{i}:=B\left(\tau_{\infty}, \widetilde{\varrho}_{i}\right) .
$$

Let g_{N} be a homeomorphism

$$
g_{N}: D^{2} \backslash \tau_{\infty} \xrightarrow{\cong} D^{2} \backslash D_{m},
$$

that contracts $D^{2} \backslash \tau_{\infty}$ along radii, and that satisfies

$$
\left.g_{N}\right|_{D^{2} \backslash D_{o}}=\left.\mathrm{Id}\right|_{D^{2} \backslash D_{o}} .
$$

Thus, in the following drawing, g_{n} maps the outer grey area by the identity.

Consider the path

$$
g_{N} \circ \widehat{\Gamma}_{i}(\cdot) \circ g_{N}^{-1}: I \rightarrow \mathcal{H}\left(D^{2} \backslash D_{m}\right)
$$

and extend it to a path $\widetilde{\Gamma}_{i}: I \rightarrow \mathcal{H}\left(D^{2}\right)$ defined by

$$
\widetilde{\Gamma}_{i}(t)(x)= \begin{cases}\left(g_{N} \circ \widehat{\Gamma}_{i}(t) \circ g_{N}^{-1}\right)(x) & , x \in D^{2} \backslash D_{m} \\ \operatorname{ext}(t)(x) & , x \in D_{m} \backslash D_{i} \\ x & , x \in D_{i}\end{cases}
$$

for all $t \in I, x \in D^{2}$, where

$$
\text { ext }: I \rightarrow \mathcal{H}\left(D_{m} \backslash D_{i}\right)
$$

can be chosen as follows. Endowing D^{2} with polar coordinates, define a homeomorphism

$$
\arg :=\left.g_{N} \circ \widehat{\Gamma}_{i}(t) \circ g_{N}^{-1}\right|_{\partial D_{m}}: \mathbb{R}_{\bmod 2 \pi} \xrightarrow{\cong} \mathbb{R}_{\bmod 2 \pi},
$$

and write

$$
\begin{aligned}
& \operatorname{ext}:\left[\varrho_{i}, \varrho_{m}\right] \times \mathbb{R}_{\bmod 2 \pi} \stackrel{\cong}{\longrightarrow}\left[\varrho_{i}, \varrho_{m}\right] \times \mathbb{R}_{\bmod 2 \pi} \\
&(r, \varphi) \mapsto \\
&\left(r, \varphi+(\arg (\varphi)-\varphi) \frac{r-\varrho_{i}}{\varrho_{m}-\varrho_{i}}\right) .
\end{aligned}
$$

Observing that

$$
\operatorname{ext}\left(\varrho_{i}, \varphi\right)=\left(\varrho_{i}, \varphi\right) \quad \forall \varphi \in \mathbb{R}_{\bmod 2 \pi}
$$

and

$$
\operatorname{ext}\left(\varrho_{m}, \varphi\right) \equiv\left(\varrho_{m}, \arg (\varphi)\right)=\left(g_{N} \circ \widehat{\Gamma}_{i}(t) \circ g_{N}^{-1}\right)\left(\varrho_{m}, \varphi\right) \quad \forall \varphi \in \mathbb{R}_{\bmod 2 \pi},
$$

it follows that ext suitably extends $\widetilde{\Gamma}_{i}$. Moreover, as

$$
\left.g_{N} \circ \widehat{\Gamma}_{i}(t) \circ g_{N}^{-1}\right|_{\partial D^{2}}=\left.\mathrm{Id}\right|_{\partial D^{2}},
$$

it follows that $\widetilde{\Gamma}_{i}$ is actually a path in H_{0}.
We show that the map

$$
\Gamma_{i}(\cdot):=h \circ \widetilde{\Gamma}_{i}(\cdot)
$$

satisfies the required properties. First, we verify that

$$
\Gamma_{i}(t) \in P H_{\infty} \quad \forall t \in I
$$

Observe that, for each $j \geq N+1, \tau_{j}$ lies in D_{i}, such that

$$
\Gamma_{i}(t)\left(\tau_{j}\right)=h\left(\tau_{j}\right)=\tau_{j} \quad \forall t \in I
$$

because $h \in P H_{\infty}$. On the other hand, for each $j \leq N, \tau_{j}$ lies in $D^{2} \backslash D_{o}$, such that

$$
\begin{aligned}
\Gamma_{i}(t)\left(\tau_{j}\right) & =\left(h \circ g_{N} \circ \widehat{\Gamma}_{i}(t) \circ g_{N}^{-1}\right)\left(\tau_{j}\right) \\
& \stackrel{*}{=}\left(h \circ g_{N} \circ \widehat{\Gamma}_{i}(t)\right)\left(\tau_{j}\right) \\
& \stackrel{* *}{=}\left(h \circ g_{N}\right)\left(\tau_{j}\right) \\
& \stackrel{*}{=} h\left(\tau_{j}\right) \\
& \stackrel{* * *}{=} \tau_{j},
\end{aligned}
$$

where $(*)$ is given by the fact that, by the definition of $g_{N}, g_{N}(x)=x$ for all $x \in D^{2} \backslash D_{o},(* *)$ follows from the fact that $\widehat{\Gamma}_{i}(t) \in P H_{N}$ for all $t \in I$, and $(* * *)$ holds, because $h \in P H_{\infty}$.

Furthermore, as $\widetilde{\Gamma}_{i}(0)=\operatorname{id}_{D^{2}}$, it follows that

$$
\Gamma_{i}(0)=h
$$

It remains to verify the condition (ii);

$$
K\left(\Gamma_{i}(1), t\right) \in P H_{\infty} \quad \forall t \in\left[t_{i}, t_{i+1}\right] .
$$

As $\Gamma_{i}(1) \in P H_{\infty}$, it follows from the statement (b) of Theorem 3.3 that

$$
K\left(\Gamma_{i}(1), t\right)\left(\tau_{j}\right)=\tau_{j} \quad \forall j \neq i \quad \forall t \in\left[t_{i}, t_{i+1}\right] .
$$

Finally, to prove that $K\left(\Gamma_{i}(1), t\right)\left(\tau_{i}\right)=\tau_{i} \forall t \in\left[t_{i}, t_{i+1}\right]$, observe that, for all $x \in D^{2} \backslash D_{o}$ with $h^{-1}(x) \in D^{2} \backslash D_{o}$,

$$
\begin{aligned}
\Gamma_{i}(1)(x) & =\left(h \circ g_{N} \circ \widehat{\Gamma}_{i}(1) \circ g_{N}^{-1}\right)(x) \\
& \stackrel{*}{=}\left(h \circ g_{N} \circ h^{-1} \circ g_{N}^{-1}\right)(x) \\
& \stackrel{* *}{=}\left(h \circ g_{N}\right)\left(h^{-1}(x)\right) \\
& \stackrel{* *}{=}\left(h \circ h^{-1}\right)(x) \\
& =x, \quad(C)
\end{aligned}
$$

where $(*)$ is given by the definition of $\widehat{\Gamma}_{i}$, and $(* *)$ holds by the fact that $\left.g_{N}\right|_{D^{2} \backslash D_{o}}=\left.\mathrm{Id}\right|_{D^{2} \backslash D_{o}}$. But, by our choice of N,

$$
\kappa(t)^{-1}\left(\tau_{i}\right) \in D^{2} \backslash D_{o}, \quad \text { and } \quad h^{-1}\left(\kappa(t)^{-1}\right)\left(\tau_{i}\right) \in D^{2} \backslash D_{o} \quad \forall t \in\left[t_{i}, t_{i+1}\right]
$$

because $D_{o} \subset B\left(\tau_{\infty}, \varrho_{N}\right)$. Thus, by (C),

$$
\begin{aligned}
K\left(\Gamma_{i}(1), t\right)\left(\tau_{i}\right) & =\left(\kappa(t) \circ \Gamma_{i}(1) \circ \kappa(t)^{-1}\right)\left(\tau_{i}\right) \\
& \left.=\left(\kappa(t) \circ \Gamma_{i}(1)\right)\left(\kappa(t)^{-1}\right)\left(\tau_{i}\right)\right) \\
& =\left(\kappa(t) \circ \kappa(t)^{-1}\right)\left(\tau_{i}\right) \\
& =\tau_{i}
\end{aligned}
$$

for all $t \in\left[t_{i}, t_{i+1}\right]$.
Theorem 3.7. The map

$$
\pi_{0} \varphi_{\infty}: \pi_{0} P H_{\infty} \rightarrow P B_{\infty}
$$

is injective.
Proof. Pick any $h \in P H_{\infty}$, with

$$
\pi_{0} \varphi_{\infty}([h])=\pi_{0} \varphi_{\infty}([\mathrm{Id}])
$$

We need to show that

$$
[h]=[\mathrm{Id}] \quad \text { in } \pi_{0} P H_{\infty}
$$

In other words, we are looking for a path $\mathcal{G}: I \rightarrow P H_{\infty}$, that satisfies

$$
\mathcal{G}(0)=h, \quad \mathcal{G}(1)=\operatorname{Id}_{D^{2}} .
$$

According to Lemma 3.6, there is a path $\Gamma_{1}: I \rightarrow P H_{\infty}$, such that

$$
\Gamma_{1}(0)=h, \quad K\left(\Gamma_{1}(1), t\right) \in P H_{\infty} \quad \forall t \in\left[t_{1} \equiv 0, t_{2}\right]
$$

Moreover, by induction, there is a set of paths $\left\{\Gamma_{i}: I \rightarrow P H_{\infty}\right\}_{i \in \mathbb{N}}$, such that, for each $i>1$,

$$
\Gamma_{i}(0)=\Gamma_{i-1}(1), \quad K\left(\Gamma_{i}(1), t\right) \in P H_{\infty} \quad \forall t \in\left[t_{i}, t_{i+1}\right]
$$

Recall that, for every $t \in[0,1)$, there is an $i \in \mathbb{N}$, such that $t \in\left[t_{i}, t_{i+1}\right]$. This allows us to define, piecewise for all $i \in \mathbb{N}$, a path

$$
\begin{aligned}
\mathcal{G}: I & \rightarrow P H_{\infty} \\
t & \mapsto \begin{cases}K\left(\Gamma_{i}\left(2 \frac{t-t_{i}}{t_{i+1}-t_{i}}\right), t_{i}\right) & , t \in\left[t_{i}, \frac{t_{i}+t_{i+1}}{2}\right] \\
K\left(\Gamma_{i}(1), 2 t-t_{i+1}\right) & , t \in\left[\frac{t_{i}+t_{i+1}}{2}, t_{i+1}\right] \\
\operatorname{Id}_{D^{2}} & , t=1\end{cases}
\end{aligned}
$$

We show that this path is well defined, and that it satisfies the required properties. First, observe that, at $t:=t_{1} \equiv 0$,

$$
\mathcal{G}(0)=K\left(\Gamma_{1}(0), 0\right)=\Gamma_{1}(0)=h .
$$

Fix some $i \geq 2$. At $t:=t_{i}$,

$$
K\left(\Gamma_{i}\left(2 \frac{t_{i}-t_{i}}{t_{i+1}-t_{i}}\right), t_{i}\right)=K\left(\Gamma_{i}(0), t_{i}\right)=K\left(\Gamma_{i-1}(1), 2 t_{i}-t_{i}\right)
$$

whereas, at $t:=\frac{t_{i}+t_{i+1}}{2}$,

$$
K\left(\Gamma_{i}\left(2 \frac{\frac{t_{i}+t_{i+1}}{2}-t_{i}}{t_{i+1}-t_{i}}\right), t_{i}\right)=K\left(\Gamma_{i}(1), t_{i}\right)=K\left(\Gamma_{i}(1), 2 \frac{t_{i}+t_{i+1}}{2}-t_{i+1}\right)
$$

Thus, \mathcal{G} is well defined and continuous at all $t \in[0,1)$. Now, we show the continuity at $t=1$. We need to show that $\mathcal{G}(t)$ converges (uniformly) to $\operatorname{Id}_{D^{2}}$ for $t \rightarrow 1$. Let $\left\{\hat{t}_{i}\right\}_{i \in \mathbb{N}}$ be any sequence in $[0,1]$ with

$$
\lim _{i \rightarrow \infty} \hat{t}_{i}=1
$$

Pick any $\varepsilon>0$, and choose an integer n with

$$
2 \varrho_{n}<\varepsilon
$$

and an integer N such that

$$
\hat{t}_{i}>t_{n} \quad \forall i \geq N
$$

According to part (e) of Theorem 3.3,

$$
K\left(f, \hat{t}_{i}\right)(x) \in B\left(\tau_{\infty}, \varrho_{n}\right) \quad \forall f \in H_{0}, \quad \forall x \in B\left(\tau_{\infty}, \varrho_{n}\right), ; \forall i \geq N
$$

Thus,

$$
\left\|K\left(f, \hat{t}_{i}\right)(x)-x\right\| \leq 2 \varrho_{n}<\varepsilon \quad \forall f \in H_{0}, \quad \forall x \in B\left(\tau_{\infty}, \varrho_{n}\right), ; \forall i \geq N
$$

Moreover, by part (d) of Theorem 3.3,

$$
K\left(f, \widehat{t_{i}}\right)(x)=x \quad \forall x \in D^{2} \backslash B\left(\tau_{\infty}, \varrho_{N}\right) \quad \forall f \in H_{0}, \quad \forall i \geq N
$$

Resuming these facts, we know that

$$
\left\|K\left(f, \hat{t}_{i}\right)(x)-x\right\|<\varepsilon \quad \forall f \in H_{0}, \quad \forall x \in D^{2}, ; \forall i \geq N
$$

As this holds for all $f \in H_{0}$, it follows from the definition of \mathcal{G}, that

$$
\left\|\mathcal{G}\left(\hat{t}_{i}\right)(x)-x\right\|<\varepsilon \quad \forall x \in D^{2}, \quad \forall i \geq N
$$

which shows the uniform convergence. Thus, \mathcal{G} is a well defined path in H_{0} with $\mathcal{G}(0)=h$ and $\mathcal{G}(1)=\operatorname{Id}_{D^{2}}$. It remains to show that \mathcal{G} is actually a path in $P H_{\infty}$, i.e., as we already know that $\mathcal{G}(1) \in P H_{\infty}$, we need to prove that, for each $i \in \mathbb{N}$,

$$
\mathcal{G}(t) \in P H_{\infty} \quad \forall t \in\left[t_{i}, t_{i+1}\right] .
$$

Pick some $i \in \mathbb{N}$. By part (a) of Theorem 3.3,

$$
\begin{equation*}
\mathcal{G}(t)=K\left(\Gamma_{i}\left(2 \frac{t-t_{i}}{t_{i+1}-t_{i}}\right), t_{i}\right) \in P H_{\infty} \quad \forall t \in\left[t_{i}, \frac{t_{i}+t_{i+1}}{2}\right] \tag{A}
\end{equation*}
$$

because $\Gamma_{i}(t) \in P H_{\infty}$ for all $t \in I$ by Lemma 3.6. Moreover,

$$
\mathcal{G}(t)=K\left(\Gamma_{i}(1), 2 t-t_{i+1}\right) \quad \forall t \in\left[\frac{t_{i}+t_{i+1}}{2}, t_{i+1}\right] .
$$

But for all $t \in\left[\frac{t_{i}+t_{i+1}}{2}, t_{i+1}\right]$,

$$
2 t-t_{i+1} \in\left[t_{i}, t_{i+1}\right]
$$

such that, by part (ii) of Lemma 3.6,

$$
\begin{equation*}
\mathcal{G}(t) \in P H_{\infty} \quad \forall t \in\left[\frac{t_{i}+t_{i+1}}{2}, t_{i+1}\right] . \tag{B}
\end{equation*}
$$

Putting together (A) and (B), we finally obtain that

$$
\mathcal{G}(t) \in P H_{\infty} \quad \forall t \in\left[t_{i}, t_{i+1}\right] .
$$

Corollary 3.8. The map

$$
\pi_{0} \bar{\varphi}_{\infty}: \pi_{0} H_{\infty} \rightarrow \pi_{0} \mathcal{O} C_{\infty}
$$

is injective.
Proof. This follows directly from Theorems 3.7 and 2.19.

Chapter 4

The image of the maps $\pi_{0} \varphi_{\infty}$ and $\pi_{0} \bar{\varphi}_{\infty}$

After proving the injectivity of the maps $\pi_{0} \varphi_{\infty}$ and $\pi_{0} \bar{\varphi}_{\infty}$, we are interested in identifying their image in $P B_{\infty}$ and B_{∞}, respectively. Again, we can restrict our attention to the map $\pi_{0} \varphi_{\infty}$, as Theorem 2.19 directly yields the image of $\pi_{0} \bar{\varphi}_{\infty}$, once the image of $\pi_{0} \varphi_{\infty}$ is known. In order to identify the image of $\pi_{0} \varphi_{\infty}$, we introduce a map $\pi_{0} \varphi_{\infty}^{\prime}$ that is closely related to the map $\pi_{0} \varphi_{\infty}^{\prime}$, which admits an easier identification of its image than the map $\pi_{0} \varphi_{\infty}$ itself.
First, in section 4.1, we identify $\operatorname{Im} \pi_{0} \varphi_{\infty} \subset P B_{\infty}$ in terms of representatives in ΩF_{∞}. Thereafter, in section 4.2, we introduce a suitable algebraic description of $P B_{\infty}$ as an infinite semidirect product of free groups, and state a result concerning the image of $\pi_{0} \varphi_{\infty}$ within this semidirect product decomposition of $P B_{\infty}$.
In this chapter, we often work with the configuration spaces of ${ }_{D}^{D}{ }^{2} \backslash \tau_{\infty}$. We thus introduce the following notation.

Definition 4.1. For all $n \in \mathbb{N} \cup \infty$, define

$$
F_{n}^{\prime}:=F_{n}\left(\stackrel{\circ}{D}^{2} \backslash \tau_{\infty}\right)
$$

and let $P B_{n}^{\prime}:=\pi_{1} F_{n}^{\prime}$ be the corresponding pure braid groups. Moreover, for all integers $m>n$, write

$$
s_{m, n}^{\prime}: F_{m}^{\prime} \rightarrow F_{n}^{\prime}
$$

for the corresponding (co)- restriction of the projection map $s_{m, n}: F_{m} \rightarrow F_{n}$. Similarly, we note

$$
s_{\infty, n}^{\prime}: F_{\infty}^{\prime} \rightarrow F_{n}^{\prime}
$$

for all $n \in \mathbb{N}$.
In this chapter, let $K: H_{0} \times I \rightarrow H_{0}$ be a contracting homotopy of H_{0} with the properties given in Theorem 3.3. As, in particular,

$$
K(h, \cdot)\left(\tau_{\infty}\right)=p_{\tau_{\infty}} \quad \forall h \in P H_{\infty}
$$

the map

$$
\begin{aligned}
\varphi_{\infty}: P H_{\infty} & \rightarrow \Omega F_{\infty} \\
h & \mapsto\left(K(h, \cdot)\left(\tau_{i}\right)\right)_{i \in \mathbb{N}}
\end{aligned}
$$

corestricts to a well defined map

$$
\left.\varphi_{\infty}\right|_{\Omega F_{\infty}^{\prime}}: P H_{\infty} \rightarrow \Omega F_{\infty}^{\prime}
$$

to simplify the notation, we write

$$
\varphi_{\infty}^{\prime}:=\left.\varphi_{\infty}\right|_{\Omega F_{\infty}^{\prime}}
$$

The inclusion map $\iota: F_{\infty}^{\prime} \hookrightarrow F_{\infty}$ thus induces a commutative diagram

which in particular shows that the map $\pi_{0} \varphi_{\infty}^{\prime}$ is injective, because the map $\pi_{0} \varphi_{\infty}$ is injective by Theorem 3.7.
Proposition 4.2. The map $\pi_{0} \varphi_{\infty}^{\prime}: \pi_{0} P H_{\infty} \rightarrow P B_{\infty}^{\prime}$ is injective.
In fact, the above diagram allows us to characterize the image of $\pi_{0} \varphi_{\infty}$ in terms of the image of $\pi_{0} \varphi_{\infty}^{\prime}$, which is easier to identify than the image of $\pi_{0} \varphi_{\infty}$.
Also, we show that there is an isomorphism

$$
\Psi_{\infty}: P B_{\infty}^{\prime} \xrightarrow{\cong} P B_{\infty},
$$

which does not correspond to $\pi_{1} \iota$, however. Clearly, it would be interesting to know whether $\pi_{1} \iota$ is an isomorphism. We didn't solve this question.

4.1 Description of the image of $\pi_{0} \varphi_{\infty}$ in terms of representatives

Recall the definition

$$
t_{1}:=0, \quad t_{i}:=\sum_{k=1}^{i-1} \frac{1}{2^{k}} \quad \forall i \geq 2
$$

Definition 4.3. Define the space of infinite combed braids in $\Omega F_{\infty}^{\prime}$ as the subspace $\left(\Omega F_{\infty}^{\prime}\right)_{c} \subset \Omega F_{\infty}^{\prime}$, given by all braids $\left(\beta_{i}\right)_{i \in \mathbb{N}} \in \Omega F_{\infty}^{\prime}$, such that, for each $i \in \mathbb{N}$,

$$
\beta_{i}(t)=\tau_{i} \quad \forall t \in\left[0, t_{i}\right] \cup\left[t_{i+1}, 1\right] .
$$

Moreover, for all $n \in \mathbb{N}$, define

$$
\left(\Omega F_{n}^{\prime}\right)_{c}:=\Omega s_{\infty, n}\left(\left(\Omega F_{\infty}^{\prime}\right)_{c}\right)
$$

A typical element of $\left(\Omega F_{\infty}^{\prime}\right)_{c}$ is drawn below.

The next theorem characterizes the image of the map $\pi_{0} \varphi_{\infty}$ in terms of the following subset of $\left(\Omega F_{\infty}^{\prime}\right)_{c}$.

Definition 4.4. Define a subspace $\left(\Omega F_{\infty}^{\prime}\right)_{c c} \subset\left(\Omega F_{\infty}^{\prime}\right)_{c}$ by

$$
\left(\Omega F_{\infty}^{\prime}\right)_{c c}:=\left\{\left(\beta_{i}\right)_{i \in \mathbb{N}} \in\left(\Omega F_{\infty}^{\prime}\right)_{c} \mid \lim _{i \rightarrow \infty} \beta_{i}=p_{\tau_{\infty}}\right\}
$$

where $p_{\tau_{\infty}}$ is the constant path at τ_{∞}. We call $\left(\Omega F_{\infty}^{\prime}\right)_{c c}$ the space of converging braids in $\left(\Omega F_{\infty}^{\prime}\right)_{c}$ (i.e., converging combed infinite braids). Moreover, let $\left(P B_{\infty}^{\prime}\right)_{c c}$ be the subset of $P B_{\infty}^{\prime}$ defined by

$$
\left(P B_{\infty}^{\prime}\right)_{c c}:=\left\{\left[\left(\beta_{i}\right)_{i \in \mathbb{N}}\right] \in P B_{\infty}^{\prime} \mid\left(\beta_{i}\right)_{i \in \mathbb{N}} \in\left(\Omega F_{\infty}^{\prime}\right)_{c c}\right\}
$$

Note that, by [11, Thms. 46.7, 46.8], the space $\mathcal{C}\left(I, D^{2}\right)$ has the topology of uniform convergence, so that the above given convergence condition on an element $\left(\beta_{i}\right)_{i \in \mathbb{N}} \in\left(\Omega F_{\infty}^{\prime}\right)_{c c}$ is equivalent to the condition that, for every $\varepsilon>0$, there is an $N \in \mathbb{N}$ such that

$$
\left\|\beta_{i}(t)-\tau_{\infty}\right\|<\varepsilon \quad \forall t \in I, \forall i \geq N
$$

To see that $\left(\Omega F_{\infty}^{\prime}\right)_{c c}$ is a strict subspace of $\left(\Omega F_{\infty}^{\prime}\right)_{c}$,

$$
\left(\Omega F_{\infty}^{\prime}\right)_{c c} \subsetneq\left(\Omega F_{\infty}^{\prime}\right)_{c}
$$

we construct a combed braid that is not convergent. Consider the point $x:=$ $\left(0, \frac{1}{2}\right)$ in D^{2}, and choose, for each $i \in \mathbb{N}$, a continuous path

$$
\widehat{\beta}_{x, i} \in \Omega\left(\stackrel{\circ}{D}^{2} \backslash\left\{\tau_{j}\right\}_{j \in \mathbb{N} \cup \infty \backslash i}, \tau_{i}\right)
$$

that loops around x. Define a braid $\left(\beta_{i}\right)_{i \in \mathbb{N}}$ by

$$
\beta_{i}(t):=\left\{\begin{array}{ll}
\tau_{i} & \text { if } t \in\left[0, t_{i}\right] \\
\widehat{\beta}_{i}\left(2^{i}\left(t-t_{i}\right)\right) & \text { if } t \in\left[t_{i}, t_{i+1}\right] \\
\tau_{n} & \text { if } t \in\left[t_{i+1}, 1\right]
\end{array} \quad \forall t \in I\right.
$$

for all $i \in \mathbb{N}$, and observe that $\left(\beta_{i}\right)_{i \in \mathbb{N}}$ is a well defined element of $\left(\Omega F_{\infty}^{\prime}\right)_{c}$, because it satisfies the condition of Definition 4.3, and because, for each $i \in \mathbb{N}$, the map $\beta_{i}: S^{1} \rightarrow D^{2}$ is continuous, which, by [11, Thm. 19.6], suffices for $\left(\beta_{i}\right)_{i \in \mathbb{N}}: S^{1} \rightarrow F_{\infty}$ to be continuous. Notice that $\left(\beta_{i}\right)_{i \in \mathbb{N}}$ is not contained in $\left(\Omega F_{\infty}^{\prime}\right)_{c c}$, however, because the condition

$$
\lim _{i \rightarrow \infty} \beta_{i}=p_{\tau_{\infty}}
$$

is not satisfied, i.e., the sequence $\left(\beta_{i}\right)_{i \in \mathbb{N}}$ does not converge uniformly to $p_{\tau_{\infty}}$.
On the other hand, there is an interesting, unsolved question:

$$
\pi_{0}\left(\Omega F_{\infty}^{\prime}\right)_{c c} \stackrel{?}{=}\left(P B_{\infty}^{\prime}\right)_{c c}
$$

Theorem 4.5

$$
\operatorname{Im} \pi_{0} \varphi_{\infty}^{\prime}=\left(P B_{\infty}^{\prime}\right)_{c c}
$$

Proof. To show that

$$
\operatorname{Im} \pi_{0} \varphi_{\infty}^{\prime} \subseteq\left(P B_{\infty}^{\prime}\right)_{c c}
$$

pick an element $h \in P H_{\infty}$, and write

$$
\left(\beta_{i}\right)_{i \in \mathbb{N}}:=\varphi_{\infty}^{\prime}(h) \equiv\left(K(h, \cdot)\left(\tau_{i}\right)\right)_{i \in \mathbb{N}} .
$$

According to Theorem 3.3, item (b),

$$
\beta_{i}(t)=\tau_{i} \quad \forall i \in \mathbb{N}, \quad \forall t \in\left[0, t_{i}\right] \cup\left[t_{i+1}, 1\right],
$$

which means that $\left(\beta_{i}\right)_{i \in \mathbb{N} \cup \infty} \in\left(\Omega F_{\infty}^{\prime}\right)_{c}$. To show that, moreover, $\left(\beta_{i}\right)_{i \in \mathbb{N}} \in$ $\left(\Omega F_{\infty}^{\prime}\right)_{c c}$, pick an $\varepsilon>0$, and observe that, by the continuity of the map $K(h, \cdot)$: $I \times D^{2} \rightarrow D^{2}$, the subset

$$
K(h, \cdot)^{-1}\left(B\left(\tau_{\infty}, \varepsilon\right)\right) \subset I \times D^{2}
$$

is an open neighbourhood of $I \times\left\{\tau_{\infty}\right\}$, which means that, by the tube lemma, there is an $r>0$, such that

$$
I \times \overline{B\left(\tau_{\infty}, r\right)} \subset K(h, \cdot)^{-1}\left(B\left(\tau_{\infty}, \varepsilon\right)\right),
$$

i.e.,

$$
\begin{equation*}
K(h, t)\left(\overline{B\left(\tau_{\infty}, r\right)}\right) \subset B\left(\tau_{\infty}, \varepsilon\right) \quad \forall t \in I . \tag{A}
\end{equation*}
$$

Pick an $N \in \mathbb{N}$ such that

$$
\tau_{i} \in B\left(\tau_{\infty}, r\right) \quad \forall i \geq N
$$

and notice that, by (A),

$$
\left\|K(h, t)\left(\tau_{i}\right)-\tau_{\infty}\right\|<\varepsilon \quad \forall t \in I, \forall i \geq N
$$

which means that the sequence $\left(\beta_{i}\right)_{i \in \mathbb{N}}=\left(K(h, \cdot)\left(\tau_{i}\right)\right)_{i \in \mathbb{N}}$ converges uniformly to the constant path $p_{\tau_{\infty}}$. Thus

$$
\left(\beta_{i}\right)_{i \in \mathbb{N} \cup \infty} \in\left(\Omega F_{\infty}^{\prime}\right)_{c c},
$$

i.e.,

$$
\pi_{0} \varphi_{\infty}^{\prime}([h])=\left[\left(\beta_{i}\right)_{i \in \mathbb{N}}\right] \in\left(P B_{\infty}^{\prime}\right)_{c c}
$$

It remains to prove that

$$
\operatorname{Im} \pi_{0} \varphi_{\infty}^{\prime} \supseteq\left(P B_{\infty}^{\prime}\right)_{c c}
$$

Pick any element $b \in\left(P B_{\infty}^{\prime}\right)_{c c}$, and let $\left(\beta_{i}\right)_{i \in \mathbb{N}} \in\left(\Omega F_{\infty}^{\prime}\right)_{c c}$ be a representative of b. Also, write

$$
r_{i}:=2 \sup _{j \geq i}\left\{\max _{t \in I}\left\|\beta_{j}(t)-\tau_{\infty}\right\|\right\}
$$

for all $i \in \mathbb{N}$. Note that

$$
r_{i} \geq r_{i+1} \quad \forall i \in \mathbb{N}
$$

and, by the definition of $\left(\Omega F_{\infty}^{\prime}\right)_{c c}$,

$$
\lim _{i \rightarrow \infty} r_{i}=0
$$

We show that, for every $i \in \mathbb{N}$, there is a path $g_{i} \in \mathcal{C}\left(I, H_{0}\right)$, such that, recalling the sequence $\left(t_{i}\right)_{i \in \mathbb{N}}$,

$$
\begin{array}{ll}
\text { (i) } & g_{i}(t)\left(\tau_{j}\right)=\left\{\begin{array}{lll}
\beta_{i}(t) & \text { if } j=i & \forall t \in I \\
\tau_{j} & j \in \mathbb{N} \cup \infty \backslash i
\end{array} \quad \forall t \in I\right. \\
\text { (ii) } & \left.g_{i}(t)\right|_{D^{2} \backslash B\left(\tau_{\infty}, r_{i}\right)}=I d \quad \forall t \in I \\
\text { (iii) } & g_{i}(t)=\mathrm{Id} \\
\text { (iv) } & g_{i}(t)=g_{i}(1) \quad \forall t \leq t_{i} \\
& \forall t \geq t_{i+1},
\end{array}
$$

where $B\left(\tau_{\infty}, r_{i}\right)$ is the open ball in \mathbb{R}^{2} with radius r_{i}, centered at τ_{∞}. For some fixed $i \in \mathbb{N}$, the existence can be shown as follows. By the definition of $\left(\Omega F_{\infty}^{\prime}\right)_{c c}$, we know that, for every $t \in I$, there is at most one $i \in \mathbb{N}$, for which $\beta_{i}(t) \neq \tau_{i}$, i.e.,

$$
\beta_{i}(t) \in \stackrel{\circ}{D}^{2} \backslash\left\{\tau_{j}\right\}_{j \in \mathbb{N} \cup \infty \backslash i} \quad \forall t \in I, \quad \forall i \in \mathbb{N}
$$

Fix some $i \in \mathbb{N}$, and observe that, by the extreme value theorem [11, Thm. 27.4], there is an $\widetilde{r}>0$, that satisfies

$$
\beta_{i}(t) \notin \overline{B\left(\tau_{\infty}, \widetilde{r}\right)} \quad \forall t \in I
$$

Thus, there is a finite $M \in \mathbb{N}$ such that $\tau_{i} \in \overline{B\left(\tau_{\infty}, \widetilde{r}\right)}$ for all $i>M$, i.e.,

$$
\beta_{i}(t) \in \stackrel{\circ}{D}^{2} \backslash\left\{\overline{B\left(\tau_{\infty}, \widetilde{r}\right)} \cup\left\{\tau_{j}\right\}_{j \in[1, M] \backslash i}\right\} \quad \forall t \in I
$$

Thus, we can again apply the extreme value theorem to conclude that there is a real $r>0$ that satisfies

$$
\bigcup_{t \in I} B\left(\beta_{i}(t), r\right) \subset \stackrel{\circ}{D}^{2} \backslash\left\{\overline{B\left(\tau_{\infty}, \widetilde{r}\right)} \cup\left\{\tau_{j}\right\}_{j \in[1, M] \backslash i}\right\} \quad \forall t \in I,
$$

and thus, in particular,

$$
\begin{equation*}
\bigcup_{t \in I} B\left(\beta_{i}(t), r\right) \subset \stackrel{\circ}{D}^{2} \backslash\left\{\tau_{j}\right\}_{j \in \mathbb{N} \cup \infty \backslash i} . \tag{B}
\end{equation*}
$$

Moreover, as, by the definition of r_{i},

$$
\beta_{i}(t) \in B\left(\tau_{\infty}, r_{i}\right) \quad \forall t \in I,
$$

we can choose r small enough, such that

$$
\begin{equation*}
\bigcup_{t \in I} B\left(\beta_{i}(t), r\right) \subset B\left(\tau_{\infty}, r_{i}\right) \tag{C}
\end{equation*}
$$

By the continuity of β_{i}, there is, for each $t \in\left[t_{i}, t_{i+1}\right]$, an open interval $] s_{t}^{-}, s_{t}^{+}[\subset$ $\left[t_{i}, t_{i+1}\right]$ containing t, such that

$$
\beta_{i}(\widehat{t}) \in B\left(\beta_{i}(t), r\right) \quad \forall \hat{t} \in\left[s_{t}^{-}, s_{t}^{+}\right] .
$$

As I is compact, there is an $M \in \mathbb{N}$ and a point set $\left\{\hat{t}_{j}\right\}_{j \in[1, M]} \subset\left[t_{i}, t_{i+1}\right]$, such that $\bigcup_{j \in[1, M]}\left[s_{\hat{t}_{j}}^{-}, s_{\hat{t}_{j}}^{+}\right]=\left[t_{i}, t_{i+1}\right]$. In particular, $s_{\hat{t}_{j}}^{+}>s_{\hat{t}_{j+1}}^{-}$for all $j \in[1, M-1]$, such that, simplifying the notation by writing s_{j} instead of $s_{\hat{t}_{j}}^{+}$,

$$
\bigcup_{j \in[1, M]}\left[s_{j-1}, s_{j}\right]=\left[t_{i}, t_{i+1}\right],
$$

where $s_{0}:=t_{i}$. Also, notice that

$$
\beta_{i}(\widehat{t}) \in B\left(\beta_{i}\left(t_{j}\right), r\right) \quad \forall \widehat{t} \in\left[s_{j-1}, s_{j}\right], \forall j \in[2, M] .
$$

Observe that that, by Theorem 1.12, the map

$$
\begin{aligned}
\mathrm{ev}_{\tau_{i}}: H_{0} & \rightarrow D^{2} \\
h & \mapsto h\left(\tau_{i}\right)
\end{aligned}
$$

has the path lifting property. For each $j \in[1, M]$, choose a homeomorphism

$$
f_{j}: \stackrel{\circ}{D}^{2} \xrightarrow{\cong} B\left(\beta_{i}\left(t_{j}\right), r\right),
$$

that satisfies

$$
f_{j}\left(\tau_{i}\right)=\beta_{i}\left(s_{j-1}\right),
$$

and consider the following commutative diagram

$$
\begin{gathered}
\quad H_{0} \xrightarrow{f_{j} \circ(\cdot) \circ f_{j}^{-1}} \underset{\cong}{\cong} H_{0}^{B} \\
\mathrm{ev}_{\tau_{i}} \downarrow \\
\vee \\
\stackrel{\circ}{D}{ }^{2} \xrightarrow{f} \xrightarrow{\cong} B\left(\beta_{i}\left(t_{j}\right), r\right),
\end{gathered}
$$

where H_{0}^{B} is the space of homeomorphisms of $\overline{B\left(\beta_{i}\left(t_{j}\right), r\right)}$ that fix the boundary $\partial B\left(\beta_{i}\left(t_{j}\right), r\right)$ pointwise, and $\operatorname{ev}_{f_{j}\left(\tau_{i}\right)}^{B}$ is the evaluation at $f_{j}\left(\tau_{i}\right)$. Clearly, $\operatorname{ev}_{f_{j}\left(\tau_{i}\right)}^{B}$ has thus the path lifting property, which allows us to construct, for each $j \in$ $[1, M]$, a path $g^{(j)}:\left[s_{j-1}, s_{j}\right] \rightarrow H_{0}$ satisfying

$$
\begin{array}{ll}
g^{(j)}\left(s_{j-1}\right)=\operatorname{Id}_{D^{2}}, & \\
g^{(j)}(t)\left(\beta_{i}\left(s_{j-1}\right)\right)=\beta_{i}(t) & \forall t \in\left[s_{j-1}, s_{j}\right], \\
\left.g^{(j)}(t)\right|_{D^{2} \backslash B\left(\beta_{i}\left(t_{j}\right), r\right)}=\operatorname{Id} & \forall t \in\left[s_{j-1}, s_{j}\right] . \tag{F}
\end{array}
$$

Now, define a path $g_{i}: I \rightarrow H_{0}$ piecewise by

$$
g_{i}(t):= \begin{cases}\operatorname{Id}_{D^{2}}, & t \in\left[0, t_{i}\right] \\ g^{(j)}(t) \circ g^{(j-1)}\left(s_{j-1}\right) \circ \cdots \circ g^{(1)}\left(s_{1}\right), & t \in\left[s_{j-1}, s_{j}\right] \quad \forall j \in[1, M] \\ g^{(M)}\left(s_{M}\right) \circ \cdots \circ g^{(1)}\left(s_{1}\right), & t \in\left[t_{i+1}, 1\right]\end{cases}
$$

and observe that, by $(D), g_{i}$ is well defined. Moreover, g_{i} satisfies the condition (i), because, by (B) and by the properties (E) and (F) of the maps $g^{(j)}$. The condition (ii) is satisfied by (C) and (F), whereas the conditions (iii) and (iv) are given directly by the definition of g_{i}.
For all $n \in \mathbb{N}$, write

$$
\mathcal{G}_{n}(-)=g_{n}(-) \circ \cdots \circ g_{1}(-)
$$

Observe that, by the properties (i) and (iii) of the maps g_{i}, for every $n \in \mathbb{N}$,

$$
\begin{align*}
\mathcal{G}_{n}(0) & =\operatorname{Id}_{D^{2}} \\
\mathcal{G}_{n}(t)\left(\tau_{i}\right) & =\beta_{i}(t), \quad \forall i \leq n, \forall t \in I, \tag{G}
\end{align*}
$$

and that, moreover,

$$
\mathcal{G}_{n}(1)\left(\tau_{i}\right)=\tau_{i} \quad \forall i \in \mathbb{N}
$$

To finish the proof, we veriry the following fact.
Claim: There is a path $\mathcal{G} \in \mathcal{C}\left(I, H_{0}\right)$, such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \mathcal{G}_{n}=\mathcal{G} \tag{H}
\end{equation*}
$$

Then, by (G), it is clear that \mathcal{G} satisfies

$$
\begin{equation*}
\mathrm{ev}_{\infty} \circ(\mathcal{G}(-))=\left(\beta_{i}\right)_{i \in \mathbb{N}} \tag{I}
\end{equation*}
$$

Write $\overline{\mathcal{G}}(t):=\mathcal{G}(1-t)$ for all $t \in I$, and observe that both

$$
K(\mathcal{G}(1),-) \quad \text { and } \quad \overline{\mathcal{G}}
$$

are paths in H_{0} with startpoint $\mathcal{G}(1) \in P H_{\infty}$ and endpoint $\operatorname{Id}_{D^{2}}$ that, moreover, satisfy

$$
K(\mathcal{G}(1), t)\left(\tau_{\infty}\right)=\overline{\mathcal{G}}(t)\left(\tau_{\infty}\right)=\tau_{\infty} \quad \forall t \in I
$$

by the property (i) of the maps $\left\{g_{i}\right\}_{i \in \mathbb{N}}$ and by Theorem $3.3(c)$. Thus, by Lemma A.3,

$$
\left[\mathrm{ev}_{\infty} \circ K(\mathcal{G}(1),-)\right]=\left[\mathrm{ev}_{\infty} \circ \overline{\mathcal{G}}(-)\right] \quad \text { in } \quad \pi_{1} F_{\infty}^{\prime}
$$

i.e., writing $\left(\bar{\beta}_{i}\right)_{i \in \mathbb{N}}$ for the inverse path of $\left(\beta_{i}\right)_{i \in \mathbb{N}}$,

$$
\begin{aligned}
\pi_{0} \varphi_{\infty}^{\prime}([\mathcal{G}(1)]) & =\left[\left(\mathrm{ev}_{\infty}\right)_{*} K(\mathcal{G}(1),-)\right] \\
& =\left[\left(\mathrm{ev}_{\infty}\right)_{*} \overline{\mathcal{G}}(-)\right] \\
& =\left[\left(\bar{\beta}_{i}\right)_{i \in \mathbb{N}}\right]
\end{aligned}
$$

Analoguous to the prove of Proposition 1.15, one can show that the map $\pi_{0} \varphi_{\infty}^{\prime}$ is a homomorphism. Thus, defining $h_{\beta}:=\mathcal{G}(1)^{-1}$, it follows that

$$
\pi_{0} \varphi_{\infty}^{\prime}\left(\left[h_{\beta}\right]\right)=\left[\left(\beta_{i}\right)_{i \in \mathbb{N}}\right]
$$

which proves the theorem.
To prove our claim (H), we proceed in two steps. First, we show that, for each $t \in I$, the sequence $\left(\mathcal{G}_{n}(t) \in H_{0}\right)_{n \in \mathbb{N}}$ converges in H_{0}. In a second step, we show that the set $\{\mathcal{G}(t)\}_{t \in I}$ depends continuously on t.

First step. Fix some $t \in I, x \in D^{2}$, and observe that, for every $n \in \mathbb{N}$,

$$
\begin{aligned}
\left\|\mathcal{G}_{n}(t)(x)-\mathcal{G}_{n-1}(t)(x)\right\| & =\left\|g_{n} \circ \mathcal{G}_{n-1}(t)(x)-\mathcal{G}_{n-1}(t)(x)\right\| \\
& \leq 2 r_{n}
\end{aligned}
$$

by the property (ii) of the maps $\left\{g_{i}\right\}_{i \in[1, n]}$. Thus,

$$
\lim _{n \rightarrow \infty}\left\|\mathcal{G}_{n}(t)(x)-\mathcal{G}_{n-1}(t)(x)\right\|=0
$$

which means that, $\left(\mathcal{G}_{n}(t)(x)\right)_{n \in \mathbb{N}}$ is a Cauchy sequence. By the completeness of D^{2}, this sequence thus converges pointwise in D^{2}, which allows us to define a map

$$
\begin{aligned}
\mathcal{G}(t): \stackrel{\circ}{D}^{2} & \rightarrow \stackrel{\circ}{D}^{2} \\
x & \mapsto \lim _{n \rightarrow \infty} \mathcal{G}_{n}(t)(x) .
\end{aligned}
$$

To prove the uniform convergence of the sequence $\left(\mathcal{G}_{n}(t)\right)_{n \in \mathbb{N}}$, recall that, for all $n \in \mathbb{N}$,

$$
g_{n}(t)(x)=x \quad \forall x \in \stackrel{\circ}{D}^{2} \backslash B\left(\tau_{\infty}, r_{n}\right),
$$

by the property (ii) of g_{n}, and

$$
g_{n}(t)(x) \in B\left(\tau_{\infty}, r_{n}\right) \quad \forall x \in B\left(\tau_{\infty}, r_{n}\right)
$$

by construction. As $r_{i+1} \leq r_{i}$ for all $i \in \mathbb{N}$, it follows that, for every $n^{\prime} \geq n$,

$$
\begin{array}{ll}
\left(g_{n^{\prime}}(t) \circ \cdots \circ g_{n}(t)\right)(x) \in B\left(\tau_{\infty}, r_{n}\right) & \forall x \in B\left(\tau_{\infty}, r_{n}\right), \quad \text { and } \\
\left(g_{n^{\prime}}(t) \circ \cdots \circ g_{n}(t)\right)(x)=x & \forall x \in \stackrel{\circ}{D}^{2} \backslash B\left(\tau_{\infty}, r_{n}\right)
\end{array}
$$

In other words, for all integers n, n^{\prime} with $n^{\prime} \geq n$,

$$
\begin{aligned}
\left\|\mathcal{G}_{n^{\prime}}(t)(x)-\mathcal{G}_{n}(t)(x)\right\| & =\left\|\left(g_{n^{\prime}}(t) \circ \cdots \circ g_{n+1}(t) \circ \mathcal{G}_{n}(t)\right)(x)-\mathcal{G}_{n}(t)(x)\right\| \\
& \leq 2 r_{n+1}
\end{aligned}
$$

for all $x \in D^{2}$. This means that, for every $n \in \mathbb{N}$,

$$
\left\|\mathcal{G}(t)(x)-\mathcal{G}_{n}(t)(x)\right\| \leq 2 r_{n+1} \quad \forall x \in \stackrel{\circ}{D}^{2},
$$

which proves the uniform convergence of the sequence $\left(\mathcal{G}_{n}(t)\right)_{n \in \mathbb{N}}$, because $\lim _{n \rightarrow \infty} r_{n}=0$. Thus, $\mathcal{G}(t)$ is a limit point of H_{0}, because H_{0} is topologized as a subspace of $D^{2^{D^{2}}}$, endowed with the compact-open topology, that coincides with the uniform topology by [Munkres, Thms. 46.7/8].
On the other hand, H_{0} is closed in $D^{2^{D^{2}}}$. For any sequence $\left(h_{i}\right)_{i \in \mathbb{N}}$ in H_{0} that converges to an element $h \in D^{2^{D^{2}}}$, we know that

$$
h \in \mathcal{C}\left(D^{2}, D^{2}\right)
$$

as $\mathcal{C}\left(D^{2}, D^{2}\right)$ is closed in $D^{2^{D^{2}}}$ by [Munkres, Thm. 46,5]. By the same argument,

$$
h^{-1}:=\lim _{i \rightarrow \infty} h_{i}^{-1} \in \mathcal{C}\left(D^{2}, D^{2}\right)
$$

i.e.,

$$
h \in \mathcal{H}\left(D^{2}, D^{2}\right)
$$

As every element of the sequence $\left(h_{i}\right)_{i \in \mathbb{N}}$ fixes the boundary ∂D^{2} pointwise, so does its limit h, which means that

$$
h \in H_{0}
$$

Thus, H_{0} is closed in $D^{2 D^{2}}$, and thus, for every $t \in I$,

$$
\mathcal{G}(t) \in H_{0} \quad \forall t \in I
$$

This finishes the first step of the proof.
Second step. Pick any $t \in[0,1)$, and an integer N, such that

$$
t<t_{N} .
$$

Then, by the property (iii) of the paths $\left\{g_{i}\right\}_{i \in \mathbb{N}}$,

$$
\mathcal{G}_{n}(t)=\mathcal{G}_{N}(t) \quad \forall n \geq N
$$

which means that

$$
\mathcal{G}(t)=\mathcal{G}_{N}(t)
$$

Thus,

$$
\left.\mathcal{G}\right|_{[0,1)} \in \mathcal{C}\left([0,1), H_{0}\right)
$$

Let $\left(t_{n}\right)_{n \in \mathbb{N}}$ be a sequence in I that converges to 1 . Given any $\epsilon>0$, find a $k \in \mathbb{N}$, such that $4 r_{k} \leq \epsilon$. Choose some $N \in \mathbb{N}$ that satisfies

$$
t_{n} \in\left[t_{k+1}, 1\right] \quad \forall n \geq N
$$

such that, by the property $(i v)$ of the paths g_{i},

$$
g_{i}\left(t_{n}\right)=g_{i}(1) \quad \forall n \geq N, \quad \forall i \leq k .
$$

Consequently,

$$
\mathcal{G}_{k}\left(t_{n}\right)=\mathcal{G}_{k}(1) \quad \forall n \geq N
$$

Moreover, note that, by the property (ii) of the maps g_{i},

$$
\begin{equation*}
\left\|\mathcal{G}(t)-\mathcal{G}_{k}(t)\right\|<2 r_{k} \quad \forall t \in I \tag{K}
\end{equation*}
$$

Thus, for all $x \in D^{2}$,

$$
\begin{aligned}
\left\|\mathcal{G}\left(t_{n}\right)(x)-\mathcal{G}(1)(x)\right\| & =\left\|\left(\mathcal{G}\left(t_{n}\right)-\mathcal{G}_{k}\left(t_{n}\right)+\mathcal{G}_{k}\left(t_{n}\right)-\mathcal{G}(1)+\mathcal{G}_{k}(1)-\mathcal{G}_{k}(1)\right)(x)\right\| \\
& \stackrel{J}{=}\left\|\left(\mathcal{G}\left(t_{n}\right)-\mathcal{G}_{k}\left(t_{n}\right)-\mathcal{G}(1)+\mathcal{G}_{k}(1)\right)(x)\right\| \\
& \leq\left\|\mathcal{G}\left(t_{n}\right)(x)-\mathcal{G}_{k}\left(t_{n}\right)(x)\right\|+\left\|\mathcal{G}(1)(x)-\mathcal{G}_{k}(1)(x)\right\| \\
& \stackrel{K}{\leq} 4 r_{k} \quad \forall n \geq N \\
& \leq \varepsilon
\end{aligned}
$$

i.e., the sequence $\left(\mathcal{G}\left(t_{n}\right)\right)_{n \in \mathbb{N}}$ converges uniformly to $\mathcal{G}(1)$. Thus, by [Munkres. Theorems 46.7/46.8],

$$
\mathcal{G} \in \mathcal{C}\left(I, H_{0}\right)
$$

which proves our claim (H).

Corollary 4.6. The maps $\varphi_{\infty}^{\prime}, \varphi_{\infty}$ and $\bar{\varphi}_{\infty}$ induce isomorphisms

$$
\begin{aligned}
& \pi_{0} \varphi_{\infty}^{\prime}: \pi_{0} P H_{\infty} \quad \stackrel{\cong}{\cong}\left(P B_{\infty}^{\prime}\right)_{c c}, \\
& \pi_{0} \varphi_{\infty}: \pi_{0} P H_{\infty} \xrightarrow{\cong} \pi_{1} \iota\left(P B_{\infty}^{\prime}\right)_{c c},
\end{aligned}
$$

and a bijection

$$
\pi_{0} \bar{\varphi}_{\infty}: \pi_{0} H_{\infty} \xrightarrow{\cong} \pi_{0} \zeta\left(\Sigma_{\infty} \ltimes \pi_{1} \iota\left(\left(P B_{\infty}^{\prime}\right)_{c c}\right)\right)
$$

where $\iota: F_{\infty}^{\prime} \hookrightarrow F_{\infty}$ is the inclusion map.
Proof. The result follows directly from Theorems 4.5, 3.7 and Proposition 4.2.

4.2 Algebraic description of $P B_{\infty}$

To algebraically describe the image of $\pi_{0} \varphi_{\infty}$, we first need an algebraic description of $P B_{\infty}$. The most straightforward way to do this is to use the inverse system

$$
P B_{\infty} \rightarrow \cdots \rightarrow P B_{n+1} \xrightarrow{\pi_{1} s_{n+1, n}} P B_{n} \rightarrow \cdots \rightarrow P B_{1}
$$

to decompose $P B_{\infty}$ into an infinite semidirect product

$$
P B_{\infty} \cong \ltimes_{i \geq 2} U_{i}
$$

where, for all $i \geq 2, U_{i}=\operatorname{Ker} \pi_{1} s_{n+1, n}$. In subsection 4.2.5, this is explained in detail. However, it seems that, within $\ltimes_{i \geq 2} U_{i}$, the image of $\pi_{0} \varphi_{\infty}$ is complicated to describe. To avoid this difficulty, we introduce the braid groups of the punctured disk $P B_{n}^{\prime}:=\pi_{1} F_{n}\left({ }^{\circ}{ }^{2} \backslash \tau_{\infty}\right)$ for all $n \in \mathbb{N}$, and show that $P B_{\infty}$ is the limit of the resulting inverse system

$$
P B_{\infty} \rightarrow \cdots \rightarrow P B_{n+1}^{\prime} \xrightarrow{\pi_{1} s_{n+1, n}^{\prime}} P B_{n}^{\prime} \rightarrow \cdots \rightarrow P B_{1}^{\prime}
$$

According to subsection 4.2.5, this allows us to write $P B_{\infty}$ as the infinite semidirect product

$$
P B_{\infty} \cong \ltimes_{i \in \mathbb{N}} U_{i}^{\prime}
$$

where, for all $i \in \mathbb{N}, U_{i}^{\prime}=\operatorname{Ker} \pi_{1} s_{n+1, n}^{\prime}$. Within this semidirect product decomposition of $P B_{\infty}$, the image of $\pi_{0} \varphi_{\infty}$ seems to be easier to identify (see section 4.3).

Observing that, for all $n \in \mathbb{N}, P B_{n}^{\prime}$ is isomorphic to the braid group of the biinfinite cylinder $S^{1} \times \mathbb{R}$, which, by an easy argument, is isomorphic to the braid group of the cylinder, we presume that the groups $P B_{n}^{\prime}$ and U_{n}^{\prime}, are well known for all finite n. Nevertheless, the particular statements concerning these groups that we need for the identification of $\operatorname{Im} \pi_{0} \varphi_{\infty}$ in section 4.3 seem hard to be found in literature. Therefore, we fully develop the introduction of these groups, and identify their presentation using the presentation of the standard pure braid groups $P B_{n}$. In particular, we suppose that the content of the present section is essentially known.

4.2.1 Introduction of the braid groups of the punctured disk $P B_{n}^{\prime}$

In this paragraph, we introduce abstract groups $P B_{n}^{\prime}$ for all $n \in \mathbb{N}$, that we identify later with $\pi_{1} F_{n}^{\prime}$, the groups of n-strand braids in $\stackrel{\circ}{D}^{2} \backslash \tau_{\infty}$. For all $n \in \mathbb{N}$, define an isomorphism $\widehat{\Phi}_{n}$ of abstract free groups by

$$
\begin{aligned}
\left.\widehat{\Phi}_{n}:\left\langle\left\{A_{i, j}\right\}_{1 \leq i<j \leq n-1},\left\{\delta_{i}^{(n-1)}\right\}_{1 \leq i \leq n-1}\right\}\right\rangle & \rightarrow\left\langle\left\{A_{i, j}\right\}_{1 \leq i<j \leq n}\right\rangle \\
A_{i, j} & \mapsto A_{i, j} \quad \forall 1 \leq i<j \leq n-1 \\
\delta_{i}^{(n-1)} & \mapsto
\end{aligned} A_{i, i+1} \cdots A_{i, n} \quad \forall i \in[1, n-1] .
$$

where $\widehat{\Phi}_{n}^{-1}$ is given by

$$
\begin{aligned}
\widehat{\Phi}_{n}^{-1}:\left\langle\left\{A_{i, j}\right\}_{1 \leq i<j \leq n}\right\rangle & \left.\rightarrow\left\langle\left\{A_{i, j}\right\}_{1 \leq i<j \leq n-1}\left\{\delta_{i}^{(n-1)}\right\}_{1 \leq i \leq n-1}\right\}\right\rangle \\
A_{i, j} & \mapsto A_{i, j} \quad \forall 1 \leq i<j \leq n-1 \\
A_{i, n} & \mapsto A_{i, n-1}^{-1} \cdots A_{i, i+1}^{-1} \delta_{i}^{(n-1)} \quad \forall i \in[1, n-2] . \\
A_{n-1, n} & \mapsto \delta_{n-1}^{(n-1)} .
\end{aligned}
$$

Identify the set $\left\{A_{i, j}\right\}_{1 \leq i<j \leq n}$ with the identical set of generators of the group $P B_{n}$ for all $n \in \mathbb{N}$ (cf. [Hansen, Lemma 4.2]), and define a projection map

$$
q_{n}:\left\langle\left\{A_{i, j}\right\}_{1 \leq i<j \leq n}\right\rangle \rightarrow\left|\left\{A_{i, j}\right\}_{1 \leq i<j \leq n}: \mathbf{r}_{n}\right| \cong P B_{n}
$$

where \mathbf{r}_{n} is the set of the relations in $P B_{n}$ with respect to this presentation, which are given by

$$
A_{r, s}^{-1} A_{i, j} A_{r, s} \sim \begin{cases}A_{i, j} & \text { if } i<r<s<j \tag{4.1}\\ A_{r, j} A_{i, j} A_{r, j}^{-1} & \text { or } r<s<i<j \\ A_{r, j} A_{s, j} A_{i, j} A_{s, j}^{-1} A_{r, j}^{-1} & \text { if } r<i=s<j \\ A_{r, j} A_{s, j} A_{r, j}^{-1} A_{s, j}^{-1} A_{i, j} A_{s, j} A_{r, j} A_{s, j}^{-1} A_{r, j}^{-1} & \text { if } i=r<s<j \\ \text { if } r<i<s<j\end{cases}
$$

This presentation is related to Artin's by

$$
A_{i, j}=\sigma_{j-1} \sigma_{j-2} \cdots \sigma_{i+1} \sigma_{i}^{2} \sigma_{i+1}^{-1} \cdots \sigma_{j-2}^{-1} \sigma_{j-1}^{-1}
$$

for all $1 \leq i<j$ (see [Birman, p. 20]). For all $n \in \mathbb{N}$, define

$$
\mathbf{r}_{n}^{\prime}:=\widehat{\Phi}_{n}^{-1}\left(\mathbf{r}_{n}\right)
$$

and, introducing the projection
$\left.\left.q_{n}^{\prime}:\left\langle\left\{A_{i, j}\right\}_{1 \leq i<j \leq n-1} \cup\left\{\delta_{i}^{(n-1)}\right\}_{1 \leq i \leq n-1}\right\}\right\rangle \rightarrow \mid\left\{A_{i, j}\right\}_{1 \leq i<j \leq n-1},\left\{\delta_{i}^{(n-1)}\right\}_{1 \leq i \leq n-1}\right\}: \mathbf{r}_{n}^{\prime} \mid:=P B_{n-1}^{\prime}$,
observe that there is a commutative diagram

where

$$
\Phi_{n}: P B_{n-1}^{\prime} \xrightarrow{\cong} P B_{n}
$$

is the isomorphism of groups induced by $\widehat{\Phi}_{n}$.

4.2.2 Identification of $\pi_{1} F_{n}^{\prime}$ with $P B_{n}^{\prime}$.

Recalling the definition $F_{n}^{\prime}:=F_{n}\left(\stackrel{\circ}{D}^{2} \backslash \tau_{\infty}\right)$, we now identify the group $P B_{n}^{\prime}$ with the fundamental group $\pi_{1} F_{n}^{\prime}$ for all $n \in \mathbb{N}$, as shown below.

Proposition 4.7. For each $n \in \mathbb{N}$, there is an element $\widehat{\phi}_{n} \in H_{0}$ that satisfies

$$
\begin{aligned}
\widehat{\phi}_{n}\left(\tau_{\infty}\right) & =\tau_{n}, \quad \text { and } \\
\widehat{\phi}_{n}(x) & =x \quad \forall x \in D^{2} \backslash B\left(\tau_{\infty},\left\|\tau_{n-1}-\tau_{\infty}\right\|\right)
\end{aligned}
$$

In particular, this map induces a well defined map of pointed spaces

$$
\begin{aligned}
\phi_{n}:\left(F_{n-1}^{\prime}, \mathcal{T}_{n-1}\right) & \rightarrow\left(F_{n}, \mathcal{T}_{n}\right) \\
\left(x_{1}, \ldots, x_{n-1}\right) & \mapsto\left(\widehat{\phi}_{n}\left(x_{1}\right), \ldots, \widehat{\phi}_{n}\left(x_{n-1}\right), \tau_{n}\right)
\end{aligned}
$$

Proof. Observe that, as Theorem 1.12 holds for any choice for $\left(\tau_{i}\right)_{i \in[1, n]}$, the map

$$
\begin{aligned}
\widetilde{\mathrm{ev}}_{n}: H_{0} & \rightarrow F_{n} \\
h & \mapsto\left(h\left(\tau_{i}\right)\right)_{i \in[1, n-1] \cup \infty}
\end{aligned}
$$

is a fiber bundle, and thus, in particular, is surjective. Choose any homeomorphism

$$
f: D^{2} \xrightarrow{\cong} \overline{B\left(\tau_{\infty},\left\|\tau_{n-1}-\tau_{\infty}\right\|\right)},
$$

and consider the following commutative diagram
where H_{0}^{B} is the space of homeomorphisms of $\overline{B\left(\beta_{i}\left(t_{j}\right),\left\|\tau_{n-1}-\tau_{\infty}\right\|\right)}$ that fix the boundary $\partial \overline{B\left(\beta_{i}\left(t_{j}\right),\left\|\tau_{n-1}-\tau_{\infty}\right\|\right)}$ pointwise, and $\widetilde{\mathrm{ev}}_{n}^{B}$ is the induced map. This shows that

$$
\widetilde{\mathrm{ev}}_{n}^{B}: H_{0}^{B} \rightarrow F_{n} \overline{B\left(\tau_{\infty},\left\|\tau_{n-1}-\tau_{\infty}\right\|\right)}
$$

is surjective, which means that there is a map $\widehat{\phi}_{n}^{B}$ in H_{0}^{B} that satisfies

$$
\begin{aligned}
\widehat{\phi}_{n}^{B}\left(\tau_{\infty}\right) & =\tau_{n}, \\
\widehat{\phi}_{n}^{B}\left(\tau_{i}\right) & =\tau_{i} \quad \forall i \in[1, n-1],
\end{aligned}
$$

which, when extended by the identity map on $D^{2} \backslash B\left(\tau_{\infty},\left\|\tau_{n-1}-\tau_{\infty}\right\|\right)$, yields the required map $\widehat{\phi}_{n}$.

Proposition 4.8. For each $n \in \mathbb{N}$, the map $\phi_{n}: F_{n-1}^{\prime} \rightarrow F_{n}$ induces an isomorphism

$$
\pi_{1} \phi_{n}: \pi_{1}\left(F_{n-1}^{\prime}, \mathcal{T}_{n-1}\right) \stackrel{\cong}{\cong} \pi_{1}\left(F_{n}, \mathcal{T}_{n}\right) .
$$

Proof. Fix some $n \in \mathbb{N}$. According to [Birman, Thm. 1.2], there is a fiber bundle

$$
\begin{array}{rcccc}
\left(F_{n-1}^{\prime}, \mathcal{T}_{n-1}\right) & \stackrel{\nu_{n}}{\longrightarrow} & \left(F_{n}, \mathcal{T}_{n}\right) & \longrightarrow & \left(\stackrel{\circ}{D}^{2}, \tau_{n}\right) \\
\left(x_{1}, \ldots, x_{n-1}\right) & \mapsto & \left(x_{1}, \ldots, x_{n-1}, \tau_{n}\right) & & \\
& & \left(x_{1}, \ldots, x_{n}\right) & \mapsto & x_{n}
\end{array}
$$

Moreover, recalling that

$$
\pi_{1}\left(\stackrel{\circ}{D}^{2}, \tau_{n}\right)=\pi_{2}\left(\stackrel{\circ}{D}^{2}, \tau_{n}\right)=1
$$

the corresponding long exact homotopy sequence yields an isomorphism

$$
\pi_{1} \nu_{n}: \pi_{1}\left(F_{n-1}^{\prime}, \mathcal{T}_{n-1}\right) \stackrel{\cong}{\Longrightarrow} \pi_{1}\left(F_{n}, \mathcal{T}_{n}\right) .
$$

Considering the following diagram of pointed spaces commutes

where the corestricted map

$$
\phi_{n}^{c}:=\phi_{n} \mid\left(F_{n-1}^{\prime}, \mathcal{T}_{n-1}\right)
$$

is actually a homeomorphism, the induced diagram of fundamental groups yields the required isomorphism.

Consider the diagram

$$
\begin{aligned}
& \pi_{1} F_{n-1}^{\prime} \stackrel{\pi_{1} \phi_{n}}{\cong} \pi_{1} F_{n} \\
& P B_{n-1}^{\prime} \xrightarrow{\Phi_{n}} \cong P B_{n}
\end{aligned}
$$

Definition 4.9. By the fact that, for every $n \in \mathbb{N}$, both $\pi_{1} \phi_{n}: \pi_{1} F_{n-1}^{\prime} \rightarrow \pi_{1} F_{n}$ and $\Phi_{n}: P B_{n-1}^{\prime} \rightarrow P B_{n}$ are isomorphisms of groups, we can identify, for all $n \in \mathbb{N}$, the abstract group $P B_{n-1}^{\prime}$ with the concrete group $\pi_{1} F_{n-1}^{\prime}$ and the isomorphism Φ_{n} with $\pi_{1} \phi_{n}$, such that the above diagram completes as follows

4.2.3 Canonical representatives of the generators of the groups $P B_{n}^{\prime}$ for finite n

The following notation is used repeatedly in the sequel.
Definition 4.10. For all $n \in \mathbb{N}$ introduce a subset of D^{2} by

$$
D_{n}:=\stackrel{\circ}{D}^{2} \backslash\left\{\left\{\tau_{j}\right\}_{j \in[1, n-1]} \cup \overline{B\left(\tau_{\infty},\left\|\tau_{n+1}-\tau_{\infty}\right\|\right)}\right\} .
$$

Here are two examples.

Definition 4.11. For all $i, n \in \mathbb{N}$ with $1 \leq i \leq n$, write

$$
\begin{aligned}
\kappa_{i}^{(n)}:\left(D_{i}, \tau_{i}\right) & \rightarrow\left(F_{n}^{\prime}, \mathcal{T}_{n}\right) \\
x & \mapsto\left(\tau_{1}, \ldots, \tau_{i-1}, x, \tau_{i+1}, \ldots, \tau_{n}\right) .
\end{aligned}
$$

Proposition 4.12. For all integers i, j with $1 \leq i<j$, there is a loop

$$
\widehat{A}_{i, j} \in \Omega\left(D_{j}, \tau_{j}\right)
$$

such that, for all $n \geq j$,

$$
A_{i, j}=\left[\kappa_{j}^{(n)} \circ \widehat{A}_{i, j}\right]=\left[p_{\tau_{1}}, \ldots, p_{\tau_{j-1}}, \widehat{A}_{i, j}, p_{\tau_{j+1}}, \ldots, p_{\tau_{n}}\right]
$$

in $P B_{n}^{\prime}$. Also, for all $i \in \mathbb{N}$, there is a loop

$$
\widehat{\delta}_{i} \in \Omega\left(D_{i}, \tau_{i}\right),
$$

that satisfies, for all $n \geq i$,

$$
\delta_{i}^{(n)}=\left[\kappa_{i}^{(n)} \circ \widehat{\delta}_{j}\right]=\left[p_{\tau_{1}}, \ldots, p_{\tau_{i-1}}, \widehat{\delta}_{i}, p_{\tau_{i+1}}, \ldots, p_{\tau_{n}}\right]
$$

in $P B_{n}^{\prime}$. Moreover, these loops can be chosen such that

$$
\widehat{A}_{i, j}(t) \in D_{j} \cap B\left(\tau_{\infty},\left\|\frac{1}{2}\left(\tau_{i-1}+\tau_{i}\right)-\tau_{\infty}\right\|\right) \quad \forall i, j \in \mathbb{N} \text { with } i<j, \quad \forall t \in I
$$

and

$$
\widehat{\delta}_{i}(t) \in D_{i} \cap B\left(\tau_{\infty},\left\|\tau_{i-1}-\tau_{\infty}\right\|\right) \quad \forall i \in \mathbb{N}, \quad \forall t \in I
$$

respectively.
Proof. Fix some $n \in \mathbb{N}$, and pick any $i, j \in \mathbb{N}$ with $1 \leq i<j \leq n$. According to basic braid theory, the generator $A_{i, j}$ of $P B_{n+1}$ has a combed representative

$$
\left(p_{\tau_{1}}, \ldots, p_{\tau_{j-1}}, \widehat{A}_{i, j}, p_{\tau_{j+1}}, \ldots, p_{\tau_{n+1}}\right) \in \Omega F_{n+1}
$$

where $\widehat{A}_{i, j} \in \Omega\left(D^{2}, \tau_{j}\right)$ is a loop that winds around the i-th strand, and doesn't wind around any other strand. An example for $i=n-3, j=n$ is drawn below. Clearly, $\widehat{A}_{i, j}$ can be chosen such that

$$
\begin{equation*}
\widehat{A}_{i, j}(t) \in D_{j} \cap B\left(\tau_{\infty},\left\|\frac{1}{2}\left(\tau_{i-1}+\tau_{i}\right)-\tau_{\infty}\right\|\right) \quad \forall i, j \in \mathbb{N} \text { with } i<j, \quad \forall t \in I \tag{A}
\end{equation*}
$$

as required. Recalling Proposition 4.7 and Definition 4.9, notice that, in $P B_{n+1}$,

$$
\begin{aligned}
A_{i, j} & =\left[\left(p_{\tau_{1}}, \ldots, p_{\tau_{j-1}}, \widehat{A}_{i, j}, p_{\tau_{j+1}}, \ldots, p_{\tau_{n+1}}\right)\right] \\
& \stackrel{*}{=}\left[\left(\widehat{\phi}_{n+1} \circ p_{\tau_{1}}, \ldots, \widehat{\phi}_{n+1} \circ p_{\tau_{j-1}}, \widehat{\phi}_{n+1} \circ \widehat{A}_{i, j}, \widehat{\phi}_{n+1} \circ p_{\tau_{j+1}}, \ldots, p_{\tau_{n+1}}\right)\right] \\
& =\left[\Omega \phi_{n+1}\left(p_{\tau_{1}}, \ldots, p_{\tau_{j-1}}, \widehat{A}_{i, j}, p_{\tau_{j+1}}, \ldots, p_{\tau_{n}}\right)\right] \\
& =\Phi_{n+1}\left[\left(p_{\tau_{1}}, \ldots, p_{\tau_{j-1}}, \widehat{A}_{i, j}, p_{\tau_{j+1}}, \ldots, p_{\tau_{n}}\right)\right]
\end{aligned}
$$

where $(*)$ follows from the properties of $\widehat{\phi}_{n}$, because, by (A),

$$
\widehat{A}_{i, j}(t) \in D^{2} \backslash B\left(\tau_{\infty},\left\|\tau_{n+1}-\tau_{\infty}\right\|\right) \quad \forall t \in I
$$

Thus, in particular,

$$
\left[\left(p_{\tau_{1}}, \ldots, p_{\tau_{j-1}}, \widehat{A}_{i, j}, p_{\tau_{j+1}}, \ldots, p_{\tau_{n}}\right)\right]=A_{i, j} \quad \text { in } P B_{n}^{\prime}
$$

On the other hand, for each $i \in[1, n]$, by Lemma A.9,

$$
\Phi_{n+1}\left(\delta_{i}^{(n)}\right)=A_{i, i+1} \cdots A_{i, n+1} \sim \sigma_{i} \cdots \sigma_{n-1} \sigma_{n}^{2} \sigma_{n-1} \cdots \sigma_{i}
$$

in $P B_{n+1}$. Using standard representatives of the generators σ_{i}, one can show, by choosing an adequate homotopy in ΩF_{n+1}, that

$$
\sigma_{i} \cdots \sigma_{n-1} \sigma_{n}^{2} \sigma_{n-1} \cdots \sigma_{i}=\left[\left(p_{\tau_{1}}, \ldots, p_{\tau_{i-1}}, \widehat{\delta}_{i}, p_{\tau_{i+1}}, \ldots, p_{\tau_{n+1}},\right)\right]
$$

where $\widehat{\delta} \in \Omega\left(D^{2}, \tau_{i}\right)$ is a loop that winds around all strands from the $i+1$-st to the $n+1$-st, and doesn't wind around the other strands. An example for $i=n$ is drawn below. Moreover, $\widehat{\delta}_{i}$ can be chosen such that

$$
\begin{equation*}
\widehat{\delta}_{i}(t) \in D_{i} \cap B\left(\tau_{\infty},\left\|\tau_{i-1}-\tau_{\infty}\right\|\right) \quad \forall i \in \mathbb{N}, \quad \forall t \in I \tag{B}
\end{equation*}
$$

as required. Thus, in $P B_{n+1}$,

$$
\begin{aligned}
\Phi_{n+1}\left(\delta_{i}^{(n)}\right) & =A_{i, i+1} \cdots A_{i, n+1} \\
& =\left[\left(p_{\tau_{1}}, \ldots, p_{\tau_{i-1}}, \widehat{\delta}_{i}, p_{\tau_{i+1}}, \ldots, p_{\tau_{n+1}},\right)\right] \\
& \stackrel{*}{=}\left[\left(\widehat{\phi}_{n+1} \circ p_{\tau_{1}}, \ldots, \widehat{\phi}_{n+1} \circ p_{\tau_{i-1}}, \widehat{\phi}_{n+1} \circ \widehat{\delta}_{i}, \widehat{\phi}_{n+1} \circ p_{\tau_{i+1}}, \ldots, \widehat{\phi}_{n+1} \circ p_{\tau_{n}}, p_{\tau_{n+1}}\right)\right] \\
& =\left[\Omega \phi_{n+1}\left(p_{\tau_{1}}, \ldots, p_{\tau_{i-1}}, \widehat{\delta}_{i}, p_{\tau_{i+1}}, \ldots, p_{\tau_{n}},\right)\right] \\
& =\Phi_{n+1}\left[\left(p_{\tau_{1}}, \ldots, p_{\tau_{i-1}}, \widehat{\delta}_{i}, p_{\tau_{i+1}}, \ldots, p_{\tau_{n}},\right)\right]
\end{aligned}
$$

where $(*)$ is given the above given properties of $\widehat{\phi}_{n}$, because, by (B),

$$
\widehat{\delta}_{i}(t) \in \stackrel{\circ}{D}^{2} \backslash B\left(\tau_{\infty},\left\|\tau_{i}-\tau_{\infty}\right\|\right) \quad \forall t \in I
$$

Thus, as required,

$$
\left[\left(p_{\tau_{1}}, \ldots, p_{\tau_{i-1}}, \widehat{\delta}_{i}, p_{\tau_{i+1}}, \ldots, p_{\tau_{n}}\right)\right]=\delta^{(n)} \quad \text { in } P B_{n}^{\prime}
$$

The loops $\widehat{A}_{n-3, n}$ and $\widehat{\delta}_{n}^{(n)}$, as well as the corresponding braids $\Omega \kappa_{n}^{(n+1)}\left(\widehat{A}_{n-3, n}\right)$ and $\Omega \kappa_{n}^{(n+1)}\left(\widehat{\delta}_{n}\right)$ are shown in the following drawings, where the grey zones are to avoid by the given conditions.

4.2.4 Inverse system of pure braid groups revisited

In this subsection, we investigate the maps $\pi_{1} s_{n, n-1}: P B_{n} \rightarrow P B_{n-1}$ and $\pi_{1} s_{n, n-1}^{\prime}: P B_{n}^{\prime} \rightarrow P B_{n-1}^{\prime}$ in algebraic terms, i.e., using the presentation of the groups $P B_{n}$ and $P B_{n}^{\prime}$, respectively. This allows us thereafter to construct an isomorphism between the inverse systems $\left\{P B_{n}^{\prime}, \pi_{1} s_{n+1, n}^{\prime}\right\}_{n \in \mathbb{N}}$ and $\left\{P B_{n}, \pi_{1} s_{n+1, n}\right\}_{n \in \mathbb{N}}$.

Proposition 4.13. For each $n \geq 2$, the maps $\pi_{1} s_{n, n-1}: P B_{n} \rightarrow P B_{n-1}$ and $\pi_{1} s_{n, n-1}^{\prime}: P B_{n}^{\prime} \rightarrow P B_{n-1}^{\prime}$ act as follows on the generators.

$$
\begin{aligned}
& \pi_{1} s_{n, n-1}: P B_{n} \quad \rightarrow \quad P B_{n-1} \\
& A_{i, j} \mapsto A_{i, j} \quad \forall 1 \leq i<j \leq n-1 \\
& A_{i, n} \mapsto 1 \quad \forall i \in[1, n-1] \\
& \pi_{1} s_{n, n-1}^{\prime}: P B_{n}^{\prime} \quad \rightarrow P B_{n-1}^{\prime} \\
& A_{i, j} \mapsto A_{i, j} \quad \forall 1 \leq i<j \leq n-1 \\
& A_{i, n} \mapsto 1 \quad \forall i \in[1, n-1] \\
& \delta_{i}^{(n)} \mapsto \delta_{i}^{(n-1)} \quad \forall i \in[1, n-1] \\
& \delta_{n}^{(n)} \mapsto 1
\end{aligned}
$$

Proof. Fix some $n \geq 2$. The statement concerning $\pi_{1} s_{n, n-1}$ is proved in [Birman, p. 23], whereas the action of $\pi_{1} s_{n, n-1}^{\prime}$ follows directly from Proposition 4.12, by looking at representatives of the generators of $P B_{n}^{\prime}$.

For all integers $n^{\prime} \geq n \geq 2$, introduce an isomorphism induced by conjugation

$$
\begin{aligned}
c_{n}: P B_{n^{\prime}} & \stackrel{\cong}{ } P B_{n^{\prime}} \\
b & \mapsto \sigma_{n-1} b \sigma_{n-1}^{-1},
\end{aligned}
$$

where σ_{n-1} is the usual notation for a generator of Artin's presentation of the braid groups.

Lemma 4.14. For every $n \geq 2$, the following diagram of homomorphisms of groups commutes.

Proof. Fix some $n \geq 2$. We prove that the diagram commutes by chasing each generator of $P B_{n-1}^{\prime}$ through it. Recall that the set of generators of $P B_{n-1}^{\prime}$ is given by $\left\{A_{i, j}\right\}_{1 \leq i<j \leq n-1} \cup\left\{\delta_{i}^{(n-1)}\right\}_{i \in[1, n-1]}$. For the following calculations, we need Artin's relations of $P B_{n}$.

$$
\begin{align*}
\sigma_{i} \sigma_{j} & \sim \sigma_{j} \sigma_{i} \quad \text { if }|i-j| \geq 2,1 \leq i, j \leq n-1 \tag{A1}\\
\sigma_{i} \sigma_{i+1} \sigma_{i} & \sim \sigma_{i+1} \sigma_{i} \sigma_{i+1}, \quad 1 \leq i \leq n-2 \tag{A2}
\end{align*}
$$

At each stage, we underline the term to move, or to replace by an equivalent one. For all i, j with $1 \leq i<j \leq n-2$, the following holds in $P B_{n-1}$.

$$
\begin{aligned}
\pi_{1} s_{n, n-1} \circ c_{n} \circ \Phi_{n}\left(A_{i, j}\right) & =\pi_{1} s_{n, n-1} \circ c_{n}\left(A_{i, j}\right) \\
& =\pi_{1} s_{n, n-1} \circ c_{n}\left(\sigma_{j-1} \cdots \sigma_{i+1} \sigma_{i}^{2} \sigma_{i+1}^{-1} \ldots \sigma_{j-1}\right) \\
& =\pi_{1} s_{n, n-1}\left(\underline{\sigma_{n-1}} \sigma_{j-1} \cdots \sigma_{i+1} \sigma_{i}^{2} \sigma_{i+1}^{-1} \ldots \sigma_{j-1} \sigma_{n-1}^{-1}\right) \\
& \stackrel{A 1}{=} \pi_{1} s_{n, n-1}\left(\sigma_{j-1} \cdots \sigma_{i+1} \sigma_{i}^{2} \sigma_{i+1}^{-1} \cdots \sigma_{j-1} \sigma_{n-1} \sigma_{n-1}^{-1}\right) \\
& =\pi_{1} s_{n, n-1}\left(\sigma_{j-1} \cdots \sigma_{i+1} \sigma_{i}^{2} \sigma_{i+1}^{-1} \cdots \sigma_{j-1}\right) \\
& =\pi_{1} s_{n, n-1}\left(A_{i, j}\right) \stackrel{*}{=} A_{i, j}=\Phi_{n-1}\left(A_{i, j}\right) \\
& \stackrel{*}{=} \Phi_{n-1} \circ \pi_{1} s_{n, n-1}^{\prime}\left(A_{i, j}\right),
\end{aligned}
$$

where $(*)$ is given by Proposition 4.13. On the other hand, if $j=n-1$, then, for every $i \in[1, n-2]$,

$$
\begin{aligned}
\pi_{1} s_{n, n-1} \circ c_{n} \circ \Phi_{n}\left(A_{i, n-1}\right) & =\pi_{1} s_{n, n-1} \circ c_{n}\left(A_{i, n-1}\right) \\
& =\pi_{1} s_{n, n-1} \circ c_{n}\left(\sigma_{n-2} \cdots \sigma_{i+1} \sigma_{i}^{2} \sigma_{i+1}^{-1} \ldots \sigma_{n-2}^{-1}\right) \\
& =\pi_{1} s_{n, n-1}\left(\sigma_{n-1} \sigma_{n-2} \cdots \sigma_{i+1} \sigma_{i}^{2} \sigma_{i+1}^{-1} \cdots \sigma_{n-2}^{-1} \sigma_{n-1}^{-1}\right) \\
& =\pi_{1} s_{n, n-1}\left(A_{i, n}\right) \stackrel{*}{=} 1=\Phi_{n-1}(1) \\
& \stackrel{*}{=} \Phi_{n-1} \circ \pi_{1} s_{n, n-1}^{\prime}\left(A_{i, n-1}\right),
\end{aligned}
$$

where (*) is given by Proposition 4.13. Furthermore, for every $i \in[1, n-2]$,

$$
\begin{aligned}
\pi_{1} s_{n, n-1} & \circ c_{n} \circ \Phi_{n}\left(\delta_{i}^{(n-1)}\right) \\
& =\pi_{1} s_{n, n-1} \circ c_{n}\left(A_{i, i+1} \cdots A_{i, n}\right) \\
& =\pi_{1} s_{n, n-1}\left(\sigma_{n-1} A_{i, i+1} \cdots A_{i, n} \sigma_{n-1}^{-1}\right) \\
& \stackrel{*}{=} \pi_{1} s_{n, n-1}\left(\underline{\sigma_{n-1}} \sigma_{i} \sigma_{i+1} \cdots \sigma_{n-3} \sigma_{n-2} \sigma_{n-1} \sigma_{n-1} \sigma_{n-2} \sigma_{n-3} \ldots \sigma_{i} \underline{\sigma_{n-1}^{-1}}\right) \\
& \stackrel{A 1}{=} \pi_{1} s_{n, n-1}\left(\sigma_{i} \sigma_{i+1} \cdots \sigma_{n-3} \underline{\sigma_{n-1} \sigma_{n-2} \sigma_{n-1} \sigma_{n-1} \sigma_{n-2} \sigma_{n-1}^{-1} \sigma_{n-3} \ldots \sigma_{i}}\right) \\
& \stackrel{A 2}{=} \pi_{1} s_{n, n-1}\left(\sigma_{i} \sigma_{i+1} \cdots \sigma_{n-3} \sigma_{n-2} \sigma_{n-1} \underline{\sigma_{n-2} \sigma_{n-1} \sigma_{n-2}} \sigma_{n-1}^{-1} \sigma_{n-3} \ldots \sigma_{i}\right) \\
& \stackrel{A 2}{=} \pi_{1} s_{n, n-1}\left(\sigma_{i} \sigma_{i+1} \cdots \sigma_{n-3} \sigma_{n-2} \sigma_{n-1}^{2} \sigma_{n-2} \underline{\sigma_{n-1} \sigma_{n-1}^{-1}} \sigma_{n-3} \ldots \sigma_{i}\right) \\
& =\pi_{1} s_{n, n-1}\left(\sigma_{i} \sigma_{i+1} \cdots \sigma_{n-3} \sigma_{n-2} \sigma_{n-1}^{2} \sigma_{n-2} \sigma_{n-3} \ldots \sigma_{i}\right) \\
& \stackrel{*}{=} \pi_{1} s_{n, n-1}\left(A_{i, i+1} \cdots A_{i, n-1} A_{i, n}\right) \\
& \stackrel{*}{=} A_{i, i+1} \cdots A_{i, n-1}=\Phi_{n-1}\left(\delta_{i}^{(n-2)}\right) \\
& \stackrel{* *}{=} \Phi_{n-1} \circ \pi_{1} s_{n, n-1}^{\prime}\left(\delta_{i}^{(n-1)}\right)
\end{aligned}
$$

where $(*)$ and $(* *)$ are given by Lemma A.9, and Proposition 4.13, respectively. Finally, if $i=n-1$, then,

$$
\begin{aligned}
\pi_{1} s_{n, n-1} \circ c_{n} \circ \Phi_{n}\left(\delta_{n-1}^{(n-1)}\right) & =\pi_{1} s_{n, n-1}\left(\sigma_{n-1} A_{n-1, n} \sigma_{n-1}^{-1}\right) \\
& =\pi_{1} s_{n, n-1}\left(\sigma_{n-1} \sigma_{n-1}^{2} \sigma_{n-1}^{-1}\right) \\
& =\pi_{1} s_{n, n-1}\left(\sigma_{n-1}^{2}\right)=1=\Phi_{n-1}(1) \\
& =\Phi_{n-1} \circ \pi_{1} s_{n, n-1}^{\prime}\left(\delta_{n-1}^{(n-1)}\right) .
\end{aligned}
$$

Proposition 4.15. The space F_{∞}^{\prime} is the inverse limit of pointed spaces

$$
F_{\infty}^{\prime}=\lim \left\{F_{n}^{\prime}, s_{n, n-1}^{\prime}\right\}_{n \in \mathbb{N}} .
$$

Proof. Similar to the proof of Proposition 1.19.

Proposition 4.16.

$$
P B_{\infty}^{\prime}:=\pi_{1} F_{\infty}^{\prime}=\lim \left\{P B_{n}^{\prime}, \pi_{1} s_{n, n-1}^{\prime}\right\}_{n \in \mathbb{N}}
$$

Proof. Similar to the proof of Theorem 1.22 (see [5]), one can prove that the maps

$$
s_{n, n-1}^{\prime}: F_{n}^{\prime} \rightarrow F_{n-1}^{\prime}
$$

are fiber bundles, such that, by Proposition 4.15, the result can be proved by [12], similarly to the proof of Corollary 1.23.

For every $n \geq 2$, define an isomorphism $\Psi_{n}: P B_{n-1}^{\prime} \xrightarrow{\cong} P B_{n}$ by iterated conjugation

$$
\Psi_{n}:=c_{2} \circ \cdots \circ c_{n} \circ \Phi_{n} .
$$

Theorem 4.17. For each $n \in \mathbb{N}$, the isomorphism $\Psi_{n}: P B_{n-1}^{\prime} \xrightarrow{\cong} P B_{n}$ induces an isomorphism of inverse systems

$$
\left\{\Psi_{n}\right\}_{n \geq 2}:\left\{P B_{n-1}^{\prime}, \pi_{1} s_{n-1, n-2}^{\prime}\right\}_{n \in \mathbb{N}} \xrightarrow{\cong}\left\{P B_{n}, \pi_{1} s_{n, n-1}\right\}_{n \in \mathbb{N}}
$$

which itself induces an isomorphim

$$
\Psi_{\infty}: P B_{\infty}^{\prime} \xrightarrow{\cong} P B_{\infty}
$$

on limits.
Proof. First, observe that the diagram

$$
\begin{gathered}
P B_{n} \xrightarrow{\pi_{1} s_{n, n-1}} P B_{n-1} \\
c_{i} \mid \cong \\
\cong c_{i} \\
P B_{n} \xrightarrow{\pi_{1} s_{n, n-}} P B_{n-1}
\end{gathered}
$$

commutes for every $n \in \mathbb{N}$ and $i \in[1, n-1]$, because, for each $b \in P B_{n}$,

$$
\begin{aligned}
c_{i} \circ \pi_{1} s_{n, n-1}(b) & =\sigma_{i-1} \pi_{1} s_{n, n-1}(b) \sigma_{i-1}^{-1} \\
& \stackrel{*}{=} \pi_{1} s_{n, n-1}\left(\sigma_{i-1} b \sigma_{i-1}^{-1}\right) \\
& =\pi_{1} s_{n, n-1} \circ c_{i}(b),
\end{aligned}
$$

where $(*)$ holds, because $\pi_{1} s_{n, n-1}$ is a homomorphism, and

$$
\pi_{1} s_{n, n-1}\left(\sigma_{i}\right)=\sigma_{i} \quad \forall i \in[1, n-2]
$$

By suitably putting together such diagrams for i varying from 1 to $n-1$, it follows that the diagram

$$
\begin{gather*}
P B_{n} \xrightarrow{\pi_{1} s_{n, n}-} P B_{n-1} \tag{A}\\
c_{2} \cdots c_{n-1} \mid \cong \\
{ }_{n} \xrightarrow{\pi_{1} s_{n, n}-} P B_{n-1} \cdots c_{n-1}
\end{gather*}
$$

also commutes for every $n \geq 2$. Using Lemma 4.14, it thus follows that the diagram

commutes, which shows that the maps $\left\{\Psi_{n}\right\}_{n \geq 2}$ yield the required isomorphism of inverse systems. Moreover, according to Corollary 1.23 and Proposition 4.16, the upper and lower inverse system have $P B_{\infty}^{\prime}$ and $P B_{\infty}$ as limits, respectively.

Recall that, by the comments on the beginning of the present chapter, there is a commutative diagram

where ι is the inclusion map. However, it is important to keep in mind that the map $\Psi_{\infty}: P B_{\infty}^{\prime} \rightarrow P B_{\infty}$ is different from the map $\pi_{1} \iota$. In particular, the diagram

does not commute.
Definition 4.18. For every $n \in \mathbb{N}$, define subgroups $U_{n} \subset P B_{n}$ and $U_{n}^{\prime} \subset$ $P B_{n+1}^{\prime}$ by

$$
U_{n}:=\operatorname{Ker}\left(\pi_{1} s_{n, n-1}\right), \quad U_{n}^{\prime}:=\operatorname{Ker}\left(\pi_{1} s_{n, n-1}^{\prime}\right)
$$

Proposition 4.19. For every $n \in \mathbb{N}$, the subgroups $U_{n} \triangleleft P B_{n}, U_{n}^{\prime} \triangleleft P B_{n+1}^{\prime}$ are presented as follows.

$$
U_{n}=\left\langle\left\{A_{i, n}\right\}_{i \in[1, n-1]}\right\rangle, \quad U_{n}^{\prime}=\left\langle\left\{A_{i, n}\right\}_{i \in[1, n-1]}, \delta_{n}^{(n)}\right\rangle
$$

In particular, these groups are free.
Proof. Fix some $n \in \mathbb{N}$. The presentation

$$
U_{n}=\left\langle\left\{A_{i, n}\right\}_{i \in[1, n-1]}\right\rangle
$$

is given in [Birman, p. 23]. Recalling that both $\pi_{1} s_{n+1, n}$ and $\pi_{1} s_{n+1, n}^{\prime}$ are epimorphisms, the diagram of Lemma 4.14 can be extended to the following commutative diagram with exact rows

$$
\begin{aligned}
& 1 \longrightarrow U_{n}^{\prime} \longrightarrow P B_{n}^{\prime} \xrightarrow{\pi_{1} s_{n, n-1}^{\prime}} P B_{n-1}^{\prime} \longrightarrow 1 \\
& \left.c_{n+1} \circ \Phi_{n+1}\right|^{U_{n}^{\prime}} \downarrow \cong c_{n+1} \circ \Phi_{n+1} \downarrow \cong \quad \Phi_{n} \mid \cong \\
& 1 \longrightarrow U_{n+1} \longrightarrow P B_{n+1} \xrightarrow{\pi_{1} s_{n+1, n}} P B_{n} \longrightarrow 1,
\end{aligned}
$$

where the corestricted map $\left.c_{n+1} \circ \Phi_{n+1}\right|^{U_{n}^{\prime}}$ is an isomorphism by the five lemma. Therefore, according to the presentation of U_{n+1}, U_{n}^{\prime} must be the free group presented by

$$
U_{n}^{\prime} \cong\left\langle\left\{\left(c_{n+1} \circ \Phi_{n+1}\right)^{-1}\left(A_{i, n+1}\right)\right\}_{i \in[1, n]}\right\rangle
$$

Recalling the identities

$$
A_{i, n+1}:=\sigma_{n} \sigma_{n-1} \cdots \sigma_{i+1} \sigma_{i}^{2} \sigma_{i+1}^{-1} \cdots \sigma_{n-1}^{-1} \sigma_{n}^{-1}
$$

for all $1 \leq i \leq n$, the generators are given by

$$
\begin{aligned}
\left(c_{n+1} \circ \Phi_{n+1}\right)^{-1}\left(A_{i, n+1}\right) & =\Phi_{n+1}^{-1} \circ c_{n+1}^{-1}\left(A_{i, n+1}\right) \\
& =\Phi_{n+1}^{-1}\left(\sigma_{n}^{-1} \sigma_{n} \sigma_{n-1} \cdots \sigma_{i+1} \sigma_{i}^{2} \sigma_{i+1}^{-1} \cdots \sigma_{n-1}^{-1} \sigma_{n}^{-1} \sigma_{n}\right) \\
& =\Phi_{n+1}^{-1}\left(\sigma_{n-1} \cdots \sigma_{i+1} \sigma_{i}^{2} \sigma_{i+1}^{-1} \cdots \sigma_{n-1}^{-1}\right) \\
& =\Phi_{n+1}^{-1}\left(A_{i, n}\right) \\
& =A_{i, n}
\end{aligned}
$$

for all $i \in[1, n-1]$. On the other hand,

$$
\begin{aligned}
\left(c_{n+1} \circ \Phi_{n+1}\right)^{-1}\left(A_{n, n+1}\right) & =\Phi_{n+1}^{-1} \circ c_{n+1}^{-1}\left(A_{n, n+1}\right) \\
& =\Phi_{n+1}^{-1}\left(\sigma_{n}^{-1} \sigma_{n}^{2} \sigma_{n}\right) \\
& =\Phi_{n+1}^{-1}\left(\sigma_{n}^{2}\right) \\
& =\Phi_{n+1}^{-1}\left(A_{n, n+1}\right) \\
& =\delta_{n}^{(n)} .
\end{aligned}
$$

4.2.5 Semidirect product decomposition of the pure braid groups

Proposition 4.20. For each $n \in \mathbb{N}$, there is an isomorphism

$$
\begin{aligned}
\mu_{n}: U_{1}^{\prime} \ltimes \cdots \ltimes U_{n}^{\prime} & \rightarrow P B_{n}^{\prime} \\
\left(u_{1}, \ldots, u_{n}\right) & \mapsto u_{1} \cdots u_{n} .
\end{aligned}
$$

Proof. Fix some $n \in \mathbb{N}$, and consider the split short exact sequence

$$
1 \rightarrow U_{n}^{\prime} \rightarrow P B_{n}^{\prime} \xrightarrow{\pi_{1} s_{n, n-1}^{\prime}} P B_{n-1}^{\prime} \rightarrow 1
$$

Thus,

$$
P B_{n}^{\prime}=P B_{n-1}^{\prime} U_{n}^{\prime}, \quad U_{n}^{\prime} \triangleleft P B_{n}^{\prime}, \quad P B_{n-1}^{\prime} \cap U_{n}^{\prime}=\{1\},
$$

which means that there is an isomorphism

$$
\begin{aligned}
P B_{n-1}^{\prime} \ltimes U_{n}^{\prime} & \xrightarrow{\cong} P B_{n}^{\prime} \\
(b, u) & \mapsto
\end{aligned} b \cdot u .
$$

Iterating this procedure yields the above defined isomorphism

$$
\begin{aligned}
\mu_{n}: U_{1}^{\prime} \ltimes \cdots \ltimes U_{n}^{\prime} & \rightarrow P B_{n}^{\prime} \\
\left(u_{1}, \ldots, u_{n}\right) & \mapsto u_{1} \cdots u_{n} .
\end{aligned}
$$

We now recall some basic facts concerning iterated products. First, note that, for any given $n \geq 2$,

$$
U_{1}^{\prime} \ltimes \cdots \ltimes U_{n}^{\prime}=\prod_{i=1}^{n} U_{i}^{\prime}, \quad \text { as sets } .
$$

Moreover, the group structure of $U_{1}^{\prime} \ltimes \cdots \ltimes U_{n}^{\prime}$ is given as follows.

$$
\begin{aligned}
\ltimes_{i=1}^{n} U_{i} \times \ltimes_{i=1}^{n} U_{i}^{\prime} & \rightarrow \ltimes_{i=1}^{n} U_{i}^{\prime} \\
\left(\left(u_{i}\right)_{i \in[1, n]},\left(v_{i}\right)_{i \in[1, n]}\right) & \mapsto\left(u_{1} v_{1}, v_{1}^{-1} u_{2} v_{1} v_{2}, \ldots, v_{n-1}^{-1} \cdots v_{1}^{-1} u_{n} v_{1} \cdots v_{n}\right) .
\end{aligned}
$$

That this structure is preserved by the map $\mu_{n}: \ltimes_{i=1}^{n-1} U_{i}^{\prime} \rightarrow P B_{n}^{\prime}$ can be illustrated as follows, for any given $\left(u_{i}\right)_{i \in[1, n]}$ and $\left(v_{i}\right)_{i \in[1, n]}$.

$$
\begin{aligned}
\mu_{n}\left(\left(u_{i}\right)_{i \in[1, n]} \cdot\left(v_{i}\right)_{i \in[1, n]}\right) & =\mu_{n}\left(u_{1} v_{1}, v_{1}^{-1} u_{2} v_{1} v_{2}, \ldots, v_{n-1}^{-1} \cdots v_{1}^{-1} u_{n} v_{1} \cdots v_{n}\right) \\
& =u_{1} \cdots u_{n} v_{1} \cdots v_{n} \\
& =\mu_{n}\left(\left(u_{i}\right)_{i \in[1, n]}\right) \mu_{n}\left(\left(v_{i}\right)_{i \in[1, n]}\right) .
\end{aligned}
$$

Consider the following inverse system.

$$
\cdots \rightarrow \ltimes_{i \in[1, n+1]} U_{i}^{\prime} \xrightarrow{p_{n+1, n}} \ltimes_{i \in[1, n]} U_{i}^{\prime} \rightarrow \cdots \rightarrow U_{1}^{\prime}
$$

As a set, its limit $\ltimes_{i \in \mathbb{N}} U_{i}^{\prime}$ is given by

$$
\ltimes_{i \in \mathbb{N}} U_{i}^{\prime}=\prod_{i \in \mathbb{N}} U_{i}^{\prime}
$$

Moreover, $\ltimes_{i \in \mathbb{N}} U_{i}^{\prime}$ has a group structure induced by the group structure of the groups in the inverse system.

Proposition 4.21. There is an isomorphism of inverse systems

$$
\begin{aligned}
& \cdots \longrightarrow \ltimes_{i \in[1, n+1]} U_{i}^{\prime} \xrightarrow{p_{n+1, n}} \ltimes_{i \in[1, n]} U_{i}^{\prime} \longrightarrow \cdots \\
& \begin{array}{cc}
\mu_{n+1} \mid \cong \\
\downarrow & \mu_{n} \mid \cong \\
\cdots & \\
\\
\cdots B_{n+1}^{\prime}
\end{array} \xrightarrow{\pi_{1} s_{n+1, n}^{\prime}} \longrightarrow P B_{n}^{\prime} \longrightarrow \cdots,
\end{aligned}
$$

where $p_{n, n-1}$ is the canonical projection. Thus, there is an induced isomorphism of limits

$$
\mu_{\infty}: \ltimes_{i \in \mathbb{N}} U_{i}^{\prime} \xrightarrow{\cong} P B_{\infty}^{\prime}
$$

Proof. Recalling that $U_{n}^{\prime} \equiv \operatorname{ker} \pi_{1} s_{n, n-1}^{\prime}$ for all n, it follows directly from the definition of the implied maps that each square commutes. Moreover,

$$
\lim _{n} P B_{n}^{\prime}=P B_{\infty}^{\prime}
$$

by Proposition 4.16.
Similar to the maps μ_{n}, introduce maps of standard braid groups

$$
\begin{aligned}
\mu_{n}^{s}: U_{2} \ltimes \cdots \ltimes U_{n} & \rightarrow P B_{n} \\
\left(u_{2}, \ldots, u_{n}\right) & \mapsto u_{2} \cdots u_{n}
\end{aligned}
$$

for all $n \geq 2$.
Proposition 4.22. For each $n \in \mathbb{N}$, the map μ_{n}^{s} is an isomorphism. Moreover, there is an isomorphism of inverse systems

$$
\begin{array}{cc}
\cdots \longrightarrow & \ltimes_{i \in[2, n+1]} U_{i} \xrightarrow{p_{n+1, n}} \ltimes_{i \in[2, n]} U_{i} \longrightarrow \cdots \\
\mu_{n+1}^{s} \mid \cong \\
\cdots \longrightarrow & \mu_{n}^{s} \mid \cong \\
& P B_{n+1} \xrightarrow{\pi_{1} s_{n+1, n}}>P B_{n} \longrightarrow \cdots,
\end{array}
$$

where $p_{n+1, n}$ is the canonical projection, which induces an isomorphism

$$
\mu_{\infty}^{s}: \ltimes_{i \geq 2} U_{i} \xrightarrow{\cong} P B_{\infty} .
$$

on limits.
Proof. Fix some $n \geq 2$. The proof of the fact that μ_{n}^{s} is an isomorphism is similar to the proof of Proposition 4.20. Moreover, recalling that $U_{n} \equiv \operatorname{ker} \pi_{1} s_{n, n-1}$ for all n, it follows directly from the definition of the implied maps that each square commutes. Moreover, by Corollary 1.23,

$$
\lim _{n} P B_{n}=P B_{\infty}
$$

4.2.6 Canonical representatives of the elements of the groups $\left\{P B_{n}^{\prime}\right\}_{n \in \mathbb{N}}$

Definition 4.23. Introduce a map

$$
\begin{aligned}
\hat{\mu}_{\infty}: \prod_{i \in \mathbb{N}} \Omega\left(D_{i}, \tau_{i}\right) & \rightarrow\left(\Omega F_{\infty}^{\prime}\right)_{c} \\
\left(\beta_{i}\right)_{i \in \mathbb{N}} & \mapsto\left(\left(\beta_{i}^{\prime}\right)_{i \in \mathbb{N}}\right),
\end{aligned}
$$

where, for each $i \in \mathbb{N}$, β_{i}^{\prime} is given by

$$
\beta_{i}^{\prime}(t):=\left\{\begin{array}{ll}
\tau_{i} & \text { if } t \in\left[0, t_{i}\right] \\
\beta_{i}\left(2^{i}\left(t-t_{i}\right)\right) & \text { if } t \in\left[t_{i}, t_{i+1}\right] \quad \forall t \in I . \\
\tau_{i} & \text { if } t \in\left[t_{i+1}, 1\right]
\end{array} \quad\right.
$$

Also, write, for all $n \in \mathbb{N}$,

$$
\begin{aligned}
\widehat{\mu}_{n}: \prod_{i \in[1, n-1]} \Omega\left(D_{i}, \tau_{i}\right) & \rightarrow \Omega F_{n}^{\prime} \\
\left(\beta_{i}\right)_{i \in[1, n-1]} & \mapsto\left(\beta_{i}^{\prime}\right)_{i \in[1, n-1]},
\end{aligned}
$$

where, for each $i \in \mathbb{N}$, the loop β_{i}^{\prime} is defined as above.
Remark 4.24. For any given $\left(\beta_{i}\right)_{i \in \mathbb{N}} \in \prod_{i \in \mathbb{N}} \Omega\left(D_{i}, \tau_{i}\right)$, write

$$
\widehat{\mu}_{\infty}\left(\beta_{i}\right)_{i \in \mathbb{N}}:=\left(\beta_{i}^{\prime}\right)_{i \in \mathbb{N}},
$$

and observe that, for all $t \in I$,

$$
\beta_{i}^{\prime}(t)=\beta_{j}^{\prime}(t) \quad \Leftrightarrow \quad i=j .
$$

Thus, $\left(\beta_{i}^{\prime}\right)_{i \in \mathbb{N}}: I \rightarrow F_{\infty}^{\prime}$ is a well defined map. Moreover, for each $i \in \mathbb{N}$, $\beta_{i}^{\prime}: I \rightarrow D^{2}$ is continuous, which is a necessary and sufficient condition for $\left(\beta_{i}^{\prime}\right)_{i \in \mathbb{N}}: I \rightarrow F_{\infty}^{\prime}$ to be a continuous map (see [11, Thm. 19.6]). This shows that $\widehat{\mu}_{\infty}: \times_{i \in \mathbb{N}} \Omega\left(D_{i}, \tau_{i}\right) \rightarrow\left(\Omega F_{\infty}^{\prime}\right)_{c}$ is indeed well defined.
Finally, note that the map $\widehat{\mu}_{n}$ just concatenates braids:

$$
\widehat{\mu}_{\infty}\left(\beta_{i}\right)_{i \in \mathbb{N}}=\left(\beta_{1},\left(p_{\tau_{i}}\right)_{i \geq 2}\right) \star\left(\left(p_{\tau_{i}}, \beta_{2},\left(p_{\tau_{i}}\right)_{i \geq 3}\right) \star \ldots\right) .
$$

Recall that, for all $n \in \mathbb{N}$ the group U_{n}^{\prime} is given by

$$
U_{n}^{\prime}=\left\langle\left\{A_{i, n}\right\}_{1 \leq i<n}, \delta_{n}^{(n)}\right\rangle
$$

Recall the maps

$$
\kappa_{i}^{(n)}:\left(D_{i}, \tau_{i}\right) \rightarrow\left(F_{n}^{\prime}, \mathcal{T}_{n}\right)
$$

that we introduced in Definition 4.11 for all $n \in \mathbb{N}$ and $i \in[1, n-1]$. By Proposition 4.12, there are loops $\left\{\widehat{A}_{i, n}\right\}_{1 \leq i<j \leq n},\left\{\widehat{\delta}_{i}\right\}_{i \in[1, n]}$ in $\stackrel{\circ}{D}^{2}$ that satisfy

$$
\begin{aligned}
A_{i, j} & =\left[\kappa_{j}^{(n)} \circ \widehat{A}_{i, j}\right] \quad \forall i \in[1, n-1], \\
\delta_{i}^{(n)} & =\left[\kappa_{i}^{(n)} \circ \widehat{\delta}_{j}\right] \quad \forall i \in[1, n] .
\end{aligned}
$$

Definition 4.25. For all $n \in \mathbb{N}$, define a map $\operatorname{rep}_{U_{n}^{\prime}}: U_{n}^{\prime} \rightarrow \Omega\left(D_{n}, \tau_{n}\right)$ by

$$
\begin{aligned}
\operatorname{rep}_{U_{n}^{\prime}}\left(A_{i, n}\right) & :=\widehat{A}_{i, n} \quad \forall i \in[1, n-1] \\
\operatorname{rep}_{U_{n}^{\prime}}\left(\delta_{n}^{(n)}\right) & :=\widehat{\delta}_{n},
\end{aligned}
$$

on the generators, and, for any $u \in U_{n}^{\prime}$, by

$$
\operatorname{rep}_{U_{n}^{\prime}}(u):=\operatorname{rep}_{U_{n}^{\prime}}\left(u_{1}\right) \star\left(\operatorname{rep}_{U_{n}^{\prime}}\left(u_{2}\right) \star(\ldots)\right)
$$

where $u_{1} \cdots u_{k}$ is the (unique) reduced word that represents u.
Proposition 4.26. For all integers $i \leq n$,

$$
\left[\kappa_{i}^{(n)} \circ r e p_{U_{i}^{\prime}}\right]=I d_{U_{i}^{\prime}} .
$$

Proof. By Proposition 4.12, this follows directly from the definition of rep ${ }_{U_{i}^{\prime}}$.
Proposition 4.27. For each $n \in \mathbb{N}$, the maps $\left[\operatorname{rep}_{U_{n}^{\prime}}(\cdot)\right]$ and $\pi_{1} \kappa_{n}^{(n)}$ are mutually inverse isomorphisms.

$$
U_{n}^{\prime} \underset{\pi_{1} \kappa_{n}^{(n)}}{\stackrel{\left[\operatorname{rep}_{U_{n}^{\prime}}(\cdot)\right]}{\cong}} \pi_{1}\left(D_{n}, \tau_{n}\right)
$$

Proof. Fix some $n \in \mathbb{N}$, and extend $\kappa_{n}^{(n)}$ to a well defined map

$$
\begin{aligned}
\bar{\kappa}_{n}^{(n)}:\left(D^{2} \backslash\left\{\left\{\tau_{i}\right\}_{i \in[1, n-1] \cup \infty}\right\}, \tau_{n}\right) & \rightarrow\left(F_{n}^{\prime}, \mathcal{T}_{n}\right) \\
x & \mapsto\left(\tau_{1}, \ldots, \tau_{n-1}, x\right)
\end{aligned}
$$

Observe that, by [Birman, Thm. 1.4], the sequence

$$
1 \rightarrow \pi_{1}\left(D^{2} \backslash\left\{\left\{\tau_{i}\right\}_{i \in[1, n-1] \cup \infty}\right\}, \tau_{n}\right) \xrightarrow{\pi_{1} \bar{\kappa}_{n}^{(n)}} \pi_{1} F_{n}^{\prime} \xrightarrow{\pi_{1} s_{n, n-1}^{\prime}} \pi_{1} F_{n-1}^{\prime} \rightarrow 1
$$

is exact. Thus,

$$
\pi_{1} \bar{\kappa}_{n}^{(n)}: \pi_{1}\left(D^{2} \backslash\left\{\left\{\tau_{i}\right\}_{i \in[1, n-1] \cup \infty}\right\}, \tau_{n}\right) \xrightarrow{\cong} \operatorname{ker} \pi_{1} s_{n, n-1}^{\prime}=: U_{n}^{\prime}
$$

Observing that the injection
$i: D_{n}:=D^{2} \backslash\left\{\left\{\tau_{i}\right\}_{i \in[1, n-1]} \cup B\left(\tau_{\infty},\left\|\tau_{n+1}-\tau_{\infty}\right\|\right)\right\} \hookrightarrow D^{2} \backslash\left\{\left\{\tau_{i}\right\}_{i \in[1, n-1] \cup \infty}\right\}$
is a homotopy equivalence, and that, moreover,

$$
\pi_{1} \kappa_{n}^{(n)}=\pi_{1} \bar{\kappa}_{n}^{(n)} \circ \pi_{1} i
$$

it follows that $\pi_{1} \kappa_{n}^{(n)}$ is an isomorphism. Moreover, by Proposition 4.26

$$
\pi_{1} \kappa_{n}^{(n)} \circ\left[\mathrm{rep}_{U_{n}^{\prime}}\right]=\mathrm{Id}_{U_{n}^{\prime}}
$$

which finishes the proof.

The following proposition gives a tool to find canonical representatives of finite, and also infinite braids in $\stackrel{\circ}{D}^{2} \backslash \tau_{\infty}$ (see Corollary 4.29).

Proposition 4.28. For each $n \in \mathbb{N}$, the following diagram of sets commutes.

Moreover, these diagrams induce a commutative diagram of limits.

Proof. Fix some $n \in \mathbb{N}$. To see that the diagram commutes, pick any $\left(u_{i}\right)_{i \in[1, n]} \in$ $\prod_{i \in[1, n]} U_{i}^{\prime}$, and verify that

$$
\begin{aligned}
& {\left[\widehat{\mu}_{n}\left(\operatorname{rep}_{U_{1}^{\prime}}\left(u_{1}\right), \ldots, \operatorname{rep}_{U_{n}^{\prime}}\left(u_{n}\right)\right)\right]} \\
& \quad=\left[\left(\operatorname{rep}_{U_{1}^{\prime}}\left(u_{1}\right), p_{\tau_{2}}, \ldots, p_{\tau_{n}}\right)\right] \cdots\left[\left(p_{\tau_{1}}, p_{\tau_{n-1}} \ldots, \operatorname{rep}_{U_{n}^{\prime}}\left(u_{n}\right)\right)\right] \\
& \quad=\pi_{1} \kappa_{1}^{(n)}\left[\operatorname{rep}_{U_{1}^{\prime}}\left(u_{1}\right)\right] \cdots \pi_{1} \kappa_{n}^{(n)}\left[\operatorname{rep}_{U_{n}^{\prime}}\left(u_{n}\right)\right] \\
& \quad \stackrel{*}{=} u_{1} \cdots u_{n}
\end{aligned}
$$

where $(*)$ is given by Proposition 4.26. This proves that the first diagram commutes for all $n \in \mathbb{N}$. Moreover, these diagrams induce a commutative diagram of inverse systems

$$
\begin{array}{r}
\left\{\prod_{i \in[1, n]} U_{i}^{\prime}, p_{n, n-1}\right\}_{n \in \mathbb{N}} \stackrel{\left\{\mu_{n}\right\}_{n \in \mathbb{N}}}{\cong}\left\{P B_{n}^{\prime}, \pi_{1} s_{n, n-1}^{\prime}\right\}_{n} \\
\left\{\left(r e p_{U_{i}^{\prime}}\right)_{i \in[1, n]}\right\}_{n \in \mathbb{N}} \downarrow \\
\left\{\prod_{i \in[1, n]} \Omega\left(D_{i}, \tau_{i}\right), p_{n, n-1}\right\}_{n} \xrightarrow{\left\{\widehat{\mu}_{n}\right\}_{n \in \mathbb{N}}}\left\{\Omega{F_{n \in \mathbb{N}}^{\prime}}_{n}^{\longrightarrow}, \Omega s_{n, n-1}^{\prime}\right\}_{n},
\end{array}
$$

where we write $p_{n, n-1}: \prod_{i \in[1, n]} X_{i} \rightarrow \prod_{i \in[1, n-1]} X_{i}$ for the natural projection. Therefore, the induced diagram of limits also commutes, where

$$
\lim _{n} P B_{n}=P B_{\infty}, \quad \lim _{n} P B_{n}^{\prime}=P B_{\infty}^{\prime}
$$

by Corollary 1.23 and Proposition 4.16, respectively.
The next corollary follows immediately from the proposition above.

Corollary 4.29. For each $n \in \mathbb{N} \cup \infty$, the map

$$
\begin{aligned}
\operatorname{rep}_{P B_{n}^{\prime}}: P B_{n}^{\prime} & \rightarrow \Omega F_{n}^{\prime} \\
b & \mapsto \widehat{\mu}_{n}\left(\left(\operatorname{rep}_{U_{i}^{\prime}}\left(\mu_{n}^{-1}(b)\right)_{i}\right)_{i \in[1, n-1]}\right)
\end{aligned}
$$

satisfies

$$
\left[\operatorname{rep}_{P B_{n}^{\prime}}(b)\right]=b \quad \forall b \in P B_{n}^{\prime} .
$$

Moreover,

$$
\operatorname{Im} \operatorname{rep}_{P B_{n}^{\prime}} \subset\left(\Omega F_{n}^{\prime}\right)_{c}
$$

In particular, this result allows us to attribute canonical representatives to the elements of $P B_{n}^{\prime}$ for any $n \in \mathbb{N} \cup \infty$.

4.3 Towards an identification of $\operatorname{Im} \pi_{0} \varphi_{\infty}$ in $\ltimes_{i \in \mathbb{N}} U_{i}^{\prime}$.

Recall that, in Theorem 4.5, we identified the image of $\pi_{0} \varphi_{\infty}^{\prime}$ in terms of representatives in $P B_{\infty}^{\prime}$. Using the semidirect product decomposition

$$
P B_{\infty}^{\prime}<\stackrel{\mu_{\infty}}{\cong} \ltimes_{i \in \mathbb{N}} U_{i}^{\prime} .
$$

of the preceding section, we now characterize a certain subset of $\operatorname{Im} \pi_{0} \varphi_{\infty} \subset$ $P B_{\infty}$ within $\ltimes_{i \in \mathbb{N}} U_{i}^{\prime}$ (see Proposition 4.31).

Definition 4.30. For each $i \in \mathbb{N}$, define a $\operatorname{map} \theta_{i}: U_{i}^{\prime} \rightarrow \mathbb{N}$ by

$$
\begin{aligned}
\theta_{i}(b):= & \min \{i, j \in[1, i-1] \mid \text { the reduced word that represents } b \\
& \text { contains the letter } \left.A_{j, i}\right\}
\end{aligned}
$$

for all $b \in U_{i}^{\prime}$.

Proposition 4.31.

$$
\left(P B_{\infty}^{\prime}\right)_{c c} \supset\left\{\mu_{\infty}\left(\left(b_{i}\right)_{i \in \mathbb{N}}\right) \mid\left(b_{i}\right)_{i \in \mathbb{N}} \in \prod_{i \in \mathbb{N}} U_{i}^{\prime} \text { s.t. } \quad \lim _{i \rightarrow \infty} \theta_{i}\left(b_{i}\right)=\infty\right\}
$$

The question whether the inverse inclusion also holds seems to depend on whether $\left(P B_{\infty}^{\prime}\right)_{c c}$ is equal to $\pi_{0}\left(\Omega F_{\infty}^{\prime}\right)_{c c}$. Unfortunately, we did not solve this problem.

Proof. Pick some $\left(b_{i}\right)_{i \in \mathbb{N}} \in \prod_{i \in \mathbb{N}} U_{i}^{\prime}$ with $\lim _{i \rightarrow \infty} \theta_{i}\left(b_{i}\right)=\infty$. Fix some $i \in \mathbb{N}$, and write b_{i} as a word

$$
b_{i}=u_{1} \cdots u_{k}
$$

in the alphabet $\operatorname{Gen}\left(U_{i}^{\prime}\right)$. As, by the definition of the map θ_{i},

$$
\theta_{i}\left(b_{i}\right)=\min _{j \in[1, k]} \theta_{i}\left(u_{j}\right),
$$

it follows by our choice of the point set $\left\{\tau_{j}\right\}_{j \in \mathbb{N}}$ that

$$
\begin{equation*}
\left\|\tau_{\theta_{i}\left(b_{i}\right)-1}-\tau_{\infty}\right\|=\max _{j \in[1, k]}\left\|\tau_{\theta_{i}\left(u_{j}\right)-1}-\tau_{\infty}\right\| . \tag{A}
\end{equation*}
$$

Moreover, recall that

$$
\operatorname{rep}_{U_{i}^{\prime}}\left(b_{i}\right)=\operatorname{rep}_{U_{i}^{\prime}}\left(u_{1}\right) \star\left(\operatorname{rep}_{U_{i}^{\prime}}\left(u_{2}\right) \star\left(\operatorname{rep}_{U_{i}^{\prime}}\left(u_{3}\right) \star(\ldots)\right)\right),
$$

and that, by Proposition 4.12,

$$
\operatorname{rep}_{U_{i}^{\prime}}\left(u_{j}\right)(t) \in B\left(\tau_{\infty},\left\|\tau_{\theta_{i}\left(u_{j}\right)-1}-\tau_{\infty}\right\|\right) \quad \forall t \in I, \forall j \in[1, k] .
$$

Thus, by (A),

$$
\operatorname{rep}_{U_{i}^{\prime}}\left(b_{i}\right)(t) \in B\left(\tau_{\infty},\left\|\tau_{\theta_{i}\left(b_{i}\right)-1}-\tau_{\infty}\right\|\right) \quad \forall t \in I, \forall i \in \mathbb{N} .
$$

In particular, this means that

$$
\lim _{i \rightarrow \infty} \operatorname{rep}_{U_{i}^{\prime}}\left(b_{i}\right)(t)=\tau_{\infty} \quad \forall t \in I
$$

because $\lim _{i \rightarrow \infty} \theta_{i}\left(b_{i}\right)=\infty$, such that, according to Proposition 4.28,

$$
\mu_{\infty}\left(\left(b_{i}\right)_{i \in \mathbb{N}}\right)=\left[\widehat{\mu}_{\infty}\left(\left(\operatorname{rep}_{U_{i}^{\prime}}\left(b_{i}\right)\right)_{i \in \mathbb{N}}\right] \in\left(P B_{\infty}^{\prime}\right)_{c c} .\right.
$$

We now can consider the following commutative diagram, which summarizes Propositions 4.21 and 4.22 and Theorem 4.31. Some maps are tacitly (co-) restricted, without changing the notation.

As we pointed out above, the image of $\pi_{0} \varphi_{\infty}$ seems to be difficult to describe within the semidirect product decomposition $\ltimes_{i \geq 2} U_{i}$. We now underline this by an example.

Example. Pick an element $\left(u_{i}\right)_{i \in \mathbb{N}} \in \ltimes_{i \in \mathbb{N}} U_{i}^{\prime}$ given by

$$
u_{i}= \begin{cases}\delta_{n}^{(n)}, & i=n \\ 1, & i \neq n\end{cases}
$$

for some $n \in \mathbb{N}$. Clearly, $\left(u_{i}\right)_{i \in \mathbb{N}} \in \mu_{\infty}^{-1}\left(P B_{\infty}^{\prime}\right)_{c c}$, such that, by Theorem 4.5, there is a homeomorphism $h \in P H_{\infty}$ such that

$$
\pi_{0} \varphi_{\infty}^{\prime}[h]=\mu_{\infty}\left(\left(u_{i}\right)_{i \in \mathbb{N}}\right)
$$

In particular,

$$
\left(\beta_{i}\right)_{i \in \mathbb{N}}:=\operatorname{rep}_{P B_{\infty}^{\prime}}\left(\left(u_{i}\right)_{i \in \mathbb{N}}\right)
$$

is a combed, convergent representative of $\pi_{0} \varphi_{\infty}^{\prime}[h]$, given by

$$
\beta_{i}= \begin{cases}\widehat{\delta}_{n}, & i=n \\ p_{\tau_{i}}, & i \neq n\end{cases}
$$

i.e., all strands are straight, except the n-th strand that winds once around all points τ_{i} with $i>n$ (see p.69). Writing,

$$
\begin{aligned}
\left(v_{i}\right)_{i \geq 2} & :=\mu_{\infty}^{s}-1 \circ \pi_{1} \imath \circ \mu_{\infty}\left(\left(u_{i}\right)_{i \in \mathbb{N}}\right) \\
& =\mu_{\infty}^{s-1} \circ \pi_{1} \imath\left[\left(\beta_{i}\right)_{i \in \mathbb{N}}\right] \\
& =\mu_{\infty}^{s-1}\left[\left(\beta_{i}\right)_{i \in \mathbb{N}}\right]
\end{aligned}
$$

in $\ltimes_{i \geq 2} U_{i}$, where $\iota: F_{\infty}^{\prime} \hookrightarrow F_{\infty}$ is the inclusion map, one can verify that $\left(v_{i}\right)_{i \geq 2}$ is given by

$$
v_{i}:= \begin{cases}1, & i \leq n \\ A_{n, i}, & i>n\end{cases}
$$

It might be difficult to find criteria to find out reversely that the given sequence $\left(v_{i}\right)_{i \geq 2} \in \ltimes_{i \geq 2} U_{i}$ is in the image of $\pi_{0} \varphi_{\infty}$, i.e., in the image of $\pi_{1} \iota\left(P B_{\infty}^{\prime}\right)_{c c}$, whence the advantage of working with the semidirect decomposition

$$
P B_{\infty} \cong \ltimes_{i \in \mathbb{N}} U_{i}^{\prime}
$$

rather than with the (more natural) semidirect decomposition

$$
P B_{\infty} \cong \ltimes_{i \geq 2} U_{i}
$$

4.4 Generalization of the choice of \mathcal{T}_{∞}

Recall our choice of a particular basepoint \mathcal{T}_{∞} of the spaces F_{∞} and F_{∞}^{\prime}, given in Definition 2.1. To conclude the section, we return to an arbitrary choice of \mathcal{T}_{∞}.
Let $\mathcal{T}_{\infty}^{*} \equiv\left(\tau_{i}^{*}\right)_{i \in \mathbb{N}} \in F_{\infty}$ be any infinite configuration with a single accumulation point $\tau_{\infty} \in \stackrel{\circ}{D}^{2}$, i.e., $\lim _{i \rightarrow \infty} \tau_{i}=\tau_{\infty}$, and such that

$$
\tau_{i} \neq \tau_{\infty} \quad \forall i \in \mathbb{N}
$$

and write

$$
P H_{\infty}^{*}:=\left\{h \in H_{0} \mid h\left(\tau_{i}^{*}\right)=\tau_{i}^{*} \quad \forall i \in \mathbb{N}\right\} .
$$

Also, write

$$
\begin{aligned}
\varphi_{\infty}^{*}: P H_{\infty}^{*} & \rightarrow \Omega\left(F_{\infty}^{\prime}, \mathcal{T}_{\infty}^{*}\right) \\
h & \mapsto\left(K(h, \cdot)\left(\tau_{i}^{*}\right)\right)_{i \in \mathbb{N}}
\end{aligned}
$$

similarly to the definition of the map φ_{∞}. Furthermore, according to Proposition A.7, there is a homeomorphism $h \in H_{0}$ such that

$$
h\left(\tau_{i}\right)=\tau_{i}^{*} \quad \forall i \in \mathbb{N},
$$

which allows us to define pointed maps

$$
\left.\begin{array}{cccccc}
\Psi_{1}:\left(P H_{\infty}, \mathrm{Id}_{D^{2}}\right) & \stackrel{\cong}{\rightrightarrows}\left(P H_{\infty}^{*}, \operatorname{Id}_{D^{2}}\right) & \Psi_{2}:\left(F_{\infty}, \mathcal{T}_{\infty}\right) & \xrightarrow{\cong}\left(F_{\infty}, \mathcal{T}_{\infty}^{*}\right) \\
f & \mapsto & h \circ f \circ h^{-1}
\end{array} \quad\left(x_{i}\right)_{i \in \mathbb{N}}\right) \xrightarrow{\mapsto}\left(h\left(x_{i}\right)\right)_{i \in \mathbb{N}} .
$$

Furthermore, write

$$
\begin{array}{ccccccc}
\bar{\Psi}_{1}:\left(H_{\infty}, \operatorname{Id}_{D^{2}}\right) & \cong & \left(H_{\infty}^{*}, \operatorname{Id}_{D^{2}}\right) \\
f & \mapsto & h \circ f \circ h^{-1}
\end{array} \quad \bar{\Psi}_{2}: \quad\left(C_{\infty}, \mathcal{T}_{\infty}\right) \xrightarrow{\cong} \quad \begin{array}{ll}
\left(C_{\infty}, \mathcal{T}_{\infty}^{*}\right) \\
{\left[\left(x_{i}\right)_{i \in \mathbb{N}}\right]}
\end{array} \stackrel{\mapsto}{\left[\left(h\left(x_{i}\right)\right)_{i \in \mathbb{N}}\right],}
$$

where, in the lower diagrams, the maps Ψ_{2} and $\bar{\Psi}_{2}$ are suitably (co-) restricted.
Proposition 4.32. For any choice of \mathcal{T}_{∞}^{*} such that, in D^{2}, the set $\left\{\tau_{i}^{*}\right\}_{i \in \mathbb{N}}$ accumulates at a single point $\tau_{\infty}^{*} \in \stackrel{\circ}{D}^{2}$, and such that

$$
\tau_{i}^{*} \neq \tau_{\infty}^{*} \quad \forall i \in \mathbb{N},
$$

the following diagrams commute

where the maps $\Psi_{1}, \Psi_{2}, \bar{\Psi}_{1}, \bar{\Psi}_{2}$ are defined as above.
Proof. To prove that the first diagram commutes, we show that the following diagram commutes up to homotopy.

Pick some $f \in P H_{\infty}$, recall the contracting homotopy $K: H_{0} \times I \rightarrow H_{0}$, write $\bar{K}(\cdot, t):=K(\cdot, 1-t)$ for all $t \in I$, and verify that

$$
\begin{aligned}
\Omega \Psi_{2} \circ \varphi_{\infty}(f) & =\left((h \circ K(f, \cdot))\left(\tau_{i}\right)\right)_{i \in \mathbb{N}} \\
& \stackrel{*}{\simeq}\left((K(h \circ f, \cdot) \circ \bar{K}(h, \cdot))\left(\tau_{i}\right)\right)_{i \in \mathbb{N}} \\
& \stackrel{* *}{=}\left(\left(K(h \circ f, \cdot) \circ \bar{K}(h, \cdot) \circ h^{-1}\right)\left(\tau_{i}^{*}\right)\right)_{i \in \mathbb{N}} \\
& \stackrel{*}{\simeq}\left(\left(K\left(h \circ f \circ h^{-1}, \cdot\right)\right)\left(\tau_{i}^{*}\right)\right)_{i \in \mathbb{N}} \\
& =\varphi_{\infty}^{*} \circ \Phi_{1}(h),
\end{aligned}
$$

where $(*)$ is given by Lemma A.3, and $(* *)$ holds because $h\left(\tau_{i}\right)=\tau_{i}^{*}$ for all $i \in \mathbb{N}$. Similarly, one can prove that the remaining diagrams commute.

This result generalizes the main results of this section to an arbitrary choice for \mathcal{T}_{∞}^{*}, as we show next. Before, we note that the definition of the spaces $\left(\Omega\left(F_{\infty}, \mathcal{T}_{\infty}^{*}\right)\right)_{c}$ and $\left(\Omega\left(F_{\infty}, \mathcal{T}_{\infty}^{*}\right)\right)_{c c}$ makes sense for any basepoint $\mathcal{T}_{\infty}^{*}=\left(\tau_{i}^{*}\right)_{i \in \mathbb{N}}$, as long as the sequence $\left(\tau_{i}^{*}\right)_{i \in \mathbb{N}}$ converges in $\stackrel{\circ}{D}^{2}$.

Theorem 4.33. The diagram on page 82 generalizes to any choice of $\mathcal{T}^{*}=$ $\left(\tau_{i}^{*}\right)_{i \in \mathbb{N}}$ such that

$$
\lim _{i \rightarrow \infty} \tau_{i}^{*}=\tau_{\infty}^{*}
$$

for some $\tau_{\infty}^{*} \in \stackrel{\circ}{D}^{2}$.
Proof. The result follows directly by suitably attaching the commutative diagrams given in Proposition 4.32 to the diagram on page 82.

Chapter 5

An application to homoclinic tangles

In this chapter, we apply the injectivity of the map

$$
\pi_{0} \bar{\varphi}_{\infty}: \pi_{0} H_{\infty} \rightarrow \pi_{0} \mathcal{O} C_{\infty}
$$

to prove a result that can be used for the study of homeomorphisms with a homoclinic fixed point (see Theorem 5.13).
Moreover, we allow the basepoint $\mathcal{T}_{\infty} \in F_{\infty}$ be any configuration $\mathcal{T}=\left(\tau_{i}\right)_{i \in \mathbb{N}}$ satisfying

$$
\lim _{i \rightarrow \infty} \tau_{i}=\tau_{\infty}
$$

for some $\tau_{\infty} \in \stackrel{\circ}{D}^{2}$. Note that, under this condition, the map

$$
\pi_{0} \bar{\varphi}_{\infty}: \pi_{0} H_{\infty} \rightarrow \pi_{0} \mathcal{O} C_{\infty}
$$

is injective, according to Theorem 4.33. The proof of the main theorem requires some preliminary results involving the winding number, which we introduce next. For a detailed introduction to this subject, see [11].

Definition 5.1. Given any loop $\alpha \in \mathcal{C}\left(S^{1}, \mathbb{R}^{2} \backslash 0\right)$, define a loop

$$
\begin{aligned}
\bar{\alpha}: S^{1} & \rightarrow S^{1} \\
s & \mapsto \frac{\alpha(s)}{\|\alpha(s)\|}
\end{aligned}
$$

Let $\widetilde{\alpha}: I \rightarrow \mathbb{R}$ be a lifting of $\bar{\alpha}$ with respect to the standard covering map $q: \mathbb{R} \rightarrow S^{1}$, and define the winding number of α by

$$
w(\alpha):=\widetilde{\alpha}(1)-\widetilde{\alpha}(0)
$$

The following two propositions give alternative ways to define the winding number.

Proposition 5.2. [11, Lemma 66.3] For any loop $\alpha \in \mathcal{C}\left(S^{1}, \mathbb{R}^{2} \backslash 0\right)$,

$$
w(\alpha)=\frac{1}{2 \pi i} \oint_{\alpha} \frac{d z}{z} .
$$

In other words, given a lifting $\widetilde{\alpha}: I \rightarrow \mathbb{R}$ of the map $\frac{\alpha}{\|\alpha\|}: S^{1} \rightarrow S^{1}$ with respect to the standard covering map $q: \mathbb{R} \rightarrow S^{1}$, then,

$$
w(\alpha)=\frac{1}{2 \pi i} \int_{0}^{1} \frac{d \widetilde{\alpha} / d t}{\alpha(t)} d t
$$

Proposition 5.3. Given any $\alpha \in \mathcal{C}\left(S^{1}, \mathbb{R}^{2} \backslash 0\right)$, let $p: \mathbb{R}^{2} \backslash 0 \rightarrow S^{1}$ be the canonical retraction, write A for the generator of $\pi_{1}\left(S^{1}, *\right)$, where we choose * $:=p(\alpha(1))$ for the basepoint of S^{1}. Then,

$$
[p \circ \alpha]_{*}=A^{ \pm w(\alpha)} \quad \text { in } \quad \pi_{1}\left(S^{1}, *\right)
$$

where the sign depends on the choice of the representative of A.
Proof. This follows easily from the definition of the winding number.
Three elementary properties of the winding number are given in the following proposition.
Proposition 5.4. For all $\beta \in \mathcal{C}\left(S^{1}, \mathbb{R}^{2} \backslash 0\right)$,

$$
w(\bar{\beta})=-w(\beta)
$$

where $\bar{\beta}$ is the inverse path of β.
If two loops $\alpha, \beta \in \mathcal{C}\left(S^{1}, \mathbb{R}^{2} \backslash 0\right)$ are homotopic, then,

$$
w(\alpha)=w(\beta)
$$

For all $\beta, \gamma \in \mathcal{C}\left(S^{1}, \mathbb{R}^{2} \backslash 0\right)$ that satisfy $\beta(1)=\gamma(1)$,

$$
w(\beta \star \gamma)=w(\beta)+w(\gamma)
$$

Proof. The proof of the first two facts are given in [11, Lemma 66.1]. The third fact follows easily from the definition of the winding number.

Lemma 5.5. Let

$$
\Gamma: I \rightarrow \mathcal{C}\left(S^{1}, \mathbb{R}^{2}\right)
$$

be a path that satisfies

$$
\Gamma(0)=\Gamma(1)
$$

and such that $\Gamma(t): S^{1} \rightarrow R^{2}$ is injective for all $t \in I$ (i.e., such that, for all s, s^{\prime} in S^{1} with $s \neq s^{\prime}, \Gamma(\cdot)(s)-\Gamma(\cdot)\left(s^{\prime}\right)$ is a well defined element of $\mathcal{C}\left(S^{1}, \mathbb{R}^{2} \backslash 0\right)$). Then, there is an $n \in \mathbb{Z}$ such that

$$
w\left(\Gamma(\cdot)(s)-\Gamma(\cdot)\left(s^{\prime}\right)\right)=n
$$

for all $s, s^{\prime} \in S^{1}$ with $s \neq s^{\prime}$.

Proof. Let $\Gamma: I \rightarrow \mathcal{C}\left(S^{1}, \mathbb{R}^{2}\right)$ be a path with the required properties, and pick some $s, s^{\prime} \in S^{1}$ with $s \neq s^{\prime}$. We show that the path

$$
\left(\Gamma(\cdot)(s)-\Gamma(\cdot)\left(s^{\prime}\right)\right): I \rightarrow \mathbb{R}^{2}
$$

is homotopic to the path

$$
(\Gamma(\cdot)(1)-\Gamma(\cdot)(1 / 2)): I \rightarrow \mathbb{R}^{2}
$$

where S^{1} is identified with I / \dot{I}.
We assume that

$$
s>s^{\prime}
$$

where the converse case is proved similarly. Observing that

$$
s+t(1-s) \neq s^{\prime}+t\left(1 / 2-s^{\prime}\right) \quad \forall t \ni I
$$

there is a well defined homotopy

$$
\begin{aligned}
G: S^{1} \times I & \rightarrow \mathbb{R}^{2} \backslash 0 \\
(z, t) & \mapsto \Gamma(z)(s+t(1-s))-\Gamma(z)\left(s^{\prime}+t\left(1 / 2-s^{\prime}\right)\right)
\end{aligned}
$$

that satisfies

$$
G(\cdot, 0)=\left(\Gamma(\cdot)(s)-\Gamma(\cdot)\left(s^{\prime}\right)\right), \quad G(\cdot, 1)=(\Gamma(\cdot)(1)-\Gamma(\cdot)(1 / 2))
$$

as required.
In the sequel, we consider loops $\left(\beta_{i}-\beta_{j}\right): S^{1} \rightarrow D^{2} \backslash 0$ for some integers $i \neq j$, where $\left(\beta_{i}\right)_{i \in \mathbb{N}}$ is in ΩF_{∞}. As, for all $i \neq j, \beta_{i}(t) \neq \beta_{j}(t)$ for all $t \in I,\left(\beta_{i}-\beta_{j}\right)$ is indeed an element of $\mathcal{C}\left(S^{1}, \mathbb{R}^{2} \backslash 0\right)$.

Lemma 5.6. For every $\left(\beta_{i}\right)_{i \in \mathbb{N}} \in \Omega F_{\infty}$,

$$
w\left(\beta_{i}-\beta_{j}\right)=0 \quad \forall i, j \in \mathbb{N}, \quad i \neq j
$$

if and only if

$$
\left[\left(\beta_{i}\right)_{i \in \mathbb{N}}\right]=\left[\left(p_{\tau_{i}}\right)_{i \in \mathbb{N}}\right] \quad \text { in } P B_{\infty}
$$

Proof. The "if"-part follows directly from Proposition 5.4 To prove the "only if"-part, pick any $\left(\beta_{i}\right)_{i \in \mathbb{N}} \in \Omega F_{\infty}$ with

$$
w\left(\beta_{i}-\beta_{j}\right)=0 \quad \forall i, j \in \mathbb{N}, \quad i \neq j
$$

and, by contradiction, assume that

$$
\left[\left(\beta_{i}\right)_{i \in \mathbb{N}}\right] \neq\left[\left(p_{\tau_{i}}\right)_{i \in \mathbb{N}}\right] \quad \text { in } P B_{\infty}
$$

Recalling that $P B_{\infty}=\lim _{n} P B_{n}$, it follows from the basic properties of inverse limits that, in $P B_{2}$,

$$
\left[\left(\beta_{i}, \beta_{j}\right)\right] \neq\left[\left(p_{\tau_{i}}, p_{\tau_{j}}\right)\right]
$$

for some $i, j \in \mathbb{N}$. Recalling that $P B_{2}$ has one single generator B (corresponding to σ_{1}^{2} in Artin's presentation of B_{2}), there is thus an $n \in \mathbb{Z} \backslash 0$ such that, in $P B_{2}$,

$$
\left[\left(\beta_{i}, \beta_{j}\right)\right]=B^{n}
$$

From this, it is easy to see that,

$$
\left[p \circ\left(\beta_{i}-\beta_{j}\right)\right]_{*}=A^{ \pm n} \quad \text { in } \pi_{1}\left(S^{1}, *\right)
$$

where A is the generator of $\pi_{1}\left(S^{1}, *\right)$, and the basepoint of S^{1} is $*:=p\left(\beta_{i}(1)-\right.$ $\left.\beta_{j}(1)\right)$. Thus, it follows by Prop 5.3 that

$$
w\left(\beta_{i}-\beta_{j}\right)= \pm n
$$

which contradicts our assumption, because $n \neq 0$.
In the sequel, we identify \mathbb{R}^{2} canonically with the complex plane \mathbb{C}.
Definition 5.7. For each $n \in \mathbb{Z}$, and for each $r \in] \sup _{i \in \mathbb{N}}\left\|\tau_{i}\right\|, 1[$, define an element $\rho_{n, r}$ in $P H_{\infty}$ by

$$
\rho_{n, r}(x):= \begin{cases}x, & \|x\| \leq r \\ x \exp \left(-2 \pi i n \frac{\|x\|-r}{1-r}\right), & \|x\| \geq r\end{cases}
$$

Observe that, for all possible choices of n and $r,\left.\rho_{n, r}\right|_{\partial D^{2}}=\mathrm{Id}$, and that, as $\left\|\tau_{i}\right\|<r$ for all $i \in \mathbb{N}$,

$$
\rho_{n, r}\left(\tau_{i}\right)=\tau_{i} \quad \forall i \in \mathbb{N} .
$$

Thus, indeed, $\rho_{n, r} \in P H_{\infty}$. The following drawing illustrates how $\rho_{1}(r)$ maps the given dotted line.

Writing

$$
\bar{H}_{\infty}:=\left\{h \in \mathcal{H}_{\infty} \mid\left\{h\left(\tau_{i}\right)\right\}_{i \in \mathbb{N}}=\left\{\tau_{i}\right\}_{i \in \mathbb{N}}\right\}
$$

for the space of homeomorphisms that fix the set $\left\{\tau_{i}\right\}_{i \in \mathbb{N}}$, but that don't necessarily fix the boundary ∂D^{2}, we make the following observation.

Proposition 5.8. For all $n \in \mathbb{Z}$ and $r \in] \sup _{i \in \mathbb{N}}\left\|\tau_{i}\right\|, 1[$,

$$
\left[\rho_{n, r}\right]=\left[I d_{D^{2}}\right] \quad \text { in } \pi_{0} \bar{H}_{\infty}
$$

Proof. For all $n \in \mathbb{Z}$ and $r \in] \sup _{i \in \mathbb{N}}\left\|\tau_{i}\right\|, 1[$, the right adjoint of the homotopy

$$
\begin{aligned}
R_{n, r}: D^{2} \times I & \rightarrow D^{2} \\
(x, t) & \mapsto \begin{cases}x, & \|x\| \leq r \\
x \exp \left(-2 \pi i n t \frac{1-\|x\|}{1-r}\right), & \|x\| \geq r .\end{cases}
\end{aligned}
$$

is a path in \bar{H}_{∞} from $\rho_{n, r}$ to $\operatorname{Id}_{D^{2}}$.
Proposition 5.9. For all $n \in \mathbb{Z}$ and $r \in] \sup _{i \in \mathbb{N}}\left\|\tau_{i}\right\|, 1[$,

$$
w\left(K\left(\rho_{n, r}, \cdot\right)\left(\tau_{i}\right)-K\left(\rho_{n, r}, \cdot\right)\left(\tau_{j}\right)\right)=-n \quad \forall i, j \in \mathbb{N}, \quad i \neq j
$$

Proof. Fix some $n \in \mathbb{Z}$ and $r \in] \sup _{i \in \mathbb{N}}\left\|\tau_{i}\right\|, 1\left[\right.$, and define a path $\Lambda: I \rightarrow H_{0}$ by

$$
\Lambda(t)(x):= \begin{cases}x \exp (-2 \pi i n(1-t)), & \|x\| \leq r \\ x \exp \left(-2 \pi i n(1-t) \frac{\|x\|-r}{1-r}\right), & \|x\| \geq r\end{cases}
$$

for all $t \in I, x \in D^{2}$. Note that, for all $n \in \mathbb{Z}$,

$$
\Lambda(0)=\rho_{n, r}, \quad \Lambda(1)=\operatorname{Id}_{D^{2}}
$$

Observing that $K\left(\rho_{n, r}, \cdot\right): I \rightarrow H_{0}$ is a path with the same start- and endpoint as Λ, it follows from Lemma A.3, that there is a homotopy

$$
\Gamma: S^{1} \times I \rightarrow F_{\infty}
$$

from $\mathrm{ev}_{\infty} \circ K\left(\rho_{n, r}, \cdot\right)$ to $\mathrm{ev}_{\infty} \circ \Lambda$. Its adjoint is a path

$$
\gamma:=\left(\gamma_{i}\right)_{i \in \mathbb{N}}: I \rightarrow \Omega F_{\infty}
$$

with

$$
\gamma(0)=\mathrm{ev}_{\infty} \circ K\left(\rho_{n, r}, \cdot\right), \quad \gamma(1)=\mathrm{ev}_{\infty} \circ \Lambda
$$

It follows that, for any $i, j \in \mathbb{N}$ with $i \neq j$, and $r \in] \sup _{i \in \mathbb{N}}\left\|\tau_{i}\right\|, 1[$,

$$
\begin{aligned}
w\left(K\left(\rho_{n, r}, \cdot\right)\left(\tau_{i}\right)-K\left(\rho_{n, r}, \cdot\right)\left(\tau_{j}\right)\right) & =w\left(\gamma_{i}(0)-\gamma_{j}(0)\right) \\
& \stackrel{*}{=} w\left(\gamma_{i}(1)-\gamma_{j}(1)\right) \\
& =w\left(\Lambda(\cdot)\left(\tau_{i}\right)-\Lambda(\cdot)\left(\tau_{j}\right)\right) \\
& =\frac{1}{2 \pi i} \int_{0}^{1} \frac{d\left(\Lambda(\cdot)\left(\tau_{i}\right)-\Lambda(\cdot)\left(\tau_{j}\right)\right) / d t}{\Lambda(\cdot)\left(\tau_{i}\right)-\Lambda(\cdot)\left(\tau_{j}\right)} d t \\
& =\frac{1}{2 \pi i} \int_{0}^{1} \frac{d\left(\left(\tau_{i}-\tau_{j}\right) \exp (-2 \pi i n t)\right) / d t}{\left(\tau_{i}-\tau_{j}\right) \exp (-2 \pi i n t)} d t \\
& =\frac{1}{2 \pi i} \int_{0}^{1} \frac{(-2 \pi i n)\left(\tau_{i}-\tau_{j}\right) \exp (-2 \pi i n t)}{\left(\tau_{i}-\tau_{j}\right) \exp (-2 \pi i n t)} d t \\
& =\frac{1}{2 \pi i} \int_{0}^{1}-2 \pi i n d t \\
& =-n,
\end{aligned}
$$

where $(*)$ is given by the fact that

$$
w\left(\gamma_{i}(\cdot)\right): I \rightarrow \mathbb{Z}
$$

is a continuous map when I has the metric- and \mathbb{Z} has the discrete topology, and thus is constant.

Definition 5.10. Let $\left(s_{i}\right)_{i \in \mathbb{N}}$ be any list of points of S^{1} such that

$$
\lim _{i \rightarrow \infty} s_{i}=1
$$

Definition 5.11. Define a set

$$
\begin{aligned}
\mathcal{A}:= & \left\{\alpha: S^{1} \rightarrow \stackrel{\circ}{D}{ }^{2} \mid \alpha\right. \text { is a homeomorphism onto its image, and } \\
& \left.\left\{\alpha\left(s_{i}\right)\right\}_{i \in \mathbb{N}}=\left\{\tau_{i}\right\}_{i \in \mathbb{N}}\right\},
\end{aligned}
$$

and endow it with the subspace topology $\mathcal{A} \subset \mathcal{C}\left(S^{1},{ }^{\circ}{ }^{2}\right)$.
The main theorem of this chapter, Theorem 5.13, can be seen as a first application of our preceeding results on infinite mapping class groups and infinite braids to the study of a particular subspace of \bar{H}_{∞} that is of interest in fields other than low-dimensional topology. To give a typical example of a case where the theorem can be applied, let $f \in \bar{H}_{\infty}$ be a diffeomorphism, of which τ_{∞} is a hyperbolic fixpoint, and let \widetilde{W}_{f}^{s} and \widetilde{W}_{f}^{u} be the corresponding stable- and unstable manifolds, which are defined by
$\widetilde{W}_{f}^{s}:=\left\{x \in \stackrel{\circ}{D}^{2} \mid \lim _{i \rightarrow \infty}\left\|f^{i}(x)-\tau_{\infty}\right\|=0\right\}, \quad \widetilde{W}_{f}^{u}:=\left\{x \in \stackrel{\circ}{D}^{2} \mid \lim _{i \rightarrow \infty}\left\|f^{-i}(x)-\tau_{\infty}\right\|=0\right\}$,
respectively. According to [9, Thm. 10.1.6], there are C^{1}-embeddings W_{f}^{s} : $I \rightarrow \stackrel{\circ}{D}^{2}$ and $W_{f}^{u}: I \rightarrow \stackrel{\circ}{D}^{2}$, such that

$$
\widetilde{W}_{f}^{s}=\bigcup_{i \in \mathbb{N}} f^{-i} \circ W_{f}^{s}, \quad \widetilde{W}_{f}^{u}=\bigcup_{i \in \mathbb{N}} f^{i} \circ W_{f}^{u}
$$

Write $\widetilde{W}_{f}^{s}[x, y]$ for the section on \widetilde{W}_{f}^{s} between any points x and y on \widetilde{W}_{f}^{s} (as \widetilde{W}_{f}^{s} does not intersect itself, this notion makes sense), and similarly for \widetilde{W}_{f}^{u}. As f is differentiable, the following is easy to prove.

Proposition 5.12.

> For any $x, y \in \widetilde{W}_{f}^{s}, \widetilde{W}_{f}^{s}[x, y]$ is a C^{1} embedding of I in $\stackrel{\circ}{D}^{2}$.
> For any $x, y \in \widetilde{W}_{f}^{u}, \widetilde{W}_{f}^{u}[x, y]$ is a C^{1} embedding of I in $\stackrel{\circ}{D}^{2}$.

Moreover, for any points x, y in $\widetilde{W}_{f}^{s} \cap \widetilde{W}_{f}^{u}$, such that

$$
\widetilde{W}_{f}^{s}[x, y] \cap \widetilde{W}_{f}^{u}[x, y]=\{x, y\}
$$

the union $\widetilde{W}_{f}^{s}[x, y] \cup \widetilde{W}_{f}^{u}[x, y]$ is an embedding (not differentiable in general) of S^{1} in $\stackrel{\circ}{D}^{2}$.
In particular, assuming that τ^{0} is a primary intersection point of \widetilde{W}_{f}^{s} and \widetilde{W}_{f}^{u}, i.e.,

$$
\widetilde{W}_{f}^{s}\left[\tau_{\infty}, \tau^{0}\right] \cap \widetilde{W}_{f}^{u}\left[\tau_{\infty}, \tau^{0}\right]=\left\{\tau_{\infty}, \tau^{0}\right\}
$$

(see [15]), it follows that there is an embedding $\alpha: S^{1} \rightarrow \stackrel{\circ}{D}{ }^{2}$, such that

$$
\operatorname{Im} \alpha=\widetilde{W}_{f}^{s}\left[\tau_{\infty}, \tau^{0}\right] \cup \widetilde{W}_{f}^{u}\left[\tau_{\infty}, \tau^{0}\right]
$$

Now, let $g \in \bar{H}_{\infty}$ be another diffeomorphism with homoclinic fixpoint τ_{∞} and primary intersection point τ^{0}, and let $\beta: S^{1} \rightarrow \stackrel{\circ}{D}^{2}$ be its associated embedding, defined similarly to α.
Now, assume that the orbit of τ^{0} with respect to f and g coincide with the set $\left\{\tau_{i}\right\}_{i \in \mathbb{N}}$, i.e.,

$$
\left\{f^{i}\left(\tau^{0}\right)\right\}_{i \in \mathbb{Z}}=\left\{g^{i}\left(\tau^{0}\right)\right\}_{i \in \mathbb{Z}}=\left\{\tau_{i}\right\}_{i \in \mathbb{N}}
$$

and, furthermore, that

$$
\left\{\alpha\left(s_{i}\right)\right\}_{i \in \mathbb{N}}=\left\{\beta\left(s_{i}\right)\right\}_{i \in \mathbb{N}}
$$

for some sequence $\left(s_{i}\right)_{i \in \mathbb{N}}$ in S^{1}, such that, moreover,

$$
\lim _{i \rightarrow \infty} s_{i}=1
$$

i.e., $\left(s_{i}\right)_{i \in \mathbb{N}}$ satisfies the condition of Definition 5.10. Then, in particular,

$$
\alpha, \beta \in \mathcal{A}
$$

Under these assumptions, Theorem 5.13 can be applied.
Theorem 5.13. Let $f, g \in \bar{H}_{\infty}$. If there are elements $\alpha, \beta \in \mathcal{A}$ such that

$$
[\alpha]=[\beta], \quad[f \circ \alpha]=[g \circ \beta] \quad \text { in } \pi_{0} \mathcal{A}
$$

Then,

$$
[f]=[g] \quad \in \pi_{0} \bar{H}_{\infty}
$$

Proof. Pick any $f, g \in \bar{H}_{\infty}$, and let $\alpha, \beta: S^{1} \rightarrow \stackrel{\circ}{D}{ }^{2}$ be as required. Moreover, by Proposition A.2, we can assume that

$$
f, g \in H_{\infty}
$$

According to Proposition 5.8, it suffices to show that there is an $n \in \mathbb{Z}$ and an $r \in I$, such that

$$
[g]=\left[f \circ \rho_{n, r}\right] \quad \text { in } \pi_{0} \bar{H}_{\infty}
$$

Claim: There is a homeomorphism $\kappa_{1} \in P H_{\infty}$ that satisfies

$$
\begin{equation*}
\kappa_{1} \circ \beta=\alpha, \quad\left[\kappa_{1}\right]=[\mathrm{Id}] \quad \text { in } \pi_{0} P H_{\infty} \tag{A}
\end{equation*}
$$

Proof of the claim: Observe that, as α and β are homeomorphisms onto their image, there is a homeomorphism

$$
\begin{array}{ll}
\operatorname{Im} \alpha & \cong \\
\alpha(s) & \mapsto \\
\operatorname{Im} \beta & \beta(s)
\end{array} \quad \forall s \in S^{1} .
$$

Consequently, by the Schoenflies Theorem (e.g. [7, Cor. 9.25]), there is a homeomorphism $\widehat{\widehat{k}} \in \mathcal{H}\left(D^{2}\right)$ that satisfies

$$
\widehat{\hat{k}} \circ \alpha=\beta
$$

As we now show, we can choose this homeomorphism to be in H_{0}, i.e., such that it fixes ∂D^{2} pointwise. Choose any $\left.r_{0} \in\right] 0,1[$ such that

$$
\operatorname{Im} \alpha \cup \operatorname{Im} \beta \subset B\left(0, r_{0}\right)
$$

As the Schoenflies Theorem also holds by replacing D^{2} with $B\left(0, r_{0}\right)$, there is a homeomorphism $\widehat{k} \in \mathcal{H}\left(B\left(0, r_{0}\right)\right)$ such that

$$
\widehat{k} \circ \alpha=\beta .
$$

Now, define a homeomorphism as follows, where we use polar coordinates.

$$
\begin{array}{rll}
k: D^{2} & \stackrel{\cong}{\longrightarrow} D^{2} \\
x & \mapsto \begin{cases}\left(\|x\|, \arg x+\left(\arg \widehat{k}\left(r_{0}, \arg x\right)-\arg x\right) \frac{1-\|x\|}{1-r_{0}}\right), & \|x\| \geq r_{0}, \\
\widehat{k}(x), & \|x\| \leq r_{0} .\end{cases}
\end{array}
$$

This map is well defined, because, for all $x \in D^{2}$ with $\|x\|=r_{0}$,

$$
\begin{aligned}
k(x) & =\left(\|x\|, \arg \widehat{k}\left(r_{0}, \arg x\right)\right) \\
& =(\|x\|, \arg \widehat{k}(x)) \\
& \stackrel{*}{=}(\|\widehat{k}(x)\|, \arg \widehat{k}(x)) \\
& =\widehat{k}(x),
\end{aligned}
$$

where $(*)$ holds, because \widehat{k} maps $\partial B\left(0, r_{0}\right)$ onto itself. Moreover, observe that, as $\operatorname{Im} \alpha, \operatorname{Im} \beta \subset B\left(0, r_{0}\right)$,

$$
\begin{equation*}
k \circ \alpha=\widehat{k} \circ \alpha=\beta \tag{B}
\end{equation*}
$$

Also, note that $\left.k\right|_{\partial D^{2}}=\mathrm{Id}$, i.e., $k \in H_{0}$, and that

$$
k\left(\tau_{i}\right)=k\left(\alpha\left(s_{i}\right)\right)=\beta\left(s_{i}\right)=\tau_{i} \quad \forall i \in \mathbb{N},
$$

which means that

$$
k \in P H_{\infty}
$$

Now, recall that

$$
[\alpha]=[\beta] \quad \text { in } \pi_{0} \mathcal{A},
$$

i.e., there is a path $\Lambda_{1}: I \rightarrow \mathcal{A}$ such that

$$
\begin{equation*}
\Lambda_{1}(0)=\alpha, \quad \Lambda_{1}(1)=\beta \tag{C}
\end{equation*}
$$

Thus, it follows by the definition of \mathcal{A}, that

$$
\begin{equation*}
\left(\Lambda_{1}(\cdot)\left(s_{i}\right)\right)_{i \in \mathbb{N}}=\left(p_{\tau_{i}}\right)_{i \in \mathbb{N}} \in \Omega F_{\infty} \tag{D}
\end{equation*}
$$

Furthermore, define a path

$$
\begin{aligned}
\Lambda_{2}: I & \rightarrow \mathcal{C}\left(S^{1}, \stackrel{\circ}{D}^{2}\right) \\
t & \mapsto K(k, t) \circ \alpha(\cdot)
\end{aligned}
$$

and observe that it satisfies

$$
\Lambda_{2}(0)=K(k, 0) \circ \alpha=k \circ \alpha=\beta
$$

and

$$
\Lambda_{2}(1)=K(k, 1) \circ \alpha=\operatorname{Id} \circ \alpha=\alpha
$$

Recalling (C), this allows us to define a path $\Lambda: I \rightarrow \mathcal{C}\left(S^{1}, \stackrel{\circ}{D}^{2}\right)$ by

$$
\Lambda=\Lambda_{1} \star \Lambda_{2}
$$

which, in particular, satisfies

$$
\Lambda(0)=\Lambda(1)=\alpha .
$$

As $\Lambda(t): S^{1} \rightarrow \stackrel{\circ}{D}^{2}$ is a homeomorphism onto its image for all $t \in I$, Lemma 5.5 applies, which means that there is an $m \in \mathbb{Z}$ such that

$$
\begin{equation*}
w\left(\Lambda(\cdot)\left(s_{i}\right)-\Lambda(\cdot)\left(s_{j}\right)\right)=m \quad \forall i, j \in \mathbb{N}, \quad i \neq j \tag{E}
\end{equation*}
$$

Now, observe that, in $P B_{\infty}$,

$$
\begin{align*}
{\left[\varphi_{\infty}\left(\rho_{m, r_{0}} \circ k\right)\right] } & \stackrel{*}{=}\left[\varphi_{\infty}\left(\rho_{m, r_{0}}\right)\right]\left[\varphi_{\infty}(k)\right] \\
& =\left[\left(K\left(\rho_{m, r_{0}}, \cdot\right)\left(\tau_{i}\right)\right)_{i \in \mathbb{N}}\right]\left[\left(K(k, \cdot)\left(\tau_{i}\right)\right)_{i \in \mathbb{N}}\right] \\
& =\left[\left(K\left(\rho_{m, r_{0}}, \cdot\right)\left(\tau_{i}\right)\right)_{i \in \mathbb{N}}\right]\left[\left(\Lambda_{2}(\cdot)\left(s_{i}\right)\right)_{i \in \mathbb{N}}\right] \\
& \stackrel{D}{=}\left[\left(K\left(\rho_{m, r_{0}}, \cdot\right)\left(\tau_{i}\right)\right)_{i \in \mathbb{N}}\right]\left[\left(\Lambda_{1}(\cdot)\left(s_{i}\right)\right)_{i \in \mathbb{N}}\right]\left[\left(\Lambda_{2}(\cdot)\left(s_{i}\right)\right)_{i \in \mathbb{N}}\right] \\
& =\left[\left(K\left(\rho_{m, r_{0}}, \cdot\right)\left(\tau_{i}\right)\right)_{i \in \mathbb{N}}\right]\left[\left(\Lambda(\cdot)\left(s_{i}\right)\right)_{i \in \mathbb{N}}\right], \quad(F) \tag{F}
\end{align*}
$$

where $(*)$ is given by Proposition 1.15. Also, for any integers $i \neq j$,

$$
\begin{aligned}
& w\left(K\left(\rho_{m, r_{0}}, \cdot\right)\left(\tau_{i}\right) \star \Lambda(\cdot)\left(s_{i}\right)-K\left(\rho_{m, r_{0}}, \cdot\right)\left(\tau_{j}\right) \star \Lambda(\cdot)\left(s_{j}\right)\right) \\
& \quad=w\left(\left(K\left(\rho_{m, r_{0}}, \cdot\right)\left(\tau_{i}\right)-K\left(\rho_{m, r_{0}}, \cdot\right)\left(\tau_{i}\right)\right) \star\left(\Lambda(\cdot)\left(s_{i}\right)-\Lambda(\cdot)\left(s_{j}\right)\right)\right) \\
& \quad \stackrel{*}{=} w\left(K\left(\rho_{m, r_{0}}, \cdot\right)\left(\tau_{i}\right)-K\left(\rho_{m, r_{0}}, \cdot\right)\left(\tau_{i}\right)\right)+w\left(\Lambda(\cdot)\left(s_{i}\right)-\Lambda(\cdot)\left(s_{i}\right)\right) \\
& \quad \stackrel{* *}{=} m-m=0,
\end{aligned}
$$

where $(*)$ is given by Proposition 5.4, and ($* *$) follows from Proposition 5.9 and (E). Using Lemma 5.6, this allows us to conclude that

$$
\begin{aligned}
{\left[\varphi_{\infty}\left(\rho_{m, r_{0}} \circ k\right)\right] } & \stackrel{F}{=}\left[\left(K\left(\rho_{m, r_{0}}, \cdot\right)\left(\tau_{i}\right)\right)_{i \in \mathbb{N}}\right]\left[\left(\Lambda(\cdot)\left(s_{i}\right)\right)_{i \in \mathbb{N}}\right] \\
& =\left[\left(K\left(\rho_{m, r_{0}}, \cdot\right) \star \Lambda(\cdot)\left(s_{i}\right)\left(\tau_{i}\right)\right)_{i \in \mathbb{N}}\right] \\
& =\left[\left(p_{\tau_{i}}\right)_{i \in \mathbb{N}}\right] \text { in } P B_{\infty} .
\end{aligned}
$$

Thus, recalling that $\pi_{0} \varphi_{\infty}$ is injective, it follows that

$$
\left[\rho_{m, r_{0}} \circ k\right]=[\mathrm{Id}] \quad \text { in } \pi_{0} P H_{\infty} .
$$

Writing

$$
\kappa_{1}:=\rho_{m, r_{0}} \circ k,
$$

it thus follows that

$$
\kappa_{1} \circ \beta=\alpha, \quad\left[\kappa_{1}\right]=[\mathrm{Id}] \quad \text { in } \pi_{0} P H_{\infty},
$$

which proves the claim.
Furthermore, by the fact that

$$
[f \circ \alpha]=[g \circ \beta] \quad \text { in } \pi_{0} \mathcal{A},
$$

we can show in exactly the same way as above, that there is a homeomorphism $\kappa_{2} \in P H_{\infty}$ that satisfies

$$
\begin{equation*}
\kappa_{2} \circ(f \circ \alpha)=g \circ \beta, \quad\left[\kappa_{2}\right]=[\mathrm{Id}] \quad \text { in } \pi_{0} P H_{\infty} . \tag{G}
\end{equation*}
$$

Now, write $h:=g^{-1} \circ \kappa_{2} \circ f \circ \kappa_{1}$, observe that $h \in P H_{\infty}$, because $\kappa_{1}, \kappa_{2} \in P H_{\infty}$, and $g^{-1} \circ f \in P H_{\infty}$, because, as $[\alpha]=[\beta]$ in $\pi_{0} \mathcal{A}$, there is, for each $i \in \mathbb{N}$, a $j \in \mathbb{N}$ with

$$
\tau_{i}=\alpha\left(s_{j}\right)=\beta\left(s_{j}\right)
$$

such that, moreover,

$$
f\left(\tau_{i}\right)=f \circ \alpha\left(s_{j}\right) \stackrel{*}{=} g \circ \beta\left(s_{j}\right)=g\left(\tau_{i}\right)
$$

where $(*)$ is given by the fact that $[f \circ \alpha]=[g \circ \beta]$ in $\pi_{0} \mathcal{A}$. Furthermore, notice that

$$
\begin{aligned}
h \circ \beta & =g^{-1} \circ \kappa_{2} \circ f \circ \kappa_{1} \circ \beta \\
& \stackrel{A}{=} g^{-1} \circ \kappa_{2} \circ f \circ \alpha \\
& \underline{=} \\
& =g^{-1} \circ g \circ \beta
\end{aligned}
$$

Also, the right adjoint $\widehat{K}: I \rightarrow \mathcal{C}\left(S^{1}, D^{2}\right)$ of the homotopy

$$
\begin{aligned}
K(h, \cdot) \circ \beta: S^{1} \times I & \rightarrow \stackrel{\circ}{D}^{2} \\
(s, t) & \mapsto K(h, t)(\beta(s))
\end{aligned}
$$

satisfies the condition of Lemma 5.5, which means that there is an integer n such that, for all $i, j \in \mathbb{N}$ with $i \neq j$,
$w\left(K(h, \cdot) \circ \beta\left(s_{i}\right)-K(h, \cdot) \circ \beta\left(s_{j}\right)\right) \equiv w\left(\widehat{K}(h)(\cdot) \circ \beta\left(s_{i}\right)-\widehat{K}(h)(\cdot) \circ \beta\left(s_{j}\right)\right)=n$.
Thus,

$$
\begin{aligned}
w(K(h, \cdot) & \left.\left(\tau_{i}\right) \star K\left(\rho_{n, r_{0}}, \cdot\right)\left(\tau_{i}\right)-K(h, \cdot)\left(\tau_{j}\right) \star K\left(\rho_{n, r_{0}}, \cdot\right)\left(\tau_{j}\right)\right) \\
& =w\left(\left(K(h, \cdot)\left(\tau_{i}\right)-K(h, \cdot)\left(\tau_{j}\right)\right) \star\left(K\left(\rho_{n, r_{0}}, \cdot\right)\left(\tau_{i}\right)-K\left(\rho_{n, r_{0}}, \cdot\right)\left(\tau_{j}\right)\right)\right) \\
& \stackrel{*}{=} w\left(K(h, \cdot)\left(\tau_{i}\right)-K(h, \cdot)\left(\tau_{j}\right)\right)+w\left(K\left(\rho_{n, r_{0}}, \cdot\right)\left(\tau_{i}\right)-K\left(\rho_{n, r_{0}}, \cdot\right)\left(\tau_{j}\right)\right) \\
& =n-n=0,
\end{aligned}
$$

where (*) is given by Proposition 5.4. Thus, according to Lemma 5.6,

$$
\begin{aligned}
\pi_{0} \varphi_{\infty}\left[h \circ \rho_{n, r_{0}}\right] & \stackrel{*}{=}\left[\varphi_{\infty}(h)\right]\left[\varphi_{\infty}\left(\rho_{n, r_{0}}\right)\right] \\
& =\left[\varphi_{\infty}(h) \star \varphi_{\infty}\left(\rho_{n, r_{0}}\right)\right] \\
& =\left[\left(K(h, \cdot)\left(\tau_{i}\right) \star K\left(\rho_{n, r_{0}}, \cdot\right)\left(\tau_{i}\right)\right)_{i \in \mathbb{N}}\right] \\
& =\left[\left(p_{\tau_{i}}\right)_{i \in \mathbb{N}}\right],
\end{aligned}
$$

where (*) is given by Proposition 1.15. Moreover, as $\pi_{0} \varphi_{\infty}$ is injective by Theorem 3.7, it follows that

$$
\left[h \circ \rho_{n, r_{0}}\right]=[\mathrm{Id}] \quad \text { in } \pi_{0} P H_{\infty}
$$

This finishes the proof, because then,

$$
[\mathrm{Id}]=\left[h \circ \rho_{n, r_{0}}\right]=\left[g^{-1} \circ \kappa_{2} \circ f \circ \kappa_{1} \circ \rho_{n, r_{0}}\right] \stackrel{A, G}{=}\left[g^{-1} \circ f \circ \rho_{n, r_{0}}\right] \quad \text { in } \pi_{0} P H_{\infty} .
$$

Appendix A

Various technical results

Proposition A.1. For all $n \in \mathbb{N} \cup \infty$, the spaces F_{n} and C_{n} are pathwise connected.

Proof. We prove that F_{n} is pathwise connected for all $n \in \mathbb{N} \cup \infty$. If, for some $n \in \mathbb{N} \cup \infty, \bar{x}$ and \bar{y} are points in C_{n}, then any path in F_{n} between representatives x, y of \bar{x} and \bar{y}, respectively, projects to a path in C_{n} between \bar{x} and \bar{y}.
Pick two points $x:=\left(x_{i}\right)_{i \in \mathbb{N}}, y:=\left(y_{i}\right)_{i \in \mathbb{N}} \in F_{\infty}$. We prove by induction that there is a path in F_{∞} from x to y. Clearly, there is a path $\gamma_{1}: I \rightarrow F_{1}=\stackrel{\circ}{D}{ }^{2}$ from x_{1} to y_{1}. Assume that, for some $n>1$, there is a well defined path

$$
\Gamma_{n}:=\left(\gamma_{i}\right)_{i \in[1, n]}: I \rightarrow F_{n}
$$

from $\left(x_{i}\right)_{i \in[1, n]}$ to $\left(y_{i}\right)_{i \in[1, n]}$. As both $\left\{x_{i}\right\}_{i \in[1, n+1]}$ and $\left(y_{i}\right)_{i \in[1, n+1]}$ are sets of pairwise distinct points, there is, by the separability of $\stackrel{\circ}{D}{ }^{2}$, a real number $\varepsilon>0$ such that

$$
\begin{equation*}
x_{n+1} \in \stackrel{\circ}{D}^{2} \backslash \bigcup_{i \in[1, n]} B\left(x_{i}, \varepsilon\right), \quad y_{n+1} \in \stackrel{\circ}{D}^{2} \backslash \bigcup_{i \in[1, n]} B\left(y_{i}, \varepsilon\right), \tag{A}
\end{equation*}
$$

and

$$
\bigcap_{i \in[1, n]} \overline{B\left(x_{i}, \varepsilon\right)}=\varnothing, \quad \bigcap_{i \in[1, n]} \overline{B\left(y_{i}, \varepsilon\right)}=\varnothing
$$

Moreover, by the continuity of the paths $\left\{\gamma_{i}\right\}_{i \in[1, n]}$, there is a $0<\widehat{t}<1 / 2$ such that, for all $i \in[1, n]$,

$$
\begin{equation*}
\gamma_{i}(t) \in B\left(x_{i}, \varepsilon\right) \quad \forall t \in[0, \widehat{t}], \quad \gamma_{i}(t) \in B\left(y_{i}, \varepsilon\right) \quad \forall t \in[1-\widehat{t}, 1] . \tag{C}
\end{equation*}
$$

As, by $(B), \stackrel{\circ}{D}^{2} \backslash \bigcup_{i \in[1, n]} \overline{B\left(x_{i}, \varepsilon\right)}$ is homeomorphic to $\stackrel{\circ}{D}^{2} \backslash \bigcup_{i \in[1, n]} x_{i}$, which is a pathwise connected space, it follows that $\stackrel{\circ}{D}^{2} \backslash \bigcup_{i \in[1, n]} \overline{B\left(x_{i}, \varepsilon\right)}$ too is pathwise
connected, which, similarly, also holds for $\stackrel{\circ}{D}^{2} \backslash \bigcup_{i \in[1, n]} \overline{B\left(y_{i}, \varepsilon\right)}$. Consequently, by (A), there are paths

$$
\gamma_{n+1}^{0}:[0, \widehat{t}] \rightarrow \stackrel{\circ}{D}^{2}, \quad \gamma_{n+1}^{1}:[1-\widehat{t}, 1] \rightarrow \stackrel{\circ}{D}^{2}
$$

that satisfy

$$
\gamma_{n+1}^{0}(0)=x_{n+1}, \quad \gamma_{n+1}^{1}(1)=y_{n+1}
$$

and

$$
\gamma_{n+1}^{0}(\hat{t})=\gamma_{n+1}^{1}(1-\widehat{t})=: \widehat{x}
$$

where \widehat{x} is some point in $\stackrel{\circ}{D}^{2} \backslash \bigcup_{i \in[1, n]} \overline{B\left(x_{i}, \varepsilon\right)} \cup \overline{B\left(y_{i}, \varepsilon\right)}$ that, moreover, satisfies

$$
\begin{equation*}
\widehat{x} \notin \bigcup_{i \in[1, n]} \bigcup_{t \in I} \gamma_{i}(t) . \tag{D}
\end{equation*}
$$

Observe that there is a well defined path

$$
\begin{aligned}
\gamma_{n+1}: I & \rightarrow \stackrel{\circ}{D}^{2} \\
t & \mapsto \begin{cases}\gamma_{n+1}^{0}(t), & t \in[0, \widehat{t}] \\
\widehat{x}, & t \in \widehat{t}, 1-\widehat{t}] \\
\gamma_{n+1}^{1}(t), & t \in[1-\widehat{t}, 1]\end{cases}
\end{aligned}
$$

from x_{n+1} to y_{n+1}, such that, by (C) and (D),

$$
\gamma_{n+1}(t) \neq \gamma_{i}(t) \quad \forall i \in[1, n], \forall t \in I
$$

i.e., there is a well defined path

$$
\Gamma_{n+1}:=\left(\gamma_{i}\right)_{i \in[1, n+1]}: I \rightarrow F_{n+1}
$$

from $\left(x_{i}\right)_{i \in[1, n+1]}$ to $\left(y_{i}\right)_{i \in[1, n+1]}$.
By induction, we thus can conclude that there is a sequence of paths

$$
\left(\Gamma_{n}:(I, 0,1) \rightarrow\left(F_{n},\left(x_{i}\right)_{i \in[1, n]},\left(y_{i}\right)_{i \in[1, n]}\right)\right)_{n \in \mathbb{N}}
$$

that constitutes a map from I to the inverse system $\left\{F_{n}, s_{n+1, n}\right\}_{n \in \mathbb{N}}$, i.e., for each $n \in \mathbb{N}$, there is a commutative diagram

Consequently, by the universal property of the inverse limit F_{∞}, there is a map $\Gamma: I \rightarrow F_{\infty}$ that makes the diagram

commute for all $n \in \mathbb{N}$. Moreover, $\Gamma(0)=x$, and $\Gamma(1)=y$, because $\Gamma_{n}(0)=$ $\left(x_{i}\right)_{i \in[1, n]}$ and $\Gamma_{n}(1)=\left(y_{i}\right)_{i \in[1, n]}$ for all $n \in \mathbb{N}$.

Let the basepoint $\mathcal{T}_{\infty} \in F_{\infty}$ be as chosen in Definition 2.1, and recall that \bar{H}_{∞} is the subspace of $\mathcal{H}\left(D^{2}, D^{2}\right)$ of homeomorphisms that fix the point set $\left\{\tau_{i}\right\}_{i \in \mathbb{N}}$ as a set. Also, recall that

$$
\varrho_{i}:=\left\|\tau_{i}-\tau_{\infty}\right\| \quad \forall i \in \mathbb{N} .
$$

Proposition A.2. For each $f \in \bar{H}_{\infty}$, there is an element $\widehat{f} \in H_{\infty}$, such that

$$
[f]=[\widehat{f}] \quad \text { in } \quad \pi_{0} \bar{H}_{\infty} .
$$

Proof. Pick some $f \in \bar{H}_{\infty}$, and, in polar coordinates, extend as follows to a map

$$
\begin{aligned}
f_{\mathrm{ext}}: \overline{B\left(\tau_{\infty}, 2\right)} & \rightarrow \overline{B\left(\tau_{\infty}, 2\right)} \\
(r, \varphi) & \mapsto \begin{cases}f(r, \varphi), & 0 \leq r \leq 1 \\
(r, \varphi+(\arg (f(1, \varphi))-\varphi)(2-r)), & 1 \leq r \leq 2\end{cases}
\end{aligned}
$$

where $\arg (\widehat{r}, \widehat{\varphi}):=\widehat{\varphi}$ for all $(\widehat{r}, \widehat{\varphi}) \in \overline{B\left(\tau_{\infty}, 2\right)}$. Recalling that f induces a homeomorphism

$$
\left.f\right|_{\partial D^{2}}: \partial D^{2} \xrightarrow{\cong} \partial D^{2},
$$

it can be easily verified that $f_{\text {ext }}$ is a well defined element of $\mathcal{H}\left(\overline{B\left(\tau_{\infty}, 2\right)}, \overline{B\left(\tau_{\infty}, 2\right)}\right)$ that satisfies

$$
\begin{equation*}
\left.f_{\mathrm{ext}}\right|_{\partial \overline{B\left(\tau_{\infty}, 2\right)}}=\mathrm{Id} \tag{A}
\end{equation*}
$$

Furthermore, define a continuous map $\kappa: I \rightarrow \mathcal{C}\left(D^{2}, \overline{B\left(\tau_{\infty}, 2\right)}\right)$ by

$$
\begin{aligned}
\kappa(t): D^{2} & \rightarrow \overline{B\left(\tau_{\infty}, 2\right)} \\
(r, \varphi) & \mapsto \begin{cases}(r, \varphi), & 0 \leq r \leq \varrho_{1} \\
\left(r+t \frac{r-\varrho_{1}}{1-\varrho_{1}}, \varphi\right), & \varrho_{1} \leq r \leq 1\end{cases}
\end{aligned}
$$

for all $t \in I$. Observe that $\kappa(t)$ is an embedding for all $t \in I$, and that, moreover,

$$
\begin{equation*}
\kappa(0)=\operatorname{Id}_{D^{2}}, \quad \text { and } \quad \kappa(1) \in \mathcal{H}\left(D^{2}, \overline{B\left(\tau_{\infty}, 2\right)}\right) \tag{B}
\end{equation*}
$$

As, moreover, $\left.\kappa(t)\right|_{\overline{B\left(\tau_{\infty}, \varrho_{1}\right)}}=\mathrm{Id}$, it follows that

$$
\kappa^{-1}(t) \circ f_{\mathrm{ext}} \circ \kappa(t)\left(\tau_{i}\right)=f\left(\tau_{i}\right) \quad \forall t \in I, \forall i \in \mathbb{N}
$$

Thus, there is a well defined map

$$
\begin{aligned}
\Gamma: I & \rightarrow \bar{H}_{\infty} \\
t & \mapsto \kappa^{-1}(t) \circ f_{\mathrm{ext}} \circ \kappa(t)
\end{aligned}
$$

that satisfies $\Gamma(0)=f$, and $\left.\Gamma(1)\right|_{\partial D^{2}}=$ Id, i.e., $\Gamma(1) \in H_{\infty}$. Writing

$$
\widehat{f}:=\Gamma(1)
$$

finishes the proof.
Lemma A.3. For any $n \in \mathbb{N} \cup \infty$, let $\Gamma, \Gamma^{\prime}: I \rightarrow H_{0}$ be paths such that

$$
\Gamma(0)=\Gamma^{\prime}(0) \in P H_{n}, \quad \Gamma(1)=\Gamma^{\prime}(1) \in P H_{n}
$$

Then,

$$
\left[e v_{n} \circ \Gamma\right]=\left[e v_{n} \circ \Gamma^{\prime}\right] \quad \text { in } \pi_{1} F_{n}
$$

If, moreover,

$$
\Gamma(t)\left(\tau_{\infty}\right)=\Gamma^{\prime}(t)\left(\tau_{\infty}\right)=\tau_{\infty} \quad \forall t \in I
$$

then,

$$
\left[e v_{n} \circ \Gamma\right]=\left[e v_{n} \circ \Gamma^{\prime}\right] \quad \text { in } \pi_{1} F_{n}^{\prime}
$$

Finally, for any $n \in \mathbb{N} \cup \infty$, let $\Gamma, \Gamma^{\prime}: I \rightarrow H_{0}$ be paths that satisfy

$$
\Gamma(0)=\Gamma^{\prime}(0) \in H_{n}, \quad \Gamma(1)=\Gamma^{\prime}(1) \in H_{n}
$$

Then,

$$
\overline{e v}_{n} \circ \Gamma \simeq_{*} \overline{e v}_{n} \circ \Gamma^{\prime} \quad \text { in } \pi_{1} C_{n} \quad\left(\text { or } \pi_{0} \mathcal{O} C_{\infty}, \text { if } n=\infty\right)
$$

Proof. In this proof, we use a contracting homotopy $K: H_{0} \times I \rightarrow H_{0}$ with the properties given in Theorem 3.3. To prove the first statement for any $n \in \mathbb{N} \cup \infty$, pick any Γ, Γ^{\prime} with the required properties. Define a map

$$
\begin{aligned}
\widehat{H}: I \times I & \rightarrow F_{n} \\
(s, t) & \mapsto \mathrm{ev}_{n} \circ \Gamma(s) \circ K\left(\left(\Gamma(s)^{-1} \circ \Gamma^{\prime}(s), t\right)\right.
\end{aligned}
$$

and observe that, for all $t \in I$,

$$
\begin{aligned}
\widehat{H}(0, t) & =\mathrm{ev}_{n} \circ \Gamma(0) \circ K\left(\left(\Gamma(0)^{-1} \circ \Gamma^{\prime}(0), t\right)\right. \\
& =\mathrm{ev}_{n} \circ \Gamma(0) \circ K(\mathrm{Id}, t) \\
& \stackrel{*}{=} \mathrm{ev}_{n} \circ \Gamma(0) \\
& =\mathcal{T}_{n}
\end{aligned}
$$

and

$$
\begin{aligned}
\widehat{H}(1, t) & =\mathrm{ev}_{n} \circ \Gamma(1) \circ K\left(\left(\Gamma(1)^{-1} \circ \Gamma^{\prime}(1), t\right)\right. \\
& =\mathrm{ev}_{n} \circ \Gamma(1) \circ K(\mathrm{Id}, t) \\
& \stackrel{*}{=} \mathrm{ev}_{n} \circ \Gamma(1) \\
& =\mathcal{T}_{n}
\end{aligned}
$$

where $(*)$ is given by the property (f) of Theorem 3.3. Thus, identifying (I, \dot{I}) with $\left(S^{1}, 0\right)$ leads to a well defined homotopy

$$
\begin{aligned}
H: S^{1} \times I & \rightarrow F_{n} \\
(s, t) & \mapsto \widehat{H}(s, t),
\end{aligned}
$$

which has the required properties, because

$$
H(\cdot, 0)=\operatorname{ev}_{n} \circ \Gamma^{\prime}(\cdot), \quad H(\cdot, 1)=\operatorname{ev}_{n} \circ \Gamma(\cdot)
$$

Moreover, if both paths $\Gamma, \Gamma^{\prime}: I \rightarrow H_{0}$ satisfy

$$
\Gamma(s)\left(\tau_{\infty}\right)=\tau_{\infty} \quad \forall t \in I
$$

then, it follows from Theorem 3.3 (c) that

$$
\Gamma(s) \circ K\left(\left(\Gamma(s)^{-1} \circ \Gamma^{\prime}(s), t\right)\left(\tau_{\infty}\right)=\tau_{\infty} \quad \forall s, t \in I\right.
$$

i.e., \widehat{H} is a well defined path in F_{n}^{\prime}, because

$$
\Gamma(s) \circ K\left(\left(\Gamma(s)^{-1} \circ \Gamma^{\prime}(s), t\right)(x) \neq \tau_{\infty} \quad \forall x \in D^{2}, \forall s, t \in I\right.
$$

The remaining statement is proved similarly.
Lemma A.4. The topology of the group of infinite permutations Σ_{∞} is metric.
Proof. As Σ_{∞} is topologized as a subspace of the mapping space $\mathbb{N}^{\mathbb{N}}$, where $\mathbb{N}^{\mathbb{N}}$ has the topology of pointwise convergence, it suffices to show that $\mathbb{N}^{\mathbb{N}}$ is metric. Endow $\mathbb{N} \subset \mathbb{R}$ with the subspace topology (i.e., \mathbb{N} has the discrete topology), and endow $\prod_{i \in \mathbb{N}} \mathbb{N}$ and $\prod_{i \in \mathbb{N}} \mathbb{R}$ with the product topology. Then, $\prod_{i \in \mathbb{N}} \mathbb{N}$ is a subspace of $\prod_{i \in \mathbb{N}} \mathbb{R}$, and, as $\prod_{i \in \mathbb{N}} \mathbb{R}$ is metric by [11, Thm 20.5], $\prod_{i \in \mathbb{N}} \mathbb{N}$ is metric too. With our choice of the topologies, $\mathbb{N}^{\mathbb{N}}$ is homeomorphic to $\prod_{i \in \mathbb{N}} \mathbb{N}$ by [11, p. 282], which means that $\mathbb{N}^{\mathbb{N}}$ is metric.

Remark A.5. Choose any $n \in \mathbb{N}$, or $n=\infty$, and let $\gamma=\left(\gamma_{i}\right)_{i \in \underline{n}} \in \mathcal{C}\left(I, F_{n}\right)$ be a path such that $p_{n} \gamma(0)=p_{n} \gamma(1)=\overline{\mathcal{T}}_{n}$, i.e., $p_{n} \gamma \in \Omega C_{n}$. As usual, we write

$$
p_{n} \gamma=[\gamma]=\left[\left(\gamma_{i}\right)_{i \in \underline{n}}\right] \quad \in \Omega C_{n}
$$

where $[\gamma]$ denotes the orbit $\Sigma_{n}\left(\gamma_{i}\right)_{i \in \underline{n}}$. When we consider the class of γ in $\pi_{1} C_{n}$, we write again

$$
[\gamma]=\left[\left(\gamma_{i}\right)_{i \in \underline{n}}\right] \quad \in \pi_{1} C_{n}
$$

where $[\gamma]$ denotes the orbit in $\pi_{1} C_{n}$ of the orbit in ΩC_{n} of γ.

Lemma A.6. Pick any $n \in \mathbb{N} \cup \infty$. If a pair of paths $\gamma_{1}, \gamma_{2} \in \mathcal{C}\left(\mathrm{I}, H_{0}\right)$ satisfies

$$
\gamma_{1}(0)=\gamma_{2}(0) \in P H_{n} \quad \text { and } \quad \gamma_{1}(1)=\gamma_{2}(1)=i d_{D^{2}}
$$

then,

$$
\left[e v_{n}\left(\gamma_{1}\right)\right]=\left[e v_{n}\left(\gamma_{2}\right)\right] \quad \in \pi_{1} F_{n}
$$

Moreover, any pair of paths $\gamma_{1}, \gamma_{2} \in \mathcal{C}\left((\mathrm{I}, 0,1),\left(H_{0}, H_{n}, \mathrm{Id}_{D^{2}}\right)\right)$, such that

$$
\gamma_{1}(0)=\gamma_{2}(0)
$$

satisfies

$$
\left[\overline{e v}_{n}\left(\gamma_{1}\right)\right]=\left[\overline{e v}_{n}\left(\gamma_{2}\right)\right] \quad \in \pi_{1} C_{n}
$$

Proof. Recalling the contracting homotopy $K: H_{0} \times I \rightarrow H_{0}$, there is an ambient isotopy given by

$$
\begin{aligned}
L: \mathcal{C}\left(I, H_{0}\right) \times I & \rightarrow \mathcal{C}\left(I, H_{0}\right) \\
(\gamma, s) & \mapsto\left(t \mapsto K\left(\gamma_{2}(t) \circ\left(\gamma_{1}(t)\right)^{-1}, 1-s\right) \circ \gamma(t)\right)
\end{aligned}
$$

Clearly, $L\left(\gamma_{1}, 1\right)=\gamma_{2}$, and $L(\gamma, 0)=\gamma$ for all $\gamma \in \mathcal{C}\left(I, H_{0}\right)$. Also, $L\left(\gamma_{i}, s\right)(0)=$ $\gamma_{i}(0)$ and $L\left(\gamma_{i}, s\right)(1)=\gamma_{i}(1)$ for all $s \in I$, where $i=1,2$. It follows, that

$$
\mathrm{ev}_{n} L\left(\gamma_{1},-\right): I \rightarrow \Omega F_{n}
$$

is a path in ΩF_{n} from $\operatorname{ev}_{n}\left(\gamma_{1}(-)\right)$ to $\mathrm{ev}_{n}\left(\gamma_{2}(-)\right)$. This proves the first assertion. The second assertion is proved similarly.

Proposition A.7. For every configuration $\left(x_{i}\right)_{i \in \mathbb{N}} \in F_{\infty}$ that converges to a point $x_{\infty} \in D^{2}$, i.e.,

$$
\lim _{i \rightarrow \infty} x_{i}=x_{\infty}
$$

there is an element $h \in H_{0}$ such that

$$
h\left(\tau_{i}\right)=x_{i} \quad \forall i \in \mathbb{N} .
$$

Proof. Pick some $\left(x_{i}\right)_{i \in \mathbb{N}} \in F_{\infty}$ such that

$$
\lim _{i \rightarrow \infty} x_{i}=x_{\infty}
$$

for some $x_{\infty} \in \stackrel{\circ}{D}^{2}$. Observing that there is an element $h_{1} \in H_{0}$ such that

$$
h_{1}\left(\tau_{\infty}\right)=x_{\infty}
$$

it remains to prove the existence of an $h_{2} \in H_{0}$ that satisfies

$$
h_{2}\left(h_{1}\left(\tau_{i}\right)\right)=x_{i} \quad \forall i \in \mathbb{N} .
$$

The existence of h_{1} allows us, without restricting the generality, to assume that

$$
x_{\infty}=\tau_{\infty}
$$

For each $i \in \mathbb{N}$, write

$$
r_{i}:=4 \sup _{j \geq i} \max \left(\left\|\tau_{\infty}-x_{i}\right\|,\left\|\tau_{\infty}-\tau_{i}\right\|\right)
$$

and let $\widehat{\alpha}_{i}: I \rightarrow \stackrel{\circ}{D}^{2}$ be a continuous path satisfying the following conditions.
(i) $\quad \widehat{\alpha}_{i}(0)=\tau_{i}$
(ii) $\widehat{\alpha}_{i}(1)=x_{i}$
(iii) $\widehat{\alpha}_{i} \cap\left(\left\{x_{j}\right\}_{j \in[1, i-1]} \cup\left\{\tau_{j}\right\}_{j \geq i+1}\right)=\varnothing$
(iv) $\quad \widehat{\alpha}_{i}(t) \subset B\left(\tau_{\infty}, \frac{1}{2} r_{i}\right) \quad \forall t \in I$.

Now, recall the definition

$$
t_{1}:=0, \quad t_{i}:=\sum_{k=1}^{i-1} \frac{1}{2^{k}} \forall i \geq 2
$$

and define a path set $\left(\alpha_{i}\right)_{i \in \mathbb{N}}$ by

$$
\alpha_{i}(t)= \begin{cases}\tau_{i} & , \forall t \in\left[0, t_{i} \frac{1}{2^{k}}\right] \\ \widehat{\alpha}_{i}\left(2^{i}\left(t-t_{i} \frac{1}{2^{k}}\right)\right) & , \forall t \in\left[t_{i} \frac{1}{2^{k}}, t_{i} \frac{1}{2^{k}}\right] \\ x_{i} & , \forall t \in\left[t_{i} \frac{1}{2^{k}}, 1\right]\end{cases}
$$

By the properties $(i)-(i i i)$ of the path set $\left\{\widehat{\alpha}_{i}\right\}_{i \in \mathbb{N}}$, it follows that these paths define a well defined path $\left(\alpha_{i}\right)_{i \in \mathbb{N}}: I \rightarrow F_{\infty}$ from $\left(\tau_{i}\right)_{i \in \mathbb{N}}$ to $\left(x_{i}\right)_{i \in \mathbb{N}}$.
Note that, by the property $(i v)$ of the paths $\widehat{\alpha}_{i}$,

$$
\lim _{i \rightarrow \infty} \alpha_{i}(t)=\tau_{\infty} \quad \forall t \in I
$$

because $\lim _{i \rightarrow \infty} r_{i}=0$. As in the proof of Theorem 4.5, this allows us to show that, for each $i \in \mathbb{N}$, there is a path $g_{i} \in \mathcal{C}\left((I, 0,1),\left(H_{0}, I d, P H_{\infty}\right)\right)$ that satisfies
(i) $\quad g_{i}(t)\left(\tau_{j}\right)= \begin{cases}\alpha_{i}(t) \forall t \in I & \text { if } j=i \\ \tau_{j} \forall t \in I & j \neq i, \quad \text { and }\end{cases}$
(ii) $\left.\quad g_{i}(t)\right|_{D^{2} \backslash B\left(\tau_{\infty}, r_{i}\right)}=I d \quad \forall t \in I$
(iii) $\quad g_{i}(t)=$ Id $\quad \forall t \leq t_{i} \frac{1}{2^{k}}$
(iv) $\quad g_{i}(t)=g_{i}\left(t_{i} \frac{1}{2^{k}}\right) \quad \forall t \geq t_{i} \frac{1}{2^{k}}$.

Now, write

$$
\mathcal{G}_{n}(-)=g_{n}(-) \circ \cdots \circ g_{1}(-)
$$

for all $n \in \mathbb{N}$, and observe that, for every $n \in \mathbb{N}$,

$$
\begin{aligned}
\mathcal{G}_{n}(0) & =\operatorname{Id}_{D^{2}} \\
\mathcal{G}_{n}(t)\left(\tau_{i}\right) & =\alpha_{i}(t) \quad \forall i \leq n, \forall t \in I
\end{aligned}
$$

by the properties of the maps g_{i}. Moreover, one can show in analogy to the proof of Theorem 4.5 that the sequence \mathcal{G}_{n} converges uniformly, which means that there is a path $\mathcal{G} \in \mathcal{C}\left((I, 0,1),\left(H_{0}, I d, P H_{\infty}\right)\right)$ such that

$$
\lim _{n \rightarrow \infty} \mathcal{G}_{n}=\mathcal{G}
$$

By the properties of the paths \mathcal{G}_{n}, it follows that \mathcal{G} satisfies

$$
\mathcal{G}(1)\left(\tau_{i}\right)=x_{i} \quad \forall i \in \mathbb{N}
$$

Thus, writing $h_{2}:=\mathcal{G}(1)$ finishes the proof.
Next, we present two lemmas that are used in the text. The proof of the first lemma requires long calculations, whereas both lemmas can be understood quite easily by geometric interpretation.
For every $n>1$, let $\left\{\sigma_{i}\right\}_{i \in[1, n-1]}$ be the set of generators of the group B_{n} with respect to Artin's presentation, and, for every pair of integers $i, j \in[1, n]$ with $i<j$, write, as usual,

$$
A_{i, j}:=\sigma_{j-1} \sigma_{j-2} \cdots \sigma_{i+1} \sigma_{i}^{2} \sigma_{i+1}^{-1} \cdots \sigma_{j-2}^{-1} \sigma_{j-1}^{-1} .
$$

Recall Artin's presentation of B_{n}

$$
\begin{align*}
\sigma_{i} \sigma_{j} & \sim \sigma_{j} \sigma_{i} \quad \text { if }|i-j| \geq 2,1 \leq i, j \leq n-1 \tag{A1}\\
\sigma_{i} \sigma_{i+1} \sigma_{i} & \sim \sigma_{i+1} \sigma_{i} \sigma_{i+1}, \quad 1 \leq i \leq n-2 \quad(A 2) .
\end{align*}
$$

Lemma A.8. For every $n \in \mathbb{N}$ and $i \in[1, n-1]$, the following two word classes, with respect to Artin's presentation of B_{n}, are equal.

$$
A_{i, n} \sim \sigma_{i}^{-1} \ldots \sigma_{n-2}^{-1} \sigma_{n-1}^{2} \sigma_{n-2} \ldots \sigma_{i} .
$$

Proof. Fix some $n \in \mathbb{N}$. Observe that the case $i=n-1$ is trivial, and fix some $i \in[1, n-2]$. To prove the required result, we need the following equivalences in B_{n}, which follow immediately from Artin's relations, valid for all $k, l \in[1, n-2]$ with $|k-l| \geq 2$.

$$
\begin{align*}
\sigma_{k}^{-1} \sigma_{l}^{-1} & \sim \sigma_{l}^{-1} \sigma_{k}^{-1} \quad \forall|k-l| \geq 2 \tag{A}\\
\sigma_{k}^{-1} \sigma_{k+1}^{-1} \sigma_{k}^{-1} & \sim \sigma_{k+1}^{-1} \sigma_{k}^{-1} \sigma_{k+1}^{-1} \tag{B}\\
\sigma_{k+1} \sigma_{k} & \sim \sigma_{k}^{-1} \sigma_{k+1} \sigma_{k} \sigma_{k+1} \tag{C}\\
\sigma_{k+1}^{-1} \sigma_{k}^{-1} & \sim \sigma_{k}^{-1} \sigma_{k+1}^{-1} \sigma_{k}^{-1} \sigma_{k+1} \tag{D}
\end{align*}
$$

We need to prove that

$$
\sigma_{n-1} \cdots \sigma_{i+1} \sigma_{i}^{2} \sigma_{i+1}^{-1} \cdots \sigma_{n-1}^{-1} \sigma_{i}^{-1} \ldots \sigma_{n-2}^{-1} \sigma_{n-1}^{-2} \sigma_{n-2} \ldots \sigma_{i} \sim 1 .
$$

For every $j \in[i, n-2]$, define

$$
\begin{aligned}
M_{j}:= & \sigma_{n-1} \ldots \sigma_{j+1} \sigma_{j}^{2} \sigma_{j+1}^{-1} \sigma_{j}^{-1} \sigma_{j+2}^{-1} \sigma_{j+1}^{-1} \ldots \\
& \sigma_{k+1}^{-1} \sigma_{k}^{-1} \sigma_{k+2}^{-1} \sigma_{k+1}^{-1} \ldots \sigma_{n-1}^{-1} \sigma_{n-2}^{-1} \sigma_{n-1}^{-2} \sigma_{n-2} \sigma_{n-3} .
\end{aligned}
$$

We claim that, for every $j \in[i, n-3]$,

$$
\begin{equation*}
M_{j} \sim \sigma_{j}^{-1} M_{j+1} . \tag{E}
\end{equation*}
$$

The claim is proved as follows, where at each stage, the term in brackets is replaced by an equivalent one.

$$
\begin{aligned}
M_{j}= & \sigma_{n-1} \ldots \sigma_{j+1} \sigma_{j}^{2}\left[\sigma_{j+1}^{-1} \sigma_{j}^{-1}\right] \sigma_{j+2}^{-1} \sigma_{j+1}^{-1} \ldots \\
& \sigma_{k+1}^{-1} \sigma_{k}^{-1} \sigma_{k+2}^{-1} \sigma_{k+1}^{-1} \ldots \sigma_{n-1}^{-1} \sigma_{n-2}^{-1} \sigma_{n-1}^{-2} \sigma_{n-2} \sigma_{n-3} \\
\stackrel{D}{\sim} & \sigma_{n-1} \ldots\left[\sigma_{j+1} \sigma_{j}\right] \sigma_{j+1}^{-1} \sigma_{j}^{-1} \sigma_{j+1} \sigma_{j+2}^{-1} \sigma_{j+1}^{-1} \ldots \\
& \sigma_{k+1}^{-1} \sigma_{k}^{-1} \sigma_{k+2}^{-1} \sigma_{k+1}^{-1} \ldots \sigma_{n-1}^{-1} \sigma_{n-2}^{-1} \sigma_{n-1}^{-2} \sigma_{n-2} \sigma_{n-3} \\
\stackrel{C}{\sim} & \sigma_{n-1} \ldots \sigma_{j+2} \sigma_{j}^{-1} \sigma_{j+1} \sigma_{j} \sigma_{j+1} \sigma_{j+1}^{-1} \sigma_{j}^{-1} \sigma_{j+1} \sigma_{j+2}^{-1} \sigma_{j+1}^{-1} \ldots \\
& \sigma_{k+1}^{-1} \sigma_{k}^{-1} \sigma_{k+2}^{-1} \sigma_{k+1}^{-1} \ldots \sigma_{n-1}^{-1} \sigma_{n-2}^{-1} \sigma_{n-1}^{-2} \sigma_{n-2} \sigma_{n-3} \\
\sim & \sigma_{n-1} \ldots \sigma_{j+2} \sigma_{j}^{-1} \sigma_{j+1}^{2} \sigma_{j+2}^{-1} \sigma_{j+1}^{-1} \ldots \\
& \sigma_{k+1}^{-1} \sigma_{k}^{-1} \sigma_{k+2}^{-1} \sigma_{k+1}^{-1} \ldots \sigma_{n-1}^{-1} \sigma_{n-2}^{-1} \sigma_{n-1}^{-2} \sigma_{n-2} \sigma_{n-3} \\
& \stackrel{A}{\sim} \\
\stackrel{A}{\sim} & \sigma_{j}^{-1} \sigma_{n-1} \ldots \sigma_{j+2} \sigma_{j+1}^{2} \sigma_{j+2}^{-1} \sigma_{j+1}^{-1} \ldots \\
& \sigma_{k+1}^{-1} \sigma_{k}^{-1} \sigma_{k+2}^{-1} \sigma_{k+1}^{-1} \ldots \sigma_{n-1}^{-1} \sigma_{n-2}^{-1} \sigma_{n-1}^{-2} \sigma_{n-2} \sigma_{n-3} \\
= & \sigma_{j}^{-1} M_{j+1}
\end{aligned}
$$

Also, observe that

$$
\begin{aligned}
M_{n-3} & =\sigma_{n-1} \sigma_{n-2} \sigma_{n-3}^{2}\left[\sigma_{n-2}^{-1} \sigma_{n-3}^{-1}\right] \sigma_{n-1}^{-1} \sigma_{n-2}^{-1} \sigma_{n-1}^{-2} \sigma_{n-2} \sigma_{n-3} \\
& \stackrel{D}{\sim} \sigma_{n-1} \sigma_{n-2} \sigma_{n-3} \sigma_{n-2}^{-1} \sigma_{n-3}^{-1} \sigma_{n-2} \sigma_{n-1}^{-1} \sigma_{n-2}^{-1} \sigma_{n-1}^{-2} \sigma_{n-2} \sigma_{n-3} \\
& =\sigma_{n-1} \sigma_{n-2} \sigma_{n-3} \sigma_{n-2}^{-1} \sigma_{n-3}^{-1} \sigma_{n-2}\left[\sigma_{n-1}^{-1} \sigma_{n-2}^{-1} \sigma_{n-1}^{-1}\right] \sigma_{n-1}^{-1} \sigma_{n-2} \sigma_{n-3} \\
& \stackrel{B}{\sim} \sigma_{n-1} \sigma_{n-2} \sigma_{n-3} \sigma_{n-2}^{-1} \sigma_{n-3}^{-1} \sigma_{n-2} \sigma_{n-2}^{-1} \sigma_{n-1}^{-1} \sigma_{n-2}^{-1} \sigma_{n-1}^{-1} \sigma_{n-2} \sigma_{n-3} \\
& \sim \sigma_{n-1} \sigma_{n-2} \sigma_{n-3} \sigma_{n-2}^{-1} \sigma_{n-3}^{-1}\left[\sigma_{n-1}^{-1} \sigma_{n-2}^{-1} \sigma_{n-1}^{-1}\right] \sigma_{n-2} \sigma_{n-3} \\
& \stackrel{B}{\sim} \sigma_{n-1} \sigma_{n-2} \sigma_{n-3} \sigma_{n-2}^{-1} \sigma_{n-3}^{-1} \sigma_{n-2}^{-1} \sigma_{n-1}^{-1} \sigma_{n-2}^{-1} \sigma_{n-2} \sigma_{n-3} \\
& \sim \sigma_{n-1} \sigma_{n-2} \sigma_{n-3}\left[\sigma_{n-2}^{-1} \sigma_{n-3}^{-1} \sigma_{n-2}^{-1}\right] \sigma_{n-1}^{-1} \sigma_{n-3} \\
& \stackrel{B}{\sim} \sigma_{n-1} \sigma_{n-2} \sigma_{n-3} \sigma_{n-3}^{-1} \sigma_{n-2}^{-1} \sigma_{n-3}^{-1} \sigma_{n-1}^{-1} \sigma_{n-3} \\
& \sim \sigma_{n-1} \sigma_{n-2} \sigma_{n-2}^{-1} \sigma_{n-3}^{-1} \sigma_{n-1}^{-1} \sigma_{n-3} \\
& \sim \sigma_{n-1} \sigma_{n-3}^{-1} \sigma_{n-1}^{-1} \sigma_{n-3} \\
& \stackrel{A 1}{\sim} \sigma_{n-3}^{-1} \sigma_{n-1} \sigma_{n-1}^{-1} \sigma_{n-3} \\
& \sim 1 .
\end{aligned}
$$

Now, we can prove the required result as follows.

$$
\begin{array}{ll}
& \sigma_{n-1} \cdots \sigma_{i+1} \sigma_{i}^{2} \sigma_{i+1}^{-1} \ldots \sigma_{n-1}^{-1} \sigma_{i}^{-1} \ldots \sigma_{n-2}^{-1} \sigma_{n-1}^{-2} \sigma_{n-2} \ldots \sigma_{i} \\
\stackrel{A}{\sim} & \ldots \\
& \sigma_{n-1} \ldots \sigma_{i+1} \sigma_{i}^{2} \sigma_{i+1}^{-1} \sigma_{i}^{-1} \sigma_{i+2}^{-1} \sigma_{i+1}^{-1} \sigma_{i+3}^{-1} \sigma_{i+2}^{-1} \ldots \\
= & \sigma_{k+1}^{-1} \sigma_{k}^{-1} \sigma_{k+2}^{-1} \sigma_{k+1}^{-1} \ldots \sigma_{n-1}^{-1} \sigma_{n-2}^{-1} \sigma_{n-1}^{-2} \sigma_{n-2} \ldots \sigma_{i} \\
\stackrel{E}{\sim} & M_{i} \sigma_{n-4} \ldots \sigma_{i} \\
\stackrel{E}{\sim} & \sigma_{i}^{-1} M_{i+1} \sigma_{n-4} \ldots \sigma_{i} \\
\stackrel{E}{\sim} & \ldots \\
\stackrel{F}{\sim} & \sigma_{i}^{-1} \ldots \sigma_{n-4}^{-1} M_{n-3} \sigma_{n-4} \ldots \sigma_{i} \\
\sim & \sigma_{i}^{-1} \ldots \sigma_{n-4}^{-1} \sigma_{n-4} \ldots \sigma_{i}
\end{array}
$$

Lemma A.9. For all integers i, n with $i \in[1, n]$, the following two terms are equivalent with respect to Artin's presentation.

$$
A_{i, i+1} \cdots A_{i, n+1} \sim \sigma_{i} \cdots \sigma_{n-1} \sigma_{n}^{2} \sigma_{n-1} \cdots \sigma_{i}
$$

Proof. Recall the definition

$$
A_{i, j}:=\sigma_{j-1} \sigma_{j-2} \cdots \sigma_{i+1} \sigma_{i}^{2} \sigma_{i+1}^{-1} \cdots \sigma_{j-2}^{-1} \sigma_{j-1}^{-1}
$$

for all $1 \leq i<j$. Pick some $i, n \in \mathbb{N}$ with $i \in[1, n]$. If $i=n$, the required equivalence is trivial.

$$
A_{n, n+1}=\sigma_{n}^{2}
$$

Assume that $i<n$, and write

$$
A_{i i+1} \cdots A_{i, n} \sim \sigma_{i} \cdots \sigma_{n-2} \sigma_{n-1}^{2} \sigma_{n-2} \cdots \sigma_{i}
$$

for the induction hypothesis. Then,

$$
\begin{aligned}
A_{i i+1} \cdots A_{i, n} A_{i, n+1} & \sim \sigma_{i} \cdots \sigma_{n-2} \sigma_{n-1}^{2} \sigma_{n-2} \cdots \sigma_{i} A_{i, n+1} \\
& \stackrel{*}{\sim} \sigma_{i} \cdots \sigma_{n-2} \sigma_{n-1}^{2} \sigma_{n-2} \cdots \sigma_{i} \sigma_{i}^{-1} \ldots \sigma_{n-1}^{-1} \sigma_{n}^{2} \sigma_{n-1} \ldots \sigma_{i} \\
& \sim \sigma_{i} \cdots \sigma_{n-2} \sigma_{n-1} \sigma_{n}^{2} \sigma_{n-1} \ldots \sigma_{i}
\end{aligned}
$$

where $(*)$ is given by Lemma A.8.

Bibliography

[1] E. Artin, Theorie der Zöpfe, Abhandlungen Hamburg 4 (1925), pp 47-72
[2] E. Artin, Theory of braids, Ann. of Math (2) 48 (1947), pp. 101-126
[3] J.S. Birman, Braids, links and mapping class groups, Ann. of Math. Studies, Princeton University Press, 1975
[4] J. Birman, Mapping class groups and their relationship to braid groups, Com. Pure and App Math. 22, pp. 239-242
[5] E. Fadell, L. Neuwirth, Configuration spaces, Math. Scand. 10 (1962), pp. 111-118
[6] F. A. Garside, The braid group and other groups, Quart. J. Math. Oxford Ser. (2) 20 (1969), pp. 235-254
[7] D. W. Hall, G. L. Spencer, Elementary topology, Bull. Amer. Math. Soc., Vol 63, number 1, 1957, pp. 51-52
[8] V. L. Hansen, Braids and Coverings, selected topics, Cambridge University Press, 1989
[9] B. Hasselblatt, A. Katok, Introduction to the modern theory of dynamical systems, Cambridge University Press, 1995
[10] A. A. Markov, Über die freie Äquivalenz geschlossener Zpfe. Recueil Mathématique Moscou, 1, pp. 73-78.
[11] J. R. Munkres, Topology, Prentice Hall, 2000
[12] A. Hatcher, Algebraic Topology, Cambridge University Press, 2002
[13] L. Paris, D. Rolfsen, Geometric subgroups of mapping class groups, J. Reine Angewandte Math 521 (2000), pp 47-83
[14] J. J. Rotman, Advanced Modern Algebra, Prentice Hall, 2002
[15] S. Wiggins, Introduction to applied nonlinear dynamical systems and chaos, Springer, 2003

CURRICULUM VITAE

Jan Brunner
né le 10.07.1978
Originaire de Schmiedrued AG

Formation

2004-2008	Doctorat en mathématiques à l'EPFL sous la direction de Prof. K. Hess Bellwald
2003-2004	Assistant dans la section des mathématiques 2000-2003 Études en génie mécanique à l'EPFL avec spécialisation en dyamique des fluides et automatique. Travail de diplôpme: "Influence du mouvement d'une source sur la propaga- tion d'ondes" sous la direction de Dr. A. Drotz. Prix Ryhming
$1998-2000$	Études en "Maschinenbau und Verfahrenstechnik" à l'ETHZ. $1991-1998$
Gymnase à Zurich. Maturité type B	

Langues

Allemand: Langue maternelle
Français: Excellentes connaissances
Anglais: Très bonnes connaissances
Latin: Formation gymnasiale

Intérêts particuliers

Musique	Orgue, chant choral
Sport	Alpinisme et randonnées, course à pied, vélo

