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Abstract

For all finite n € N, there is a well-known isomorphism
TP, : ToH, — B,

between the standard braid group B, and the mapping class group moH,,. This
isomorphism has been exhaustively studied in literature, and generalized in
many ways. For some basic topological reason, this strong link between finite
braid groups and finite mapping class groups can-not be extended to the infinite
case in a straightforward way, and, in particular, is not yet well studied in
literature.

In our work, we define the infinite braid group By, to be the group of braids with
infinitely many strands, all of which can be possibly nontrivial, i.e., not straight.
In particular, this definition does not correspond to the group of finitary infinite
braids, which is just the union of all finite braid groups. Similar to the maps
To®,, for finite n, we introduce a map

T0Poo : ToHoo — Boo

that, in particular, turns out not to be an isomorphism. However, we prove its
injectivity, and identify its image in Bno.

The study of the link between mapping class groups and braid groups in the
infinite case is motivated by the study of homeomorphisms in H,, that give rise
to a homoclinic tangle. In fact, the map myp,, attributes to each isotopy class
of such a homeomorphism an element of the infinite braid group B, and so,
allows us to describe the isotopy classes of these homeomorphisms in terms of
their image in By,. Using the fact that the map myp, is injective, we prove a
result that can be applied to the study of the topological structure of homoclinic
tangles.

Keywords: Infinite braid group, infinite mapping class group, infinite permuta-
tion group, homoclinic tangles.



Version abrégée

Il est bien connu que, pour tout n € N, il existe un isomorphisme
TP, : ToH, — B,

entre le groupe de tresses B,, et le mapping class group moH,,. Cet isomorphisme
est etudié en profondeur dans la littérature, et largement généralisé dans divers
contextes. Pour des raisons de topologie de base, il n’existe pas une fagon directe
détendre ce lien entre les groupes de tresses et mapping class groups finis au cas
infini, et, en particulier, n’a pas encore été étudié dans littérature.

Dans notre travail, nous définissons le groupe de tresses infini B, par le groupe
de tresses d’une infinité de brins, qui peuvent étre simultanément nontriviaux,
c’est a dire non droits. En particulier, cette définition ne correspond pas au
groupe de tresses finitairement infini, qui est simplement la réunion de tous les
groupes de tresses finis. Semblable aux applications my®, pour n fini, nous
introduisons une application

T0Poo : ToHoo — Boo

qui, en particulier, n’est pas un isomorphisme. Toutefois, nous prouvons son
injectivité, et nous identifions son image dans B.

L’étude du lien entre le mapping class groupe du disque et le groupe de tresses
infinis est motivé par I’étude des homéomorphismes dans H., qui donnent lieu
a un entrelacement homocline. En effet, I’application 7y, attribue a chaque
classe d’isotopie d’un tel homéomorphisme un élément du groupe de tresses in-
fini Bo. De cette maniere, application my@,, permet de décrire les classes
d’isotopie des ces homeomorphismes en termes de leur image dans B,. En util-
isant I'injectivité de mppo, nous démontrons un résultat qui peut étre appliqué
a I’étude de la structure topologique des enchevétrements homoclines.

Mots clés: Groupe de tresses infini, mapping class group infini, groupe de per-
mutations infinies, enchevétrements homoclines.
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Chapter 1

Foundations

1.1 Introduction

The foundation of the mathematical theory of braids goes back to 1925, when
E. Artin introduced in [1] the classical braid groups B,, for finite n € N.
For each n € N, B,, is defined by

B, :=mC, Vné€N,

for some given basepoint in C,,, which is the space of unordered sequences of n
[e]
pairwise distinct points in the interior of the disk D 2. More precisely, writing

F,, for the space of ordered sequences of pairwise distinct points in D 2, C,, is
the orbit space
Cy,:=F,/%,,

where X,, is the group of n—permutations, which acts on F,, by permutation
of ordered sequences. A representative in C,, of an element of B, can thus
be seen as a set of n strands in the cylinder ZO) 2 x I that connects a given set
{(m, 1)}i6[17n] of n pairwise distinct points on D2 x {1} to the corresponding
point set on

{<Ti70)}i€[l,n] Elo) ? X {0}7

without intersecting each other, where, in particular, (Ti)ie[l,n] is the basepoint
of the space F,.



—_— ‘ —
Similarly to the definition of the braid group B,,, the pure braid group PB,, is
defined by

PB, .=mF, VnéeN.
In particular, each element b € PB,, is represented by a pure braid (5¢)z‘e[1,n] €

QF,,, which can be seen as a braid in a cylinder for each strand for which each
strand has equal initial- and endpoint.

Moreover, the composition of elements of the groups B,, and PB,, is given by
the concatenation of representative braids.

An important feature of the braid groups is their close connection to mapping
class groups, which was already observed by Artin in [1, 2]. The mapping
class group of the n—punctured unit disk D? is the group of path connected
components woH,,, where H,, is the topological group of all homeomorphisms
h: D? — D2, that fix the boundary pointwise,

h‘aDz =1d,
and that satisfy
h({Ti}iE[l,n]) = {Ti}ie[l,n]v
where the ordered sequence (7;);e[1,n) corresponds to the basepoint of F,. Sim-

ilarly, for all n € N, the space PH,, is given by all homeomorphisms h € Hy,
that fix the set {r;} pointwise, i.e.,

hm)=m Viel[ln].



The group mgPH, of pathwise connected components of PH,, is called the pure
mapping class group of the n—punctured disk.
For each n € N, there are maps

@, Hy, — QCy, on : PH, — QF,,
that induce isomorphisms
TP, : ToHn, =, B,, mon - ToPH, =, PB,,

respectively. A detailed introduction to this close connection between finite
braid groups and finite mapping class groups is given in [3]
In our work, we consider the link between braid theory and mapping class groups
in the infinite case. Similarly to the finite case, we define the infinite pure braid
group by

PBy :=mFy,

where F, is the space of ordered sequences of infinitely many pairwise distinct

[e]
points in D 2. As in the finite case, we define the space C,, of unordered

sequences of pairwise distinct points in D 2 by the orbit space
Coo = oo/zooa

where Y, is the group of bijections from N to itself that acts on F., by permu-
tation of ordered sequences of points. We have not yet been able to determine

whether one can associate an unordered sequence of strands in D 2 to any loop
in C. To avoid this problem, we consider instead OC,, C QC,, the space of
those loops in C', that to which one can associate such an unordered sequence

of paths in 10) 2. and define the infinite braid group by
By := 100OC.

Unlike the finitary infinite braid group, which is simply the union of all finite
braid groups, the infinite braid group By, i.€., the group of braids with infinitely
many strands, all of which can be nontrivial simultaneously, seems rarely to have
been considered in the literature, in particular not in the context of mapping
class groups.

On the other hand, the infinite mapping class group and the infinite pure map-
ping class group of the disk are given by the groups of path connected compo-
nents mgPH., and mgH, of the spaces

PH. = {h € H(D%, D?) | hlop: =1d, h(r) =17 Vie N},
Hy = {h € H(D?,D?) | hlopz =1d, h({ri}ien) = {Ti}ieN}a
respectively.

For all finite n € N, the groups PB,,, B,, moPH, and myH, do not depend



on the choice of the point set (7;)ic[1,n)- In the infinite case, this is is still
the case for the (pure) braid group (PBs) Bso, whereas, given two choices
(T3)ien, (Ti)ien € Foo of the the basepoint of F,, where the underlying point
sets {7i}ien and {7;}ien have different numbers of accumulation points in D?,
the resulting (pure) mapping class groups (’ﬂ'opHoo,ﬂ'oﬁ\,/Hoo) (WoHOO,WQﬁOO)
are not isomorphic.

As in the finite case, there are maps

Dot Hoo — OC0, Yoo : PHow — QF 4

where H., is the space of homeomorphisms & : D2 —— D? that fix the bound-
ary of D? pointwise, and that fix a given point set {7;}ien, and PH,, is the
subspace of H,, of homeomorphisms that fix the set {7;};en pointwise. The
main objective of our work is to investigate the induced maps

T0Poo : T0Hoo — Boo, T Poo : ToPHs — PBy.

For basic topological reasons, the approach to prove that the maps my3p,, and
To@y are isomorphisms for finite n cannot be extended to the infinite case. In
particular, it turns out that, in contrast to the finite case, the maps myp,, and
ToPoeo are injective, but not surjective.

For the generalization of the maps myp,, and mop, to n = oo, it would seem
natural to use inverse systems of topological spaces and of groups. However, as
we point out in section 1.1.3, there isn’t any natural way to define an inverse
system of braid groups

-— Byt1 — B, — ...,
nor of mapping class groups
- — moHp11 — moH, — ...
On the other hand, there is an inverse system of projection maps
PBy —---— PB,y1 — PB, — ...
with limit PB,, and an inverse system of subspace inclusions
PHy — ...— PH,4; — PH, — ...

with limit PH .
Moreover, we show that there is a commutative diagram (see Theorem 2.19).

T0P oo

S5/

WOHOO 0o

T IdX 7m0 poo T

Yoo X ToPHoy ———2%= o S\ % PBa.

IR



Indeed, this diagram allows us to reduce the study of the map mp ., to the study
of the map 7y, which is easier to handle than mp,,, because its source and
target are limits of inverse systems.

To prove the isomorphisms By, = Y X PBy and mgHy = Yoo X mgPHyo,
which is given by Propositions 2.17, and 2.16, 2.18, respectively, requires knowl-
edge of the group X ,. In particular, ¥, is not equal to the union of all finite
permutation groups, and does not seem to have been well studied in the litera-
ture. We show how to canonically attribute to each element o € ¥, an infinite
sequence of natural numbers (Sy;)ien, such that, within a given topology of
Z<>O7

o= lim [(n,sn) 0---0 (1,31)},

n—oo

where, for each ¢ € N, (i, s;) is the transposition of i and s;. In other words, we
canonically decompose the elements of X, into infinite sequences of transposi-
tions (see section 2.1).

Thereafter, in chapter 3, we show that the map myps is injective (Theorem
3.7), which, by the above diagram, means that the map 7P, too, is injec-
tive. In chapter 4, we identify the image of the map mypoo. First, this is done
by giving characteristic representatives in QF,, of the elements of the image
of Moo in PBs (Corollary 4.6). Furthermore, we work towards an algebraic
characterization of Im myp., within a suitable codification of the group PBy,
(see Section 4.3). In particular, for the codification of PB.,, we make use of

the braid groups of the punctured disk B 2\ 0, where 0 is the center of D?.
Once the image of oy is known, the above diagram allows us again to deduce
that

Im P = Yoo X Im mp@oo-

The original motivation for the research in this thesis was its possible application
to a particular branch of dynamical systems theory: the study of homoclinic
tangles (see section 1.1.4 and chapter 5 for more details). A homoclinic tangle
associated to a self-homeomorphism h of the unit disk is given by two one-
dimensional manifolds in D? that intersect each other. Their intersection is a
union of non-periodic, biassymptotic orbits of the homeomorphism in D?, i.e.,
orbits (hi(’:f))ieN with

lim AY(Z) =

i—+o0o
for some z € D?. When we define H, such that the point set in B 2 that is
fixed by the elements in H,, corresponds to such a non-periodic orbit of A, then,
the map

Dot Hoo — QUC,

associates an infinite braid to h. As the topological structure of a homoclinic
tangle depends to a large extent on these non-periodic orbits, the study of the
underlying homeomorphism in terms of infinite braid might be very useful. More
precisely, knowledge of the map

T0Poo : ToHoo — Boo



may provide interesting information about self-homeomorphisms of the disk that
give rise to homoclinic tangles, or, more generally, to non-periodic orbits. A first
approach to such an application is given in chapter 5.

1.1.1 Basic definitions and elementary results

Let D? be the unit disk with interior 5 2. We usually write
[1,n] :={1,...,n}, and, for convenience, [1,00]:=N.

Definition 1.1. For alln € NUoo and any space X, endow H?:l X with the
product topology, and define a subspace F,,(X) by

Fo(X) = {(xi)ie[m] C [ | # a;vi # j}.
i=1

This space is called the configuration space of n points in X.

Definition 1.2. For alln € N, let X, be the symmetric group, and, as a set,
define Yo to be given by the bijections of the underlying set of N. Endow the
mapping space N with the topology of pointwise convergence, and topologize
Yoo as a subspace of N, For alln € NU oo, define the group structure on %,
as usual by

(01-02)(i) = 02(01(i)) Vie[l,n], Yoi,00 € 5y

Observe that, for any space X and for each n € N U oo, the symmetric group
¥, acts on the right of Hie[l n] X by permutation of components, which, in
particular, induces a right action of ¥, on the subspace F3,(X) C [[;c(y X

Definition 1.3. Let X be a topological space, and write, for all n € NU oo,
Cn(X) = F.(X)/%,

for the orbit space by factoring out the right action of the group X,,. Moreover,
endow C,(X) with the quotient topology, and write

Pn: Fr(X) = Cn(X)
for the quotient map. As we often work with the space 10) 2. we write

Fy:=Fy(D?), and Co(D?):=Cn(D?) ¥neNUo
for notational convenience.

Notation 1.4. Choose an arbitrary basepoint T, = (7;)ien of Foo, and let
T oo := Poo(Txo) be the basepoint of Co. Moreover, define

Ty = (T1,...,70) and T, :=p.(T,)

to be the basepoints of the spaces F,, and C,, for all finite n.



Later in this text, we make a particular choice for 7., in order to simplify the
proof of certain results (see Definition 2.1). Thereafter, these results are gener-
alized to a basepoint 7o, = (7;);en such that, in D2, the set {7;};en has a single

accumulation point 7, € 10) 2,

Generally, F,, means the pointed space (Fy,7,). When we endow F, with a
different basepoint ’i we explicitly write (Fn,f'n) Note that, by the path-
connectedness of these spaces (see Proposition A.1), a change of the basepoint
induces an isomorphism on their homotopy groups.

Proposition 1.5. (Birman [3, Prop 1.1]) For every n € N, the quotient map
is a covering map with fiber X, .

This means in particular that the projection p,, : F,, — C,, has the path lifting
property. Thus, to any given braid § € QC,,, we can associate a unique path
(ﬂi)ie[l,n] € C(I7Fn)7 such that

6 =Pn© (6i)i€[1,n]7 ﬂl(o) =T; Vi e [la n]

Moreover, writing

(Ti17~ .. aTin) = (Bl(l); e 7ﬁn(1>)7

we can associate to 3 the permutation og € 3,, defined by

- 1, ..., n
B=\ i, o, i )

Moreover, by the uniqueness of the lifting (5;);e[1,n], this defines a well defined
map

QC, — X,
B = og
for any fixed choice of (7;);[1,n]-
Note that Proposition 1.5 does not extend to n = co. Moreover, it seems that
the projection po, : Fioo — Coo does not have the path lifting property, although

we didn’t yet find a counter example. On the other hand, if 5 € QC,, that lifts
to a path 3 in F,, it is clear that

ﬁ S C((I,O, 1)7 (FooyTooo—OvTooo—l))

for some g, 01 € Yoo. Moreover, every 3 € QF,, can be seen as a list (5;)ien

of paths in B 2. whereas an element 3 € QC,, can be seen as the ¥ .-orbit of
a list of paths only if it lifts to a path § in C((I,O, 1), (FOO,TOOO'(),TOOO'l)). In
order to bypass this difficulty, we introduce a space OC, as follows.



Definition 1.6. Writing To.X o for the corresponding right coset of Ty, intro-
duce a space

OCy = C((I, 1), (FOO,TEOO))/EW
where I := {0,1}, and equip it with the quotient topology.

This definition allows for the following proposition, that is used repeatedly in
the sequel.

Proposition 1.7. Each element 3 € OC., lifts to a unique path 3 =: (3;)ien €
C(I,Fy), such that

B=psof, and B;(1)=7 VieN.

Proof. Pick an element 8 € OC., and let B = (B\i)iEN be a coset representative
in C((I,1), (Fro, TZw0))s ic€., B = BZ0c. In particular,

{8i(0) }ien = {Bi(1) }ien = {Ti}ien.
Thus, there is a unique sequence of natural numbers (j;);en such that
B, (1) =7 VieN,

which means that (8;)ien = (Bji)ieN is the unique coset representative of 3
that satisfies
G:(1)=7; VieN.

O

Notation: The fundamental group m C,, (71 F,), for all n € NUoo, is called the
(pure) braid group on n strands in the disk. We introduce the common
notation

PB, :=mF,, B, .=mC, Vn e N

Moreover,
PBy :=mFy, By i = m1OC.

For all n € NU oo, the loop space QC,, (QF,) is called the space of (pure)
braids on n strands.

Remark 1.8. Notice that, in [3] and [8], the braid group By, is defined by
B, :=mF, (EQ, (Ti)ie[l,n])

where E2 is the euclidean plane, and (Ti)ie[1,n) s arbitrary. As E? is homeo-
morhpic to D 2, the resulting braid groups are isomorphic. We prefer to work
with configurations in D 2 rather than with configurations in E because the clo-

[e]
sure of D 2 is simply D?, which makes it technically easy to work with infinite
configurations, and with infinite sequences. On the other hand, as the sequence



(Ti)ien is in D 2 and doesn’t accumulate on OD?, one can show that, for all
n € NU oo,

B,=m (Fn(D2)7 (Ti)ie[l,n])~
However, it is preferable to work with Fn(ﬁ 2) rather than with F,,(D?), because
Theorem 1.12 doesn’t hold when replacing FH(B 2) by F,(D?).

To fix the notation, write C(X,Y") (H(X,Y")) for the space of continuous func-
tions (homeomorphisms) from X to Y, where X and Y are arbitrary spaces,
and endow both spaces with the compact-open topology.

Definition 1.9. For alln € NU oo, define

Hy = {feM(D*D?| flop: = Idop2},
H, = {f € H(Dz,D2) | f|3D2 = Idpp2, f({Ti}iE[l,n]) = {Ti}ie[l,n]}a
PHn = {fEH(DQ,DZ) | f|6D2 :Id8D2; f(Tl):ﬂ V’LG [1771]}

equipped with the subspace topology.

Note that
PH, C H, Vn € NU oo,

and, furthermore,
PH, C PH,, Yn > m. (1.1)

On the other hand, H,, is not a subspace of H,, for any n # m.

Proposition 1.10. (Birman [3, Thm 4.4]) The spaces Hy and Hy are con-
tractible.

This is not true if an arbitrary closed surface replaces D?. For example, consider
the torus (R mod 27) x (R mod 27). The homeomorphism defined by

([ta] [t2]) = ([ta], [—t2])
is not homotopic to the identity.

Definition 1.11. For every n € NU oo, define evaluation maps

ev, : Hop — F, ev,: Hy — Ch
[ = (f(ﬁ‘))ie[l,n] g = pn(g(Ti)iE[l,n]>>

Theorem 1.12. (Birman [4]) For all n € N, the maps
ev, : Hy — F,, ‘euv,: Hy— C,
are fiber bundles with fiber PH,, and H,, respectively.

Note that this result does not hold for n = co. See the subsection 1.1.4 for more
comments.



Definition 1.13. According to Proposition 1.10, let
K : Hy x I — Hy, I(('JC,O):f7 K(f,l):IdD2 VfEHO

be an arbitrary contracting homotopy of the space Hy. For alln € NUoo, define
maps

on: PH, — QF,
h = evn(K(h,)) = (K(h)(7)) ey 0
o, H, — QC,
h — e (K(h,-) = [(K(h, ')(Ti))ie[l,n]]'

Remark 1.14. Notice that the definition of the maps ¢, and p,, depends on
the contracting homotopy K : Hy x I — Hy. However, by Lemma A.3, the
induced maps

TP, : Tod, — By, and mopy : moPH, — PB,
do not depend on K.

Observe that, for all n € N U oo, the group structure of PH,, and H,, induces
a group structure on mgPH,, and mgH,,, respectively. In fact, these groups are
called the mapping class groups of H, and PH,, resectively. Moreover, recall
that the concatenation of paths “x” induces an H—space structure on the loop
spaces QQF,, and QC,,.

Proposition 1.15. For alln € NU oo, the maps
on: PH, - QF, and 9,:H,— QC,
are maps of H-spaces, and thus induce homomorphisms
Ton : ToPH, — mF, and mp,, : moH, — mCy,
respectively.

Proof. We only prove the case n = oo, whereas the case n € N is proved in
[1, 2]. Pick any elements g, h € PH,, and observe that

(poo(goh) = (K(g()h")(Ti))ieN
((E (g on) x Kh)m)
= ((K@)on) @), (Kh)m)

= (K(g7')(Ti))ieN* (K(h7)(Tl))zeN
= Pood *Pooh,

12

i€EN

where (x) is given by Lemma A.3, because the paths K(go h,-) and (K(g,-) o
h) * K(g,-) both have the same initial- and endpoint. The equality (**) comes

10



from the fact that h(7;) = 7; for all i € N. Applying 7 to the resulting equation
shows that myp is @ homomorphism.

On the other hand, pick elements g, h € H,,, and, recalling the natural projec-
tion pos : Fiw — Co, verify that

Poc(goh) = poco(K(goh,)(T)),cy

peco ((K(g, ) oh) » K(h)(x))
= PuoO ((K(g, ) oh) (n)>i€N * Poo © (K(h» ')(Ti))ieN
= (e 0 (K(9.)(0) ) * (e © (K () (7))
= Pod *Pochs

2%

where (x) is given again by Lemma A.3, and (%) comes from the fact that, as
sets, {h(Ti)}z‘eN = {7 }ien. Thus, myP, is a homomorphism, as required. O

Theorem 1.16. (E. Artin [1, 2]) For all n € N, the maps ¢, and @,, are weak
equivalences, and therefore induce isomorphisms

o

Topn : ToPHy, — mFy; 7w, : moH, — mCy

Moreover, as
., = mC, =1 Vk >2,VneN

it follows that
m,H, =m,PH, =1 vk >1,Yn e N.
1.1.2 The direct system of braid groups

A presentation of the groups B, for finite n was first found by E. Artin in 1925.
For each n € N, it is given by generators

OlyveyOn_1
and relations
0,05 ~ 00 ifli—jl>2 1<4,j<n-1 (1.2)
004103 ™~ 0410041, 1<i<n-2

The particular notation for the generators comes from the fact that, if some
given element b € B,, is represented by a word o;, - - - 0;,, then, the representa-
tive loops 8 € QC,,, satisfying

b= [ﬁ] in 7T10n = Bn,

have associated permutation oy, ---0;, in X,, where, for each j € [1,n — 1],

0; € ¥y, is given by

k

(g 1n
=1, i+ LG )
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Artin’s group presentation of the braid group B,, allows us to consider B,, as a
subgroup of B, for all m < n, with inclusion map

tmn @ Bm — B,

Moreover, through the isomorphisms {m¢P,, }nen, we can define injective maps
{jn}nen such that the following diagram commutes for all n € N

Jn
'*>7T0Hn——>7T0Hn+1*>-~- (14)
wuganlu ulﬂownﬂ
in,n41
Bn Bn+1 —_— e e

This corresponds to an isomorphism of direct systems, yieding an isomorhpism
of colimits N
colimn{ﬂ'OHn,jn} — colimn{Bn, in,n+1}~

As the maps(in n+1)nen are group inclusions, the colimit of the braid groups
is actually the union of the finite braid groups, which is called the finitary
infinite braid group.

BL := | Bn = colim,{ By, inn1}-
neN

As, in particular,
Bl # B,, and Bl #mCy,

the approach of direct systems is not useful in the context of our work.

1.1.3 The inverse system of pure braid groups

Recall Artin’s presentation of the finite braid groups, and consider the projection
map of free groups

?n,:f({al,...,an_l}) — .7:({01,...,0”_2})

o, 1<n-—1
ag; [
’ 1, i=n-1

Factoring out Artin’s relations, given by Egs. 1.2 and 1.3, in F ({o1,...,00-1})
and .7-'({01, . 7Jn,g})7 the map 7, induces a map r,, : B,, — B,,_1. Note that
this map is not a homomorphism, as the following example shows.

[Jnflananfl] = [O—nonflo—n} € Bn
071 # [on—1] € By

12



In fact, within Artin’s presentation of the finite braid groups, there does not
seem to exist a natural way to define homomorphisms B,, — B,,_1. Also, there
doesn’t seem to be a straightforward way to define a continuous underlying map

Cc,—C,_1 or QC, — QC,_1.

Thus, an inverse system of braid groups does not seem to exist.
Considering the pure braid groups PB,, = m F,, things work better, as we show
next.

Definition 1.17. For all n,n’ € NU oo with n’ > n, introduce projection maps
S B —
(xi)ie[l,n’] = (sz‘)z'e[1,n]~
Observe that, for all n > 1, the inclusion
tnn—1 : PH, — PH,_4

makes the diagram
PH, "2 PH,_,

%lw Nl%_l
Qsn n—1

QFn — QFn—l

commute for all n € N. All maps in this diagram are maps of H-spaces (i, is a
map of topological groups, ¢, and ¢,_1 are maps of H-spaces by Proposition
1.15, and Qs,, ,—1 is a map of H-spaces). This allows us to conclude as follows.

Proposition 1.18. There is an isomorphism of inverse systems

Toln,n—1
- ——>moPH, —>mPH, 1 ——> -

Wotpnl: :\Lﬂ'(ﬂpnl

ToSn,n—1
m1Fy Tl —

Proposition 1.19. The inverse system of inclusions {PHy,, tn n—1}nen has the
limit
PH,, = liern{PHm n,n—1}neN-

Proof. As the limit of an inverse system of group inclusions is just the intersec-
tion of the groups, the result is given by observing that

PH, = ﬂ PH,,.
neN

13



Proposition 1.20. The inverse system {Fp, Sn.n—1}nen has the limit

Fo = h}ln{F"’ Sn,n—1}nen.

Proof. Assume there is a topological space S, and maps 7, : S — F},, such that

the following diagram commutes for all n € N.

S
Mn+1 FOO MNn
Soo,n+1 \500 n
Sn41,n \
Fn+1 Fn
Define a map
n:S — Fy

and observe that the diagram

commutes for all n € N.

O

Corollary 1.21. The inverse system of loop spaces {QF,,, Qsy n—1}nen has the

limit

OF = lm{QF,, Qs n—1}nen-

Proof. In the category Top., the functor §2 has a left adjoint, and thus, preserves

limits.

Theorem 1.22. (Fadell, Neuwirth [5], also proved in [3, p.

n € N, there is a fiber bundle

Sn,n—1

D3\ {7iticpn—1 = Fo 5" Fyq,

where the fiber inclusion is given by

D ? \ {Ti}ie[l,n—l] — I,

x = (T1,ee s Tno1,2).

14
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Corollary 1.23. The following equations hold.

ﬂ—l-Foo = hﬁn {ﬂ—anaﬂ—lSn,nfl}»

miholim,, PH,, = lim {7T1PHn, 7T1Ln7n_1}.
Moreover, for all k € N,
Tk Foo & mp—1holim, PH,, (=1 Vk>2).

Proof. Consider the following isomorphism of exact sequences, which follows by
Proposition 1.18.

1 — lim} 7, PH,, — mj_1holim, PH,, — lim,, my_ PH,, — 1

SN

1 — lim} 71 F,, —— mholim, F,, ——— lim,, 7, F,, ——> 1

As, by Theorem 1.22, the maps s,, ,—1 : F;, — Fj,_1 are, in particular, fibrations,
it follows that, by Proposition 1.20,

holim,, F,, = lim F,, = F, (A)

Moreover, observe that, by Theorem 1.22, there is a long exact homotopy se-
quence

- = m (D \{7itiep 1)) — T Fy T Fyy — 7o( D *\{7:}icf,n-1))-
As .
mo( D *\ {Titicpn-1y) = 1,
it follows that the map

T18n,n—1
—

7T1Fn ﬂ—I-F'nfl

is surjective, whereas, for all k > 2, 7 F,, = 1, such that, according to [12, Prop.
1.67],
lim! 7, F, =1 Vk>2.

The required results can now be directly read from the above diagram, by re-
placing holim,, F,, with Fi, according to (A). O

1.1.4 General remarks

In the proof of Theorem 1.16, we used the fact that there is a fiber bundle

H, — Hy @’ On(-B 2)

to prove that the map m®,, is an isomorphism. This proof method does not
extend to n — o0, as the map €V, is not a fiber bundle, and is not even

15



surjective, and thus, in particular, does not have the path lifting property. This
can be seen by the fact that, for each h € Hy, the unordered point set

eToo (h) = [(h(Ti))ieN]

contains as many accumulation points as the set {7; };en does, whereas the space
C contains unordered point sets with any number of accumulation points.
This makes the maps ¢, and ., considerably more difficult to handle than
the corresponding maps in the finite case. In particular, the map

T0Poo : T0Hoo — ™ Coo

turns out not to be an isomorphism, so that we are interested in finding its
image and kernel, which is done in the subsequent sections.
The initial motivation for the study of the link between the infinite mapping

class group moHs and the infinite braid group m;Coo( D 2) is its application
to diffeomorphisms with a hyperbolic fixed point, a term that we briefly
explain here. A fixed point z of a diffeomorphism h € Dif f(D?, D?) is called
hyperbolic, if the matrix of the linearization of h at x has eigenvalues A1, Ao
with

|/\1| > 1, |/\2| < 1.

Then, there are two smooth one-dimensional manifolds in D? that are invariant
by the action of h, and that intersect at the fixed point x. This is given by the
Invariant Manifold Theorem (See, e.g., [9]). On these manifolds, that are called
the stable and the unstable manifold, the maps h and h™!, respectively,
move the points assymptotically towards the fixed point x. These manifolds
cannot intersect themselves, but, in case they intersect each other transversely
in some point other than in x, they necessarily meander in a complicated pat-
tern, yielding an infinity of other intersection points that are called homoclinic
intersection points, whereas the union of the stable and the unstable mani-
folds is called a homoclinic tangle. This subject was introduced by Poincaré,
and is a field of current research, with many applications in physics and chem-
istry. In particular, the classification of homoclinic tangles is still an unsolved
problem. The following drawing shows how a homoclinic tangle may look like.

16



Choose some h € Hy, and let z €D 2 be an arbitrary point. If the orbit

{hi(x)}ieN

is periodic, then, there is some finite set {ﬁ}ie[l’n] of pairwise distinct points,

such that _
{hl(m)}ieN = {?i}ie[l,n]-

Recalling the arbitrariness of (7;);ef1,n], we may identify 7; := 7; for all i € [1,n],
which allows us, in particular, to consider h as an element of H,. If the orbit
of x is not periodic, then, similarly, h can be considered as an element of H..,
and thus be evaluated by ®.,. For technical reasons, the study of the maps
Do, and @o, depends on the number of accumulation points of the set {7; }ien,
so that we prove most of the subsequent results using a particularly simple
choice for (7;);en, that contains a single accumulation point in D?. Thereafter,
our main results are generalized to any choice of (7;);en € Fio, such that, in

D? the point set {7;}ieny accumulates at a single point 7o €D 2. As this is
the case for any homoclinic orbit, the above described procedure allows us to
study homeomorphisms in Hy with a hyperbolic fixed point. In particular,
a codification of the image of the map mp,, can thus be used to codify the
classes in my H, of homeomorphisms with a hyperbolic fixed point, which might
be useful for the investigation of such homeomorphisms, and for the study of
homoclinic tangles themselves. Finally, note that, given any homeomorphism
h € Hy with a hyperbolic fixed point 7, h doesn’t fix any of the points of the
associated homoclinic orbit {hi (70) }Z N (where 79 is any homoclinic intersection
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point). In other words, this permutation is not finitary. This motivates the fact
that we consider Y., to be the group of all permutations of N, and not only the
union of all finite permutation groups.
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Chapter 2

Comparision between 7)o,

As we observed in the preceeding chapter, the map mppo : TgPHow — PBy
is easier to study than the map m®., : ToHs — B, because both moPHo
and PB. are limits of inverse systems. In the present chapter, we develop a
result that allows us to study the map mP,, in terms of the map myp, (see
Theorem 2.19). The proof of this result requires some knowledge of the infinite
permutation group ... In particular, we show in section 2.1 how to decompose
the elements of ¥, into infinite sequences of transpositions. Appart from the
use in our particular context, these results are of interest themselves and might
also be used for other purposes.

While in the preceding chapter, the basepoint 7o, = (7;)ieny € Fio Was arbitrary,
we restrict ourselves in the sequel to the case where the point set {7;};cn has

[e]
a single accumulation point in D? that lies in D 2. Moreover, a particularly
simple choice for 75, turns out to be useful in many proofs.

Definition 2.1. For every i € N write

1
T; = (—, ,0) S RZ,
1+1

and, for the remainder of this text, let the basepoint Ty, € F, be

Too := (Ti)ien,

unless specified otherwise.
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basepoint of F_

We proceed by first proving our results using the chosen canonical basepoint
7T+, and thereafter generalizing the main results to an arbitrary choice of 7, :=
(7:)ien where the point set {7; };cn contains a single accumulation point in D?,

[e]
that lies in D 2, as we pointed out above.
We first show a combinatorial result concerning the group X .., which allows us
thereafter to define a continuous map 7sy : Yoo — Hoo, that satisfies

eu(0)(T) = To6) VieEN, Voe .
Using this map, we can then prove the main result of this chapter, given by

Theorem 2.19.

2.1 On the infinite permutation group > .

2.1.1 Decomposition of infinite permutations into sequences
of transpositions.

Recall that the group structure of 3, for all n € NU oo is given by
(00/)(1') =0 o0(i) Vo,0' €%,, Vie[ln].

Definition 2.2. Given any o € X, define sets {Vyi}tien C N and {[o];}ien C
Yoo inductively by

for all n > 2, where (i,j) means the transposition of i and j.

Observe that these notations imply that, for all o € ¥,

[o']n = (n’ Va,n) o---0 (1,1/(771) Vn € N.
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Lemma 2.3. Pick any 0 € Y.

(@) Von>n Vn €N,
(b) [o],*()=0""() VneEN, Viell,n],
(¢) [o];(@) =0a(t) VieN, Vj>o(i).

Proof. Proceding by induction, observe that the case n = 1 is trivial, and assume
that (a), (b) and (c) are satisfied for some n > 2. To prove the inductive step
for (a), assume that, by contradiction, v, , < n. Applying [o,—1]7! to the left
of the equation [0],_107(n) = v,., gives

0'_1(”) = [U]r:il(ya,n) = U_1<VU’”>7

where (%) is given by the inductive hypothesis for (b). This means that v, , = n,
which contradicts our assumption.
To verify (b), observe that, for all ¢ € [1,n — 1],

0170 = (L)oo (=1 vmno1) 0 (0,v6)) ()
2 (oo o(n=1von1))(0)
= [U]ﬁh(i)
= o7,

where (%) and (**) are given by the induction hypothesis (a) and (b), respec-
tively. It remains to show that this also holds for i = n.

|
VS
“)—‘
X
S
-

e}
(e}
—~
S
I
—

ST
i
—_
S—
—
N—
—~
Q.
i
—
qI
_
—
S
~
~—

To prove (c), observe that, for all k > o(1),

[olk(i) = ((k,vr) o0 (i) + 1, Up(i)41) © [0]o)) ()
= Ry o0 (i) + 1, voiy 1) ) ()
= o),

where (%) holds because, writing n := o (i) in Eq. (b), it follows that

o), (0(@) = o (o(i))

= .

On the other hand, Eq. (xx) is given by Eq. (a). O
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Recall that the space ¥, has the topology of pointwise convergence.

Proposition 2.4. For all o0 € ¥,

o= lim ((n, Vo) 0+ o(l, Va,l))7

where the integers {Vy;}ien are defined as above.
Proof. By Eq. (c¢) of Lemma 2.3, we know that, for every i € N
o(i) = ((n, Von)o---o(1, 1/071))(1') =:[o],(i) VYn>o(i).

Thus, it follows from [Munkres, Thm. 46.1], that the sequence ((n,vgp)o0--- o
(1, Va’l))nEN converges to . O

2.1.2 Identification of ¥, in N*°

In the last subsection, we showed how to decompose an infinite permutation
into a convergent sequence of products of transpositions. We now consider the
inverse problem, which is to see under what conditions a sequence of natural
numbers (v;);en gives rise to a sequence of products of transpositions

coo(nyup) oo (1)

that converges in N*°, i.e.; yields a well defined element of ¥,. This allows us
thereafter to find a criterion to identify the sequences (vy,;)ien for all o € .

Definition 2.5. Recalling Definition 2.2, define a map by
Seq: Yo — N
g = (Va,i)ieN-
Moreover, for any given n > 1 and (l/i>i€[1’n] € N™, introduce the notation
lov]y = Idy, and
o], = (nvp)o---o(l,11) Vn>1,

and notice that this notation is consistent with the expression for [o],,, for some
given o, that is given immediately after Definition 2.2.

Proposition 2.6. Let (v;)ien be a sequence of integers satisfying
vi >1i VieN,
and define sequences (A; n)nen inductively by
A=t N2 =V, N3i=UVy, Xip= Ui m

for alli € N.
The sequence ([U’/]k)keN converges in N if and only if, for each i € N, there
is an n; € N, such that either

(a’) )‘ifﬂi = )‘i,’ﬂiJrlv or

(b) X, =vj, for some j € Nin—1+ 1, A —1],

22



Remark: If, for some i € N, the sequence (i n)nen satisfies A;,, = Aj i1 for
some n € N, then,
Ain = )\i,nJrk Vk > 1.

s

Proof. Pick any sequence of integers (v;)ien, satisfying
vi>1 VieN,

fix some ¢ € N and define the sequence (A;,)nen as required. Recall that, by
[11, Thm. 46.1] the sequence ([o,],) converges if and only if the sequence
([ou]n(i))neN converges for all ¢ € N.

Note that, as v; > i for all i € N,

neN

Ains1 > Ain VneN.
Fix some i € N, and observe that

(00,0 (1) =7 = Ni1.
Assuming that [o,]y, , (1) = Ai ny1 for some n > 0, write

[UV]M,nJrl (Z) = ()‘i,TLJrl? V)\i,'n+2> 0---0 ()‘l,n +1, V)\i,n+1) © [UV]/\:',H (’L)
= ()\i,nJrl, V>\i,n+1) 0---0 ()\z,n + 17 V)\i,n+1)()‘i,n+1)7

which shows that, by our assumption,

[Ouxi i () = Aint2 & Ainpn #v; Vi€ Nin+ LA =1 (4)
Notice that, if A\; , = A; p41, the interval [A;,, + 1, A 41 — 1] is empty. We
continue our inductive procedure separately in two different cases.

First case: (b) holds. Let n be the least integer such that \;,41 = vs for

some 3 € [Ain + 1, A nt1 — 1], and let j be the least among these 5 According
to (A), we know that
[00]xi. (1) = Xint1,

such that

o...o()\ln—kl V)\”L-H) [ ]/\i,n(i)
o 0 (Nim+ 1, vx 0 41)Nint1)
(
(

[UV]/\i,n+1 (7/) = /\i,n+1; VXint2

(

= ()\i,’ﬂ+17 V>\i,n+1
(
(

o

O vaj)( zn+1)
oo (j,v)(v5)

)‘i,’n+1a Ui nt1

)
)
)
i1y U ngr)
= J

where (x) holds by our particular choice of j, and (x) comes from the fact that
v, > k for all k € N. A generalisation of the same argument shows that

[Uu]m(i) =j VYm2> )\i,n+1u
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i.e., the sequence ([o,],(i)) converges.

neN
Second case: (b) doesn’t hold. In this case, the statement (A) admits the
induction step, which means that

[O—V})\i,n(i) =Xint1 VREN

Thus, the sequence ([o,],., (7))
Thus, ([o,]n)

el Converges if and only if (a) holds.

nen converges if and only if (a) or (b) holds for all 7 € N. O

With a little more effort, we can prove the following stronger result.

Theorem 2.7. The map Seq: ¥oo — N induces a bijection

~

Seq: Do, — {(ui)ieNeNo" | v, >i YieN,
andV i €N, dn; € N, such that
(a) )\i,ni = )\i,ni+17 or

(0) Ain, =y, forsomej e [Nn,—1+1,Ain, — 1]},

where the integers \; ; are defined as in the proposition above.

Proof. To shorten the notation, write

S = {(Vi)iGN e N ‘ v;>1i VieN,
and Vi €N, dn; €N, such that
(@) Xin, = Aing41, or

(b) Xin, =vj, forsome j € [Ap,—1+1,Aipn, — 1]}
We show that the inverse of Seq is given by

Per:S — X
(Vi)iGN = Oy,
where o, denotes the limit of the sequence ([o,],)
sition 2.6.
Pick an element (v;);eny € S. By Proposition 2.6, we know that o, is in N°°.

To see that o, is actually a bijection, i.e., an element of ¥, pick some i € N,
and observe that, for every k > i,

o)k ([0]716) = ((kyu)o---o(Lvn)o (L)oo (i,17)) (i)
= ((kyui) oo (i+1,v41))()

1.

neN? which exists by Propo-

Thus, o, is surjective. The injectivity of o, is shown by the fact that, if

0,(i) =0,(j), ie., lim [0,]k(?) = lim [0,]x(5)

k—oo k—o0
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for some ¢, j € N, then,
vk (i) = [ov]k(5),

for some k € N, which means that i = j, because [0, ] is a bijection. This shows
that Per : S — Y is well defined.

It remains to show that Seq and Per are mutually inverse. By Proposition 2.4,
it follows directly that

PeroSeq(o) =0 Vo€ Xw.

To see that Seqo Per = Ids, pick any (;);en € S, and write o, := Per((yi)ieN).
Proceeding by induction, observe that

(Seqa(0,)), = 0,1 (1) = [0u]7 ' (1) = (1,11)(1) = w4,
where (%) is given by Lemma 2.3. Now, assume that
(Seq(0,)), =wvi Vie[l,n—1].
Then,
(Sea(ov)), = [ovlu—1(0, (1))

I+
)
S
3
L
9
S
3
S

= u,,
where (%) is given by Lemma 2.3. Thus,

Seq o Per((Vi)iGN) = Seq(oy,) = (Vi)ien,
which finishes the proof. O
Definition 2.8. For alli € N, write

0i = [T = Tos -
Proposition 2.9. By our choice of the basepoint Too = (Ti)ien,
0i > 0iy1 Vi€eEN, Zlggogl =0, and 7; € B(Teo,0i) Vj >4,
where B(x,r) is the open ball , centered at x, with radius r.
Definition 2.10. Define a map
s Hoo — Yoo, g 0y,

where o4 is the unique element of X, that satisfies

9(1i) =76,y VieEN
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Lemma 2.11. For each pair of integers i < j, there is an element ﬁj € Hy,
satisfying the following conditions.

T, k=i
fuam) =7, k=]
Tk, else,
i.e.,
WHE(ﬁ,j) = (4,J),
and

ﬁ,j|D2\B(TOQ72Q¢) = Id.

Proof. The proof of this result involves Dehn twists. For a detailed introduction
to this construction, see [13]. Throughout the proof, we identify S! as follows

Sti={zeC| |zl =1}

Pick any pair of integers (7, ) with ¢ < j, let

a;j S = Bl(Too, 20i) \ {7k ez Ny ki
be a simple closed curve where N, := mingey {Tk € B(Too, Ql)} Knowing that
neither 7; nor 7; is an accumulation point of the set {7 }ren, we can assume
that, moreover,

ai;(1) =7, ai;(=1) =7;.

Furthermore, let

Vi g - Sl x I — B(T0072Qi) \ {Tk}kZNi
be a tubular neighbourhood of a; ;, i.e., an oriented embedding satisfying

v j(2,1/2) = a; ;(z) VzeSh
Then, the map ﬁj : D?> — D? defined by
(ﬁj ov;;)(z,t) ==v;; (e 2, t) V(z,t) €S X1,

and R
fij(x)=z VYreD?*\Imuv,;

satisfies the required properties. Note that, under this definition, ﬁ] is called
a Dehn twist along a; ;. O

Theorem 2.12. The map gy : Hoo — Yoo has a right inverse

WEH:EOO — HOO

o = f07
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i.e.,
myyz oy = Ids__.

In other words, for every element o € ¥, there is a map f, € Hoo, such that
fU(Ti) = To(i) VieN.

Proof. Pick any o € ¥,. To define a homeomorphism f, € Hy with mgs(fy) =
o, we make use of Proposition 2.4 that allows us to decompose o into a sequence
of transpositions, i.e.,

o= lim [o],,
n—oo

where
[0]n == (N, Vo) 02 0(2,V52) 0 (1,Vs,1),

and (Vy,n)nen = Seq(o). Recall that, by Lemma 2.3 (a),
Vg >N Vn € N,

and let (ﬁz,,u(,,n)neN be elements of PH, as given by Lemma 2.11. Thus, writing

f[o]n = fn,umn O:-+0 f2,y(,y2 o fl,uml

for all n € N, it follows in particular that

f[cr]n (13) = T[o]n (4) Vi € N. (A)

We show that the limit
fg := lim f[n]n

n—oo
exists, that it is in Huo, and that myx(f,) = o, which finishes the proof.
To prove the existence of the limit f, := lim, . flo),, pick any = € D2, and
observe that, for every n € N,

||f[0'}n+1 (x) - f[o-]'n, (l‘)” = }’j/;b+1,Vu,7;+1 (f[(ﬂn ($)) - f[o']n(x)H
= 4Qn+1~

As lim; .o, 0; = 0, it follows that (f[g]n(x))neN is a Cauchy sequence. By
the completeness of the unit disk, the pointwise convergence of the sequence
(fio]n (x))n cy follows, which allows us to define a map

A

f,:D?> — D?
z +— lim f[a]n(x).

n—oo

We show that, moreover, the sequence (fis), (), . converges uniformly.
Observe that, for all z € D?, and for all integers n,n/ with n’ > n,

| fi01,0 @) = Fiot, @ = (P © - Frin © fio)o (@) = fio, (@)
2 sup {4gk}
ke€[n+1,n']
= 4Qn+1;
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where (x) is given by Lemma 2.11. Thus, for any n € N,

Hfg(x) - f[a]n(f)H <40n,41 VYaxe D%

As lim,,_, o 0, = 0, this means that, for every ¢ > 0, there is a N. € N, such
that
Hfg(x) — f[g]n(x)H <e YzeD? ¥Yn>N,,

which means that the sequence ( f[c,]n)n oy converges uniformly to f,. Thus, by
[11, Thms 46.5, 46.7, 46.8], it follows that f, is continuous. Similarly, one can
show that the sequence ( f[;]ln)n oy converges uniformly to f, !, which thus is
continuous. Thus f, is a homeomorphism. Finally, observing that

Jio], € Ho Vn €N

shows that f, € H.
To show that mgx(fs) = o, observe that, by Lemma 2.3,

0]n(i) = o(i) Vn>a(i) VieN,
such that, by (A),
Jio1, (i) = Toqy Yn>o0(i) VieN.
Thus,
fo(mi) = lm (fi), (1)) = 7o) Vi€eN,

n—oo
which means that
mas(fs) = 0.

Theorem 2.13. The maps sy, Ty are continuous.

Proof. As H(D?, D?) has the uniform topology, which is metric, its subspace
H is metric too. Thus, by [Munkres, Thm. 21.3], the map 7gy is continuous
if (and only if) it maps convergent sequences to convergent sequences. Pick any
convergent sequence (g;)ien in Hyo, such that

g = lim g;,
11— 00

and write
oc:=mgx(g), o;:=mgx(g;)) VieN.
Observe that, for all n € N,

lim 7,0 = 111)1& 9i(Tn) = 9(Tn) = To(n)- (A)

11— 00

By assumption, the sequence (7;);en converges to T, in such a way that for all
i € N, 7; is not an accumulation point of the set {7;};en. Thus, it follows from
(A) that for every n € N, there is a N,, € N, such that

Toi(n) = To(n) Vi 2> Ny,
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ie.,

oi(n) =0(n) Yi> N,.

This proves that mgs maps convergent sequences to convergent sequences, be-
cause X, has the topology of pointwise convergence.

Note that in Appendix, Lemma A.4, we prove that ¥, is metric. Thus, again,
the map mypy is continuous if it maps convergent sequences to convergent se-
quences.

Let (0;)ieny be an arbitrary sequence in X, that converges to an element
0 € Yoo We need to show that

hm WEH(UZ’) = WEH(U).

11— 00
As, given any n € N,

lim o;(n) = o(n),

11— 00

there is an integer N,©, such that

oi(n) =c(n) VYi>N]|.
Also, for every n € N, there is a N, € N, such that
o7 (n)=0"*(n) Yi>N,.

By definition,
Vo 1= [ai]n_lai_l(n) VnelN

It follows that, for every n € N,

Voym =Von Vi2> max{N(j N, }. (B)

~1(n)*V¥n
Recall the definition

WEH(U) = fa ;= lim f[lf]n

n—oo

in the proof of Theorem 2.12, where
Fion 7= o © 0 Frp © Fiu,,
for all o € ¥, and all n € N. We need to show that
lim f,, = f,.
T

Recall that, by [11, Thms 46.7, 46.8], the compact-open topology on Hy coin-
cides with the topology of uniform convergence. Thus, for every ¢ > 0, we need
to find an integer N., such that

| foi (@) — fo(2)|]| <€ VaeD*Vix>N,.
Pick some € > 0, and fix an integer ng, such that

80no+1 < €. ()
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Write
N, = max { max{N(j,l(n), N}
and, by (B), observe that
[Ui]no = [U]no Vi> NE7

and therefore
fioing = flolny Yi=Nee (D)
Also, we showed in the proof of Theorem 2.12, that, for any o € X,
| f5(@) = fz), (@)]| <4001 Vo € D? VneN.
Thus, in particular,

Hfa(fﬂ) - f[g}n(!E)H <4dop+1, Vze D? ¥n eN, (E)

and
| fo. (2) = fiogn (@)]| < 40n41, Vo€ D* VneN. (F)

Finally, for all ¢ > N,

[foi(@) = fo @) < N foi(@) = fioiy @ + | fioi1y (@) = fo(@)]
Z o @) = Sy @I + o1 (2) = fo@)]
E.F
S 8Qn0+1
c 2
< e VzxzeDD?
which finishes the proof. O

Finally, there is another map that will be useful below.

Definition 2.14. Consider the set TooYoo = {Toco | 0 € o} as a subspace
of Fo, and define a map
7y TooXoo — Yoo

Towo +—  oO.
Proposition 2.15. The map 7rx is continuous.

Proof. By [11, p. 280, Exercise 1], the product topology on ],y D 2 is metric.

[e]
As the space F, is topologized as a subspace of [[,cy D 2 it is metric too.
As, thus, 7.Xo C F is itself metric, the proposition follows from the fact
that mry maps convergent sequences to convergent sequences. (see [11, Thm.
21.3]). O
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2.2 Reducing the map myp~ to myp
In this section, we develop a commutative diagram, given in Theorem 2.19, that
shows how the maps myp,, and myp~ are related to each other.
Recall the space
OCy :=C((1, 1), (Fm,Tzw))/zoo,
and observe that
Im (7,.) € OCx.
Thus, we use the same notation for @, : Hs — QC and its corestriction
Dot Hoo — OC.
Proposition 2.16.
WQZOO = Zoo

Proof. Pick a path v: I — X, and define, for all i € N,

vi:I — N
toe A1),
By [11, Thm. 21.3], we know that v maps convergent sequences to convergent
sequences, which thus is also the case for the maps ;. As I is metric, it follows

by the same theorem that ~; is continuous for all ¢ € N. As N is discrete, this
shows that ~; is constant for all ¢ € N, which implies that ~ is also constant. [

Proposition 2.17. There is a continuous bijection
€:%0 x PHy — Ha
(o,h) +— wxp(o)oh.

Proof. The continuity is given by Theorem 2.13. Moreover, we know by Propo-
sition 2.12 that there is a split short exact sequence

TS H
£ T~
1 PHOO( Hoo THS (o) 1 Y
which proves the result (see [14, Prop 10.5]). O

Proposition 2.18. The map

(Yo XQF, — 0OC4
(07 ﬂ) = Poo © (K('R—EH(O—)a')(Ti))ieN*ﬁ(')

induces a bijection
¢ : Voo X M Foe — m0OCx.
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Proof. Notice that Proposition 1.7 allows us to define a map

1:0C, — C((I,O, 1), (FOO7TOOEOO,TOO))

B = B
where (3 is the unique lifting of /3 into C((I7 0,1), (Foo, Too X0, TOO)) that satisfies
Poo © 3 = B. To see that this map is continuous, pick an open subset U C
C((I, 0,1), (Foo, Too X0, TDO)), and observe that [~ (U) is open in OC\,, because,
writing .
q: C((LI), (FOO,TOOEOO)) — O0C

for the quotient map, the preimage

¢ (17'O) = | (meu(0)(U)

€S0
is open in C((I,1), (Fos, TooZe0))-
Introduce maps
¢p: OCsx — 2o
v o Ty (l([v])(o))
and
Pr:Ye — OC

0 = Ps© (K(WEH(U)7 ) (Ti)>ieN7

and observe that they are continuous, because all maps of which they are com-
posed are continuous. (The continuity of the maps mry and 7msp is given by
Theorem 2.13 and Proposition 2.15, respectively).

To verify that mo( is a bijection, observe first that, for any o € X

bpodu(0) = mrs(lopu (K (Tsulo))(7))(0)
= 7TTE<K(7T2H(U),O)(TZ‘)>

= 7rs(msm(0))

= g.

€N

In particular, there is thus a split exact sequence of sets

¢
£~

P

Recalling that myX = Yo, the result follows directly by considering the in-
duced split exact sequence

ToP1L
2N
Wooooo 7r4>0¢» Zoo e 1,
p

T1Poo

1 ﬂ'lFoo
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because
m0¢(0,b) = modi(o) - b
(see [14, Prop 10.5]). O

Theorem 2.19. There is a commutative diagram of sets

T0P oo

moH oo ToOC

ﬂOETN NTﬂ*OC
IdXTo Yoo

Yo X MgPHy —— Yo X M Fio..

Proof. First, we show that the following diagram of topological spaces commutes
up to homotopy.

| I
IdX oo

S x PHo — Y%= o L QF.,
Pick any (0, h) € ¥oo X PHy and verify.

Poc0&(0,h) = Doo(fooh)
i @oo(fﬁ)*aoo(h’)
Poo © (K(fm ')(Ti))ieN * Poo © (K(h’ ')(Ti))ieN

= PO (K(f07 )(7i)ien * K(h, ')(ﬁ‘)ieN)

= C(GvK(ha')(Ti)ieN)
= (o(Id X pso)(o,h),

where (x) is given by the fact that my%, is a homomorphism by Proposition 1.15.
Thus, applying 7y yields the required commutative diagram, because mp¥o, =
Y by Proposition 2.16, and because the vertical maps are isomorphisms by
Propositions 2.17 and 2.18. O

This is a very useful result, because it reduces the question of the image and
the kernel of myp, : ToHs — moOCx to the analogous question for the map
MoPoo : MoPHoo — T Foo.

2.2.1 Conclusions

For finite n € N, the pure braid group PB,, is just a subgroup of the (full) braid
group B;,, and in our context, the properties of the PB,, are analogous to those of
the B,,. In the infinite case, the full braid group m;Cy is more difficult to handle
than the group of pure braids m Fo, because there is an inverse system of pure
braid groups PB,, with 71 F as its (category theoretic) limit, whereas the full
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braid groups B,, do not fit together as an inverse system. To solve the question
of the image and the kernel of the homomorphism @, : ToHoo — T1Coo,
Theorem 2.19 allows us to bypass this difficulty, however, because the image
and the kernel of myp,, @ moHsx — 71Co are given directly in terms of the
image and the kernel of mypso : ToPHs — T Fo-
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Chapter 3

The injectivity of the maps
Yoo and mHPyg

3.1 Definition of a suitable contracting homo-
topy of the space H,

Definition 3.1. Write t; := 0, and, for every i > 2,

11

2k
1

%

ti =

E
I

In particular, observe that lim; .., t; = 1. Recall that, by Definition 2.8,
0i = [I7i = Too -
Lemma 3.2. There is a continuous map
K:[0,1) — C(D2, D2)
with the following properties.

(t) : D* — D? is a homeomorphism onto its image Yt € [0,1).

—~
D
L —

X

(#1)  Imk(t;) = B(Too, 0i1), VieN,

(#91) Im k(t) C B(Toos 0i—1) Vit>t, VieN,

w) k(t)(r)==x Vz € B(Too, 0i), Vt€[0,t;], Vi €N.
(v)  k(0) = Idp:

Moreover, k contracts D? along radii, so that, for eacht € I, there is anr € [0, 1]
with
Im k(t) = B(Too,7), and OIm k(t) = 0B(Too,T).
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Proof. For each ¢ € N, define a map
R; : 1 —C([0,1],[0, 0;-1])
by
— 1—ti=2)  ifr e [po, 1
Ru(t)(r) = Q2+(7" Qz)( 1_92> 1 7 € [02,1]
T ,lf’l" S [07 Q2]7

for i =1, and

0it1 + (Ric1(1)(r) — 0i41) (1 - t%) Jif r € [0i41,1]

i—1—Qi+1

r ,if r € [0, 0i41]

Ri(t)(r) = {

for ¢ > 2, and for all t € I. Note that for each ¢t € I, Ry(t) is well defined at go,
because

1—
Rl(t)(92)292+(92*Q2) <1t1_§;)—92 vVte l.

Also, foralli > 2,t € I, R;(t) is well defined at g;41, because, as R;—1(1)(0i+1) =
Qi+1,
Qi—1 — 0;
Ri(t)(0i+1) = i1+ (0i41 — 0i41) <1 - t1> = 01
Qi—1 — Qi+1
For each i € N, the map R; has the following properties:
(4) Im R;i(1) =0, e,
(B) Im Rl(t) C [0, Qifl) Vt € (07 1],
(C) Ri(t)(r)=r Vrel0,0i4+1], Vtel.
(D) Ri(1) = Ri11(0)
The properties (C) and (D) follow directly from the definition of R;. To verify
the properties (A) and (B), observe that
R;(0)(0) =0,
and, by induction,
R;(1)(1) = p; and
Ri(0)(1) = o0i-1,
and that, moreover, R;(t)(r) is strictly increasing in r and strictly decreasing in
t.

Pis1 Qi Pi-
Im Ri(0) - —

Im Ri(1)

OT------7 O
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Now, define a continuous map
72 [0,1) = (1 % Ry, T X Ry
piecewise by

Elitotig) @ [tirtipr] — C(I X Rinod 25 I X Rpyod zﬂ)

t o <(T,¢) — (Rz' (tlil__tltl) (T)’¢)>

for all ¢+ € N. This map is well defined, because, at each ¢;,
~ ti —ti—
“|[t¢71,ti}(ti)(7’, ) = (Ri—l (t—ti) (T)a¢>

= (R0, 9)

(D)

2 (R, 0)
= Kl i) () (1, 0)

for all (r,¢) € I X Rynod2x. Identifying I X R;,,04 2 with the polar coordinates
of D? turns % into a map

k:[0,1) — C(D? D?).

For each i € N, the restricted map “|[ti,ti 41] is represented as follows, where the
grey zones are mapped by the identity.

2
D B(t...pi-1) B(t...pi)

o/

K(ti+1)

As, for each i € N, the map R;(¢) is open and injective for all ¢ € I, it follows
that x(t) too is open and injective for all ¢ € [0,1). Moreover, by the definition
of k, the properties (1), (i7i) and (iv) follow from (A), (B) and (C), respectively,
and (v) follows from the fact that, at t; = 0, K|, 4,)(0) = Idrxr O

mod 27
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Theorem 3.3. There is a contracting homotopy K : Hy x I — Hy, i.e., for all
f € HO’
K(f,O):f, K(f71):IdD2

with the following properties. For all h € PHo, and i € N,

(a) K(h,t;) € PHy,
(b) K(h,t)(’]’z) =T; Vt S [O,tl} U [ti—Q—la 1],

For each h € Hy that satisfies h(Too) = Too, in particular for all h € Hy,,
(C) K(h‘> t)(Too) = Too Vtel.
Furthermore, for oll f € Hy and v € N,

d) K(ft)(z)== Vo € D*\ B(Too, 0i), V> tiya
(e) K(f,t)(x) € B(Too,0i) V& € B(Too,0:), YVt > tiy1.

Finally,
(f) K(Idp=,t) = Idp= Vtel.

Proof. Recalling the injectivity of x(t) : D? — D? for all t € I, define a map

KIHO xI — HO
(h,t) (mH{(K(t)ohonl(t))(x) Ve € Im k(t), Vt6[0,1)>.

T ,else

We show that K is a contraction of Hy with the required properties. First, we
verify that K is well defined.
Observe that, for any (h,t) € Hy x [0,1

), and = € Olm k(t),
K(ht)(z) = (k(t)ohor'(t))(x)
(h(x ' )())

(v (1) (@)

[

K(t)
K (t)

= :E7

where (x) is given by the fact that £k~ 1(¢)(z) € dD?, and because h fixes 9D?
pointwise. To see that, moreover, Im K C Hy, pick some arbitrary (h,t) €
Hy x I. As k(t) : D> — D? is open, K(h,t) : D> — D? is continuous, and,
observing that K (h,t) is mutually inverse to K (h~!,t), it follows that K (h,t) €
H(D?, D?). Moreover, by the definition of K, we know that

K(h,t)|opz = Idgpe,

ie.,

K (h,t) € Hy.

38



To verify that K : Hy x I — Hj is a continuous map, notice that Hy x [ is
metric, as, by [11, Thms. 46.7/46.8] Hy has the uniform topology, which in
particular is metric. Thus, by [11, Thm. 21.3], we can verify the continuity of
K by showing that, for any convergent sequence (h;, $;)icn with

lim (h;, s;) =: (h, s),

11— 00

the sequence {K (h;, Si)}ieN converges to K (h,s) for i — oc.
Observe that K is continuous at all (h,s) € Hy x [0,1), and pick a sequence
(hi, $i)ien that converges to (h, 1) for some h € Hy. We need to prove that

hm K(hi, Si) = IdDQ.

11— 00

Recalling Definition 3.1, note that, by Lemma 3.2 (%),
llz — K(h,t;)(2)| < 2||Teo — Ti_1|| Va € D* Vh € Hy.
Write
ki = max{j € N|t; <s;},
and observe that

lim ki = 00,
i—00

because lim;_, o, s; = 1. Thus, it follows by Lemma 3.2 (iii) that
llz — K(hi,s:)(@)| < 2||Teo — Th,|| Vx € D* VieN.

In particular, as lim; .., 7; = T, there is, for every € > 0, an integer N. such
that
lo — K (hi, si) (@)l <e Vo€ D? Vi N..

This proves that the sequence (K (hg, Si))ieN converges uniformly to Id p2 which
means that, as Hy has the uniform topology,

hm K(hi, Si) = IdDQ.

11— 00

Thus,
K e C(Ho x I, H())

Moreover, it is easy to see by the definition of K that, for every h € Hy,
K(h,0) = h, K(h,1) = Idpe.

Fix some h € PH, and 7 € N, and observe as follows that the homotopy K has
the required properties.

Verification of (a). It follows from part (i) of Lemma 3.2 that, for all j €
1,i—2], 7; ¢ Im k(¢;), and thus, by the definition of K,

K(h,ti)(Tj):Tj VjE[l,i—2].
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Moreover, 7;,_1 € 0Im k(t;), which, by the definition of K, means that
K(h,ti)(Ti—1) = Ti—1
Finally, for every j >4, 7; € Im £(t;), which means that

K(h,ti)(m;) = (k(t:)ohor(t:)™")(r)

where (%) follows from part (iv) of Lemma 3.2, and (x*) is given by the fact
that h € PH.

Verification of (b). By part (iii) of Lemma 3.2, we know that, for each
jeli-2]
Tj ¢ Im I{(t) vVt € [ti,ti+1]7

and so, by the definition of K,
K(h,t)(m5) =75 Vie[l,i—2], VteE [ttit1]
Again, 7,_1 € 90Im k(t;), which means that, by the definition of K,
K(h,t)(1i—1) = Ti—1 Yt € [tiytita]-

Furthermore, for each j > i + 1, 7j € B(7oc, 04+1), such that, by part (iv) of
Lemma 3.2,
K(t)(1;) =75 V€ [0,tiga].

Thus, by the definition of K, for all ¢ € [t;,t;411],

K(ht)(m) = (slt)ohor(t)™)(x)
= () (h(r)
= R(t)()

Tj
where (x) is given by the fact that h € PH.
Verification of (¢). Observe that, by part (iv) of Lemma 3.2,
() (Too) = Too vVt el
As, moreover, h(Tx) = Too, it follows by the definition of K : Hy x I — Hy that

K(h,t)(Too) = Too vVt e l.
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Finally, we check the properties (d) and (e) for a given f € Hp.
Verification of (d). Pick some t > t;1; and & € D? \ B(7o0,0i). If t = tiy1,
then, by part (i) of Lemma 3.2,

T ¢ Int Im k(2),

and, if ¢ > t;41, then, this same fact holds by part (iii) of Lemma 3.2. Thus,
by the definition of K,
K(f,t)Z)=2.
t

o~

Verification of (e). Pick any f € Hy, t > t;y1 and T € B(7o,0i). If

% ¢ Im £(%), then, by the definition of K,
K(f,H)(@) =% € B(7o0, 0)-
On the other hand, if Z € Im /s(?), then, as
K(£,5(@) = (s() o for(®)™")(@) € Im r(?),

it follows that R
K(f7 t)(i‘\) S B(TOO7 Qi)v

which is given by part (i) of Lemma 3.2 if £ = t;,,, and by part (i) of Lemma
3.2 if t > t; 1. Thus, resuming these facts,

K(f,t)(z) € B(Teo, 0) Vf € Hy, Vo€ B(Too,0i), Yt 2>ty

Finally, the property (f) follow directly from the definition of K. O

3.2 Proof of the injectivity of myp

Given two elements f,g € PH,, such that

T0¥oo [f] = Topoolgl,

we need to prove that there is a path in PH, from f to g. Our construction of
such a path, which is given in the proof of Theorem 3.7, requires some prelimi-
nary work.

Henceforth, the map

Yoo : PHy — QFy
h — (K(h")(Ti))ieN’

is assumed to be given in terms of the homotopy K defined in Theorem 3.3. For
all z € D?, let p, : I — D? be the constant path at z.
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Lemma 3.4. Assume that
ToPoo [h] =1
for some h € PH,. Then,

[(K(ha .)(Ti))ié[l,n]Uoo] = [(p‘ri)ie[l,n]Uoo]»
for alln € N.
Proof. Fix some n € N, and write
(ﬁi)iEN = (K(h7 ')(Ti))ieNa and ﬁoo = K(h> )(Toc)

By point (¢) of Theorem 3.3, 8o = pr.., which implies that §;(t) # 7o for all
t € I and all © € N. Thus, by the tube lemma, there is an € > 0 that satisfies

Bi(t) ¢ B(Too, 4¢) vVt eI, Vie[l,n]. (A)
Notice that, by the continuity of the map K(h,-) : I x D?> — D?, the subset
K(h,-) " (B(1,¢)) C I x D?

is an open neighbourhood of I X {7}, such that, by the tube lemma, there is
an r > 0 that satisfies

I x B(TOO,T’) C K(h, ')71(B(T0035))a

ie.,

K(h,t)(B(7os;7)) C B(7oc,6) Vi€ I (B)

Pick some N € N with
™~ € B(Teo, 1),

and observe that, by (B),
On(t) € B(Too,e) Vte I
Thus, in particular,
B(Bn(t),2¢) C B(Too, 3¢) Viel,

which means that, by (4),

18:(t) — Bn(t)|| > 2¢ Vie[l,n], Vtel. (@)
As mypeo|h] = 1, there is a path A= (/A\i),-GN o Q(FOO,TOO) with

N0 =8, A(Q)=p, VieN. (D)

Using this path, we construct a path A in the following way. Let

¢:D*\0— D>\ B(0,s) (E)
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be a homeomorphism that satisfies

D2\ B(0,2¢) = Id, (F)

Clearly, such a homeomorphism exists. For the sequel of this proof, keep in
mind that
Too =0 (=1(0,0) € R?).

Define a path A := (Ay)ief1,njuce : I — Q(Fn+1 (B(Too, 2))7 (T1,. .. ,Tn,Too)) by
Ai(s)(®) = An(s)(t) +E(Ai(s)(t) — An(s)() Vi€ [Ln],
Ao (8)(t) = /A\N(s)(t) + (1= 8)(Too = BN () + 5(Too — 7N)

for all s,¢ € I. First, we verify that A(s) is a well defined loop in (Fn+1 (B(TOO, 2)), (11,
for all s € I. Clearly,

Ai(s)(t) € B(1a0,2) VteI,Vsel
Fix some s € I, and observe that, for all ¢ € [1,n],
Ai(s)(0) = Ai(s)(1) =rn +&(ri —Tn) =Tn+Ti—Tn =7 Vs€ I, Vi€ [l,n]
where (%) is given by (F'), because, by (C),
i — 7| > 2e Vi € [1,n].
Also,
A (8)(0) = Asc(8)(1) = 78 + (1 = 8) (Too = ™) + 8(Too = TN) = T Vsel.

Thus, A(s)(0) = A(s)(1) = (71, .., Tn, TN, Teo). Furthermore, it is easy to see
that, for every s,t € I, the points (A;(s)(t)))ie(1,n) are pairwise distinct, i.e.,

(Mi($)D)))iep) € Fu(B(re,2))  Vs,tel.
By (E), we know that Im £ N B(0,¢) = &, which shows that, in particular,
IE(Ri(s)(t) — An(s)D))|| > Vs,t eI, Vie[l,n].
Thus, by the definition of the A;’s,
Ai(s)(t) ¢ B(KN(S)(t),f:) Vs, t € I, Vi € [1,n]. (G)
Now, observe that, by (B), and by the choice of 7y,
lToo — || < &, and ||7eo — Bn(t)|| <€ Vit €I,

which means that

...,Tn,Too))

Ao (8)(t) := An(8) () +(1=5) (Too—Bn (1)) +5(Too—7n) € B(An(s)(t),e) Vs, t € I.
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Thus, by (G),

Aoo(8)O) N {A)B)} e =2 Vsite

i.e., A(s) is a well defined loop in (Fn+1 (B(TOO, 2)), (T4, Th, TOO)).
Notice that, as I is compact, there is, for all ¢ € [1,n], a t: € I, such that

18i(8) = Tooll < 18i(8:) — 7ol Vi€ [Lin],VE €T

by the extreme value theorem [11, Thm. 27.4]. As

Bi(t)eD? Vtel,Vie[l,n],

there is some 7 with
max [|B;(t;) — Teol| <7 <1,
1€[1,n]

such that, in particular,

sup  [|Bi(t) — ool <T < 1.
tel,i€[l,n]

Let x : B(Too,2) — D? be a homeomorphism such that

Xpeom =14 (H)

Clearly, x o A is a well defined path in (Fn+17 (T1y. oy Tn, Too)). We show that,
furthermore, x 0 A(0) = (Bi)ic[1,n)uce and X0 A(1) = (Pr,)ic[1,n]usc, Which proves
the lemma.

For all i € [1,n],

xeM(0)(t) = xo (An(O)®) +ERi0)t) — An(0)(1))
= xo (By(®) +&(Bi(0) - Bx (1))
= xo (B (1) + Bi(t) — By (1))
L)

On the other hand, again for all i € [1,n],

xohi()(t) = xo (An()®) +ERi(n)®) - An(1)(1))
XO(TN+5(7'¢_TN))

Q

= xo (Tn +7 = 7n)

Iz

Ti-
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Finally,

X0 A(0)(t) = xo (AN(0)(t) + Too — BN (1))
= xo (BN(t) + Too — (1))
g TOO7
and
XoAoo()(t) = xo (AN(1)(t) + 7o — 7n)
= XO(TN+Too—TN)

Iz

Too-

Corollary 3.5. Let h be an element of PH, that satisfies
T0Poo [h} =1.
Then, for every n € N, there is a path Iy, : I — Hy such that
r,0)=1d T,1)=hr"" T,t)(rn)=m Viecl[l,n]Uocc.

Proof. Fix some n € N, and define a point in F,, ;1 by

Tn+1 =

(Ti) i€[1,n]Uco”

Also, define a space ﬁn+1 similarly to F,,41, by replacing 7,11 by ﬁ+1. Also,
define a map _
Pnt1: PHpp1 — QFpq
by
Pl ([h]) = (K(h, ')(Ti))ie[l,n]Uoo'
As we pointed out earlier, the map moyp; : mgPH; — PB; is an isomorphism for
all ¢ € N, independently of the choice of the basepoint 7; of F;. In particular,

the map
T0Pnt1 i ToPHpy1 — T Fyp

is an isomorphism. Furthermore, observe that, for all h € PH,

*

ToPn+1[h] = [(K(hw)(ﬁ))iep,n]u@} = {(pﬂ)ie[l,n]uoo} = moPn+1[Idp2],

where (x) follows from Lemma 3.4, because mopoo[h] = 1. As the map moPn11 :
moPH,+1 — m F,41 is injective, it thus follows that

[h] = [Id] in 7TOPHn+1,
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i.e., there is a path fn : I — Hy such that
T,(0)=h, T,(1)=Id, T,(t)(r)=m Vie[l,n]Uoc.

Thus, the path B
Ip:=htol,

satisfies the required properties, because h is in PH,. O
Lemma 3.6. Let h be an element of PH., that satisfies

T0Poo [h} =1.
Then, for every i € N, there is a path I'; : I — PH,, such that

() Ti0)=h,
(’LZ) K(Fz(l),t) € PH,, YVt € [ti,ti+1].

Proof. We show the existence of such a path I'; for some arbitrary, fixed ¢ € N.
Recall that, by part (iv) of Lemma 3.2, the map

k:[0,1) — C(D?* D?)

satisfies
K(t)(Too) = Too VL €[0,1),Vi € N.

Thus, in particular
K()THT) # Toor BTHRE) T (R) # 7o VEE[0,1).

By the continuity of both x(-)7*(r;) : I — D? and h™'(k(:)"*)(r;) : I — D?,
and by the fact that D? is normal, it follows that there is a large enough N € N
that satisfies

(4) k(&) (7) € D*\ B(7oo, 0n) V1 € [ti tiya],

(B) h™'(k(t)"")(r;) € D*\ B(Toc, 0n) Yt € [ti, tital,
because lim;_. ., ¢; = 0. Moreover, according Corollary 3.5, there is a path
T;:1— PHy, st. L;0)=Id, T;(1)=h"", T;t)(7e) =7oe Vtel.
Choose reals 9,, 0m, 0; with

ON > 0o > Om > 0i > ON+1,
and write
D, := B(Toos 00)s Dm = B(Too, 0m), Di = B(Too, 0i)-

Let gy be a homeomorphism

gn i D*\ Toe —> D\ D,
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that contracts D? \ 7, along radii, and that satisfies
gn|p2\p, = Id|p2\p, -

Thus, in the following drawing, g, maps the outer grey area by the identity.

D2
_— D,
Dm
Di

hole

Consider the path
gy oTi()ogy': T —H(D*\ D),
and extend it to a path T; : I — H(D?) defined by
. (9voTi®og5')(@) o€ D*\ Dy

L) () = < ext(t)(z) ,x € Dy, \ D;
x ,x € Dy,

for all t € I,z € D?, where
ext : I — H(Dy, \ D;)

can be chosen as follows. Endowing D? with polar coordinates, define a home-
omorphism

arg ‘= gn o Fz(t) o g;/'1|8Dm : Rmod 27 — IRmod 27
and write

ext : [Qia Qm] X Rinod 2 — [Qia Qm] X Rinod 2

(re) (r,cp+(arg(s0)—%0);n_—_g;i)'

Observing that
ext(0i, ) = (0i,¢) V¥ € Ryod 2r,

and

ext(0m. ) = (om, arg()) = (gn o Li(t) 0 gv") (0m,9) Ve € Rinoa 21,
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it follows that ext suitably extends fz Moreover, as
gn o Li(t) o gy'lap> = 1d|ap2,

it follows that fz is actually a path in Hy.
We show that the map B
Li(-) :=holi()

satisfies the required properties. First, we verify that
I'i(t) € PHy vVt e 1.
Observe that, for each j > N + 1, 7; lies in D;, such that
Li(t)(rj) = h(1j) =75 vtel,

because h € PH,. On the other hand, for each j < N, 7; lies in D?\ D,,, such
that

Ti(t)(r;) = (hogyoli(t)ogy") ()
= (hogNoF (t) )(Tj)

(hogn)(r;

= (7))

where (x) is given by the fact that, by the definition of gy, gy () = x for all
x € D?\ D,, (*x) follows from the fact that I';(t) € PHy for all ¢t € I, and
(% * *) holds, because h € PHy,

Furthermore, as I';(0) = idpe, it follows that
T;(0) = h.

It remains to verify the condition (ii);

K(i(1),t) € PHy Yt € [ti, tiya).
AsTy(1) € PHy, it follows from the statement (b) of Theorem 3.3 that

K1), t)(m) =7 Vj#i Vte[titi]

Finally, to prove that K (I';(1),t)(7;) = 7; Vt € [t;, t;41], observe that, for all
x € D*\ D, with h=Y(z) € D?\ D,,

Li(1)(z) = (hogno Ti(1) o gn ) (@)

= (hognoh togy')(z)

(hogn)(h'(z))
Z (hoh™)(2)
= = (@)
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where (%) is given by the definition of T';, and () holds by the fact that
gn|p2\p, = Id|p2\p,. But, by our choice of N,

fi(t)il(Ti) (S l)2 \DO7 and hil(lﬂ?(t)il)(ﬂ') (S D2 \Do YVt € [ti7ti+1]7

because D, C B(Ts0, 0n). Thus, by (C),

K1), ) (r) = (k) oTy(1) o k(t)™")(m)
(k(t) o Ti(1)) (k(8) 1) (72))
= (k(t)or(t)™)(m)
for all t € [ti,ti+1]. O

Theorem 3.7. The map

ToPoo : ToPHo — PBso
18 1njective.
Proof. Pick any h € PH,, with

T0Poo ([h]) = T0Poo ([Id])~

We need to show that
[h] = [1d] in mgPH.

In other words, we are looking for a path G : I — PH,, that satisfies
G(0) = h, G(1) =Idps.
According to Lemma 3.6, there is a path I'y : I — PH,, such that
I1(0)=h, K(Ii(1),t) € PHy  Vte [t =0,t).

Moreover, by induction, there is a set of paths {I'; : I — PHu }ien, such that,
for each 7 > 1,

FZ(O) = Fifl(l), K(Pl(l),t) € PH, YVt € [ti7ti+1].

Recall that, for every t € [0,1), there is an ¢ € N, such that ¢ € [t;,¢;41]. This
allows us to define, piecewise for all 4 € N, a path

G:1 — PH
t—t; ti+t;
K<Fi(2ti+17ti)’ti) ,t € tl,%}
Eom SKM1)20— i) tE | B
Idp2 ,t=1.
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We show that this path is well defined, and that it satisfies the required prop-
erties. First, observe that, at t :=t; =0,

G(0) = K (I'1(0),0) = [, (0) = h.

Fix some i > 2. At t :=t,,

K (Fi <2t_t>t) = K (1;(0),t;) = K (Ti—1(1),2t; — t;),
tiy1 —t;

Litts
whereas, at t := %,

tittigr 4. ) )
K (ri (2“)t> = K(Ii(1),t;) = K (Fi(l),2tl+2tl+1 _ tm) .

tiy1 —t;

Thus, G is well defined and continuous at all ¢ € [0,1). Now, we show the
continuity at ¢ = 1. We need to show that G(t) converges (uniformly) to Idp2
for t — 1. Let {f;}ien be any sequence in [0, 1] with

11— 00
Pick any € > 0, and choose an integer n with

20n <e¢,

and an integer N such that

According to part (e) of Theorem 3.3,

K(f,t)(x) € B(Too, 0n)  Vf € Hy, V& € B(Too, 0n),; Vi > N.
Thus,

|K(f.t:)(x) — 2| <200 <e  VfE€H, Vo€ B(Ta,on),; Vi>N.

Moreover, by part (d) of Theorem 3.3,

K(f,t;)(x) =2 Vo e D>\ B(rs,0n) Vfe€ Hy, Vi>N.
Resuming these facts, we know that

|K(f.t:)(x) —z||<e  Vfe€H, VoeD?;Vi>N.

As this holds for all f € Hy, it follows from the definition of G, that

|G(t:)(z) —z|| <e  VoeD? Vi>N,
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which shows the uniform convergence. Thus, G is a well defined path in Hy
with G(0) = h and G(1) = Idp2. It remains to show that G is actually a path
in PHy, i.e., as we already know that G(1) € PH,, we need to prove that, for
each 7 € N,

g(t) € PH, YVt € [tiati+1]-

Pick some ¢ € N. By part (a) of Theorem 3.3,

t—1;

it1 — i

t; + i1

G(t) = K (Fi(Z )t) € PH,, Vie [ti,Q] LA

because I';(t) € PH, for all t € I by Lemma 3.6. Moreover,

ti +t;
G(t)=K(T;(1),2t —t;y1) Vte |:+2+17ti+1:| .

But for all ¢t € {%,tiﬂ}»
2t —tiy1 € [ti; ti+1]a
such that, by part (i4) of Lemma 3.6,
t; +t;
G(t)e PH, V te |:+2+1ati+1] : (B)

Putting together (A) and (B), we finally obtain that

Q(t) € PH, Vt € [ti,ti+1].

O
Corollary 3.8. The map
T0Poo : ToHoo — T0OC
1S 1njective.
Proof. This follows directly from Theorems 3.7 and 2.19. O
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Chapter 4

The image of the maps
Yoo and mHPyg

After proving the injectivity of the maps mopso and m@,,, we are interested in
identifying their image in PB,, and B, respectively. Again, we can restrict our
attention to the map mp@~o, as Theorem 2.19 directly yields the image of mo@,
once the image of Ty is known. In order to identify the image of mypso, We
introduce a map o/, that is closely related to the map mopl_, which admits
an easier identification of its image than the map mypo itself.

First, in section 4.1, we identify Im mypoo C PBy in terms of representatives in
QF,,. Thereafter, in section 4.2, we introduce a suitable algebraic description
of PB, as an infinite semidirect product of free groups, and state a result
concerning the image of my@s, within this semidirect product decomposition of
PB.

In this chapter, we often work with the configuration spaces of B 2\ Too. We
thus introduce the following notation.

Definition 4.1. For alln € NU oo, define

Frlz ::Fn(BQ\TOO)a

and let PB], := m F), be the corresponding pure braid groups. Moreover, for all
integers m > n, write

St = I,
for the corresponding (co)- restriction of the projection map Sppn @ Fu — Fp.
Similarly, we note

Seon i oo = Fy

for allm € N,

In this chapter, let K : Hy x I — Hj be a contracting homotopy of Hy with the
properties given in Theorem 3.3. As, in particular,

K(h,)(7o) = pr., Vh € PH,
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the map
Yo : PHy — QF,
h — (K(h, .)(Ti))ieN
corestricts to a well defined map
Yoclor : PHo — QF.
to simplify the notation, we write
Do = Poclarr, -

The inclusion map ¢ : F!  — F,, thus induces a commutative diagram

7'('0]3]‘1Oo

PB/, EL PBy.,

which in particular shows that the map mpl, is injective, because the map
ToPoo 18 injective by Theorem 3.7.

Proposition 4.2. The map oyl : moPHs — PB._ is injective.

In fact, the above diagram allows us to characterize the image of gy, in terms
of the image of my¢, which is easier to identify than the image of mypeo.
Also, we show that there is an isomorphism

U, : PB', = PB,,

which does not correspond to m¢, however. Clearly, it would be interesting to
know whether my¢ is an isomorphism. We didn’t solve this question.

4.1 Description of the image of my¢ in terms of
representatives

Recall the definition

11

2k
1
Definition 4.3. Define the space of infinite combed braids in QF. as the
subspace (QUF.), C QF.,, given by all braids (B;)ien € QF),, such that, for
each i € N,

%

t] = O7 ti =

Vi > 2.

~
Il

Bi(t) =7 Vte [0,t;] U [tig1,1].
Moreover, for all n € N, define

(QF,), = Q5o ((QFL), ).
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A typical element of (QFéO)C is drawn below.

i S

1

L= ]
=)
1 [
- —

E 4 IL/
t :l >
7R
t;=1

The next theorem characterizes the image of the map my@so in terms of the fol-
lowing subset of (QF.,)

¢

Definition 4.4. Define a subspace (QFL)) . C (QFL,), by

(OFL),. = {(Bic € (QFL), | Jim 6 =pr.. }

where pr__ is the constant path at To.. We call (QFéO)CC the space of converg-
ing braids in (QFC’)O)C (i.e., converging combed infinite braids). Moreover, let
(PBQO)CC be the subset of PB._ defined by

(PBL).. = {[(Bi)ien] € PBL | (Bi)ien € (QFL),. } -

Note that, by [11, Thms. 46.7, 46.8], the space C(I, D?) has the topology
of uniform convergence, so that the above given convergence condition on an
element (5;);en € (QF(QO)CC is equivalent to the condition that, for every & > 0,
there is an N € N such that

18:(t) — Tos|| <& Vte I,¥i>N.

To see that (Q2FY,),, is a strict subspace of (2F.))

C’

(QF),. S (QFL).,

we construct a combed braid that is not convergent. Consider the point = :=
(0,3) in D?, and choose, for each i € N, a continuous path

’2

B\z,i € Q( lo? 2 \ {Tj}jeNuOo\ivTi)
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that loops around z. Define a braid (5;);en by

I ift e [O,ti]
ﬁl(t) = 31 (22 (t — t1)> ift € [ti,ti+1] Vtel
Tn ifte [ti+1,1]

for all © € N, and observe that (8;);en is a well defined element of (QF(;O)C,
because it satisfies the condition of Definition 4.3, and because, for each i € N,
the map 3; : S* — D? is continuous, which, by [11, Thm. 19.6], suffices for
(Bi)ien : ST — F, to be continuous. Notice that (3;)ien is not contained in
(QFéC)cc’ however, because the condition

hm ﬁz = DPre
i—00

is not satisfied, i.e., the sequence (3;);cn does not converge uniformly to p,__.
On the other hand, there is an interesting, unsolved question:

m0(QFL),, = (PBL)

Theorem 4.5.
Im Tl = (PBL,)

Proof. To show that
Im ol € (PBL)...

cc

pick an element h € PH,, and write
(Bi)ien = ¢io(h) = (K(h,)(13)) ;e
According to Theorem 3.3, item (b),
Gi(t)=7, VieN, Vtel0,t]U]tit1,1],

which means that (3;)ienuco € (QF(;O)C To show that, moreover, (3;)ieny €
(QF%,).., pick an & > 0, and observe that, by the continuity of the map K (h, -) :
I x D? — D2, the subset

K(h,-) " (B(s,¢)) C I x D?

is an open neighbourhood of I x {7}, which means that, by the tube lemma,
there is an r > 0, such that

I % B(Too,7) C K(hy) " (B(700,€)),

ie.,

K(h,t)(B(Toc:7)) C B(7oc,€) Vit e I (A)
Pick an N € N such that

7i € B(Too,7) Vi> N,
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and notice that, by (A4),
1K (h,t)(7) — Tool| <& Vt €I, Vi> N,

which means that the sequence (53;)ien = (K(h7 )(TZ))
to the constant path p, . Thus

(Bi)ienueo € (QFC/XJ) ce?

;e converges uniformly

ie.,
mogho ([h]) = [(Bi)ien] € (PBL),,.

It remains to prove that

Im 7o, 2 (PBL,)

cc’

Pick any element b € (PBL,)_, and let (3;)icn € (QFL)) . be a representative
of b. Also, write

1:2 i(t) — 00
roi= 2o { e 1,0) — 7 |

j>i
for all 4 € N. Note that
r; > Tit1 Vi€ N,

and, by the definition of (QF%)

cc’

lim r; = 0.
—00

We show that, for every i € N, there is a path g; € C(I, HO)7 such that, recalling
the sequence (¢;);en,

Bit) ifj=i Vtel
75 jeENUoo\1 Vtel

(@) gilt)(m) = {

(@) 9i(t)|p2\B(ra,rs) = Id vitel
(i) gi(t) = 1d vt < t;
(iv) gi(t) = g:(1) Vit > tiya,

where B(7.,7;) is the open ball in R? with radius r;, centered at 7.,. For some
fixed i € N, the existence can be shown as follows. By the definition of (Q2F7) ce?
we know that, for every ¢ € I, there is at most one ¢ € N, for which 5;(t) # 7,
ie.,
[e]
Bi(t) €D *\ {7} jenvooi  VEEIL, VieN.

Fix some i € N, and observe that, by the extreme value theorem [11, Thm.
27.4], there is an 7 > 0, that satisfies

Bi(t) ¢ B(Teo,7) Vtel.
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Thus, there is a finite M € N such that 7; € B(7,7) for all i > M, i.e.,

Bit) €D\ {Blro) Ulribienan} Ve

Thus, we can again apply the extreme value theorem to conclude that there is
a real r > 0 that satisfies

U B(@:(t),r) cD?\ {‘B(Tm,m U {Tj}je[LM]\i} Vi eI,

tel

and thus, in particular,

U BBi().r) D2\ {7} jenvoorss (B)

tel

Moreover, as, by the definition of r;,
ﬂi(t)GB(TOO,T'Z') A tGI,

we can choose r small enough, such that

UB(ﬁi(t),r) C B(Too,74)- (©)

tel

By the continuity of 3;, there is, for each ¢ € [t;,;41], an open interval |s; , s [C
[ti, ti+1] containing ¢, such that

Bi(t) € B(Bi(t),r) Vte[s;,s].

As I is compact, there is an M € N and a point set {fj}je[l’M] C [ti,tit1], such
that ;e ar [s;,s:;] = [t;, t;11]. In particular, s:; >S5 for all j € [1, M —1],

such that, simplifying the notation by writing s; instead of s;f,
J

U [sj—1,85] = [tis tia],
Je[L,M]
where sg := t;. Also, notice that
Bi(t) € B(Bi(t;),r) V= [sj—1,5;5], V] € [2,M].
Observe that that, by Theorem 1.12, the map

ev, : Hy — D?
h +— h(r)

has the path lifting property. For each j € [1, M], choose a homeomorphism
fi:D? = B(Bi(t)),r),
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that satisfies
fi(mi) = Bi(sj-1),
and consider the following commutative diagram

Fo()of

o

where HP is the space of homeomorphisms of B (51 (t5)s r) that fix the boundary
dB(Bi(t;),r) pointwise, and evg(n) is the evaluation at f;(7;). Clearly, ev?j( )

has thus the path lifting property, which allows us to construct, for each j 6
[1, M], a path g\ : [s;_y,s;] — Hy satisfying
99 (s;-1) = 1dpe, (D)
gD () (Bi(sj-1)) = Bi(t)  VtE[sj_1,s85], (E)
g(j)(t)|D2\B(ﬁi(tj),7') =1Id Vit € [Sj—la Sj]. (F)

Now, define a path g; : I — Hy piecewise by

Tdpe, te [0,
gi(t) := g(j)(t) o g(j_l)(sj,l) 0---0 g(l)(sl), tesj—1,8;] Vjel[l,M]
g™ (sar) 00 gW(s1), t e [tiy1,1],

and observe that, by (D), g; is well defined. Moreover, g; satisfies the condition
(i), because, by (B) and by the properties (E) and (F) of the maps g\9). The
condition (47) is satisfied by (C') and (F'), whereas the conditions (i) and (iv)
are given directly by the definition of g;.

For all n € N, write

Gn(=) =gn(=) o 0g91(-).
Observe that, by the properties (i) and (iii) of the maps g;, for every n € N;

Ga(0) = Idpe
G.(t)(1s) = Bi(d), Vi<nV tel, (@),

and that, moreover,

To finish the proof, we veriry the following fact.
Claim: There is a path G € C(I, Hy), such that

lim G, =G. (H)
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Then, by (G), it is clear that G satisfies
Voo 0 (G(=)) = (Bi)ien. (1)
Write G(t) := G(1 —t) for all t € I, and observe that both
K(G(1),-) and G

are paths in Hy with startpoint G(1) € PH, and endpoint Idp2 that, moreover,
satisfy B
K(G(1),t)(Tos) = G(t)(Tec) = Tow VtEI

by the property (i) of the maps {g;}ien and by Theorem 3.3 (¢). Thus, by
Lemma A.3,

{evoo o K(G(1), —)} = [evoo og(—)} in mFL,
i.e., writing (83;)sen for the inverse path of (5;);en,
T ([9(1)]) [(eveo) K (G(1), —)]
= [(evee):G(-)]
[(Bi)ien]-

Analoguous to the prove of Proposition 1.15, one can show that the map mo¢.
is a homomorphism. Thus, defining hg := G(1)7!, it follows that

7T0<P/oo ([hﬁ]) = [(52’)1'61\1] )

(I~

which proves the theorem.

To prove our claim (H), we proceed in two steps. First, we show that, for each
t € I, the sequence (G, (t) € Ho)nen converges in Hy. In a second step, we show
that the set {G(t)}+er depends continuously on t.

First step. Fix some t € I, x € D?, and observe that, for every n € N,

1Gn()(2) = Gna (D) ()] 1gn © Gn—1(t)(2) = Gna(t)(2)]|
< 2

by the property (ii) of the maps {g;}ic[1,n). Thus,
T 16, (6)(@) ~ Gt (D)) = 0.

which means that, (gn(t) (x))n oy IS a Cauchy sequence. By the completeness

of D?, this sequence thus converges pointwise in D?, which allows us to define
a map



To prove the uniform convergence of the sequence (gn(t)) recall that, for

alln € N,

neN’
gn(t)(z) =z v 95610)2\3(7'007%)7
by the property (ii) of g,, and
gn(t)(2) € B(Too, Tn) V x € B(Too,Tn)
by construction. As r;11 <r; for all i € N, it follows that, for every n’ > n,
(gn/(t) 0---0 gn(t))(a:) € B(Too,Tn) Va € B(Too,Tn), and
(gu(t) o 0gu®)(@) = = Vo € D 2\ B(Too, m)-
In other words, for all integers n,n’ with n’ > n,

1Gw (8)(x) = Gu(B)(@)]| = ||(gnr(8) 0+ 0 gnya(t) 0 Gu(1)) (@) — Gu (1) ()

for all z € D?. This means that, for every n € N,

1G()(@) = Gu(t)(@)|| < 2rns1 Yz €D?

which proves the uniform convergence of the sequence (gn(t))n N’ because

lim,, o 7, = 0. Thus, G(t) is a limit point of Hy, because Hy is topologized as

2
a subspace of p2P , endowed with the compact-open topology, that coincides
with the uniform topology by [Munkres, Thms. 46.7/8].

2
On the other hand, Hj is closed in D2D . For any sequence (h;);en in Hy that

2
converges to an element h € D2P , we know that
h € C(D? D?),
2
as C(D?, D?) is closed in D27 by [Munkres, Thm. 46,5]. By the same argument,

h~':= lim h;' € C(D? D?),

71— 00

ie.,

h € H(D?, D?).

As every element of the sequence (h;);en fixes the boundary dD? pointwise, so
does its limit h, which means that

h € Hy.

2
Thus, Hj is closed in D2’ , and thus, for every t € I,

G(t) € Hy vt e l.
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This finishes the first step of the proof.
Second step. Pick any t € [0,1), and an integer N, such that
t<in.
Then, by the property (iii) of the paths {g; }ien,
Gn(t) =GN (1) VY n>N,

which means that

G(t) =gn(t).
Thus,
Gl € C([O, 1),H0).

Let (tn)nen be a sequence in I that converges to 1. Given any € > 0, find a
k € N, such that 4r; < e. Choose some N € N that satisfies

tnE[thth v nZN,
such that, by the property (iv) of the paths g;,
9i(tn) = ¢i(1) Vn >N, Vi<k.

Consequently,
Gr(tn) = Ge(1) Vn > N. (J)

Moreover, note that, by the property (i) of the maps g;,
IG() — Ge(®)l| <2re Vel (K)

Thus, for all z € D?,

|1G(tn) () =M@ = [(G(ta) — G tn>+gk< n) = G(1) + G(1) — Gx(1)) ()]
L (G(tn) = Grlta) — G(1) + Gr(1 ) )l
< [|G(ta)(x) — gk(tn )M+ (16 () — Gr1)(@)|
g 4r, VYVn> N
< €

i.e., the sequence (G(t,))
Theorems 46.7/46.8],

nen converges uniformly to G(1). Thus, by [Munkres.

ge C(I,Ho),

which proves our claim (H). O
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Corollary 4.6. The maps ¢., poo and P, induce isomorphisms

To@he : ToPHoo =, (PBéO)

cc’

ToPoo : ToPHoo =, WlL(PB(;O)

cc’

and a bijection
T0Poo : ToHoo — 770((200 X 7T1L((PB:>O)CC)>

. . . .
where v 1 F — Fu is the inclusion map.

Proof. The result follows directly from Theorems 4.5, 3.7 and Proposition 4.2.
O

4.2 Algebraic description of PB

To algebraically describe the image of 7y, we first need an algebraic descrip-
tion of PBs. The most straightforward way to do this is to use the inverse
system

T1Sn+1,n

PBy —---—PB,y;, — PB,—---— PB

to decompose PB,, into an infinite semidirect product
PBy = X;>2U;,

where, for all i > 2, U; = Ker m15,41,,. In subsection 4.2.5, this is explained
in detail. However, it seems that, within x;>2U;, the image of myp is compli-
cated to describe. To avoid this difficulty, we introduce the braid groups of the

punctured disk PB], := wan(lo) 2\ 7o) for all n € N, and show that PB., is
the limit of the resulting inverse system

PB pp . " pp PB!
e PR, T ... PB,

According to subsection 4.2.5, this allows us to write P B, as the infinite semidi-
rect product

PBoo = KiGNUi,v
where, for all i € N, U/ = Ker ms;,,, ,,. Within this semidirect product decom-
position of PBy, the image of myp.o seems to be easier to identify (see section
4.3).
Observing that, for all n € N, PB, is isomorphic to the braid group of the bi-
infinite cylinder S' x R, which, by an easy argument, is isomorphic to the braid
group of the cylinder, we presume that the groups PB/, and U}, are well known
for all finite n. Nevertheless, the particular statements concerning these groups
that we need for the identification of Im myps in section 4.3 seem hard to be
found in literature. Therefore, we fully develop the introduction of these groups,
and identify their presentation using the presentation of the standard pure braid
groups PB,,. In particular, we suppose that the content of the present section
is essentially known.
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4.2.1 Introduction of the braid groups of the punctured
disk PB],

In this paragraph, we introduce abstract groups PB!, for all n € N, that we

identify later with m F,, the groups of n-strand braids in B 2\ Too
For all n € N, define an isomorphism ®,, of abstract free groups by

B, ({Aijh<icjzn-1.0" T heicn1}) — ({Aijhzici<n)
Aij — Ay VY1<i<j<n-—-1
51(71—1) — Ai,i—‘rl"'Aiyn VZ (S [177’)/* 1]

where &5; L is given by
@, ({Aijhsicicn) <{Ai»j}1§i<]§n*1{5z§n—1)}1§Z§n71}>
Aij Aij  V1<i<j<n-1
- - -1 .
A = A Az',z‘1+15z(n ' viell,n-2).

An— 1,n 55::—11) .

!

!

Identify the set {A; ;}1<i<j<n With the identical set of generators of the group
PB, for all n € N (cf. [Hansen, Lemma 4.2]), and define a projection map

an : {{Aijhi<ici<n) = [{Aijhi<icj<n : Tn| = PBny,

where r, is the set of the relations in PB,, with respect to this presentation,
which are given by

A j ifi<r<s<j orr<s<i<j
_1 . . .
ATA A~ A7'ain7jAr,j ifr<i=s< J
7,84 71,] 47T, S A A A A—lA—l f . .
rJ4s,j 44,5 s j 0 He=r<s<)
-1 4-1 —14-1 . .
AT,jAS,jAr,jAs,in,jAS,jA?”,jAs,jAr,j fr<i<s< i

(4.1)

This presentation is related to Artin’s by
Aij=0j105-2- 0ip1070,5 05 o
for all 1 <i < j (see [Birman, p. 20]). For all n € N, define
r), = Ef);l(rn)7
and, introducing the projection

q, <{Am‘}1gi<jgn—1U{5§n71)}1gign—1}> — ’{Ai,j}1§i<j§n—17 {557171)}199—1} : FH = PB,_,,
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observe that there is a commutative diagram

)

<{Ai,j}1§i<j§n71 U {5§n71)}1§i§n71}> ?n) <{Ai,j}1ﬁi<jﬁn> ’

q:l l \LQn

PB PB,

n—1

o
3

R

where N
®, : PB,_, — PB,

~

is the isomorphism of groups induced by ®,,.

4.2.2 Identification of m F] with PB].

Recalling the definition F), := F, (B 2\ 7o), we now identify the group PB,
with the fundamental group m F), for all n € N, as shown below.

Proposition 4.7. For each n € N, there is an element dA)n € Hy that satisfies

qAﬁn(Too) = T,, and
bn(z) = x Vo€ D\ B(To, [Tt — Tool)-
In particular, this map induces a well defined map of pointed spaces
On: (Fp1,Too1) —  (Fu,Tn)
(171’-”7;5”—1) — (;Z;n(xl)v"'7(;;'0('1:”—1)77-”)'

Proof. Observe that, as Theorem 1.12 holds for any choice for (7;);ep1,y], the
map

ev,:Hy — F,
h - (h(Ti))iE[l,n—l]Uoo

is a fiber bundle, and thus, in particular, is surjective. Choose any homeomor-
phism

f : D2 i B(Tooa HTn—l _TOOH)7

and consider the following commutative diagram

fo()of™t

H, HB

\
é?znl lev?
y
f

F’VL ? FnB(Tooy HTnfl - Too”),
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where HE is the space of homeomorphisms of B(8;(t;), ||Tn—1 — Too||) that fix

the boundary 0B (0;(t;), | Tn—1 — T ||) pointwise, and &vP is the induced map.
This shows that

é\\}fj : HOB — FnB(TOOa HTn—l - TOOH)
is surjective, which means that there is a map (EE in HP that satisfies
¢§(ﬂM) = Tn
oB(r) = m Vieln-1],
which, when extended by the identity map on D?\ B(7w, [|[Tn—1 — Tool|), yields
the required map ¢,. O

Proposition 4.8. For each n € N, the map ¢, : F),_y — F, induces an
isomorphism

T1Qp @ M1 (F;L_anq) = st (Fan)

Proof. Fix some n € N. According to [Birman, Thm. 1.2], there is a fiber
bundle

o

(F'r/z—la%—l) i (F'm,Tn) - (DQaTn)
(Ilv"'7xn—1) — (xlw"vzn—th)
(T1,...,Zn) — Ty

Moreover, recalling that

o o

m(D 2, 7,) = ma(D?

,Tn) =1,

the corresponding long exact homotopy sequence yields an isomorphism
Ty @ T (Frll—laTn—l) =, T (Fn,%)

Considering the following diagram of pointed spaces commutes

(F'yly,flalz;lfl) $ (Fn7 Z’L)

¢§;T% /
bn

(FrlL_lv 7;171) )
where the corestricted map
¢ = gn| (Fr-r T

is actually a homeomorphism, the induced diagram of fundamental groups yields
the required isomorphism. O
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Consider the diagram
T Fy, % mF,

PB,_, 2. pB,

n
o

Definition 4.9. By the fact that, for every n € N, both my ¢y, : m F),_; — m F),
and ®, : PB!,_, — PB, are isomorphisms of groups, we can identify, for
all n € N, the abstract group PB],_, with the concrete group mF),_; and the
isomorphism ®,, with w1 ¢,, such that the above diagram completes as follows

771¢n
mFE_ ——mF,

_iq) i_

PB], | —> PB,.

4.2.3 Canonical representatives of the generators of the
groups PB] for finite n

The following notation is used repeatedly in the sequel.

Definition 4.10. For all n € N introduce a subset of D? by

D, :=D 2 \ {{Tj}je[l,nfl] U B(TOO, HTn-',-l — TOOH)}

Here are two examples.

Definition 4.11. For alli,n € N with 1 <1 < n, write
Hgn) : (Di,Ti) — (F,T,)

Tr (Tl,...7T,L'_171‘,T1'+1,...,Tn).
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Proposition 4.12. For all integers i,j with 1 <1 < j, there is a loop
Ai’j S Q(Dj,Tj),
such that, for alln > j,
A= [ﬁ§n) ° Ai,j] = [Pn, cee aprj,nAi,jyper, cee 7p7'n]
in PB),. Also, for alli € N, there is a loop
(51' € Q(DZ‘,TZ'),
that satisfies, for all n > i,
s M 5] = 35
7 - [Hi o ]] - [p7'17"'7p7'i71a l7p7'i+1a"'7p7'nj|

in PBl,. Moreover, these loops can be chosen such that

A\i’j(t) S Dj NnB <Toov

1
5(71-71 +7i) — TOOH> Vi,j € N withi<j, Vtel,
and R

5i(t)EDimB(TooaHTi—l_TooH) VieN, Vtel,
respectively.

Proof. Fix some n € N, and pick any 7,j € N with 1 <14 < j < n. According to
basic braid theory, the generator A; ; of PB, 1 has a combed representative

(p7'17 e 7ij717Ai,j>ij+17 e 7p‘rn+1) S QFTL+17

where 4; ; € Q(D?,7;) is a loop that winds around the i-th strand , and doesn’t
wind around any other strand. An example for i = n —3,j = n is drawn below.
Clearly, A; ; can be chosen such that

A\i’j(t) S DjﬂB (Too,

1
5(71;1 + 1) — TOOH> Vi,j € Nwithi <j, Vtel, (A)

as required. Recalling Proposition 4.7 and Definition 4.9, notice that, in PB;, 1,

Ai:j pTl""7p7j—1’A7;,j?pT]‘+17"')pT,L+1)i|

IES

[ Prt1 ODrys -y Prt1 O Doy Prt1 © Ay, Pt 1 O Pry gy - - ,PTHH)}

Q¢n+1 p7'17 o 7p7'] 17A ,]apTJ+17 o 7p7'n):|

¢'n+1 |:(p7'17 cee aijqui,j,ijJru s ap‘rn):| )
where (x) follows from the properties of $n, because, by (A),

A; () € D2\ B (7o, |Tns1 — moll)  VEEL
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Thus, in particular,

~

|:(p‘r1a R 7ij717Ai,jaij+1a cee 7p7—”):| = Aq,)J in PB;L
On the other hand, for each i € [1,n], by Lemma A.9,
B, 1(0) = Ajigr1 - Aing1 ~ s 0102001+ 0,

in PB,, ;. Using standard representatives of the generators o;, one can show,
by choosing an adequate homotopy in QF, 1, that

~

2 —
03" " O0n—10p,0n—1"""0; = |:(p7'17 s ’pTi—176i7pTi+17 s 7p7'n+1ﬂ):|,

where 8 € Q(D?,7;) is a loop that winds around all strands from the i + 1-st to
the n + 1-st, and doesn’t wind around the other strands. An example for i =n
is drawn below. Moreover, d; can be chosen such that

3:(t) € DiN B (roo, [Tt — Tol) Vi€N, Vtel, (B

as required. Thus, in PB, 41,

1 (61")

Ajig1 - Ainr

= |:(p‘l'17"'7p7'i71?57;7p7'1'+17"'7an+17):|
|:(¢n+1 OPryse++s ¢n+1 Opﬂ717¢n+1 ° 5i> ¢n+1 OPriy1r--+> ¢n+1 Op‘rnap‘rn+1):|

= [Q¢n+l(p‘r1a--'apn—1751'ap7'7:+17'"7p7'n7):|

- (I)n-‘rl |:(p7'17"'ap7'1'7176i7p7'i+17"'7p7'n7):|7
where (x) is given the above given properties of (}En, because, by (B),

3:(t) €D 2\ B (Toos |7i — 7o|l)  VEET.

Thus, as required,

~

|:(p7'17 ce 7p7'ri7175i?p7'1'+17' . aan):| = 5(71) in PB;;

O

-~

The loops A\n_g,n and 31"), as well as the corresponding braids QH%”H)(An_g,n)
and Qm&nﬂ) ((5An) are shown in the following drawings, where the grey zones are
to avoid by the given conditions.
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n-3,n

ta-tl)

B(‘cm,

‘CP 3 ‘cn—2
Bt ffe,. =)
‘cn-S ‘cn—2 tn-l Tn rn+1 1:00
p Tn-3 p‘Cn-z an-l
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4.2.4 Inverse system of pure braid groups revisited

In this subsection, we investigate the maps ms, ,—1 : PB, — PB,_; and
18y no1 + PB, — PBj,_; in algebraic terms, i.e., using the presentation of
the groups PB, and PB], respectively. This allows us thereafter to con-
struct an isomorphism between the inverse systems {PB;,, 715, , }nen and

{PBTL, 7T1£n+1,n}n€N~

Proposition 4.13. For each n > 2, the maps m8, n—1 : PB, — PB,_1 and

18y no1 : PB), — PB],_; act as follows on the generators.
T8pn-1:PB, — PB,_
Aij — A; V1<i<j<n-1
Aip = 1 Vie[l,n-1]
7718;1’”71 : PB;L — PB;Z71
Aij — Ay V1<i<j<n-—1
Ain — 1 Vie[l,n—1]
&M sV vieln -1
57(171) — 1

Proof. Fix some n > 2. The statement concerning 718, ,—1 is proved in [Bir-
man, p. 23], whereas the action of ms;, ,, ; follows directly from Proposition
4.12, by looking at representatives of the generators of PB,. O

For all integers n’ > n > 2, introduce an isomorphism induced by conjugation

cn: PBy —s PB,

—1
b —  op_1bo, 4,

where 0,1 is the usual notation for a generator of Artin’s presentation of the
braid groups.

Lemma 4.14. For every n > 2, the following diagram of homomorphisms of
groups commutes.

’
T1Sn n—1

PB,_, ——=PB,_,

T1Sn,n—1

PBHHPanl
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Proof. Fix some n > 2. We prove that the diagram commutes by chasing each
generator of PB),_; through it. Recall that the set of generators of PB},_; is
given by {4; j}1<i<j<n—1U {55"_1)}ie[17n_1]. For the following calculations, we
need Artin’s relations of PB,,.

005 ~ 004 if |Z—]|

2
0;,0;410; ~ 0;410;0;41, 1 S ) S n—2 (A2)

At each stage, we underline the term to move, or to replace by an equivalent
one. For all 4,7 with 1 <1 < j <n — 2, the following holds in PB,,_;.

T1Snm—10Cn 0 Pp(Aij) = mTiSpn—10cn(4ij)
2 _—1
= T1Sn,n-1 Ocn(aj—l"'Ui+10'io'i+1~-~0'j—1)
2 _— -1
Wlsn,n—l(an—laj—l"'Ui+10'i0'i+1~-~0'j—10'n_1)
2 _—1 -1
= MSnn-1(0j-1- 001070, 0510010, )

= 7T18n,n,1(0'j,1"'O'7;+10'i2(72+11...Ujfl)
= msnmo1(Aig) = Aij = Pu1(Ai)
1 0mS), o1(Aij),

n,n—1

IES

where (x) is given by Proposition 4.13. On the other hand, if j = n — 1, then,
for every i € [1,n — 2],

T18n,n—10Cn 0 Pp(Ain—1) = TiSpn—10Ccn(Ain_1)

2 _—1 -1
= T18p,n—-1° Cn(O'n,Q cr 04410 Ui+1 .. .Un_2>

= Ti1Sp,n-1 (Un,lan,g cee UHlJ?UZ—;l e O 00, "
= Tisnn-1(Ain) =1=®p_1(1)

= &, ;0 Wlsil,nfl(Ai,nfl%
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where (x) is given by Proposition 4.13. Furthermore, for every ¢ € [1,n — 2],

(n—1)
T1Sn,n—1 © Cn © (I)n(az )
= T18n,n—1° Cn(Ai,i+1 s Ai,n)
-1
= 7r13n,7b—1(07b—1Ai,i+1 t Ai,nan_l)
* -1
= T1Snn—1(0n—10i0i41** On_300—200_100-10p—20n—_3...0;0, 1)

Al -1
= T1Snn-1(0i0it1 On—300n-10n—20n_10n—10n—20, 10n_3...0;)

A2 -1
= T1Snn-1(0i0it1  Op—30n—200-103_20n_10n_20, - 10n_3...0;)

A2 2 -1

= T1Sn,n—1 (Ui0i+1 1 0p—-30n-20, 10n—-20n—-10,_10pn-3 ... Ui)
_ 2

= T18n,n-1(0i0i41** On_30n_200_10n_20n_3...0;)

*

= T1Snn—1(Aiit1 - Ain-14in)

* (n—2)

=Aiip1Aiper = Pp1(0; )

P, oms,, 1 (6"7Y),

n,n—1
where (x) and (xx) are given by Lemma A.9, and Proposition 4.13, respectively.
Finally, if ¢ = n — 1, then,

("*1))

T18n,n—1©Cp O q)n(énfl

—1
= Wlsn,nfl(o—nflAnfl,nUnfl)
2 —1
T1Sn,n—1 (07L—1Un—10n—1)

= Tsnm-1(0p_y) =1=a, (1)

= &, 40 7T15In,n—1(57(:i_11))'
O
Proposition 4.15. The space F._ is the inverse limit of pointed spaces
F!_ =lim {F,’L, S%»”_l}neN'
Proof. Similar to the proof of Proposition 1.19. O

Proposition 4.16.
PB(;o = 71'1F;O = lim {PB;” Wlsilv"—l}neN .

Proof. Similar to the proof of Theorem 1.22 (see [5]), one can prove that the
maps

St Fp = Fp
are fiber bundles, such that, by Proposition 4.15, the result can be proved by
[12], similarly to the proof of Corollary 1.23. O

For every m > 2, define an isomorphism ¥, : PB!/ =, PB, by iterated

n—1
conjugation
v, :=cy0---0¢,0P,.
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Theorem 4.17. For each n € N, the isomorphism V¥, : PBl_, =, PB,,
induces an isomorphism of inverse systems

{Wubnzz : {PB}, 1, msl, 1 2}nen — {PBu Tisnn-1}nen,
which itself induces an isomorphim
U, : PB, = PB,,
on limits.

Proof. First, observe that the diagram

T18n,n—

PB, —“S<PB,_1

Cilﬁ Zlci

T1Sn,n—

PB, —“~PB,_,
commutes for every n € N and i € [1,n — 1], because, for each b € PB,,

ciomMSnn-1(00) = oi_1mi8na—1(b)o;
= 7T15n,n—1(01'—1b0i__11)

= MSnn-10¢(b),
where (%) holds, because 75y, ,—1 is a homomorphism, and
T1Spn—1(0i) =0; Vi€ [l,n—2].

By suitably putting together such diagrams for ¢ varying from 1 to n — 1, it
follows that the diagram

T1Sn,n—

PB, —% PB,_, (A)

CQ"'Cn—llg %\LCT“Cn—l

T18n,n—

PB, — "~ PB,_1

also commutes for every n > 2. Using Lemma 4.14, it thus follows that the
diagram

!’
T1Sp n—1

..—>PB, ,— " S PB, ,—>...— > PB!

®, | = B,_q |2 P2 | =

PB, PBy P2

Cn | R 7

PB, () PBn e
€20:+0Cp 1 | €200Cn—2 | = -

an T1Sn,n—1 PBn—l e PBQ
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commutes, which shows that the maps {¥,,},,>2 yield the required isomorphism
of inverse systems. Moreover, according to Corollary 1.23 and Proposition 4.16,
the upper and lower inverse system have PB/_ and PB as limits, respectively.

O

Recall that, by the comments on the beginning of the present chapter, there is

a commutative diagram
PH,
7%
Qe QF@Q,

OF!C

where ¢ is the inclusion map. However, it is important to keep in mind that
the map ¥, : PB/ — PB is different from the map my¢. In particular, the
diagram

7T0PHOO

> X
Yoo PB

PB.,

oo

R

does not commute.

Definition 4.18. For every n € N, define subgroups U, C PB, and U], C
PB; by
Uyn = Ker (m1$pn—1), U, := Ker (ms, ).

n,n—1

Proposition 4.19. For every n € N, the subgroups U, < PB,,,U), < PB], | are
presented as follows.

Un = <{Ai,n}ie[1,n—l]>v U, = <{Ai,n}ie[1,n—1]a67(Ln)>
In particular, these groups are free.

Proof. Fix some n € N. The presentation

Un = <{Ai,n}ie[1,n—l]>

is given in [Birman, p. 23]. Recalling that both 718,11, and mis), ., are
epimorphisms, the diagram of Lemma 4.14 can be extended to the following
commutative diagram with exact rows

’

T18n,n—1
/ ! i !
1 Un( PBn PBn—l —1
Cn+10<I>n+1U4Llu Cn+10‘1>n+1i’¥ ‘I’nlﬂ
T1Sn+1,n
1 Un+1C PBn+1 PBn 17
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where the corestricted map ¢,4+10Pp41 |U1/v/ is an isomorphism by the five lemma.
Therefore, according to the presentation of U, 41, U/ must be the free group
presented by

U, = < {(0n+1 o q)nJrl)_l(Ai,nJrl)}ie[l)n] >

Recalling the identities

o 2 _—1 -1 -1
Ajnt1 7= 0p0Op_1°+0i410;0,,1 "+ 0, 10,

for all 1 <14 < n, the generators are given by

(cns10 (I)n-i-l)_l(Aim-H) = Z}rl ° C;}A(Ai,nﬂ)
(I);Jlrl(arjlgnan—l tee Ui+1gz‘2‘7i_--11 e Jvtil‘j;lan)
q)v_Lj-l(Un—l T Ui+1(7i20i_+11 T a;il)
= ‘I)T_Lj-l(Ai,n)
= A,
for all ¢ € [1,n — 1]. On the other hand,
(Cn-H o (I’n-i-l)_l(An,n-i-l) = (I)r_Hl—l © Cv_Lil(An,'rH—l)
= (0, 0h0m)
= ¢7:-::-1<U?L)
= (I);-il-l(An,n-&-l)
= M,
O

4.2.5 Semidirect product decomposition of the pure braid
groups

Proposition 4.20. For each n € N, there is an isomorphism
po Uy % - x U — PB,
(U1, up) U U,
Proof. Fix some n € N, and consider the split short exact sequence

’
T18n n—1

1—-U,— PB, -5 PB,_,—1.

Thus,
PB’:L = PB;’L—lU”:H U’r/L < PB;N PB;z—l N UTIL = {l}a

which means that there is an isomorphism

PB., ,xU, — PB,
(byu) +—  b-u.
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Iterating this procedure yields the above defined isomorphism
pn Uy x -~ x U — PB,
(ula"'aun) = Up - Un.
O

We now recall some basic facts concerning iterated products. First, note that,
for any given n > 2,

n
Up X - X U;:HU{, as sets.
i=1

Moreover, the group structure of U] X --- x U/ is given as follows.

n n / n !
Xz Ui X i Uy = x4 Uy

((ui)ie[lm], (vi)ie[l,n]) — (ulvl, 1)1_111,2'011)2, .. 7U7:i1 PN fvl_lunrul . Un)'

That this structure is preserved by the map p, : x!—'!U/ — PB! can be
illustrated as follows, for any given (u;)ic[1,n) and (v;)ie[1,n)-

tin (W)icin - (V)ienm)) = tn(urvr,v7 ugviva, .o oty - vy o oy)
— ul...unvl...fun
= Mn((ui)ie[l,n])ﬂn((vi)ie[l,n])~

Consider the following inverse system.

7 Pnt1,n / /
c = XUy — XienmU; — - = U

As a set, its limit x;enU] is given by
XienU; = H U;.
ieN

Moreover, X;enU/ has a group structure induced by the group structure of the
groups in the inverse system.

Proposition 4.21. There is an isomorphism of inverse systems

yPnt1,n ’
e —> [Xie[l,n+1]Ui Em—— Kie[l,n]Ui _—

l‘n-%—llm #nl’;’
!
T1Sn+1,n

.e— > PB, PB!

where py, n—1 s the canonical projection. Thus, there is an induced isomorphism
of limits
oo : XienU; — PB._.
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ke
definition of the implied maps that each square commutes. Moreover,

Proof. Recalling that U, = ker 75, ,,_; for all n, it follows directly from the

lim PB], = PB.,
by Proposition 4.16. O

Similar to the maps p,, introduce maps of standard braid groups

wy 2 Uyx---xU, — PB,

(Ug, ..., Up) > U Uy
for all n > 2.

Proposition 4.22. For each n € N, the map u;, is an isomorphism. Moreover,
there is an isomorphism of inverse systems

Pn+1,n
o —— Kig i) Ui —= XicpnlUi —— - -

“flJrl\L& P‘;iu

T1Sn4+1,n
——> PB4 PB,

where ppy1 5 18 the canonical projection, which induces an isomorphism
S . =
Hoo - [><i22Ui — PBOO

on limits.

Proof. Fixsomen > 2. The proof of the fact that 4] is an isomorphism is similar
to the proof of Proposition 4.20. Moreover, recalling that U,, = ker m15,,5,-1
for all n, it follows directly from the definition of the implied maps that each
square commutes. Moreover, by Corollary 1.23,

lim PB,, = PBa.

O

4.2.6 Canonical representatives of the elements of the groups
{PB.}

Definition 4.23. Introduce a map

neN

ﬁoo:HQ(DiaTi) — (QF;O)C
€N

(Bidien —  ((B)ien),
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where, for each i € N, ] is given by

Bi(t) :== < Bs (2i (t —ti)) if t € [ti, tiya] Vitel.
T ift € [tiv1,1]

Also, write, for alln € N,

Iy H Q(Di,Ti) — QF)
i€[l,n—1]

(Bi)ieptn—1 — (BDien,n-1)»
where, for each i € N, the loop [, is defined as above.
Remark 4.24. For any given (B;)ien € [ [;eny 2D, 7), write

fioo (Bi)ien = (Bi)ien,
and observe that, for allt € I,

Bit) = B5(t) = i=j

Thus, (6))ien : I — Flo is a well defined map. Moreover, for each i € N,
Bl : I — D? is continuous, which is a necessary and sufficient condition for
(Bien : I — FE. to be a continuous map (see [11, Thm. 19.6]). This shows
that s : XieNQ(Di,TZ‘) — (QF(;O)F 18 1ndeed well defined.

Finally, note that the map i, just concatenates braids:

Lioo (Bi)ien = (B, (pry)iz2) * ((Pmﬂz, (Pri)iz3) * - - )
Recall that, for all n € N the group U}, is given by
U, = <{Ai,n}1§i<nv(sr(7,n)>'

Recall the maps
(n) (Dm'rl) - (Fr/za 7;1)

that we introduced in Definition 4.11 for all n € N and ¢ € [1,n — 1]. By
Proposition 4.12, there are loops {A\i,n}lgi<j§na {&}ie[l’n] in 5 2 that satisfy

Ay = [(") Ayl Vie[l,n-1],

5™ = [kMod;] Viell,n)]

Definition 4.25. For alln € N, define a map repy, : Ul — Q(Dn, Tn) by
repy, (Ain) = A\i,n Vie [1,n—1]
5,

repy;, (571”)) =
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on the generators, and, for any u € U/, by

repy; (u) == repy, (u1) * (repU;l (uz) * (... ))
where uy - - - uy, is the (unique) reduced word that represents u.
Proposition 4.26. For all integers i <n,
[KE") o repU;] = Idy;.
Proof. By Proposition 4.12, this follows directly from the definition of repy;. O

Proposition 4.27. For each n € N, the maps [repU, ()] and Wln;n) are mutu-

ally inverse isomorphisms.

frepu; (]
U’ =~ 71 (Dn, )

n <
T nif)

Proof. Fix some n € N, and extend nsln) to a well defined map
Egﬂ) : (D2 \ {{Ti}ie[l,n—l]Uoo}aTn) - (Féan)
T (7'1, e Ta—1, ).
Observe that, by [Birman, Thm. 1.4], the sequence

—(n ’
7'"1&51’,’) / T18pn, n—1

1l—-m (D2 \ {{Ti}ie[l,nq]u@}ﬁn) — mF, — 771F7/171 —1

is exact. Thus,

mRE™ 1 (D2 \ {{Ti}ie[l’n,uUw},Tn> =5 ker T18y o1 = Uy

Observing that the injection

i+ Dy = D\ {{rihiciin 1)U B(7oos st = 7aoll) } = D2\ {{7ibicqun 11000 }
is a homotopy equivalence, and that, moreover,

wlm;") = 7T1E§L") o 1,
it follows that ﬂln;") is an isomorphism. Moreover, by Proposition 4.26

minl?) o repy, ] = 1o,

which finishes the proof. O
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The following proposition gives a tool to find canonical representatives of finite,
[e]
and also infinite braids in D ? \ 7. (see Corollary 4.29).

Proposition 4.28. For each n € N, the following diagram of sets commutes.

[iep.n Ui —22 PB;,

o

(repul{)ie[l,n]l T[]

Hie[l,n] Q(DivTi) — (QFfz)c

Moreover, these diagrams induce a commutative diagram of limits.

[Tien Ul —Z— PB,

(repU{)ieNl T[.]

[iew (D, ) == (QFL),

R

Proof. Fixsomen € N. To see that the diagram commutes, pick any (u;)ie[1,n) €
Hie[l n] Uz/7 and Verify that

[ﬁn (rePU{ (w1), ..., repy, (un))]

= Wllﬁgn) [repU{ (w1)] -+ mk ) [repU;l (un)]

*

[(TﬁpU{ (U1), Prys - - - ,pm)} T {(pn,pm,l <o TePyr (un))}
(n

Uy -+ Unp,

where () is given by Proposition 4.26. This proves that the first diagram com-
mutes for all n € N. Moreover, these diagrams induce a commutative diagram
of inverse systems

{ Hie[l,n} Uilvpn,nfl}n@;% {PB,:L, Trls;’z,nfl}n

{(T‘fpul()ie[l,n]}nel\!i T{H}HEN

{An}n
{ Hz‘e[l,n] Q(Di’ Ti)7p"7"—1}n L;N{QFrlw Qsln,n—l}na

where we write py -1 : Hie[l’n] X; — Hie[l’nfl] X; for the natural projection.
Therefore, the induced diagram of limits also commutes, where

lim PB,, = PB,,, limPB/ = PB.,
by Corollary 1.23 and Proposition 4.16, respectively. O

The next corollary follows immediately from the proposition above.
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Corollary 4.29. For each n € NU oo, the map
reppp PB, — QF)
b = i ((repU{ (“ﬁl(b)))ie[l,nq])

satisfies
Moreover,

Im reppp, C (QF))..
In particular, this result allows us to attribute canonical representatives to the
elements of PB/, for any n € NU oo.

4.3 Towards an identification of Im 7y in X;enU;.

Recall that, in Theorem 4.5, we identified the image of mopl, in terms of repre-
sentatives in PB/_. Using the semidirect product decomposition

PBéo <'u7;o IxiENUi/-
of the preceding section, we now characterize a certain subset of Im myps, C
PB., within x;enU] (see Proposition 4.31).
Definition 4.30. For each i € N, define a map 0; : U] — N by

6;(b) := min {i,j € [1,i — 1] | the reduced word that represents b
contains the letter Ajyi}

for allb e U/.
Proposition 4.31.
(PBL),. D {um((bi)ieN) | Giien € [JUfst Jim 0i(b) = oo}.
€N

The question whether the inverse inclusion also holds seems to depend on
whether (PB’OO)CC is equal to mg (QF(;O)CC. Unfortunately, we did not solve this
problem.

Proof. Pick some (b;)ien € [[;cn Ui with lim; o 6;(b;) = oo. Fix some i € N,
and write b; as a word
bi =y ug

in the alphabet Gen(U}). As, by the definition of the map 6;,

0;(b;) = Jnin 0;(us),
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it follows by our choice of the point set {7;}en that
(4)

||7—91‘(bi)*1 - TOOH = ]ren[?“,}l{c] HTei(uj)*l - TOO”

Moreover, recall that
repy: (bi) = repys(u1) * (repUi/ (ug) * (repUi/ (uz) * (.. )))7

and that, by Proposition 4.12,
repU{(uj)(t) IS B(TOC, HTgi(uj),l — TOOH) Vtel,V jel,k].

Thus, by (A),
repy (bi)(t) € B(Toos IT0:(6)-1 — Tocll)  VE €I,V i €N.

In particular, this means that
lim repy (b)) (t) = 7o Vt €I,
1— 00 v

because lim;_,, 0;(b;) = o0, such that, according to Proposition 4.28,
O

.uoo((b')iEN) = [.aoo((repU{(bi))ieN] S (PB{)O)cc

We now can consider the following commutative diagram, which summarizes
Propositions 4.21 and 4.22 and Theorem 4.31. Some maps are tacitly (co-)

restricted, without changing the notation.
7{see Prop 4.31. 4.5}

ToPHa L:m (PBL.).. foo
. g
\ ocolrepyTic
/
(QFéo)CC
TFO‘P;C
#: '><z‘eNUi/

PB,
"& l Tloo o(repugﬂ
/
(QFL),

As we pointed out above, the image of myp seems to be difficult to describe
within the semidirect product decomposition X;>o2U;. We now underline this

by an example.
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Example. Pick an element (u;);en € X;enU/ given by

o, i=m,
Ui = .
1, i1#n

for some n € N. Clearly, (u;)ien € ps (PBgO)CC, such that, by Theorem 4.5,
there is a homeomorphism h € PH, such that

Wo@fx; [h] = Hoo((ui)ieN)-
In particular,
(Bi)ien == reppp,_ ((us)ien)

is a combed, convergent representative of mopl [h], given by

B = Sn, 1=n
(2 . b
Driy ©FM

i.e., all strands are straight, except the n-th strand that winds once around all
points 7; with ¢ > n (see p. 69). Writing,

(vi)iz2 = 3 om0 oo ((i)ien)
= uilo m12[(B;)ien]
= Mio_l [(ﬁi)ieN}
in x;>oU;, where ¢ : F/ — F, is the inclusion map, one can verify that (v;);>2

is given by
1, 1<n

Vi 1= .
Anﬂ" 1> n.

It might be difficult to find criteria to find out reversely that the given sequence
(vi)i>2 € X;>2U; is in the image of mo@c, i.e., in the image of m¢(PBL)
whence the advantage of working with the semidirect decomposition

cc’

rather than with the (more natural) semidirect decomposition

PBOQ = D(iZQUi.
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4.4 Generalization of the choice of 7,

Recall our choice of a particular basepoint 7, of the spaces Fi, and F_,_, given
in Definition 2.1. To conclude the section, we return to an arbitrary choice of
7.

o
Let 72 = (77 )ien € Foo be any infinite configuration with a single accumulation

o
point Too €D 2, i.e., lim; o0 T = Too, and such that
Ti # Too Vi €N,

and write

3

PH, = {heHo|h(r}) == vien}.
Also, write

or PHY — Q(F.,T%)

o0 T o0

h — (K(h7.)(Ti*))i6Na

similarly to the definition of the map ¢,. Furthermore, according to Proposi-
tion A.7, there is a homeomorphism h € Hy such that

h(r) =7

3

Vi € N,

which allows us to define pointed maps

o

U, : (PHy,ldp:) — (PHZ,1dp:) Uy (FoaoyTo) —  (Feo,T2)
f — hofoh™! ()ien — (h(ﬂﬁi))ieN-

Furthermore, write

o

Uy i (Hooldp2) — (HZ,1dpe) U, ([COO,TOC) = (Cx,T2)
f — hofoh™! (zi)ien] — [(h(ﬂﬂi))ieNL

where, in the lower diagrams, the maps W5 and Wy are suitably (co-) restricted.

Proposition 4.32. For any choice of T such that, in D?, the set {7} }ien

accumulates at a single point T2, €D 2, and such that
T # 1 VieN,
the following diagrams commute

ToPoo T0P oo

moPHso 1 Fo ToHs ———— moOC

WO\IJI\LZ Zlﬂ'l‘llz w0y | :lﬂjq/z
TP TP e

ﬂOPH;OH’iTl(FOO,T;) ﬂoH;OHW()(OCOO,T;)
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’ —
® TP

Uy oo
ToPHo ——=—> m F/_ ToH oo ——=> myOC",
WO\Dllﬁ :lﬂ'quz ﬂo\llll: :lﬂ'l‘yQ
1% — %
oY TP
* © / * © /
WQPHDOHﬂl(FOO,T;) 7T0H004>7T0(OCOO,TO*O),

where the maps U1, ¥y, U1, Uy are defined as above.

Proof. To prove that the first diagram commutes, we show that the following
diagram commutes up to homotopy.

PH, — 2= < QF,

\Dll: :\LQ‘I’Q

PHZ —2=> Q(Fu, T2)

Pick some f € PH, recall the contracting homotopy K : Ho X I — Hy, write
K(-,t):= K(-,1—1) for all t € I, and verify that

QWropn(f) = ((hoK(f.))m)),

12
—
—~
=
=
o
~
o
=

—
~—
SN~—
—~
)
*
~—
m
Z

= Yo 0 Pi(h),

where (x) is given by Lemma A.3, and (*x*) holds because h(r;) = 7 for all
1 € N. Similarly, one can prove that the remaining diagrams commute. O

This result generalizes the main results of this section to an arbitrary choice
for 7%, as we show next. Before, we note that the definition of the spaces

[ooh)

(QFw,T3)), and (Q(Fu, T%)),, makes sense for any basepoint 7% = (77°)ien,
as long as the sequence (7;%);en converges in 10) 2,

Theorem 4.33. The diagram on page 82 generalizes to any choice of T* =
(17)ien such that

lim 7 = 77,

11— 00

o
for some 7%, €D 2.

Proof. The result follows directly by suitably attaching the commutative dia-
grams given in Proposition 4.32 to the diagram on page 82. O
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Chapter 5

An application to
homoclinic tangles

In this chapter, we apply the injectivity of the map
TP - ToHs — mOCs

to prove a result that can be used for the study of homeomorphisms with a
homoclinic fixed point (see Theorem 5.13).
Moreover, we allow the basepoint 7o, € Fy be any configuration 7 = (7;);en
satisfying

lim 7; = 700

11— 00
for some 7o €D 2. Note that, under this condition, the map

T0Poo : ToHoo — T0OCx

is injective, according to Theorem 4.33. The proof of the main theorem requires
some preliminary results involving the winding number, which we introduce
next. For a detailed introduction to this subject, see [11].

Definition 5.1. Given any loop o € C(S',R?\ 0), define a loop
a:st - St

a(s)

le(s) |

Let a : I — R be a lifting of @ with respect to the standard covering map
q:R — S', and define the winding number of o by

S =

w(a) = a&(1) — a(0).

The following two propositions give alternative ways to define the winding num-
ber.
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Proposition 5.2. [11, Lemma 66.3] For any loop a € C(S',R?\ 0),

1 dz
wla)==— ¢ —.
2mi J, =
In other words, given a lifting o : I — R of the map H& : St — ST with respect

of
to the standard covering map q : R — S, then,

1 [Yda/dt
w(a) = —/ a/ dt.
2t Jo ()
Proposition 5.3. Given any a € C(S1,R?\ 0), let p : R\ 0 — St be the
canonical retraction, write A for the generator of w1 (S, *), where we choose
* 1= p(a(l)) for the basepoint of S*. Then,

[poal, = AT i 7 (St %),
where the sign depends on the choice of the representative of A.
Proof. This follows easily from the definition of the winding number. O

Three elementary properties of the winding number are given in the following
proposition.

Proposition 5.4. For all 3 € C(S',R?\ 0),

w(B) = —w(p),

where (3 is the inverse path of 3.
If two loops o, 3 € C(S',R?\ 0) are homotopic, then,

w(a) =w(p).
For all 3,y € C(S*,R?\ 0) that satisfy 3(1) = v(1),

w(Bxv) =w(B) +w(y).

Proof. The proof of the first two facts are given in [11, Lemma 66.1]. The third
fact follows easily from the definition of the winding number. O

Lemma 5.5. Let
I:T—C(S"R?)

be a path that satisfies
I'0) =I(1),

and such that T'(t) : S* — R? is injective for allt € I (i.e., such that, for all s, s’
in ST with s # 5", T(-)(s) — T(:)(s') is a well defined element of C(S1,R?\ 0)).
Then, there is an n € Z such that

w(T()(s) =T()(s) =n

for all s,s" € St with s # 5.
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Proof. Let I' : I — C(S',R?) be a path with the required properties, and pick
some s,s’ € S with s # s’. We show that the path

(P()(s) = D)) : T — R?
is homotopic to the path
(CO)M) =T()(1/2) : T — R?,

where S is identified with /1.
We assume that
5> 5,

where the converse case is proved similarly. Observing that
s+t(l—s)#£s +t(1/2—5") Vi1,

there is a well defined homotopy

G:S'xI — R*\0

(1) = TE)(s+t0—5) ~DE)( +11/2 - )
that satisfies
G(,0) = (T()(s) =T()(s)), G(1)=(T()A)=T()(1/2)),

as required. O

In the sequel, we consider loops (8; — 3;) : S* — D?\ 0 for some integers i # j,

where (3;)ien is in QF . As, for all ¢ # j, §;(t) # B;(t) for all t € I, (8; — 5;)
is indeed an element of C(S*,R?\ 0).

Lemma 5.6. For every (3;)ien € QF s,
w(Bi —Bj) =0 Vi,jEN, i#j

if and only if
[(B:)ien] = [(pr)ien] in PBu.

Proof. The “if”’-part follows directly from Proposition 5.4 To prove the “only
if’-part, pick any (8;)ien € QFs with

w(ﬁi 7ﬂj) =0 VZ,j S Na { 7é j7
and, by contradiction, assume that

[(ﬁi)ieN] # [(p”)ieN] in PB.

Recalling that PB., = lim,, PB,,, it follows from the basic properties of inverse
limits that, in PBs,

[(8:,85)] # [(Prir)]
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for some 4, j € N. Recalling that PBs has one single generator B (corresponding
to 0% in Artin’s presentation of Bs), there is thus an n € Z\ 0 such that, in
PBy,

[(8::8))] = B"
From this, it is easy to see that,
po (B = Bj)ls = AT inm(Sh %),

where A is the generator of 71(S1, %), and the basepoint of S* is * := p(3;(1) —
B;(1)). Thus, it follows by Prop 5.3 that

w(ﬂz - ﬂ]) = *+n,
which contradicts our assumption, because n # 0. [
In the sequel, we identify R? canonically with the complex plane C.

Definition 5.7. For each n € Z, and for each v € |sup,ey |7, 1[, define an
element py , in PHy, by

z, x| < r
x) = _
prr(2) xexp (—Qﬁinw> ;]| >

1—r
Observe that, for all possible choices of n and r, p, r|op2 = Id, and that, as
|7ill <r foralli €N,
pn,r(Ti) =7, VieN

Thus, indeed, p,,, € PHy. The following drawing illustrates how p;(r) maps
the given dotted line.

Writing

Hy = {h € Hu | {h(7i)}ien = {7i}ien}

for the space of homeomorphisms that fix the set {7;};cn, but that don’t neces-
sarily fix the boundary 0D?, we make the following observation.
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Proposition 5.8. For alln € Z and r € |sup;ey |7, 1],
[pn,r] = [IdDz] mn Woﬁoo.
Proof. Foralln € Zand r € | sup;cy ||7i]|, 1], the right adjoint of the homotopy

R.,:D*xI — D?
z, =) <7
(z,t) 1 ||z

xexp <_27TintTrH> s ]| >

is a path in H. from Pn,r to Idp2. O

Proposition 5.9. For alln € Z and r € |sup;cy ||7:]], 1],
w(K(pnﬂ”? )(Tl) - K(pn,ra )(T])) =N VZ’] € N7 { 7é .7

Proof. Fix some n € Z and r € | sup;cy ||7:]|,1[, and define a path A : I — Hy
by

z exp( — 2min(1 — t)), ||| <r

T exp (—27rin(1 - t)”fl£> , |zl >

-

A(t)(x) :== {

for all t € I, x € D?. Note that, for all n € Z,
A(O) = Pn,r; A(l) = Idp2.

Observing that K(pn’r, ) : I — Hy is a path with the same start- and endpoint
as A, it follows from Lemma A.3, that there is a homotopy

I:S'xI— Fy
from eveo 0 K(pp r,-) to evos 0 A. Its adjoint is a path
v = (Vi)ien : I — QF

with
,Y(O> =€V O K(pn,’r‘v ')7 ’Y(l) — €V © A.
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It follows that, for any i,j € N with ¢ # j, and r € ] sup;en |17, 1 [,

w(K(pn,m )(Tz) - K(/)nﬂ‘» )(Tj)) = ( (0) V5 (O>)
= w(m(1) - (1))
= w(A()(m) = AC)(7)))

dt

_ L/ d(A() (1) = AC)(7))) /dt
2mi Jo o AC)(T) = A()(75)

1 Ld(( —Tj ) exp(—2mint)) /dt

B 2772/0 — 7;) exp(—2mint) dt

1t (—27rm)(ri — 1) exp(—2mint) it
2w, (1 — ;) exp(—2mint)
1t
= — —2mindt
21t Jo
= —n7

where (%) is given by the fact that
w(yi()) I —Z

is a continuous map when [ has the metric- and Z has the discrete topology,
and thus is constant. O

Definition 5.10. Let (s;)ien be any list of points of S* such that

lim s; = 1.
1— 00
Definition 5.11. Define a set
o
A = {oz : 8 =D ? | a is a homeomorphism onto its image, and

{alsi)}ien = {ribien .

and endow it with the subspace topology A C C(S*, 10) 2.

The main theorem of this chapter, Theorem 5.13, can be seen as a first appli-
cation of our preceeding results on infinite mapping class groups and infinite
braids to the study of a particular subspace of H, that is of interest in fields
other than low-dimensional topology. To give a typical example of a case where
the theorem can be applied, let f € FOONbe a diffeomorphism, of which 7 is
a hyperbolic fixpoint, and let Wi and W} be the corresponding stable- and
unstable manifolds, which are defined by

Wii={zeD?| lim | (2)~ru]| =0}, W} :={eeD?| lim ||f(z)~7|| = 0},
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respectively. According to [9, Thm. 10.1.6], there are C'-embeddings Wi
I —D?and Wi I ~D 2, such that

wi=Urrewy Wi =Urfewy.

ieN i€N

Write W; [, y] for the section on W]“? between any points & and y on W; (as

W; does not intersect itself, this notion makes sense), and similarly for fVVJF As
f 1s differentiable, the following is easy to prove.

Proposition 5.12.
For any x,y € W;, W;[x,y] is a C' embedding of I in D2
For any x,y € W}L, W}‘[x,y] is a C' embedding of I in D2
Moreover, for any points z,y in W; N W}‘, such that
Wile,y) N Wilz,y) = {z,y},

the union W; [, y] U W}‘ [,y] is an embedding (not differentiable in general) of
St in 10) 2, .
In particular, assuming that 70 is a primary intersection point of w; and
Wi, ie,

W;[TOO,TO] N W}‘ [Too, T°] = {700, 7°}

(see [15]), it follows that there is an embedding o : St — D 2, such that

Im o= W;[TOO,TO] U W}‘[TOO,TO].
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Now, let g € H, be another diffeomorphism with homoclinic fixpoint 7., and

primary intersection point 79, and let 3 : S' — D 2 be its associated embedding,
defined similarly to «.
Now, assume that the orbit of 7° with respect to f and ¢ coincide with the set

{Ti}iENa i'e'a o o
{fl(T )}iGZ = {gl(T )}iGZ = {Ti}i€N7
and, furthermore, that
{a(si) }ien = {B(s1) } e
for some sequence (s;);en in S*, such that, moreover,

lim s, =1,

11— 00

i.e., (8;)ien satisfies the condition of Definition 5.10. Then, in particular,
a, B e A
Under these assumptions, Theorem 5.13 can be applied.

Theorem 5.13. Let f,g € Ho.. If there are elements o, 3 € A such that

o] = (8], [foal=l[gof]  inmA

Then, o
[f1=1g9] €moHu.
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Proof. Pick any f,g € H, and let o, 3 : S* D 2 be as required. Moreover,
by Proposition A.2, we can assume that

f,9€ Hye

According to Proposition 5.8, it suffices to show that there is an n € Z and an
r € I, such that

[g] = [f o pn,'r] in WOFOO
Claim: There is a homeomorphism k; € PH,, that satisfies

kiof=a, [k]=[d inmPHx. (A)

Proof of the claim:  Observe that, as a and § are homeomorphisms onto their
image, there is a homeomorphism

Impg
B(s) Vs € St

3
2
T I

a(s)
Consequently, by the Schoenflies Theorem (e.g. [7, Cor. 9.25]), there is a
homeomorphism k € H(D?) that satisfies

anzﬂ.

As we now show, we can choose this homeomorphism to be in Hy, i.e., such that
it fixes dD? pointwise. Choose any rq € 0, 1[ such that

Ima UImG C B(0,rg).

As the Schoenflies Theorem also holds by replacing D? with B(0, (), there is a
homeomorphism k € H(B(0,rg)) such that

anzﬁ.

Now, define a homeomorphism as follows, where we use polar coordinates.

~

k:D?* — D?
R {£||m|,arg T+ (arg k(ro,arg x) — arg x)ll%lfo”) , x|l = ro,
k(z), [[#]] < ro.

This map is well defined, because, for all z € D? with ||z|| = 7o,

k@) = (|el,arg k(ro,arg x))
(Illl, arg k()
(IIk(@)]], arg k(x))
k(@),

[
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where (*) holds, because k maps 0B(0,rg) onto itself. Moreover, observe that,
as Im o, Im 8 C B(0,79),

koa:an:ﬂ. (B)
Also, note that k|gp2 = Id, i.e., k € Hp, and that
k(r;) = k(a(s;)) =B(s;) =7 VieN,

which means that
ke PH.

Now, recall that
[a] =[B] inmA,

i.e., there is a path Ay : I — A such that
A(0)=a, M(1)=p5 (O)
Thus, it follows by the definition of A, that
(A1()(5)) sen = (Pr) s € QFoc (D)

Furthermore, define a path

Ay: T — C(Sl,lo)z)
t — K(k,t)oal),

and observe that it satisfies
Ay(0)=K(k,0)oca=koa =0,

and
A1) =K(k,1)oa=Idoa =q.

Recalling (C), this allows us to define a path A : I — C(S?, D 2) by
A= A1 * A27

which, in particular, satisfies

As A(t) : St Hﬁ 2 is a homeomorphism onto its image for all ¢ € I, Lemma 5.5
applies, which means that there is an m € Z such that

w(A()(s:) =A()(sj)) =m Vi, j €N, i#j  (E)
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Now, observe that, in PB.,

[Poc(Prmre ©K)] = [Poo(Pm,ro)] [P0 (K)]
= [ o )0) ] [ (G ) ()]
= [(K o )0) ] [(820)(51)) e
(B s V7)) ] [(010)(500) ] [(A20050)) ]
i (TR 1) e (O TCH) e I )

where (x) is given by Proposition 1.15. Also, for any integers ¢ # 7,

(K (P> )(75) 5 AC)(55) = K () (75) % AC)(55) )
= (K (pmros ) (73) = K (b, )(72)) % (AC)(51) = AC)(59))
2 (K (pmrar )(T) = K (s ) (7)) + w(AC)(s:) = A()(51))

* 3k
=m-—-m=0,

where (x) is given by Proposition 5.4, and (xx) follows from Proposition 5.9 and
(E). Using Lemma 5.6, this allows us to conclude that

[onclomrs o 0] £ [(K(pmrer V) o] [(AC)(50)) ]
= (K ) #AOs)@))
= [(pﬂ)ieN] in PB.
Thus, recalling that myp is injective, it follows that
[om.re 0 k] = [Id] in moPHo.

Writing
K1 = Pm,r, O K,

it thus follows that
kKiofB=a, [k]=[d innPHs,
which proves the claim.
Furthermore, by the fact that
[foa]=[gef]  inmA,

we can show in exactly the same way as above, that there is a homeomorphism
k9 € PH., that satisfies

kpo(foa)=gofB, [rk]=[d] inmPHx. (@)
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Now, write h := g lorgo fori, observe that h € PH,, because k1, ko € PH.,
and g~' o f € PH,, because, as [a] = [3] in 7.4, there is, for each i € N, a
j € N with

i = a(s;) = B(s)),

such that, moreover,

f(m) = foa(s;) = goB(s;) = g(m),
where (x) is given by the fact that [f oa] = [go 4] in mp.A. Furthermore, notice
that

hof3 !

okgo fokryof

g
g_l okgo foa
g—l

o =

ogof

B.

Also, the right adjoint K : I — C(S*, D?) of the homotopy
K(h,)oB:S8'xI — D2

(s,t) +— K(h,t)(B(s))

satisfies the condition of Lemma 5.5, which means that there is an integer n
such that, for all i,j € N with i # j,

w(E (h, ) 0 B(si) = K(h, ) 0 B(s;)) = w(E (R)(-) 0 f(s:) = K(B)() 0 B(s;)) = n.
Thus,
(K () (72) % K (P ) (73) = K () (7) % K (P )(75))
= w((K(h’ )(Tz) - K(h7 )(T])> * (K(pn,rov )(Tz) - K(pn,rov )(TJ)))

= w(K(h, ')(Ti) - K(h, )(Tj)) + w(K(Pn,roa ')(Ti) - K(Pn,roa )(T]))
=n—n=020,

where (x) is given by Proposition 5.4. Thus, according to Lemma 5.6,

TP oo [h © pn,ro] = [‘POO(h)] [‘poo (pn,ro)]
= [SDOO(h) * Poo (pn,m)}

= | (K(h, ) () * K(pnry, ) (:))
( )zeN:|
- {(pn)ieN} ;

where (%) is given by Proposition 1.15. Moreover, as mppe is injective by
Theorem 3.7, it follows that

[h o pn,ro] = [Id] in mgPHs.
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This finishes the proof, because then,

12

[Id] = [h o pn,,.o] = [gfl 0 K20 fOK1L 0Py g ltofo pn,,.o] in moPH .

O
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Appendix A

Various technical results

Proposition A.1. For all n € N U oo, the spaces F,, and C,, are pathwise
connected.

Proof. We prove that F), is pathwise connected for all n € NU co. If, for some
n € NUoo, T and g are points in C,, then any path in F,, between representatives
x,y of T and g, respectively, projects to a path in C), between T and %.

Pick two points © := (2;)ien, ¥ := (Yi)ien € Fs. We prove by induction that

there is a path in F, from x to y. Clearly, there is a path v, : I — Fj :B 2
from x7 to y;. Assume that, for some n > 1, there is a well defined path

Ly = (Vi)ie[l,n] I — F,

from (z;)ieq,n] 10 (Yi)iep,n)- As both {2;}icqn ni1) and (ys)iep,n41] are sets of

o
pairwise distinct points, there is, by the separability of D 2, a real number £ > 0
such that

a1 €02\ J B(io), wn €D\ |J Blune),  (A)

ie[Ln] iE[l,’rL]

and

(| Bie)=2, () Bly,e)=2. (B)
i€[1,n]

1€[1,n]

Moreover, by the continuity of the paths {7; }ic[1,n], there is a 0 < t< 1/2 such
that, for all ¢ € [1,n],

Yi(t) € B(wi,e) V€ [0, vi(t) € Bys,e) Vte[l—t1]. (@)

— o

As, by (B), D2 \Uie(1,n B(@i,€) is homeomorphic to D 2\ Uien,n) ©i» which is

a pathwise connected space, it follows that D 2 \Uie[1 n] B(x;,€) too is pathwise
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connected, which, similarly, also holds for 5 2\ Uie[l’n] B(y;,e). Consequently,
by (A), there are paths

'72+1 : [Oaﬂ —D?, ’y,llJrl : [1—?,1] —D?2

that satisfy
'72+1(0) = Tn+1, ’7711+1(1) = Yn+1
and
72+1(7?) = %114-1(1 - tA) =7,

where Z is some point in D?2 \Uiep n B(zi,€)UB(y;, ) that, moreover, satisfies
z¢ U Urno. (D)
i€[l,n] tel
Observe that there is a well defined path

Tnt1:d — DQ

,ngrl(t)v te [Ovﬂ
t — 7T telt,1—1

Tasr(t), tE-E1],
from zp41 t0 Ynt1, such that, by (C) and (D),
Tnt1(t) #7i(t) Vi€ [l,n],Vt e,
i.e., there is a well defined path
Cog1 = (Vi)ieptntr) o L — Faga
from (2i)ici1,n41) t0 (¥i)ie[1,nt1]-

By induction, we thus can conclude that there is a sequence of paths

(Fn : (Ia Oa 1) - (Fn7 (Ii)ie[l,n]7 (yi)ie[l,n]))neN

that constitutes a map from I to the inverse system {F},, Sy+41,n}nen, i.e., for
each n € N, there is a commutative diagram

I
o\
Sn+1,n
Foy1—————F,
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Consequently, by the universal property of the inverse limit F,, there is a map
I': I — F,, that makes the diagram

I
|
// ! F\
/ v T,
Fyo

Soo,n+1 Soo.n

AN

Fn+1

Sn41,n

Fo F,

commute for all n € N. Moreover, I'(0) = =z, and I'(1) = y, because I',(0) =
(%i)icp1,n) and T'n(1) = (Yi)ic1,n) for all n € N. O

Let the basepoint 7o, € F., be as chosen in Definition 2.1, and recall that H
is the subspace of H(D?, D?) of homeomorphisms that fix the point set {7;};en
as a set. Also, recall that
0; = |ITi — 70|l VieN.
Proposition A.2. For each f € H,,, there is an element fe H,, such that
[f1=1f] in mHe.

Proof. Pick some f € H,, and, in polar coordinates, extend as follows to a
map

fext : B(700,2) —  B(70,2)
(o) o f(r p), 0<r<1
v (reo+ (arg (F(1L0) —0) 2= 1), 1<r<2,

where arg (7, p) := @ for all (¥,$) € B(7x,2). Recalling that f induces a
homeomorphism

flop2 : OD* = 8D,

it can be easily verified that feyt is a well defined element of H (B(Too, 2), B(Too, 2))
that satisfies

fextloprom =1d. (4)

Furthermore, define a continuous map k: I — C(DQ, B(Too, 2)) by

k(t): D* — B(Ts,2)

{(wx 0<r<ao

(r+ti=2.0), a<r<i
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for all t € I. Observe that x(t) is an embedding for all ¢t € I, and that, moreover,
£(0) =Idp2, and k(1) € H(D?* B(1,2)).  (B)
As, moreover, R(t)|m = Id, it follows that

k() o foxt 0 K(t) (i) = f(m) VteI,Vi€N,
Thus, there is a well defined map
I — Ha
t = KN(t) o foxt o k()

that satisfies I'(0) = f, and I'(1)|sp2 = Id, i.e., I'(1) € Hy. Writing

~

F=101)
finishes the proof. O
Lemma A.3. For anyn € NUoo, let T',TV : I — Hy be paths such that
') =1'(0) € PH,, (1) =T1'(1) € PH,.
Then,
[ev, oT] = [evg o] in 11 Fy.

If, moreover,
L(t)(Too) = I'(t)(To0) = Too VL €1,

then,
[evy oT] = [ev, o T']  in m F),.

Finally, for any n € NU oo, let I, TV : I — Hg be paths that satisfy
'0)=T1'(0) € H,, () =r'(1) € H,.
Then,
evpol ~, e, oV inmC, (ormOCs, ifn = o).

Proof. In this proof, we use a contracting homotopy K : Hy x I — Hy with the
properties given in Theorem 3.3. To prove the first statement for any n € NUoo,
pick any I', TV with the required properties. Define a map
H:IxI — F,
(s,t) +— evy,ol(s)o K((I(s)~'oI'(s),t),

and observe that, for all ¢ € I,

~

H(0,t) = ev,ol(0)oK((I'(0)"'oI"(0),t)
= ev,ol(0)o K(Id,t)

= ev,oI'(0)

7—7:7/7

*
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and
H(1,t) = ev,ol(1)o K((T(1)~"oT'(1),t)
= ev,ol(1)o K(Id,t)
= ev, oT'(1)
= Ty,

where (%) is given by the property (f) of Theorem 3.3. Thus, identifying (I, I)
with (S1,0) leads to a well defined homotopy

H:S'xI — F,
(s,t) = H(s,1),
which has the required properties, because
H(-,0) =ev, oT'(+), H(,,1)=ev,oD(").

Moreover, if both paths I', I : I — H{ satisfy

I'(s)(Too) = Too VYVt €I,
then, it follows from Theorem 3.3 (c) that

L(s)o K((T'(s) ' oI"(s),t) (7o) = Too Vs, t €1,
ie., H is a well defined path in F/, because
I(s)o K((T(s) ' oI"(s),t)(2) # Too Vx € D> Vs, t € 1.

The remaining statement is proved similarly. O
Lemma A.4. The topology of the group of infinite permutations Yo, is metric.

Proof. As Y is topologized as a subspace of the mapping space NV, where NY
has the topology of pointwise convergence, it suffices to show that NV is metric.
Endow N C R with the subspace topology (i.e., N has the discrete topology),
and endow [[;cyN and J[,.yR with the product topology. Then, [],cyN is
a subspace of [[,cyR, and, as [[;cyR is metric by [11, Thm 20.5], [[;cy N is
metric too. With our choice of the topologies, N is homeomorphic to [LienN
by [11, p. 282], which means that NV is metric. O

Remark A.5. Choose anyn € N, orn = oo, and let v = (V;)ien € C(I, F,) be

a path such that p,v(0) = p,y(1) =T, i.e., ppy € QC,. As usual, we write

Py == [(72’)2’6@] € QC,y,

where [y] denotes the orbit Xy, (Vi )ien. When we consider the class of vy in m1Cp,
we write again

[v] = [(7i)ien] € mCh,
where [y] denotes the orbit in m Cy, of the orbit in QC,, of .
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Lemma A.6. Pick anyn € NUoco. If a pair of paths 1,72 € C(I, HO) satisfies
71(0) =72(0) € PH, and (1) =2(1) = idpe,

then,
[evﬂ(yl)] = [evn(’h)] € mF,.

Moreover, any pair of paths v1,7v2 € C((I, 0,1), (HO,Hn,Idpz)), such that
71(0) = 72(0),

satisfies
[E0n(71)] = [EWn(12)] € mCh.

Proof. Recalling the contracting homotopy K : HyxI — Hy, there is an ambient
isotopy given by

L:C(I,Hy) xI — C(I,H)
(7,8) +— <t — K(’yQ(t) o (yl(t))fl, 1-— 5) o'y(t)).

Clearly, L(v1,1) = 72, and L(v,0) = v for all v € C(I, Hy). Also, L(v;,s)(0) =
~i(0) and L(v;, s)(1) = (1) for all s € I, where ¢ = 1,2. It follows, that

evpL(y1,—): I — QF,

is a path in QF,, from ev,,(y1(—)) to ev,(v2(—)). This proves the first assertion.
The second assertion is proved similarly. O

Proposition A.7. For every configuration (z;)ien € Fs that converges to a

[e]
point oo €D 2, i.c.,
lim z; = 2,

there is an element h € Hy such that
Proof. Pick some (z;);en € Foo such that

lim z; = 2,
11— 00

for some o, €D 2. Observing that there is an element h; € Hy such that
hl (Too) = Too»
it remains to prove the existence of an hy € H that satisfies

hg(hl(Ti)) = T; Vi S N.
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The existence of hy allows us, without restricting the generality, to assume that
Too = Too-

For each ¢ € N, write

ry i= asupmax (|70 = 2ill 70 — 7).
Jj=i

and let a; : I — ﬁ 2 be a continuous path satisfying the following conditions.
(i)  @(0) =
(i) ai(1)
(wid) @ N ({xj}je[l,ifl] U {Tj}j2i+1> =0

1
(iw) a;(t)Cc B <7-007 2ri> vt e l.

%
Ty

tl = 07 tz - %VZ > 27
k=1
and define a path set (a;);en by
Ti VYt € [0,ti55]
) = 48 (2 (1 1)) Ve [t ]
ZT; ,Vt S I:tlgika 1

By the properties (i) — (iii) of the path set {@;}en, it follows that these paths
define a well defined path («)ien : I — Fio from (7;)ien to (z;)ien-
Note that, by the property (iv) of the paths a;,

lim o;(t) =700 YVt €I,

because lim; .o, r; = 0. As in the proof of Theorem 4.5, this allows us to show
that, for each ¢ € N, there is a path g; € C((I, 0,1),(Ho, Id, PHOO)) that satisfies
. ai(t) Vel ifj=i
(i) gt)(r)=4 " T
T Vtel j#1i, and
(”) gi(t)|D2\B(Toc7’l‘i) =1Id vtel

1
(Z’L’L) g (t) =Id Wt S ti27



Now, write
Gn(=) =gn(=)o---00g1(=)
for all n € N, and observe that, for every n € N,

G.(0) = Idpe
Go(t)(1i) = ai(t) Vi<nV tel

by the properties of the maps g;. Moreover, one can show in analogy to the
proof of Theorem 4.5 that the sequence G, converges uniformly, which means
that there is a path G € C((1,0,1), (Ho, Id, PH,)) such that

lim G, = G.

n—oo

By the properties of the paths G,,, it follows that G satisfies
g(l)(ﬂ) =x; VieN.
Thus, writing he := G(1) finishes the proof. O

Next, we present two lemmas that are used in the text. The proof of the first
lemma requires long calculations, whereas both lemmas can be understood quite
easily by geometric interpretation.

For every n > 1, let {ai}ie[lyn,l] be the set of generators of the group B,, with
respect to Artin’s presentation, and, for every pair of integers i, j € [1,n] with
i < j, write, as usual,

i . . e . 2 .. _1 _1
Ai,j = 01052 0i110;0,, 0; 90, 1.
Recall Artin’s presentation of B,

005 ~ 004 1f|’L—]| 2,1§i,j§n—l (Al)
(A2)

>
<i<n-—

0i0i4105 ™~ 0i4+10;0;41, 1
Lemma A.8. For everyn € N and i € [1,n—1], the following two word classes,
with respect to Artin’s presentation of B, , are equal.

-1

-1 2
Aip ~ 0, .0, 900 10n—2...0;.

Proof. Fix some n € N. Observe that the case i = n — 1 is trivial, and fix some

i € [1,n—2]. To prove the required result, we need the following equivalences in

B,,, which follow immediately from Artin’s relations, valid for all k,1 € [1,n—2]
with |k — 1] > 2.

oty ~ oot Vk—1>2 (A

—1 -1 -1 -1 _-1 (B

9% 9k+1%  ~ Tk+1% k41
(C

-1 - -1 -1 -1
Ok+1%  ~ 9k k419 Ok+1- (D

—1
Ok+10k  ~ 0 Ok10kOk41

)
)
)
)
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We need to prove that

2 _—1 -1
On—1"""0i410;0;41 """ Op_

-1 -1 _-2
10; .0, 90, 210p_2...0;~ L.
For every j € [i,n — 2|, define
o 2 -1 -1 1 -1
M; = op_1... 0j41070,10; 0,100,
-1 -1 -1 -1 -1 -1 -2
T1t10% Ohr20kat  On-10n-20p, " 10n—20n_3.
We claim that, for every j € [i,n — 3],
-1
MjNUj Mj+1. (E)

The claim is proved as follows, where at each stage, the term in brackets is
replaced by an equivalent one.

_ oo -1 _—1] -1 _—1
M; = an,l...ojﬂaj[ajﬂaj }aj+20j+1...

-1 _-1_-1 -1 -1 -1 -2
Tk4+1% k42941 In—19n—-29n-19n—20n-3

D ] N P R -1 -1
Op—1--- 04105 |0; 10, 054101901 -
-1 -1 -1 -1 -1 -1 -2
Ok+1% Ok42%%+1 " 90190200 -19n-20n-3
c
~Y

-1 -1 _—1 -1 -1
Un—l--~aj+20j O'j+10'j0'j+10'j+10'j aj+1aj+20j+1"'
-1 -1 _—-1 -1 -1 -1 _-2

T%+1% Ok42%%k+1- - Tn-19n—20n-10n—20n-3
~ O Oiroo ol ot ot

-1 -1 _-1 -1 -1 -1 _-2

O%k4+1%% Ok42%%+1 " On—190-20n-19n—20n-3

IESRES

-1 2 -1 -1
O'j Onp—1 "'UJ+2aj+10j+20j+1

-1 -1 _-1 -1 -1 -1 -2
T%,+1% Ok42%%k+1- - On-19n—20n-19n—20n-3

-1
O'j Mj+1
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Also, observe that

AL%B =

Mmool D

)

)

Now, we can

| I e

dm mm W™

2

2 -1 -1 -1 -1 _-2
Unflan*20n73[Un—20n—3}Un—lan—20n—lan*20n*3
-1 -1 -1 -1 -2
On—-10n—20n-30,,_90, _30n_-20,_ 10, 90, _10n—20n_3
-1 -1 -1 -1 _—1 -1
On—10n—20n—-30y,_20y,_30n—2|0,_10y,_20,_1|0np_10n—20n-3
-1 -1 -1 -1 -1 -1
On—10n—20n—-30y,_ 90, _30n—20y,_ 90, 10, 20y, 10n—20n-3
-1 -1 -1 -1 -1
On—10n—20n—-30y,_20y,_3|0,_10,_20y_1|0n—20n-3
-1 -1 -1 -1 _—1
On—10n—20n—-30y,_90,_ 30, 20, 10, _20n—20n—3
-1 -1 -1 —1
On—10n—20n—-3|0,_20,_30,_2|0,_19n-3
-1 -1 -1 -1
On—10n—20n—-30y,_30, 20, 30, 10n-3
-1 -1 -1
On—10n—20,_90y,_30,_10n-3

-1 -1
On—-10py_30,_10n-3

-1 -1
0n—30n—-10,_10n-3

1. (F)

prove the required result as follows.

2 _—1 —1 —1 —1 —2
On—1°""0i410;0;1 "0y 10;  «..0, 90, 10p_2...0;
2 -1 -1 _-1 -1 -1 -1

On—1-..0i410;0,410; 0;490,410;430;19---

-1 -1 _-1 -1 -1 -1 -2
Uk+10k Uk+20k+1"'Un—lan—Qan—lan—Q"'Ui
Aﬁ0n74...0i

-1
g; Aﬂ+10n—4---0i

-1

-1
o, .0, My _30,_4...0;
-1 -1
0; --.0,_40On—4...04
1

O

Lemma A.9. For all integers i,n with i € [1,n], the following two terms are
equivalent with respect to Artin’s presentation.

2
Ai,i+1 ce Ai,n+1 ~ 04 0p-10,0n—1"""04.

Proof. Recall the definition

Pyp— . . P . 2 71 e 71 71
Aiji=0j-10j-2""0i410;0,4 02051
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for all 1 <4 < j. Pick some i,n € N with ¢ € [1,n]. If i = n, the required
equivalence is trivial.
An,nJrl = UEL

Assume that i < n, and write
Ajigr A ~ 0+ Op_20p_10n_2-+0;
for the induction hypothesis. Then,

2
Ajiv1- - AipAins1 ~ 0pOp_205_10n—2-0iAi nt1

2 -1 -1 _2
03" 0n-20, 10n-2"""0i0;, ...0, 10,0n_-1...04

*

2
~ 0;° ' 0p-20pn-10,0p_1...0;,

where (%) is given by Lemma A.8. O
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