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Abstract

For all finite n ∈ N, there is a well-known isomorphism

π0ϕn : π0Hn

∼=−→ Bn

between the standard braid group Bn and the mapping class group π0Hn. This
isomorphism has been exhaustively studied in literature, and generalized in
many ways. For some basic topological reason, this strong link between finite
braid groups and finite mapping class groups can-not be extended to the infinite
case in a straightforward way, and, in particular, is not yet well studied in
literature.
In our work, we define the infinite braid group B∞ to be the group of braids with
infinitely many strands, all of which can be possibly nontrivial, i.e., not straight.
In particular, this definition does not correspond to the group of finitary infinite
braids, which is just the union of all finite braid groups. Similar to the maps
π0ϕn for finite n, we introduce a map

π0ϕ∞ : π0H∞ → B∞

that, in particular, turns out not to be an isomorphism. However, we prove its
injectivity, and identify its image in B∞.
The study of the link between mapping class groups and braid groups in the
infinite case is motivated by the study of homeomorphisms in H∞ that give rise
to a homoclinic tangle. In fact, the map π0ϕ∞ attributes to each isotopy class
of such a homeomorphism an element of the infinite braid group B∞, and so,
allows us to describe the isotopy classes of these homeomorphisms in terms of
their image in B∞. Using the fact that the map π0ϕ∞ is injective, we prove a
result that can be applied to the study of the topological structure of homoclinic
tangles.

Keywords: Infinite braid group, infinite mapping class group, infinite permuta-
tion group, homoclinic tangles.
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Version abrégée

Il est bien connu que, pour tout n ∈ N, il existe un isomorphisme

π0ϕn : π0Hn

∼=−→ Bn

entre le groupe de tresses Bn et le mapping class group π0Hn. Cet isomorphisme
est etudié en profondeur dans la littérature, et largement généralisé dans divers
contextes. Pour des raisons de topologie de base, il n’existe pas une façon directe
détendre ce lien entre les groupes de tresses et mapping class groups finis au cas
infini, et, en particulier, n’a pas encore été étudié dans littérature.
Dans notre travail, nous définissons le groupe de tresses infini B∞ par le groupe
de tresses d’une infinité de brins, qui peuvent être simultanément nontriviaux,
c’est à dire non droits. En particulier, cette définition ne correspond pas au
groupe de tresses finitairement infini, qui est simplement la réunion de tous les
groupes de tresses finis. Semblable aux applications π0ϕn pour n fini, nous
introduisons une application

π0ϕ∞ : π0H∞ → B∞

qui, en particulier, n’est pas un isomorphisme. Toutefois, nous prouvons son
injectivité, et nous identifions son image dans B∞.
L’étude du lien entre le mapping class groupe du disque et le groupe de tresses
infinis est motivé par l’étude des homéomorphismes dans H∞ qui donnent lieu
à un entrelacement homocline. En effet, l’application π0ϕ∞ attribue à chaque
classe d’isotopie d’un tel homéomorphisme un élément du groupe de tresses in-
fini B∞. De cette manière, l’application π0ϕ∞ permet de décrire les classes
d’isotopie des ces homeomorphismes en termes de leur image dans B∞. En util-
isant l’injectivité de π0ϕ∞, nous démontrons un résultat qui peut être appliqué
à l’étude de la structure topologique des enchevêtrements homoclines.

Mots clés: Groupe de tresses infini, mapping class group infini, groupe de per-
mutations infinies, enchevêtrements homoclines.
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Chapter 1

Foundations

1.1 Introduction

The foundation of the mathematical theory of braids goes back to 1925, when
E. Artin introduced in [1] the classical braid groups Bn for finite n ∈ N.
For each n ∈ N, Bn is defined by

Bn := π1Cn ∀n ∈ N,

for some given basepoint in Cn, which is the space of unordered sequences of n

pairwise distinct points in the interior of the disk
◦
D 2. More precisely, writing

Fn for the space of ordered sequences of pairwise distinct points in
◦
D 2, Cn is

the orbit space
Cn := Fn/Σn,

where Σn is the group of n−permutations, which acts on Fn by permutation
of ordered sequences. A representative in ΩCn of an element of Bn can thus
be seen as a set of n strands in the cylinder

◦
D 2 × I that connects a given set{

(τi, 1)
}

i∈[1,n]
of n pairwise distinct points on

◦
D 2 × {1} to the corresponding

point set on {
(τi, 0)

}
i∈[1,n]

∈
◦
D

2 × {0},

without intersecting each other, where, in particular, (τi)i∈[1,n] is the basepoint
of the space Fn.

1



Similarly to the definition of the braid group Bn, the pure braid group PBn is
defined by

PBn := π1Fn ∀n ∈ N.

In particular, each element b ∈ PBn is represented by a pure braid (βi)i∈[1,n] ∈
ΩFn, which can be seen as a braid in a cylinder for each strand for which each
strand has equal initial- and endpoint.

Moreover, the composition of elements of the groups Bn and PBn is given by
the concatenation of representative braids.
An important feature of the braid groups is their close connection to mapping
class groups, which was already observed by Artin in [1, 2]. The mapping
class group of the n−punctured unit disk D2 is the group of path connected
components π0Hn, where Hn is the topological group of all homeomorphisms
h : D2 → D2, that fix the boundary pointwise,

h|∂D2 = Id,

and that satisfy
h
(
{τi}i∈[1,n]

)
= {τi}i∈[1,n],

where the ordered sequence (τi)i∈[1,n] corresponds to the basepoint of Fn. Sim-
ilarly, for all n ∈ N, the space PHn is given by all homeomorphisms h ∈ H0,
that fix the set {τi} pointwise, i.e.,

h(τi) = τi ∀i ∈ [1, n].

2



The group π0PHn of pathwise connected components of PHn is called the pure
mapping class group of the n−punctured disk.
For each n ∈ N, there are maps

ϕn : Hn → ΩCn, ϕn : PHn → ΩFn,

that induce isomorphisms

π0ϕn : π0Hn

∼=−→ Bn, π0ϕn : π0PHn

∼=−→ PBn,

respectively. A detailed introduction to this close connection between finite
braid groups and finite mapping class groups is given in [3]
In our work, we consider the link between braid theory and mapping class groups
in the infinite case. Similarly to the finite case, we define the infinite pure braid
group by

PB∞ := π1F∞,

where F∞ is the space of ordered sequences of infinitely many pairwise distinct
points in

◦
D 2. As in the finite case, we define the space C∞ of unordered

sequences of pairwise distinct points in
◦
D 2 by the orbit space

C∞ := F∞/Σ∞,

where Σ∞ is the group of bijections from N to itself that acts on F∞ by permu-
tation of ordered sequences of points. We have not yet been able to determine
whether one can associate an unordered sequence of strands in

◦
D 2 to any loop

in C∞. To avoid this problem, we consider instead OC∞ ⊆ ΩC∞, the space of
those loops in C∞ that to which one can associate such an unordered sequence
of paths in

◦
D 2, and define the infinite braid group by

B∞ := π0OC∞.

Unlike the finitary infinite braid group, which is simply the union of all finite
braid groups, the infinite braid group B∞, i.e., the group of braids with infinitely
many strands, all of which can be nontrivial simultaneously, seems rarely to have
been considered in the literature, in particular not in the context of mapping
class groups.
On the other hand, the infinite mapping class group and the infinite pure map-
ping class group of the disk are given by the groups of path connected compo-
nents π0PH∞ and π0H∞ of the spaces

PH∞ :=
{

h ∈ H(D2, D2) | h|∂D2 = Id, h(τi) = τi ∀i ∈ N
}

,

H∞ :=
{

h ∈ H(D2, D2) | h|∂D2 = Id, h
(
{τi}i∈N

)
= {τi}i∈N

}
,

respectively.
For all finite n ∈ N, the groups PBn, Bn, π0PHn and π0Hn do not depend
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on the choice of the point set (τi)i∈[1,n]. In the infinite case, this is is still
the case for the (pure) braid group (PB∞) B∞, whereas, given two choices
(τi)i∈N, (τ̃i)i∈N ∈ F∞ of the the basepoint of F∞ where the underlying point
sets {τi}i∈N and {τ̃i}i∈N have different numbers of accumulation points in D2,
the resulting (pure) mapping class groups (π0PH∞, π0P̃H∞) (π0H∞, π0H̃∞)
are not isomorphic.
As in the finite case, there are maps

ϕ∞ : H∞ → OC∞, ϕ∞ : PH∞ → ΩF∞

where H∞ is the space of homeomorphisms h : D2
∼=−→ D2 that fix the bound-

ary of D2 pointwise, and that fix a given point set {τi}i∈N, and PH∞ is the
subspace of H∞ of homeomorphisms that fix the set {τi}i∈N pointwise. The
main objective of our work is to investigate the induced maps

π0ϕ∞ : π0H∞ → B∞, π0ϕ∞ : π0PH∞ → PB∞.

For basic topological reasons, the approach to prove that the maps π0ϕn and
π0ϕn are isomorphisms for finite n cannot be extended to the infinite case. In
particular, it turns out that, in contrast to the finite case, the maps π0ϕ∞ and
π0ϕ∞ are injective, but not surjective.
For the generalization of the maps π0ϕn and π0ϕn to n = ∞, it would seem
natural to use inverse systems of topological spaces and of groups. However, as
we point out in section 1.1.3, there isn’t any natural way to define an inverse
system of braid groups

· · · → Bn+1 → Bn → . . . ,

nor of mapping class groups

· · · → π0Hn+1 → π0Hn → . . . .

On the other hand, there is an inverse system of projection maps

PB∞ → · · · → PBn+1 → PBn → . . .

with limit PB∞, and an inverse system of subspace inclusions

PH∞ ↪→ . . . ↪→ PHn+1 ↪→ PHn ↪→ . . .

with limit PH∞.
Moreover, we show that there is a commutative diagram (see Theorem 2.19).

π0H∞
π0ϕ∞ // B∞

Σ∞ n π0PH∞

∼=

OO

Idnπ0ϕ∞ // Σ∞ n PB∞.

∼=

OO

4



Indeed, this diagram allows us to reduce the study of the map π0ϕ∞ to the study
of the map π0ϕ∞, which is easier to handle than π0ϕ∞, because its source and
target are limits of inverse systems.
To prove the isomorphisms B∞ ∼= Σ∞ n PB∞ and π0H∞ ∼= Σ∞ n π0PH∞,
which is given by Propositions 2.17, and 2.16, 2.18, respectively, requires knowl-
edge of the group Σ∞. In particular, Σ∞ is not equal to the union of all finite
permutation groups, and does not seem to have been well studied in the litera-
ture. We show how to canonically attribute to each element σ ∈ Σ∞ an infinite
sequence of natural numbers (sσ,i)i∈N, such that, within a given topology of
Σ∞,

σ = lim
n→∞

[
(n, sn) ◦ · · · ◦ (1, s1)

]
,

where, for each i ∈ N, (i, si) is the transposition of i and si. In other words, we
canonically decompose the elements of Σ∞ into infinite sequences of transposi-
tions (see section 2.1).
Thereafter, in chapter 3, we show that the map π0ϕ∞ is injective (Theorem
3.7), which, by the above diagram, means that the map π0ϕ∞, too, is injec-
tive. In chapter 4, we identify the image of the map π0ϕ∞. First, this is done
by giving characteristic representatives in ΩF∞ of the elements of the image
of π0ϕ∞ in PB∞ (Corollary 4.6). Furthermore, we work towards an algebraic
characterization of Im π0ϕ∞ within a suitable codification of the group PB∞
(see Section 4.3). In particular, for the codification of PB∞, we make use of

the braid groups of the punctured disk
◦
D 2 \ 0, where 0 is the center of D2.

Once the image of π0ϕ∞ is known, the above diagram allows us again to deduce
that

Im π0ϕ∞
∼= Σ∞ n Im π0ϕ∞.

The original motivation for the research in this thesis was its possible application
to a particular branch of dynamical systems theory: the study of homoclinic
tangles (see section 1.1.4 and chapter 5 for more details). A homoclinic tangle
associated to a self-homeomorphism h of the unit disk is given by two one-
dimensional manifolds in D2 that intersect each other. Their intersection is a
union of non-periodic, biassymptotic orbits of the homeomorphism in D2, i.e.,
orbits

(
hi(x̂)

)
i∈N with

lim
i→±∞

hi(x̂) = x,

for some x ∈ D2. When we define H∞ such that the point set in
◦
D 2 that is

fixed by the elements in H∞ corresponds to such a non-periodic orbit of h, then,
the map

ϕ∞ : H∞ → ΩC∞,

associates an infinite braid to h. As the topological structure of a homoclinic
tangle depends to a large extent on these non-periodic orbits, the study of the
underlying homeomorphism in terms of infinite braid might be very useful. More
precisely, knowledge of the map

π0ϕ∞ : π0H∞ → B∞

5



may provide interesting information about self-homeomorphisms of the disk that
give rise to homoclinic tangles, or, more generally, to non-periodic orbits. A first
approach to such an application is given in chapter 5.

1.1.1 Basic definitions and elementary results

Let D2 be the unit disk with interior
◦
D 2. We usually write

[1, n] := {1, . . . , n}, and, for convenience, [1,∞] := N.

Definition 1.1. For all n ∈ N ∪∞ and any space X, endow
∏n

i=1 X with the
product topology, and define a subspace Fn(X) by

Fn(X) :=
{

(xi)i∈[1,n] ⊂
n∏

i=1

X | xi 6= xj∀i 6= j
}

.

This space is called the configuration space of n points in X.

Definition 1.2. For all n ∈ N, let Σn be the symmetric group, and, as a set,
define Σ∞ to be given by the bijections of the underlying set of N. Endow the
mapping space N∞ with the topology of pointwise convergence, and topologize
Σ∞ as a subspace of N∞. For all n ∈ N ∪∞, define the group structure on Σn

as usual by (
σ1 · σ2

)
(i) = σ2

(
σ1(i)

)
∀i ∈ [1, n], ∀σ1, σ2 ∈ Σn.

Observe that, for any space X and for each n ∈ N ∪ ∞, the symmetric group
Σn acts on the right of

∏
i∈[1,n] X by permutation of components, which, in

particular, induces a right action of Σn on the subspace Fn(X) ⊂
∏

i∈[1,n] X.

Definition 1.3. Let X be a topological space, and write, for all n ∈ N ∪∞,

Cn(X) := Fn(X)/Σn

for the orbit space by factoring out the right action of the group Σn. Moreover,
endow Cn(X) with the quotient topology, and write

pn : Fn(X) → Cn(X)

for the quotient map. As we often work with the space
◦
D 2, we write

Fn := Fn(
◦
D

2), and Cn(
◦
D

2) := Cn(
◦
D

2) ∀n ∈ N ∪∞

for notational convenience.

Notation 1.4. Choose an arbitrary basepoint T∞ = (τi)i∈N of F∞, and let
T ∞ := p∞(T∞) be the basepoint of C∞. Moreover, define

Tn := (τ1, . . . , τn) and T n := pn(Tn)

to be the basepoints of the spaces Fn and Cn for all finite n.

6



Later in this text, we make a particular choice for T∞ in order to simplify the
proof of certain results (see Definition 2.1). Thereafter, these results are gener-
alized to a basepoint T∞ = (τi)i∈N such that, in D2, the set {τi}i∈N has a single

accumulation point τ∞ ∈
◦
D 2.

Generally, Fn means the pointed space (Fn, Tn). When we endow Fn with a
different basepoint T̃ , we explicitly write (Fn, T̃n). Note that, by the path-
connectedness of these spaces (see Proposition A.1), a change of the basepoint
induces an isomorphism on their homotopy groups.

Proposition 1.5. (Birman [3, Prop 1.1]) For every n ∈ N, the quotient map

pn : Fn → Cn

is a covering map with fiber Σn.

This means in particular that the projection pn : Fn → Cn has the path lifting
property. Thus, to any given braid β ∈ ΩCn, we can associate a unique path
(βi)i∈[1,n] ∈ C(I, Fn), such that

β = pn ◦ (βi)i∈[1,n], βi(0) = τi ∀i ∈ [1, n]

Moreover, writing (
τi1 , . . . , τin

)
:=
(
β1(1), . . . , βn(1)

)
,

we can associate to β the permutation σβ ∈ Σn defined by

σβ :=
(

1, . . . , n
i1, . . . , in

)
.

Moreover, by the uniqueness of the lifting (βi)i∈[1,n], this defines a well defined
map

ΩCn → Σn

β 7→ σβ

for any fixed choice of (τi)i∈[1,n].
Note that Proposition 1.5 does not extend to n = ∞. Moreover, it seems that
the projection p∞ : F∞ → C∞ does not have the path lifting property, although
we didn’t yet find a counter example. On the other hand, if β ∈ ΩC∞ that lifts
to a path β in F∞, it is clear that

β ∈ C
(
(I, 0, 1), (F∞, T∞σ0, T∞σ1)

)
for some σ0, σ1 ∈ Σ∞. Moreover, every β ∈ ΩF∞ can be seen as a list (βi)i∈N

of paths in
◦
D 2, whereas an element β ∈ ΩC∞ can be seen as the Σ∞-orbit of

a list of paths only if it lifts to a path β in C
(
(I, 0, 1), (F∞, T∞σ0, T∞σ1)

)
. In

order to bypass this difficulty, we introduce a space OC∞ as follows.
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Definition 1.6. Writing T∞Σ∞ for the corresponding right coset of T∞, intro-
duce a space

OC∞ := C
(
(I, İ), (F∞, T Σ∞)

)/
Σ∞,

where İ := {0, 1}, and equip it with the quotient topology.

This definition allows for the following proposition, that is used repeatedly in
the sequel.

Proposition 1.7. Each element β ∈ OC∞ lifts to a unique path β =: (βi)i∈N ∈
C(I, F∞), such that

β = p∞ ◦ β, and βi(1) = τi ∀i ∈ N.

Proof. Pick an element β ∈ OC∞, and let β̂ =: (β̂i)i∈N be a coset representative
in C

(
(I, İ), (F∞, T∞Σ∞)

)
, i.e., β = β̂Σ∞. In particular,

{β̂i(0)}i∈N = {β̂i(1)}i∈N = {τi}i∈N.

Thus, there is a unique sequence of natural numbers (ji)i∈N such that

β̂ji(1) = τi ∀i ∈ N,

which means that (βi)i∈N := (β̂ji)i∈N is the unique coset representative of β
that satisfies

βi(1) = τi ∀i ∈ N.

Notation: The fundamental group π1Cn (π1Fn), for all n ∈ N∪∞, is called the
(pure) braid group on n strands in the disk. We introduce the common
notation

PBn := π1Fn, Bn := π1Cn ∀n ∈ N

Moreover,
PB∞ := π1F∞, B∞ := π0OC∞.

For all n ∈ N ∪ ∞, the loop space ΩCn (ΩFn) is called the space of (pure)
braids on n strands.

Remark 1.8. Notice that, in [3] and [8], the braid group Bn is defined by

Bn := π1Fn

(
E2, (τi)i∈[1,n]

)
where E2 is the euclidean plane, and (τi)i∈[1,n] is arbitrary. As E2 is homeo-

morhpic to
◦
D 2, the resulting braid groups are isomorphic. We prefer to work

with configurations in
◦
D 2 rather than with configurations in E because the clo-

sure of
◦
D 2 is simply D2, which makes it technically easy to work with infinite

configurations, and with infinite sequences. On the other hand, as the sequence
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(τi)i∈N is in
◦
D 2 and doesn’t accumulate on ∂D2, one can show that, for all

n ∈ N ∪∞,
Bn

∼= π1

(
Fn(D2), (τi)i∈[1,n]

)
.

However, it is preferable to work with Fn(
◦
D 2) rather than with Fn(D2), because

Theorem 1.12 doesn’t hold when replacing Fn(
◦
D 2) by Fn(D2).

To fix the notation, write C(X, Y ) (H(X, Y )) for the space of continuous func-
tions (homeomorphisms) from X to Y , where X and Y are arbitrary spaces,
and endow both spaces with the compact-open topology.

Definition 1.9. For all n ∈ N ∪∞, define

H0 :=
{
f ∈ H(D2, D2) | f |∂D2 = Id∂D2

}
,

Hn :=
{
f ∈ H(D2, D2) | f |∂D2 = Id∂D2 , f

(
{τi}i∈[1,n]

)
= {τi}i∈[1,n]

}
,

PHn :=
{
f ∈ H(D2, D2) | f |∂D2 = Id∂D2 , f(τi) = τi ∀ i ∈ [1, n]

}
equipped with the subspace topology.

Note that
PHn ⊂ Hn ∀n ∈ N ∪∞,

and, furthermore,
PHn ⊆ PHm ∀n ≥ m. (1.1)

On the other hand, Hn is not a subspace of Hm for any n 6= m.

Proposition 1.10. (Birman [3, Thm 4.4]) The spaces H0 and H1 are con-
tractible.

This is not true if an arbitrary closed surface replaces D2. For example, consider
the torus (R mod 2π)× (R mod 2π). The homeomorphism defined by(

[t1], [t2]
)
7→
(
[t1], [−t2]

)
is not homotopic to the identity.

Definition 1.11. For every n ∈ N ∪∞, define evaluation maps

evn : H0 → Fn evn : H0 → Cn

f 7→
(
f(τi)

)
i∈[1,n]

g 7→ pn

(
g(τi)i∈[1,n]

)
,

Theorem 1.12. (Birman [4]) For all n ∈ N, the maps

evn : H0 → Fn, evn : H0 → Cn

are fiber bundles with fiber PHn and Hn, respectively.

Note that this result does not hold for n = ∞. See the subsection 1.1.4 for more
comments.
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Definition 1.13. According to Proposition 1.10, let

K : H0 × I → H0, K(f, 0) = f, K(f, 1) = IdD2 ∀f ∈ H0

be an arbitrary contracting homotopy of the space H0. For all n ∈ N∪∞, define
maps

ϕn : PHn → ΩFn

h 7→ evn(K(h, ·)) =
(
K(h, ·)(τi)

)
i∈[1,n]

,

ϕn : Hn → ΩCn

h 7→ evn(K(h, ·)) =
[(

K(h, ·)(τi)
)
i∈[1,n]

]
.

Remark 1.14. Notice that the definition of the maps ϕn and ϕn depends on
the contracting homotopy K : H0 × I → H0. However, by Lemma A.3, the
induced maps

π0ϕn : π0Hn → Bn and π0ϕn : π0PHn → PBn

do not depend on K.

Observe that, for all n ∈ N ∪∞, the group structure of PHn and Hn induces
a group structure on π0PHn and π0Hn, respectively. In fact, these groups are
called the mapping class groups of Hn and PHn, resectively. Moreover, recall
that the concatenation of paths “?” induces an H−space structure on the loop
spaces ΩFn and ΩCn.

Proposition 1.15. For all n ∈ N ∪∞, the maps

ϕn : PHn → ΩFn and ϕn : Hn → ΩCn

are maps of H-spaces, and thus induce homomorphisms

π0ϕn : π0PHn → π1Fn and π0ϕn : π0Hn → π1Cn,

respectively.

Proof. We only prove the case n = ∞, whereas the case n ∈ N is proved in
[1, 2]. Pick any elements g, h ∈ PH∞, and observe that

ϕ∞
(
g ◦ h

)
=

(
K(g ◦ h, ·)(τi)

)
i∈N

∗'
((

K(g, ·) ◦ h
)

? K(h, ·)(τi)
)

i∈N

=
((

K(g, ·) ◦ h
)
(τi)
)

i∈N
?
(
K(h, ·)(τi)

)
i∈N

∗∗=
(
K(g, ·)(τi)

)
i∈N ?

(
K(h, ·)(τi)

)
i∈N

= ϕ∞g ? ϕ∞h,

where (∗) is given by Lemma A.3, because the paths K(g ◦ h, ·) and
(
K(g, ·) ◦

h
)

? K(g, ·) both have the same initial- and endpoint. The equality (∗∗) comes
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from the fact that h(τi) = τi for all i ∈ N. Applying π0 to the resulting equation
shows that π0ϕ∞ is a homomorphism.
On the other hand, pick elements g, h ∈ H∞, and, recalling the natural projec-
tion p∞ : F∞ → C∞, verify that

ϕ∞
(
g ◦ h

)
= p∞ ◦

(
K(g ◦ h, ·)(τi)

)
i∈N

∗' p∞ ◦
((

K(g, ·) ◦ h
)

? K(h, ·)(τi)
)

i∈N

= p∞ ◦
((

K(g, ·) ◦ h
)
(τi)
)

i∈N
? p∞ ◦

(
K(h, ·)(τi)

)
i∈N

∗∗=
(
p∞ ◦

(
K(g, ·)(τi)

)
i∈N

)
?
(
p∞ ◦

(
K(h, ·)(τi)

)
i∈N

)
= ϕ∞g ? ϕ∞h,

where (∗) is given again by Lemma A.3, and (∗∗) comes from the fact that, as
sets,

{
h(τi)

}
i∈N = {τi}i∈N. Thus, π0ϕ∞ is a homomorphism, as required.

Theorem 1.16. (E. Artin [1, 2]) For all n ∈ N, the maps ϕn and ϕn are weak
equivalences, and therefore induce isomorphisms

π0ϕn : π0PHn

∼=→ π1Fn; π0ϕn : π0Hn

∼=→ π1Cn

Moreover, as
πkFn = πkCn = 1 ∀k ≥ 2,∀n ∈ N

it follows that
πkHn = πkPHn = 1 ∀k ≥ 1,∀n ∈ N.

1.1.2 The direct system of braid groups

A presentation of the groups Bn for finite n was first found by E. Artin in 1925.
For each n ∈ N, it is given by generators

σ1, . . . , σn−1

and relations

σiσj ∼ σjσi if |i− j| ≥ 2, 1 ≤ i, j ≤ n− 1 (1.2)
σiσi+1σi ∼ σi+1σiσi+1, 1 ≤ i ≤ n− 2. (1.3)

The particular notation for the generators comes from the fact that, if some
given element b ∈ Bn is represented by a word σi1 · · ·σik

, then, the representa-
tive loops β ∈ ΩCn, satisfying

b = [β] in π1Cn = Bn,

have associated permutation σi1 · · ·σik
in Σn, where, for each j ∈ [1, n − 1],

σj ∈ Σn is given by

σj =
(

1, . . . , j, j + 1, . . . , n
1, . . . , j + 1, j, . . . , n

)
.
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Artin’s group presentation of the braid group Bn allows us to consider Bm as a
subgroup of Bn for all m < n, with inclusion map

im,n : Bm ↪→ Bn.

Moreover, through the isomorphisms {π0ϕn}n∈N, we can define injective maps
{jn}n∈N such that the following diagram commutes for all n ∈ N

. . . // π0Hn
jn //___

π0ϕn
∼=

��

π0Hn+1

π0ϕn+1∼=
��

// . . .

. . . // Bn

in,n+1 // Bn+1
// . . . .

(1.4)

This corresponds to an isomorphism of direct systems, yieding an isomorhpism
of colimits

colimn

{
π0Hn, jn

} ∼=−→ colimn

{
Bn, in,n+1

}
.

As the maps(in,n+1)n∈N are group inclusions, the colimit of the braid groups
is actually the union of the finite braid groups, which is called the finitary
infinite braid group.

Bf
∞ :=

⋃
n∈N

Bn = colimn

{
Bn, in,n+1

}
.

As, in particular,
Bf
∞ 6= B∞, and Bf

∞ 6= π1C∞,

the approach of direct systems is not useful in the context of our work.

1.1.3 The inverse system of pure braid groups

Recall Artin’s presentation of the finite braid groups, and consider the projection
map of free groups

r̂n : F
(
{σ1, . . . , σn−1}

)
→ F

(
{σ1, . . . , σn−2}

)
σi 7→

{
σi , i < n− 1
1 , i = n− 1.

Factoring out Artin’s relations, given by Eqs. 1.2 and 1.3, in F
(
{σ1, . . . , σn−1}

)
and F

(
{σ1, . . . , σn−2}

)
, the map r̂n induces a map rn : Bn → Bn−1. Note that

this map is not a homomorphism, as the following example shows.

[σn−1σnσn−1]_

rn

��

= [σnσn−1σn]
_

rn

��

∈ Bn

[σ2
n−1] 6= [σn−1] ∈ Bn−1

12



In fact, within Artin’s presentation of the finite braid groups, there does not
seem to exist a natural way to define homomorphisms Bn → Bn−1. Also, there
doesn’t seem to be a straightforward way to define a continuous underlying map

Cn → Cn−1 or ΩCn → ΩCn−1.

Thus, an inverse system of braid groups does not seem to exist.
Considering the pure braid groups PBn ≡ π1Fn, things work better, as we show
next.

Definition 1.17. For all n, n′ ∈ N∪∞ with n′ > n, introduce projection maps

sn′,n : Fn′ → Fn

(xi)i∈[1,n′] 7→ (xi)i∈[1,n].

Observe that, for all n > 1, the inclusion

ιn,n−1 : PHn ↪→ PHn−1

makes the diagram

PHn
� � ιn,n−1//

ϕn ∼
��

PHn−1

ϕn−1∼
��

ΩFn

Ωsn,n−1// ΩFn−1

commute for all n ∈ N. All maps in this diagram are maps of H-spaces (ιn is a
map of topological groups, ϕn and ϕn−1 are maps of H-spaces by Proposition
1.15, and Ωsn,n−1 is a map of H-spaces). This allows us to conclude as follows.

Proposition 1.18. There is an isomorphism of inverse systems

. . . // π0PHn

π0ιn,n−1//

π0ϕn ∼=
��

π0PHn−1

π0ϕn−1∼=
��

// . . .

. . . // π1Fn

π0sn,n−1// π1Fn−1
// . . . .

Proposition 1.19. The inverse system of inclusions {PHn, ιn,n−1}n∈N has the
limit

PH∞ = lim
n
{PHn, ιn,n−1}n∈N.

Proof. As the limit of an inverse system of group inclusions is just the intersec-
tion of the groups, the result is given by observing that

PH∞ =
⋂
n∈N

PHn.
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Proposition 1.20. The inverse system {Fn, sn,n−1}n∈N has the limit

F∞ = lim
n
{Fn, sn,n−1}n∈N.

Proof. Assume there is a topological space S, and maps ηn : S → Fn, such that
the following diagram commutes for all n ∈ N.

S

ηn+1

����
��

��
��

��
��

��
�

ηn

��1
11

11
11

11
11

11
11

F∞

s∞,n+1
yyy

y

||yyy
y s∞,n

BB
B

!!B
BB

Fn+1
sn+1,n // Fn

Define a map

η : S → F∞

s 7→
(
(ηi(s))i

)
i∈N,

and observe that the diagram

S

η

��
ηn+1

����
��

��
��

��
��

��
�

ηn

��1
11

11
11

11
11

11
11

F∞

s∞,n+1
yyy

y

||yyy
y s∞,n

BB
B

!!B
BB

Fn+1
sn+1,n // Fn

commutes for all n ∈ N.

Corollary 1.21. The inverse system of loop spaces {ΩFn,Ωsn,n−1}n∈N has the
limit

ΩF∞ = lim
n
{ΩFn,Ωsn,n−1}n∈N.

Proof. In the category Top∗, the functor Ω has a left adjoint, and thus, preserves
limits.

Theorem 1.22. (Fadell, Neuwirth [5], also proved in [3, p. 12]) For each
n ∈ N, there is a fiber bundle

◦
D

2 \ {τi}i∈[1,n−1] ↪→ Fn
sn,n−1−→ Fn−1,

where the fiber inclusion is given by

◦
D

2 \ {τi}i∈[1,n−1] ↪→ Fn

x 7→ (τ1, . . . , τn−1, x).
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Corollary 1.23. The following equations hold.

π1F∞ = lim
n

{
π1Fn, π1sn,n−1

}
,

π1holimnPHn = lim
n

{
π1PHn, π1ιn,n−1

}
.

Moreover, for all k ∈ N,

πkF∞ ∼= πk−1holimnPHn (= 1 ∀k ≥ 2).

Proof. Consider the following isomorphism of exact sequences, which follows by
Proposition 1.18.

1 // lim1
n πkPHn

//

∼=
��

πk−1holimnPHn
//

∼=
��

limn πk−1PHn

∼=
��

// 1

1 // lim1
n πk+1Fn

// πkholimnFn
// limn πkFn

// 1

As, by Theorem 1.22, the maps sn,n−1 : Fn → Fn−1 are, in particular, fibrations,
it follows that, by Proposition 1.20,

holimnFn = lim
n

Fn = F∞, (A)

Moreover, observe that, by Theorem 1.22, there is a long exact homotopy se-
quence

· · · → π1

( ◦
D

2\{τi}i∈[1,n−1]

)
→ π1Fn

π1sn,n−1−→ π1Fn−1 → π0

( ◦
D

2\{τi}i∈[1,n−1]

)
.

As
π0

( ◦
D

2 \ {τi}i∈[1,n−1]

)
= 1,

it follows that the map
π1Fn

π1sn,n−1−→ π1Fn−1

is surjective, whereas, for all k ≥ 2, πkFn = 1, such that, according to [12, Prop.
1.67],

lim1
nπkFn = 1 ∀k ≥ 2.

The required results can now be directly read from the above diagram, by re-
placing holimnFn with F∞ according to (A).

1.1.4 General remarks

In the proof of Theorem 1.16, we used the fact that there is a fiber bundle

Hn ↪→ H0
evn−→ Cn(

◦
D

2)

to prove that the map π0ϕn is an isomorphism. This proof method does not
extend to n → ∞, as the map ev∞ is not a fiber bundle, and is not even
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surjective, and thus, in particular, does not have the path lifting property. This
can be seen by the fact that, for each h ∈ H0, the unordered point set

ev∞(h) =
[(

h(τi)
)
i∈N

]
contains as many accumulation points as the set {τi}i∈N does, whereas the space
C∞ contains unordered point sets with any number of accumulation points.
This makes the maps ϕ∞ and ϕ∞ considerably more difficult to handle than
the corresponding maps in the finite case. In particular, the map

π0ϕ∞ : π0H∞ → π1C∞

turns out not to be an isomorphism, so that we are interested in finding its
image and kernel, which is done in the subsequent sections.
The initial motivation for the study of the link between the infinite mapping
class group π0H∞ and the infinite braid group π1C∞(

◦
D 2) is its application

to diffeomorphisms with a hyperbolic fixed point, a term that we briefly
explain here. A fixed point x of a diffeomorphism h ∈ Diff(D2, D2) is called
hyperbolic, if the matrix of the linearization of h at x has eigenvalues λ1, λ2

with
|λ1| > 1, |λ2| < 1.

Then, there are two smooth one-dimensional manifolds in D2 that are invariant
by the action of h, and that intersect at the fixed point x. This is given by the
Invariant Manifold Theorem (See, e.g., [9]). On these manifolds, that are called
the stable and the unstable manifold, the maps h and h−1, respectively,
move the points assymptotically towards the fixed point x. These manifolds
cannot intersect themselves, but, in case they intersect each other transversely
in some point other than in x, they necessarily meander in a complicated pat-
tern, yielding an infinity of other intersection points that are called homoclinic
intersection points, whereas the union of the stable and the unstable mani-
folds is called a homoclinic tangle. This subject was introduced by Poincaré,
and is a field of current research, with many applications in physics and chem-
istry. In particular, the classification of homoclinic tangles is still an unsolved
problem. The following drawing shows how a homoclinic tangle may look like.

16



τ∞

f -1(τ0)

f( τ0)

f 2(τ0)

f -2(τ0)

τ0

U f
u

U f
s

Choose some h ∈ H0, and let x ∈
◦
D 2 be an arbitrary point. If the orbit{

hi(x)
}

i∈N

is periodic, then, there is some finite set {τ̂i}i∈[1,n] of pairwise distinct points,
such that {

hi(x)
}

i∈N = {τ̂i}i∈[1,n].

Recalling the arbitrariness of (τi)i∈[1,n], we may identify τi := τ̂i for all i ∈ [1, n],
which allows us, in particular, to consider h as an element of Hn. If the orbit
of x is not periodic, then, similarly, h can be considered as an element of H∞,
and thus be evaluated by ϕ∞. For technical reasons, the study of the maps
ϕ∞ and ϕ∞ depends on the number of accumulation points of the set {τi}i∈N,
so that we prove most of the subsequent results using a particularly simple
choice for (τi)i∈N, that contains a single accumulation point in D2. Thereafter,
our main results are generalized to any choice of (τi)i∈N ∈ F∞, such that, in

D2 the point set {τi}i∈N accumulates at a single point τ∞ ∈
◦
D 2. As this is

the case for any homoclinic orbit, the above described procedure allows us to
study homeomorphisms in H0 with a hyperbolic fixed point. In particular,
a codification of the image of the map π0ϕ∞ can thus be used to codify the
classes in π0H∞ of homeomorphisms with a hyperbolic fixed point, which might
be useful for the investigation of such homeomorphisms, and for the study of
homoclinic tangles themselves. Finally, note that, given any homeomorphism
h ∈ H0 with a hyperbolic fixed point τ∞, h doesn’t fix any of the points of the
associated homoclinic orbit

{
hi(τ0)

}
i∈N (where τ0 is any homoclinic intersection
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point). In other words, this permutation is not finitary. This motivates the fact
that we consider Σ∞ to be the group of all permutations of N, and not only the
union of all finite permutation groups.
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Chapter 2

Comparision between π0ϕ∞
and π0ϕ∞

As we observed in the preceeding chapter, the map π0ϕ∞ : π0PH∞ → PB∞
is easier to study than the map π0ϕ∞ : π0H∞ → B∞, because both π0PH∞
and PB∞ are limits of inverse systems. In the present chapter, we develop a
result that allows us to study the map π0ϕ∞ in terms of the map π0ϕ∞ (see
Theorem 2.19). The proof of this result requires some knowledge of the infinite
permutation group Σ∞. In particular, we show in section 2.1 how to decompose
the elements of Σ∞ into infinite sequences of transpositions. Appart from the
use in our particular context, these results are of interest themselves and might
also be used for other purposes.
While in the preceding chapter, the basepoint T∞ = (τi)i∈N ∈ F∞ was arbitrary,
we restrict ourselves in the sequel to the case where the point set {τi}i∈N has

a single accumulation point in D2 that lies in
◦
D 2. Moreover, a particularly

simple choice for T∞ turns out to be useful in many proofs.

Definition 2.1. For every i ∈ N write

τi =
(
− 1

i + 1
, 0
)

∈ R2,

and, for the remainder of this text, let the basepoint T∞ ∈ F∞ be

T∞ := (τi)i∈N,

unless specified otherwise.
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We proceed by first proving our results using the chosen canonical basepoint
T∞, and thereafter generalizing the main results to an arbitrary choice of T∞ :=
(τi)i∈N where the point set {τi}i∈N contains a single accumulation point in D2,

that lies in
◦
D 2, as we pointed out above.

We first show a combinatorial result concerning the group Σ∞, which allows us
thereafter to define a continuous map πΣH : Σ∞ → H∞, that satisfies

πΣH(σ)(τi) = τσ(i) ∀i ∈ N, ∀σ ∈ Σ∞.

Using this map, we can then prove the main result of this chapter, given by
Theorem 2.19.

2.1 On the infinite permutation group Σ∞.

2.1.1 Decomposition of infinite permutations into sequences
of transpositions.

Recall that the group structure of Σn, for all n ∈ N ∪∞ is given by(
σσ′
)
(i) = σ′ ◦ σ(i) ∀σ, σ′ ∈ Σn, ∀i ∈ [1, n].

Definition 2.2. Given any σ ∈ Σ∞, define sets {νσ,i}i∈N ⊆ N and {[σ]i}i∈N ⊆
Σ∞ inductively by

νσ,1 := σ−1(1),
νσ,n := [σ]n−1

(
σ−1(n)

)
,

[σ]1 := (1, νσ,1),
[σ]n := (n, νσ,n) ◦ [σ]n−1

for all n ≥ 2, where (i, j) means the transposition of i and j.

Observe that these notations imply that, for all σ ∈ Σ∞,

[σ]n = (n, νσ,n) ◦ · · · ◦ (1, νσ,1) ∀n ∈ N.
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Lemma 2.3. Pick any σ ∈ Σ∞.

(a) νσ,n ≥ n ∀n ∈ N,

(b) [σ]−1
n (i) = σ−1(i) ∀n ∈ N, ∀ i ∈ [1, n],

(c) [σ]j(i) = σ(i) ∀i ∈ N, ∀ j ≥ σ(i).

Proof. Proceding by induction, observe that the case n = 1 is trivial, and assume
that (a), (b) and (c) are satisfied for some n ≥ 2. To prove the inductive step
for (a), assume that, by contradiction, νσ,n < n. Applying [σn−1]−1 to the left
of the equation [σ]n−1σ

−1(n) = νσ,n gives

σ−1(n) = [σ]−1
n−1(νσ,n) ∗= σ−1(νσ,n),

where (∗) is given by the inductive hypothesis for (b). This means that νσ,n = n,
which contradicts our assumption.
To verify (b), observe that, for all i ∈ [1, n− 1],

[σ]−1
n (i) =

(
(1, νσ,1) ◦ · · · ◦ (n− 1, νσ,n−1) ◦ (n, νσ,n)

)
(i)

∗=
(
(1, νσ,1) ◦ · · · ◦ (n− 1, νσ,n−1)

)
(i)

= [σ]−1
n−1(i)

∗∗= σ−1(i),

where (∗) and (∗∗) are given by the induction hypothesis (a) and (b), respec-
tively. It remains to show that this also holds for i = n.

[σ]−1
n (n) =

(
(1, νσ,1) ◦ · · · ◦ (n− 1, νσ,n−1) ◦ (n, νσ,n)

)
(n)

=
(
(1, νσ,1) ◦ · · · ◦ (n− 1, νσ,n−1) ◦ (n, [σ]n−1σ

−1(n)
)
(n)

=
(
(1, νσ,1) ◦ · · · ◦ (n− 1, νσ,n−1))

)(
[σ]n−1σ

−1(n)
)

= [σ]−1
n−1[σ]n−1σ

−1(n)

= σ−1(n)

To prove (c), observe that, for all k ≥ σ(i),

[σ]k(i) =
(
(k, νk) ◦ · · · ◦ (σ(i) + 1, νσ(i)+1) ◦ [σ]σ(i)

)
(i)

∗=
(
(k, νk) ◦ · · · ◦

(
σ(i) + 1, νσ(i)+1

))(
σ(i)

)
∗∗= σ(i),

where (∗) holds because, writing n := σ(i) in Eq. (b), it follows that

[σ]−1
σ(i)(σ(i)) = σ−1

(
σ(i)

)
= i.

On the other hand, Eq. (∗∗) is given by Eq. (a).
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Recall that the space Σ∞ has the topology of pointwise convergence.

Proposition 2.4. For all σ ∈ Σ∞,

σ = lim
n→∞

(
(n, νσ,n) ◦ · · · ◦ (1, νσ,1)

)
,

where the integers {νσ,i}i∈N are defined as above.

Proof. By Eq. (c) of Lemma 2.3, we know that, for every i ∈ N

σ(i) =
(
(n, νσ,n) ◦ · · · ◦ (1, νσ,1)

)
(i) =: [σ]n(i) ∀ n ≥ σ(i).

Thus, it follows from [Munkres, Thm. 46.1], that the sequence
(
(n, νσ,n) ◦ · · · ◦

(1, νσ,1)
)
n∈N converges to σ.

2.1.2 Identification of Σ∞ in N∞

In the last subsection, we showed how to decompose an infinite permutation
into a convergent sequence of products of transpositions. We now consider the
inverse problem, which is to see under what conditions a sequence of natural
numbers (νi)i∈N gives rise to a sequence of products of transpositions

. . . (n, νn) ◦ · · · ◦ (1, ν1)

that converges in N∞, i.e., yields a well defined element of Σ∞. This allows us
thereafter to find a criterion to identify the sequences (νσ,i)i∈N for all σ ∈ Σ∞.

Definition 2.5. Recalling Definition 2.2, define a map by

Seq : Σ∞ → N∞

σ 7→ (νσ,i)i∈N.

Moreover, for any given n ≥ 1 and (νi)i∈[1,n] ∈ Nn, introduce the notation

[σν ]0 := IdN, and
[σν ]n := (n, νn) ◦ · · · ◦ (1, ν1) ∀n ≥ 1,

and notice that this notation is consistent with the expression for [σ]n, for some
given σ, that is given immediately after Definition 2.2.

Proposition 2.6. Let (νi)i∈N be a sequence of integers satisfying

νi ≥ i ∀i ∈ N,

and define sequences (λi,n)n∈N inductively by

λi,1 := i, λi,2 := νi, λi,3 := ννi
, λi,n = νλi,n−1

for all i ∈ N.
The sequence

(
[σν ]k

)
k∈N converges in N∞ if and only if, for each i ∈ N, there

is an ni ∈ N, such that either

(a) λi,ni = λi,ni+1, or
(b) λi,ni = νj , for some j ∈ [λi,ni−1 + 1, λi,ni − 1],
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Remark: If, for some i ∈ N, the sequence (λi,n)n∈N satisfies λi,n = λi,n+1 for
some n ∈ N, then,

λi,n = λi,n+k ∀k ≥ 1.

Proof. Pick any sequence of integers (νi)i∈N, satisfying

νi ≥ i ∀i ∈ N,

fix some i ∈ N and define the sequence (λi,n)n∈N as required. Recall that, by
[11, Thm. 46.1] the sequence

(
[σν ]n

)
n∈N converges if and only if the sequence(

[σν ]n(i)
)
n∈N converges for all i ∈ N.

Note that, as νi ≥ i for all i ∈ N,

λi,n+1 ≥ λi,n ∀n ∈ N.

Fix some i ∈ N, and observe that

[σν ]λi,0(i) = i = λi,1.

Assuming that [σν ]λi,n
(i) = λi,n+1 for some n ≥ 0, write

[σν ]λi,n+1(i) = (λi,n+1, νλi,n+2) ◦ · · · ◦ (λi,n + 1, νλi,n+1) ◦ [σν ]λi,n
(i)

= (λi,n+1, νλi,n+1) ◦ · · · ◦ (λi,n + 1, νλi,n+1)(λi,n+1),

which shows that, by our assumption,

[σν ]λi,n+1(i) = λi,n+2 ⇔ λi,n+1 6= νj ∀j ∈ [λi,n + 1, λi,n+1 − 1]. (A)

Notice that, if λi,n = λi,n+1, the interval [λi,n + 1, λi,n+1 − 1] is empty. We
continue our inductive procedure separately in two different cases.

First case: (b) holds. Let n be the least integer such that λi,n+1 = νbj for
some ĵ ∈ [λi,n + 1, λi,n+1 − 1], and let j be the least among these ĵ. According
to (A), we know that

[σν ]λi,n
(i) = λi,n+1,

such that

[σν ]λi,n+1(i) = (λi,n+1, νλi,n+2) ◦ · · · ◦ (λi,n + 1, νλi,n+1) ◦ [σν ]λi,n
(i)

= (λi,n+1, νλi,n+1) ◦ · · · ◦ (λi,n + 1, νλi,n+1)(λi,n+1)
∗= (λi,n+1, νλi,n+1) ◦ · · · ◦ (j, νj)(λi,n+1)
= (λi,n+1, νλi,n+1) ◦ · · · ◦ (j, νj)(νj)
∗∗= j,

where (∗) holds by our particular choice of j, and (∗∗) comes from the fact that
νk ≥ k for all k ∈ N. A generalisation of the same argument shows that

[σν ]m(i) = j ∀m ≥ λi,n+1,
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i.e., the sequence
(
[σν ]n(i)

)
n∈N converges.

Second case: (b) doesn’t hold. In this case, the statement (A) admits the
induction step, which means that

[σν ]λi,n
(i) = λi,n+1 ∀n ∈ N.

Thus, the sequence
(
[σν ]λi,n

(i)
)
n∈N, converges if and only if (a) holds.

Thus,
(
[σν ]n

)
n∈N converges if and only if (a) or (b) holds for all i ∈ N.

With a little more effort, we can prove the following stronger result.

Theorem 2.7. The map Seq : Σ∞ → N∞ induces a bijection

Seq : Σ∞
∼=−→

{
(νi)i∈N ∈ N∞ | νi ≥ i ∀ i ∈ N,

and ∀ i ∈ N, ∃ ni ∈ N, such that
(a) λi,ni

= λi,ni+1, or

(b) λi,ni = νj , for some j ∈ [λi,ni−1 + 1, λi,ni − 1]
}

,

where the integers λi,j are defined as in the proposition above.

Proof. To shorten the notation, write

S :=
{

(νi)i∈N ∈ N∞ | νi ≥ i ∀ i ∈ N,

and ∀ i ∈ N, ∃ ni ∈ N, such that
(a) λi,ni

= λi,ni+1, or

(b) λi,ni = νj , for some j ∈ [λi,ni−1 + 1, λi,ni − 1]
}

.

We show that the inverse of Seq is given by

Per : S → Σ∞

(νi)i∈N 7→ σν ,

where σν denotes the limit of the sequence
(
[σν ]n

)
n∈N, which exists by Propo-

sition 2.6.
Pick an element (νi)i∈N ∈ S. By Proposition 2.6, we know that σν is in N∞.
To see that σν is actually a bijection, i.e., an element of Σ∞, pick some i ∈ N,
and observe that, for every k > i,

[σν ]k
(
[σν ]−1

i (i)
)

=
(
(k, νk) ◦ · · · ◦ (1, ν1) ◦ (1, ν1) ◦ · · · ◦ (i, νi)

)
(i)

=
(
(k, νk) ◦ · · · ◦ (i + 1, νi+1)

)
(i)

= i.

Thus, σν is surjective. The injectivity of σν is shown by the fact that, if

σν(i) = σν(j), i.e., lim
k→∞

[σν ]k(i) = lim
k→∞

[σν ]k(j)

24



for some i, j ∈ N, then,
[σν ]k(i) = [σν ]k(j),

for some k ∈ N, which means that i = j, because [σν ]k is a bijection. This shows
that Per : S → Σ∞ is well defined.
It remains to show that Seq and Per are mutually inverse. By Proposition 2.4,
it follows directly that

Per ◦ Seq(σ) = σ ∀ σ ∈ Σ∞.

To see that Seq◦Per = IdS , pick any (νi)i∈N ∈ S, and write σν := Per
(
(νi)i∈N

)
.

Proceeding by induction, observe that(
Seq(σν)

)
1

= σ−1
ν (1) ∗= [σν ]−1

1 (1) = (1, ν1)(1) = ν1,

where (∗) is given by Lemma 2.3. Now, assume that(
Seq(σν)

)
i
= νi ∀i ∈ [1, n− 1].

Then,(
Seq(σν)

)
n

= [σν ]n−1

(
σ−1

ν (n)
)

∗= [σν ]n−1[σν ]−1
n (n)

= (n− 1, νn−1) ◦ · · · ◦ (1, ν1) ◦ (1, ν1) ◦ · · · ◦ (n− 1, νn−1) ◦ (n, νn)(n)
= (n, νn)(n)
= νn,

where (∗) is given by Lemma 2.3. Thus,

Seq ◦ Per
(
(νi)i∈N

)
= Seq(σν) = (νi)i∈N,

which finishes the proof.

Definition 2.8. For all i ∈ N, write

%i := ‖τi − τ∞‖.

Proposition 2.9. By our choice of the basepoint T∞ = (τi)i∈N,

%i ≥ %i+1 ∀ i ∈ N, lim
i→∞

%i = 0, and τj ∈ B(τ∞, %i) ∀ j ≥ i,

where B(x, r) is the open ball , centered at x, with radius r.

Definition 2.10. Define a map

πHΣ : H∞ → Σ∞, g 7→ σg,

where σg is the unique element of Σ∞, that satisfies

g(τi) = τσg(i) ∀ i ∈ N.
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Lemma 2.11. For each pair of integers i ≤ j, there is an element f̂i,j ∈ H∞,
satisfying the following conditions.

f̂i,j(τk) =


τj , if k = i

τi, if k = j

τk, else,

i.e.,
πHΣ(f̂i,j) = (i, j),

and
f̂i,j |D2\B(τ∞,2%i) = Id.

Proof. The proof of this result involves Dehn twists. For a detailed introduction
to this construction, see [13]. Throughout the proof, we identify S1 as follows

S1 :=
{
z ∈ C2 | ‖z‖ = 1

}
.

Pick any pair of integers (i, j) with i ≤ j, let

ai,j : S1 → B(τ∞, 2%i) \ {τk}k≥Ni,k 6=i,j ,

be a simple closed curve where Ni := mink∈N
{
τk ∈ B(τ∞, %i)

}
. Knowing that

neither τi nor τj is an accumulation point of the set {τk}k∈N, we can assume
that, moreover,

ai,j(1) = τi, ai,j(−1) = τj .

Furthermore, let

vi,j : S1 × I → B(τ∞, 2%i) \ {τk}k≥Ni

be a tubular neighbourhood of ai,j , i.e., an oriented embedding satisfying

vi,j(z, 1/2) = ai,j(z) ∀z ∈ S1.

Then, the map f̂i,j : D2 → D2 defined by(
f̂i,j ◦ vi,j

)
(z, t) := vi,j

(
e2iπtz, t

)
∀(z, t) ∈ S1 × I,

and
f̂i,j(x) = x ∀x ∈ D2 \ Im vi,j

satisfies the required properties. Note that, under this definition, f̂i,j is called
a Dehn twist along ai,j .

Theorem 2.12. The map πHΣ : H∞ → Σ∞ has a right inverse

πΣH : Σ∞ → H∞

σ 7→ fσ,
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i.e.,
πHΣ ◦ πΣH = IdΣ∞ .

In other words, for every element σ ∈ Σ∞, there is a map fσ ∈ H∞, such that

fσ(τi) = τσ(i) ∀ i ∈ N.

Proof. Pick any σ ∈ Σ∞. To define a homeomorphism fσ ∈ H∞ with πHΣ(fσ) =
σ, we make use of Proposition 2.4 that allows us to decompose σ into a sequence
of transpositions, i.e.,

σ = lim
n→∞

[σ]n,

where
[σ]n := (n, νσ,n) ◦ · · · ◦ (2, νσ,2) ◦ (1, νσ,1),

and (νσ,n)n∈N = Seq(σ). Recall that, by Lemma 2.3 (a),

νσ,n ≥ n ∀n ∈ N,

and let (f̂n,νσ,n
)n∈N be elements of PH∞ as given by Lemma 2.11. Thus, writing

f[σ]n := f̂n,νσ,n ◦ · · · ◦ f̂2,νσ,2 ◦ f̂1,νσ,1

for all n ∈ N, it follows in particular that

f[σ]n(τi) = τ[σ]n(i) ∀i ∈ N. (A)

We show that the limit
fσ := lim

n→∞
f[σ]n

exists, that it is in H∞, and that πHΣ(fσ) = σ, which finishes the proof.
To prove the existence of the limit fσ := limn→∞ f[σ]n , pick any x ∈ D2, and
observe that, for every n ∈ N,

‖f[σ]n+1(x)− f[σ]n(x)‖ =
∥∥f̂n+1,νσ,n+1

(
f[σ]n(x)

)
− f[σ]n(x)

∥∥
≤ 4%n+1.

As limi→∞ %i = 0, it follows that
(
f[σ]n(x)

)
n∈N is a Cauchy sequence. By

the completeness of the unit disk, the pointwise convergence of the sequence(
f[σ]n(x)

)
n∈N follows, which allows us to define a map

fσ : D2 → D2

x 7→ lim
n→∞

f[σ]n(x).

We show that, moreover, the sequence
(
f[σ]n(x)

)
n∈N converges uniformly.

Observe that, for all x ∈ D2, and for all integers n, n′ with n′ ≥ n,∥∥f[σ]n′
(x)− f[σ]n(x)

∥∥ =
∥∥(f̂n′,νσ,n′ ◦ · · · ◦ f̂n,νσ,n

◦ f[σ]n(x)− f[σ]n(x)
∥∥

∗
< sup

k∈[n+1,n′]

{
4%k

}
= 4%n+1,
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where (∗) is given by Lemma 2.11. Thus, for any n ∈ N,∥∥fσ(x)− f[σ]n(x)
∥∥ ≤ 4%n+1 ∀ x ∈ D2.

As limn→∞ %n = 0, this means that, for every ε > 0, there is a Nε ∈ N, such
that ∥∥fσ(x)− f[σ]n(x)

∥∥ < ε ∀ x ∈ D2, ∀ n ≥ Nε,

which means that the sequence
(
f[σ]n

)
n∈N converges uniformly to fσ. Thus, by

[11, Thms 46.5, 46.7, 46.8], it follows that fσ is continuous. Similarly, one can
show that the sequence

(
f−1
[σ]n

)
n∈N converges uniformly to f−1

σ , which thus is
continuous. Thus fσ is a homeomorphism. Finally, observing that

f[σ]n ∈ H∞ ∀n ∈ N

shows that fσ ∈ H∞.
To show that πHΣ(fσ) = σ, observe that, by Lemma 2.3,

[σ]n(i) = σ(i) ∀ n ≥ σ(i) ∀ i ∈ N,

such that, by (A),

f[σ]n(τi) = τσ(i) ∀ n ≥ σ(i) ∀ i ∈ N.

Thus,
fσ(τi) = lim

n→∞

(
f[σ]n(τi)

)
= τσ(i) ∀ i ∈ N,

which means that
πHΣ(fσ) = σ.

Theorem 2.13. The maps πΣH , πHΣ are continuous.

Proof. As H(D2, D2) has the uniform topology, which is metric, its subspace
H∞ is metric too. Thus, by [Munkres, Thm. 21.3], the map πHΣ is continuous
if (and only if) it maps convergent sequences to convergent sequences. Pick any
convergent sequence (gi)i∈N in H∞, such that

g := lim
i→∞

gi,

and write
σ := πHΣ(g), σi := πHΣ(gi) ∀i ∈ N.

Observe that, for all n ∈ N,

lim
i→∞

τσi(n) = lim
i→∞

gi(τn) = g(τn) = τσ(n). (A)

By assumption, the sequence (τi)i∈N converges to τ∞ in such a way that for all
i ∈ N, τi is not an accumulation point of the set {τi}i∈N. Thus, it follows from
(A) that for every n ∈ N, there is a Nn ∈ N, such that

τσi(n) = τσ(n) ∀ i ≥ Nn,
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i.e.,
σi(n) = σ(n) ∀ i ≥ Nn.

This proves that πHΣ maps convergent sequences to convergent sequences, be-
cause Σ∞ has the topology of pointwise convergence.
Note that in Appendix, Lemma A.4, we prove that Σ∞ is metric. Thus, again,
the map πΣH is continuous if it maps convergent sequences to convergent se-
quences.
Let (σi)i∈N be an arbitrary sequence in Σ∞ that converges to an element
σ ∈ Σ∞. We need to show that

lim
i→∞

πΣH(σi) = πΣH(σ).

As, given any n ∈ N,
lim

i→∞
σi(n) = σ(n),

there is an integer N+
n , such that

σi(n) = σ(n) ∀ i ≥ N+
n .

Also, for every n ∈ N, there is a N−
n ∈ N, such that

σ−1
i (n) = σ−1(n) ∀ i ≥ N−

n .

By definition,
νσi,n := [σi]n−1σ

−1
i (n) ∀ n ∈ N.

It follows that, for every n ∈ N,

νσi,n = νσ,n ∀ i ≥ max{N+
σ−1(n), N

−
n }. (B)

Recall the definition
πΣH(σ) = fσ := lim

n→∞
f[σ]n

in the proof of Theorem 2.12, where

f[σ]n := f̂n,νσ,n ◦ · · · ◦ f̂2,νσ,2 ◦ f̂1,νσ,1

for all σ ∈ Σ∞ and all n ∈ N. We need to show that

lim
i→∞

fσi = fσ.

Recall that, by [11, Thms 46.7, 46.8], the compact-open topology on H0 coin-
cides with the topology of uniform convergence. Thus, for every ε > 0, we need
to find an integer Nε, such that∥∥fσi

(x)− fσ(x)
∥∥ < ε ∀ x ∈ D2 ∀ i ≥ Nε.

Pick some ε > 0, and fix an integer n0, such that

8%n0+1 < ε. (C)
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Write
Nε := max

n≤n0

{
max{N+

σ−1(n), N
−
n }
}
,

and, by (B), observe that

[σi]n0 = [σ]n0 ∀ i ≥ Nε,

and therefore
f[σi]n0

= f[σ]n0
∀ i ≥ Nε. (D)

Also, we showed in the proof of Theorem 2.12, that, for any σ̃ ∈ Σ∞,∥∥feσ(x)− f[eσ]n(x)
∥∥ ≤ 4%n+1 ∀x ∈ D2, ∀n ∈ N.

Thus, in particular,∥∥fσ(x)− f[σ]n(x)
∥∥ ≤ 4%n+1, ∀x ∈ D2 ∀n ∈ N, (E)

and ∥∥fσi
(x)− f[σi]n(x)

∥∥ ≤ 4%n+1, ∀x ∈ D2 ∀n ∈ N. (F )

Finally, for all i ≥ Nε,∥∥fσi(x)− fσ(x)
∥∥ ≤

∥∥fσi(x)− f[σi]n0
(x)
∥∥+

∥∥f[σi]n0
(x)− fσ(x)

∥∥
D=

∥∥fσi(x)− f[σi]n0
(x)
∥∥+

∥∥f[σ]n0
(x)− fσ(x)

∥∥
E,F

≤ 8%n0+1

C
< ε, ∀ x ∈ D2,

which finishes the proof.

Finally, there is another map that will be useful below.

Definition 2.14. Consider the set T∞Σ∞ := {T∞σ | σ ∈ Σ∞} as a subspace
of F∞, and define a map

πTΣ : T∞Σ∞ → Σ∞

T∞σ 7→ σ.

Proposition 2.15. The map πTΣ is continuous.

Proof. By [11, p. 280, Exercise 1], the product topology on
∏

i∈N
◦
D 2 is metric.

As the space F∞ is topologized as a subspace of
∏

i∈N
◦
D 2, it is metric too.

As, thus, T∞Σ∞ ⊂ F∞ is itself metric, the proposition follows from the fact
that πTΣ maps convergent sequences to convergent sequences. (see [11, Thm.
21.3]).
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2.2 Reducing the map π0ϕ∞ to π0ϕ∞

In this section, we develop a commutative diagram, given in Theorem 2.19, that
shows how the maps π0ϕ∞ and π0ϕ∞ are related to each other.

Recall the space
OC∞ := C

(
(I, İ), (F∞, T Σ∞)

)/
Σ∞,

and observe that
Im
(
ϕ∞
)
⊆ OC∞.

Thus, we use the same notation for ϕ∞ : H∞ → ΩC∞ and its corestriction
ϕ∞ : H∞ → OC∞.

Proposition 2.16.
π0Σ∞ = Σ∞

Proof. Pick a path γ : I → Σ∞, and define, for all i ∈ N,

γi : I → N
t 7→ γ(t)(i).

By [11, Thm. 21.3], we know that γ maps convergent sequences to convergent
sequences, which thus is also the case for the maps γi. As I is metric, it follows
by the same theorem that γi is continuous for all i ∈ N. As N is discrete, this
shows that γi is constant for all i ∈ N, which implies that γ is also constant.

Proposition 2.17. There is a continuous bijection

ξ : Σ∞ × PH∞
∼=−→ H∞

(σ, h) 7→ πΣH(σ) ◦ h.

Proof. The continuity is given by Theorem 2.13. Moreover, we know by Propo-
sition 2.12 that there is a split short exact sequence

1 // PH∞
� � // H∞ πHΣ

// Σ∞

πΣH

zz N_p
// 1 ,

which proves the result (see [14, Prop 10.5]).

Proposition 2.18. The map

ζ : Σ∞ × ΩF∞ −→ OC∞

(σ, β) 7→ p∞ ◦
(
K
(
πΣH(σ), ·

)
(τi)
)
i∈N ? β(·)

induces a bijection
π0ζ : Σ∞ × π1F∞

∼=−→ π0OC∞.
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Proof. Notice that Proposition 1.7 allows us to define a map

l : OC∞ → C
(
(I, 0, 1), (F∞, T∞Σ∞, T∞)

)
β 7→ β,

where β is the unique lifting of β into C
(
(I, 0, 1), (F∞, T∞Σ∞, T∞)

)
that satisfies

p∞ ◦ β = β. To see that this map is continuous, pick an open subset U ⊂
C
(
(I, 0, 1), (F∞, T∞Σ∞, T∞)

)
, and observe that l−1(U) is open inOC∞, because,

writing
q : C

(
(I, İ), (F∞, T∞Σ∞)

)
→ OC∞

for the quotient map, the preimage

q−1
(
l−1(U)

)
=

⋃
σ∈Σ∞

(
πΣH(σ)

)
(U)

is open in C
(
(I, İ), (F∞, T∞Σ∞)

)
.

Introduce maps

φp : OC∞ → Σ∞

γ 7→ πTΣ

(
l
(
[γ]
)
(0)
)

and

φl : Σ∞ → OC∞

σ 7→ p∞ ◦
(
K
(
πΣH(σ), ·

)
(τi)
)

i∈N
,

and observe that they are continuous, because all maps of which they are com-
posed are continuous. (The continuity of the maps πTΣ and πΣH is given by
Theorem 2.13 and Proposition 2.15, respectively).
To verify that π0ζ is a bijection, observe first that, for any σ ∈ Σ∞

φp ◦ φl(σ) = πTΣ

(
l ◦ p∞

(
K
(
πΣH(σ), ·

)
(τi)
)
(0)
)

= πTΣ

(
K
(
πΣH(σ), 0

)
(τi)
)

i∈N

= πTΣ

(
πΣH(σ)

)
= σ.

In particular, there is thus a split exact sequence of sets

1 // ΩF∞
Ωp∞ // OC∞

φp

// Σ∞

φl

yy P_n
// 1.

Recalling that π0Σ∞ = Σ∞, the result follows directly by considering the in-
duced split exact sequence

1 // π1F∞
π1p∞ // π0OC∞

π0φp

// Σ∞

π0φl

xx Q_m
// 1,
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because
π0ζ(σ, b) = π0φl(σ) · b

(see [14, Prop 10.5]).

Theorem 2.19. There is a commutative diagram of sets

π0H∞
π0ϕ∞ // π0OC∞

Σ∞ × π0PH∞

π0ξ ∼=

OO

Id×π0ϕ∞ // Σ∞ × π1F∞..

π0ζ∼=

OO

Proof. First, we show that the following diagram of topological spaces commutes
up to homotopy.

H∞
ϕ∞ // OC∞

Σ∞ × PH∞

ξ

OO

Id×ϕ∞ // Σ∞ × ΩF∞

ζ

OO

Pick any (σ, h) ∈ Σ∞ × PH∞ and verify.

ϕ∞ ◦ ξ(σ, h) = ϕ∞(fσ ◦ h)
∗' ϕ∞(fσ) ? ϕ∞(h)
= p∞ ◦

(
K(fσ, ·)(τi)

)
i∈N ? p∞ ◦

(
K(h, ·)(τi)

)
i∈N

= p∞ ◦
(
K(fσ, ·)(τi)i∈N ? K(h, ·)(τi)i∈N

)
= ζ

(
σ,K(h, ·)(τi)i∈N

)
= ζ ◦ (Id× ϕ∞)(σ, h),

where (∗) is given by the fact that π0ϕ∞ is a homomorphism by Proposition 1.15.
Thus, applying π0 yields the required commutative diagram, because π0Σ∞ =
Σ∞ by Proposition 2.16, and because the vertical maps are isomorphisms by
Propositions 2.17 and 2.18.

This is a very useful result, because it reduces the question of the image and
the kernel of π0ϕ∞ : π0H∞ → π0OC∞ to the analogous question for the map
π0ϕ∞ : π0PH∞ → π1F∞.

2.2.1 Conclusions

For finite n ∈ N, the pure braid group PBn is just a subgroup of the (full) braid
group Bn, and in our context, the properties of the PBn are analogous to those of
the Bn. In the infinite case, the full braid group π1C∞ is more difficult to handle
than the group of pure braids π1F∞, because there is an inverse system of pure
braid groups PBn with π1F∞ as its (category theoretic) limit, whereas the full
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braid groups Bn do not fit together as an inverse system. To solve the question
of the image and the kernel of the homomorphism π0ϕ∞ : π0H∞ → π1C∞,
Theorem 2.19 allows us to bypass this difficulty, however, because the image
and the kernel of π0ϕ∞ : π0H∞ → π1C∞ are given directly in terms of the
image and the kernel of π0ϕ∞ : π0PH∞ → π1F∞.
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Chapter 3

The injectivity of the maps
π0ϕ∞ and π0ϕ∞

3.1 Definition of a suitable contracting homo-
topy of the space H0

Definition 3.1. Write t1 := 0, and, for every i ≥ 2,

ti :=
i−1∑
k=1

1
2k

.

In particular, observe that limi→∞ ti = 1. Recall that, by Definition 2.8,

%i := ‖τi − τ∞‖.

Lemma 3.2. There is a continuous map

κ : [0, 1) → C
(
D2, D2

)
with the following properties.

(i) κ(t) : D2 → D2 is a homeomorphism onto its image ∀t ∈ [0, 1).
(ii) Im κ(ti) = B(τ∞, %i−1), ∀i ∈ N,

(iii) Im κ(t) ⊂ B(τ∞, %i−1) ∀ t > ti, ∀i ∈ N,

(iv) κ(t)(x) = x ∀x ∈ B(τ∞, %i), ∀t ∈ [0, ti], ∀i ∈ N.

(v) κ(0) = IdD2

Moreover, κ contracts D2 along radii, so that, for each t ∈ I, there is an r ∈ [0, 1]
with

Im κ(t) = B(τ∞, r), and ∂Im κ(t) = ∂B(τ∞, r).
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Proof. For each i ∈ N, define a map

Ri : I → C
(
[0, 1], [0, %i−1]

)
by

R1(t)(r) =

{
%2 +

(
r − %2

) (
1− t 1−%1

1−%2

)
, if r ∈ [%2, 1]

r , if r ∈ [0, %2],

for i = 1, and

Ri(t)(r) =

{
%i+1 +

(
Ri−1(1)(r)− %i+1

) (
1− t %i−1−%i

%i−1−%i+1

)
, if r ∈ [%i+1, 1]

r , if r ∈ [0, %i+1]

for i ≥ 2, and for all t ∈ I. Note that for each t ∈ I, R1(t) is well defined at %2,
because

R1(t)(%2) = %2 +
(
%2 − %2

)(
1− t

1− %1

1− %2

)
= %2 ∀t ∈ I.

Also, for all i ≥ 2, t ∈ I, Ri(t) is well defined at %i+1, because, as Ri−1(1)(%i+1) =
%i+1,

Ri(t)(%i+1) = %i+1 +
(
%i+1 − %i+1

)(
1− t

%i−1 − %i

%i−1 − %i+1

)
= %i+1.

For each i ∈ N, the map Ri has the following properties:

(A) Im Ri(1) = [0, %i],
(B) Im Ri(t) ⊂ [0, %i−1) ∀t ∈ (0, 1],
(C) Ri(t)(r) = r ∀r ∈ [0, %i+1], ∀t ∈ I.

(D) Ri(1) = Ri+1(0)

The properties (C) and (D) follow directly from the definition of Ri. To verify
the properties (A) and (B), observe that

Ri(0)(0) = 0,

and, by induction,

Ri(1)(1) = %i and
Ri(0)(1) = %i−1,

and that, moreover, Ri(t)(r) is strictly increasing in r and strictly decreasing in
t.

0 ρi ρi-1

0 ρi

ρi+1

ρi+1

Im Ri(0)

Im Ri(1)
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Now, define a continuous map

κ̃ : [0, 1) → C
(
I × Rmod 2π, I × Rmod 2π

)
piecewise by

κ̃|[ti,ti+1] : [ti, ti+1] → C
(
I × Rmod 2π, I × Rmod 2π

)
t 7→

(
(r, φ) 7→

(
Ri

(
t− ti

ti+1 − ti

)
(r), φ

))
for all i ∈ N. This map is well defined, because, at each ti,

κ̃|[ti−1,ti](ti)(r, φ) =
(
Ri−1

(
ti − ti−1

ti − ti−1

)
(r), φ

)
=

(
Ri−1(1)(r), φ

)
(D)
=

(
Ri(0)(r), φ

)
= κ̃|[ti,ti+1](ti)(r, φ)

for all (r, φ) ∈ I × Rmod 2π. Identifying I × Rmod 2π with the polar coordinates
of D2 turns κ̃ into a map

κ : [0, 1) → C
(
D2, D2

)
.

For each i ∈ N, the restricted map κ|[ti,ti+1] is represented as follows, where the
grey zones are mapped by the identity.

τi-1 τi τi+1

κ(ti)

κ(ti+1)

τi-1 τi τi+1 τi τi+1

D2

B(τ∞,ρi-1) B(τ∞,ρi)

τ0

As, for each i ∈ N, the map Ri(t) is open and injective for all t ∈ I, it follows
that κ(t) too is open and injective for all t ∈ [0, 1). Moreover, by the definition
of κ, the properties (ii), (iii) and (iv) follow from (A), (B) and (C), respectively,
and (v) follows from the fact that, at t1 ≡ 0, κ̃|[t1,t2](0) = IdI×Rmod 2π
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Theorem 3.3. There is a contracting homotopy K : H0 × I → H0, i.e., for all
f ∈ H0,

K(f, 0) = f, K(f, 1) = IdD2

with the following properties. For all h ∈ PH∞ and i ∈ N,

(a) K(h, ti) ∈ PH∞,

(b) K(h, t)(τi) = τi ∀t ∈ [0, ti] ∪ [ti+1, 1],

For each h ∈ H0 that satisfies h(τ∞) = τ∞, in particular for all h ∈ H∞,

(c) K(h, t)(τ∞) = τ∞ ∀t ∈ I.

Furthermore, for all f ∈ H0 and i ∈ N,

(d) K(f, t)(x) = x ∀x ∈ D2 \B(τ∞, %i), ∀t ≥ ti+1

(e) K(f, t)(x) ∈ B(τ∞, %i) ∀x ∈ B(τ∞, %i), ∀t ≥ ti+1.

Finally,
(f) K(IdD2 , t) = IdD2 ∀t ∈ I.

Proof. Recalling the injectivity of κ(t) : D2 → D2 for all t ∈ I, define a map

K : H0 × I → H0

(h, t) 7→

(
x 7→

{(
κ(t) ◦ h ◦ κ−1(t)

)
(x) ,∀x ∈ Im κ(t), ∀t ∈ [0, 1)

x , else

)
.

We show that K is a contraction of H0 with the required properties. First, we
verify that K is well defined.
Observe that, for any (h, t) ∈ H0 × [0, 1), and x ∈ ∂Im κ(t),

K(h, t)(x) =
(
κ(t) ◦ h ◦ κ−1(t)

)
(x)

= κ(t)
(
h
(
κ−1(t)(x)

))
∗= κ(t)

(
κ−1(t)

)
(x)

= x,

where (∗) is given by the fact that κ−1(t)(x) ∈ ∂D2, and because h fixes ∂D2

pointwise. To see that, moreover, Im K ⊂ H0, pick some arbitrary (h, t) ∈
H0 × I. As κ(t) : D2 → D2 is open, K(h, t) : D2 → D2 is continuous, and,
observing that K(h, t) is mutually inverse to K(h−1, t), it follows that K(h, t) ∈
H(D2, D2). Moreover, by the definition of K, we know that

K(h, t)|∂D2 = Id∂D2 ,

i.e.,
K(h, t) ∈ H0.
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To verify that K : H0 × I → H0 is a continuous map, notice that H0 × I is
metric, as, by [11, Thms. 46.7/46.8] H0 has the uniform topology, which in
particular is metric. Thus, by [11, Thm. 21.3], we can verify the continuity of
K by showing that, for any convergent sequence (hi, si)i∈N with

lim
i→∞

(hi, si) =: (h, s),

the sequence
{
K(hi, si)

}
i∈N converges to K(h, s) for i →∞.

Observe that K is continuous at all (h, s) ∈ H0 × [0, 1), and pick a sequence
(hi, si)i∈N that converges to (h, 1) for some h ∈ H0. We need to prove that

lim
i→∞

K(hi, si) = IdD2 .

Recalling Definition 3.1, note that, by Lemma 3.2 (ii),

‖x−K(h, ti)(x)‖ < 2‖τ∞ − τi−1‖ ∀x ∈ D2 ∀h ∈ H0.

Write
ki := max{j ∈ N | tj < si},

and observe that
lim

i→∞
ki = ∞,

because limi→∞ si = 1. Thus, it follows by Lemma 3.2 (iii) that

‖x−K(hi, si)(x)‖ < 2‖τ∞ − τki‖ ∀x ∈ D2 ∀i ∈ N.

In particular, as limi→∞ τi = τ∞, there is, for every ε > 0, an integer Nε such
that

‖x−K(hi, si)(x)‖ < ε ∀x ∈ D2 ∀i ≥ Nε.

This proves that the sequence
(
K(hi, si)

)
i∈N converges uniformly to IdD2 which

means that, as H0 has the uniform topology,

lim
i→∞

K(hi, si) = IdD2 .

Thus,
K ∈ C(H0 × I,H0).

Moreover, it is easy to see by the definition of K that, for every h ∈ H0,

K(h, 0) = h, K(h, 1) = IdD2 .

Fix some h ∈ PH∞ and i ∈ N, and observe as follows that the homotopy K has
the required properties.

Verification of (a). It follows from part (ii) of Lemma 3.2 that, for all j ∈
[1, i− 2], τj /∈ Im κ(ti), and thus, by the definition of K,

K(h, ti)(τj) = τj ∀j ∈ [1, i− 2].
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Moreover, τi−1 ∈ ∂Im κ(ti), which, by the definition of K, means that

K(h, ti)(τi−1) = τi−1

Finally, for every j ≥ i, τj ∈ Im κ(ti), which means that

K(h, ti)(τj) =
(
κ(ti) ◦ h ◦ κ(ti)−1

)
(τj)

∗= κ(ti)
(
h(τj)

)
∗∗= κ(ti)(τj)
∗= τj ,

where (∗) follows from part (iv) of Lemma 3.2, and (∗∗) is given by the fact
that h ∈ PH∞.

Verification of (b). By part (iii) of Lemma 3.2, we know that, for each
j ∈ [1, i− 2],

τj /∈ Im κ(t) ∀t ∈ [ti, ti+1],

and so, by the definition of K,

K(h, t)(τj) = τj ∀j ∈ [1, i− 2], ∀t ∈ [ti, ti+1].

Again, τi−1 ∈ ∂Im κ(ti), which means that, by the definition of K,

K(h, t)(τi−1) = τi−1 ∀t ∈ [ti, ti+1].

Furthermore, for each j ≥ i + 1, τj ∈ B(τ∞, %i+1), such that, by part (iv) of
Lemma 3.2,

κ(t)(τj) = τj ∀t ∈ [0, ti+1].

Thus, by the definition of K, for all t ∈ [ti, ti+1],

K(h, t)(τj) =
(
κ(t) ◦ h ◦ κ(t)−1

)
(τj)

= κ(ti)
(
h(τj)

)
∗= κ(ti)(τj)
= τj ,

where (∗) is given by the fact that h ∈ PH∞.

Verification of (c). Observe that, by part (iv) of Lemma 3.2,

κ(t)(τ∞) = τ∞ ∀t ∈ I.

As, moreover, h(τ∞) = τ∞, it follows by the definition of K : H0× I → H0 that

K(h, t)(τ∞) = τ∞ ∀t ∈ I.
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Finally, we check the properties (d) and (e) for a given f ∈ H0.
Verification of (d). Pick some t̂ ≥ ti+1 and x̂ ∈ D2 \ B(τ∞, %i). If t̂ = ti+1,
then, by part (ii) of Lemma 3.2,

x̂ /∈ Int Im κ(t̂),

and, if t̂ > ti+1, then, this same fact holds by part (iii) of Lemma 3.2. Thus,
by the definition of K,

K(f, t̂)(x̂) = x̂.

Verification of (e). Pick any f ∈ H0, t̂ ≥ ti+1 and x̂ ∈ B(τ∞, %i). If

x̂ /∈ Im κ(t̂), then, by the definition of K,

K(f, t̂)(x̂) = x̂ ∈ B(τ∞, %i).

On the other hand, if x̂ ∈ Im κ(t̂), then, as

K(f, t̂)(x̂) =
(
κ(t̂) ◦ f ◦ κ(t̂)−1

)
(x̂) ∈ Im κ(t̂),

it follows that
K(f, t̂)(x̂) ∈ B(τ∞, %i),

which is given by part (ii) of Lemma 3.2 if t̂ = ti+1, and by part (ii) of Lemma
3.2 if t > ti+1. Thus, resuming these facts,

K(f, t)(x) ∈ B(τ∞, %i) ∀f ∈ H0, ∀x ∈ B(τ∞, %i), ∀t ≥ ti+1.

Finally, the property (f) follow directly from the definition of K.

3.2 Proof of the injectivity of π0ϕ∞

Given two elements f, g ∈ PH∞ such that

π0ϕ∞[f ] = π0ϕ∞[g],

we need to prove that there is a path in PH∞ from f to g. Our construction of
such a path, which is given in the proof of Theorem 3.7, requires some prelimi-
nary work.
Henceforth, the map

ϕ∞ : PH∞ → ΩF∞

h 7→
(
K(h, ·)(τi)

)
i∈N,

is assumed to be given in terms of the homotopy K defined in Theorem 3.3. For
all x ∈ D2, let px : I → D2 be the constant path at x.
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Lemma 3.4. Assume that
π0ϕ∞[h] = 1

for some h ∈ PH∞. Then,[(
K(h, ·)(τi)

)
i∈[1,n]∪∞

]
=
[
(pτi)i∈[1,n]∪∞

]
,

for all n ∈ N.

Proof. Fix some n ∈ N, and write

(βi)i∈N :=
(
K(h, ·)(τi)

)
i∈N, and β∞ := K(h, ·)(τ∞).

By point (c) of Theorem 3.3, β∞ = pτ∞ , which implies that βi(t) 6= τ∞ for all
t ∈ I and all i ∈ N. Thus, by the tube lemma, there is an ε > 0 that satisfies

βi(t) /∈ B(τ∞, 4ε) ∀t ∈ I, ∀i ∈ [1, n]. (A)

Notice that, by the continuity of the map K(h, ·) : I ×D2 → D2, the subset

K(h, ·)−1
(
B(τ∞, ε)

)
⊂ I ×D2

is an open neighbourhood of I × {τ∞}, such that, by the tube lemma, there is
an r > 0 that satisfies

I ×B(τ∞, r) ⊂ K(h, ·)−1
(
B(τ∞, ε)

)
,

i.e.,
K(h, t)

(
B(τ∞, r)

)
⊂ B(τ∞, ε) ∀t ∈ I. (B)

Pick some N ∈ N with
τN ∈ B(τ∞, r),

and observe that, by (B),

βN (t) ∈ B(τ∞, ε) ∀t ∈ I.

Thus, in particular,

B(βN (t), 2ε) ⊂ B(τ∞, 3ε) ∀t ∈ I,

which means that, by (A),

‖βi(t)− βN (t)‖ ≥ 2ε ∀i ∈ [1, n], ∀t ∈ I. (C)

As π0ϕ∞[h] = 1, there is a path Λ̂ := (Λ̂i)i∈N : I → Ω
(
F∞, T∞

)
with

Λ̂i(0) = βi, Λ̂i(1) = pτi
∀i ∈ N. (D)

Using this path, we construct a path Λ in the following way. Let

ξ : D2 \ 0
∼=−→ D2 \B(0, ε) (E)
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be a homeomorphism that satisfies

ξ|D2\B(0,2ε) = Id, (F )

Clearly, such a homeomorphism exists. For the sequel of this proof, keep in
mind that

τ∞ = 0
(

= (0, 0) ∈ R2
)
.

Define a path Λ := (Λi)i∈[1,n]∪∞ : I → Ω
(
Fn+1

(
B(τ∞, 2)

)
, (τ1, . . . , τn, τ∞)

)
by

Λi(s)(t) := Λ̂N (s)(t) + ξ
(
Λ̂i(s)(t)− Λ̂N (s)(t)

)
∀i ∈ [1, n],

Λ∞(s)(t) := Λ̂N (s)(t) + (1− s)
(
τ∞ − βN (t)

)
+ s
(
τ∞ − τN

)
for all s, t ∈ I. First, we verify that Λ(s) is a well defined loop in

(
Fn+1

(
B(τ∞, 2)

)
, (τ1, . . . , τn, τ∞)

)
for all s ∈ I. Clearly,

Λi(s)(t) ∈ B(τ∞, 2) ∀t ∈ I,∀s ∈ I.

Fix some s ∈ I, and observe that, for all i ∈ [1, n],

Λi(s)(0) = Λi(s)(1) = τN + ξ
(
τi − τN

) ∗= τN + τi − τN = τi ∀s ∈ I, ∀i ∈ [1, n],

where (∗) is given by (F ), because, by (C),

‖τi − τN‖ > 2ε ∀i ∈ [1, n].

Also,

Λ∞(s)(0) = Λ∞(s)(1) = τN + (1− s)
(
τ∞ − τN

)
+ s
(
τ∞ − τN

)
= τ∞ ∀s ∈ I.

Thus, Λ(s)(0) = Λ(s)(1) = (τ1, . . . , τn, τN , τ∞). Furthermore, it is easy to see
that, for every s, t ∈ I, the points

(
Λi(s)(t)

)
)i∈[1,n] are pairwise distinct, i.e.,(

Λi(s)(t)
)
)i∈[1,n] ∈ Fn

(
B(τ∞, 2)

)
∀s, t ∈ I.

By (E), we know that Im ξ ∩B(0, ε) = ∅, which shows that, in particular,

‖ξ
(
Λ̂i(s)(t)− Λ̂N (s)(t)

)
‖ > ε ∀s, t ∈ I, ∀i ∈ [1, n].

Thus, by the definition of the Λi’s,

Λi(s)(t) /∈ B(Λ̂N (s)(t), ε) ∀s, t ∈ I, ∀i ∈ [1, n]. (G)

Now, observe that, by (B), and by the choice of τN ,

‖τ∞ − τN‖ < ε, and ‖τ∞ − βN (t)‖ < ε ∀t ∈ I,

which means that

Λ∞(s)(t) := Λ̂N (s)(t)+(1−s)
(
τ∞−βN (t)

)
+s
(
τ∞−τN

)
∈ B

(
Λ̂N (s)(t), ε

)
∀s, t ∈ I.
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Thus, by (G),

Λ∞(s)(t) ∩
{
Λi(s)(t)

}
i∈[1,n]

= ∅ ∀s, t ∈ I,

i.e., Λ(s) is a well defined loop in
(
Fn+1

(
B(τ∞, 2)

)
, (τ1, . . . , τn, τ∞)

)
.

Notice that, as I is compact, there is, for all i ∈ [1, n], a t̂i ∈ I, such that

‖βi(t)− τ∞‖ ≤ ‖βi(t̂i)− τ∞‖ ∀i ∈ [1, n],∀t ∈ I

by the extreme value theorem [11, Thm. 27.4]. As

βi(t) ∈
◦
D

2 ∀t ∈ I,∀i ∈ [1, n],

there is some r̂ with
max

i∈[1,n]
‖βi(t̂i)− τ∞‖ < r̂ < 1,

such that, in particular,

sup
t∈I,i∈[1,n]

‖βi(t)− τ∞‖ < r̃ < 1.

Let χ : B(τ∞, 2) → D2 be a homeomorphism such that

χ|
B(τ∞,er) = Id. (H)

Clearly, χ ◦ Λ is a well defined path in
(
Fn+1, (τ1, . . . , τn, τ∞)

)
. We show that,

furthermore, χ◦Λ(0) = (βi)i∈[1,n]∪∞ and χ◦Λ(1) = (pτi
)i∈[1,n]∪∞, which proves

the lemma.
For all i ∈ [1, n],

χ ◦ Λi(0)(t) = χ ◦
(
Λ̂N (0)(t) + ξ

(
Λ̂i(0)(t)− Λ̂N (0)(t)

))
= χ ◦

(
βN (t) + ξ

(
βi(t)− βN (t)

))
C,F
= χ ◦

(
βN (t) + βi(t)− βN (t)

)
H= βi(t).

On the other hand, again for all i ∈ [1, n],

χ ◦ Λi(1)(t) = χ ◦
(
Λ̂N (1)(t) + ξ

(
Λ̂i(1)(t)− Λ̂N (1)(t)

))
= χ ◦

(
τN + ξ

(
τi − τN

))
C,F
= χ ◦

(
τN + τi − τN

)
H= τi.
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Finally,

χ ◦ Λ∞(0)(t) = χ ◦
(
Λ̂N (0)(t) + τ∞ − βN (t)

)
= χ ◦

(
βN (t) + τ∞ − βN (t)

)
H= τ∞,

and

χ ◦ Λ∞(1)(t) = χ ◦
(
Λ̂N (1)(t) + τ∞ − τN

)
= χ ◦

(
τN + τ∞ − τN

)
H= τ∞.

Corollary 3.5. Let h be an element of PH∞ that satisfies

π0ϕ∞
[
h
]

= 1.

Then, for every n ∈ N, there is a path Γn : I → H0 such that

Γn(0) = Id, Γn(1) = h−1, Γn(t)(τi) = τi ∀i ∈ [1, n] ∪∞.

Proof. Fix some n ∈ N, and define a point in Fn+1 by

T̃n+1 :=
(
τi

)
i∈[1,n]∪∞.

Also, define a space F̃n+1 similarly to Fn+1, by replacing Tn+1 by T̃n+1. Also,
define a map

ϕ̃n+1 : PHn+1 → ΩF̃n+1

by
ϕ̃n+1

(
[h]
)

=
(
K(h, ·)(τi)

)
i∈[1,n]∪∞.

As we pointed out earlier, the map π0ϕi : π0PHi → PBi is an isomorphism for
all i ∈ N, independently of the choice of the basepoint Ti of Fi. In particular,
the map

π0ϕ̃n+1 : π0PHn+1 → π1F̃n+1

is an isomorphism. Furthermore, observe that, for all h ∈ PH∞

π0ϕ̃n+1[h] =
[(

K(h, ·)(τi)
)
i∈[1,n]∪∞

]
∗=
[(

pτi

)
i∈[1,n]∪∞

]
= π0ϕ̃n+1[IdD2 ],

where (∗) follows from Lemma 3.4, because π0ϕ∞[h] = 1. As the map π0ϕ̃n+1 :
π0P̃Hn+1 → π1F̃n+1 is injective, it thus follows that[

h
]

=
[
Id
]

in π0PHn+1,
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i.e., there is a path Γ̂n : I → H0 such that

Γ̂n(0) = h, Γ̂n(1) = Id, Γ̂n(t)(τi) = τi ∀i ∈ [1, n] ∪∞.

Thus, the path
Γn := h−1 ◦ Γ̃n

satisfies the required properties, because h is in PH∞.

Lemma 3.6. Let h be an element of PH∞ that satisfies

π0ϕ∞
[
h
]

= 1.

Then, for every i ∈ N, there is a path Γi : I → PH∞, such that

(i) Γi(0) = h,

(ii) K
(
Γi(1), t

)
∈ PH∞ ∀t ∈ [ti, ti+1].

Proof. We show the existence of such a path Γi for some arbitrary, fixed i ∈ N.
Recall that, by part (iv) of Lemma 3.2, the map

κ : [0, 1) → C
(
D2, D2

)
satisfies

κ(t)(τ∞) = τ∞ ∀t ∈ [0, 1),∀i ∈ N.

Thus, in particular

κ(t)−1(τi) 6= τ∞, h−1
(
κ(t)−1

)
(τi) 6= τ∞ ∀t ∈ [0, 1).

By the continuity of both κ(·)−1(τi) : I → D2 and h−1
(
κ(·)−1

)
(τi) : I → D2,

and by the fact that D2 is normal, it follows that there is a large enough N ∈ N
that satisfies

(A) κ(t)−1(τi) ∈ D2 \B(τ∞, %N ) ∀t ∈ [ti, ti+1],
(B) h−1

(
κ(t)−1

)
(τi) ∈ D2 \B(τ∞, %N ) ∀t ∈ [ti, ti+1],

because limj→∞ %j = 0. Moreover, according Corollary 3.5, there is a path

Γ̂i : I → PHN , s.t. Γ̂i(0) = Id, Γ̂i(1) = h−1, Γ̂i(t)(τ∞) = τ∞ ∀t ∈ I.

Choose reals %̃o, %̃m, %̃i with

%N > %̃o > %̃m > %̃i > %N+1,

and write

Do := B(τ∞, %̃o), Dm := B(τ∞, %̃m), Di := B(τ∞, %̃i).

Let gN be a homeomorphism

gN : D2 \ τ∞
∼=−→ D2 \Dm,
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that contracts D2 \ τ∞ along radii, and that satisfies

gN |D2\Do
= Id|D2\Do

.

Thus, in the following drawing, gn maps the outer grey area by the identity.

τN τN+1

D2

gN

τ∞ τN τN+1τ∞

Dm

Do

Di

hole

Consider the path

gN ◦ Γ̂i(·) ◦ g−1
N : I → H(D2 \Dm),

and extend it to a path Γ̃i : I → H(D2) defined by

Γ̃i(t)(x) =


(
gN ◦ Γ̂i(t) ◦ g−1

N

)
(x) , x ∈ D2 \Dm

ext(t)(x) , x ∈ Dm \Di

x , x ∈ Di,

for all t ∈ I, x ∈ D2, where

ext : I → H
(
Dm \Di

)
can be chosen as follows. Endowing D2 with polar coordinates, define a home-
omorphism

arg := gN ◦ Γ̂i(t) ◦ g−1
N |∂Dm

: Rmod 2π

∼=−→ Rmod 2π,

and write

ext : [%i, %m]× Rmod 2π

∼=−→ [%i, %m]× Rmod 2π

(r, ϕ) 7→
(

r, ϕ +
(
arg(ϕ)− ϕ

) r − %i

%m − %i

)
.

Observing that
ext(%i, ϕ) = (%i, ϕ) ∀ϕ ∈ Rmod 2π,

and

ext(%m, ϕ) ≡
(
%m, arg(ϕ)

)
=
(
gN ◦ Γ̂i(t) ◦ g−1

N

)
(%m, ϕ) ∀ϕ ∈ Rmod 2π,
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it follows that ext suitably extends Γ̃i. Moreover, as

gN ◦ Γ̂i(t) ◦ g−1
N |∂D2 = Id|∂D2 ,

it follows that Γ̃i is actually a path in H0.
We show that the map

Γi(·) := h ◦ Γ̃i(·)
satisfies the required properties. First, we verify that

Γi(t) ∈ PH∞ ∀t ∈ I.

Observe that, for each j ≥ N + 1, τj lies in Di, such that

Γi(t)(τj) = h(τj) = τj ∀t ∈ I,

because h ∈ PH∞. On the other hand, for each j ≤ N , τj lies in D2 \Do, such
that

Γi(t)(τj) =
(
h ◦ gN ◦ Γ̂i(t) ◦ g−1

N

)
(τj)

∗=
(
h ◦ gN ◦ Γ̂i(t)

)
(τj)

∗∗=
(
h ◦ gN

)
(τj)

∗= h(τj)
∗∗∗= τj ,

where (∗) is given by the fact that, by the definition of gN , gN (x) = x for all
x ∈ D2 \ Do, (∗∗) follows from the fact that Γ̂i(t) ∈ PHN for all t ∈ I, and
(∗ ∗ ∗) holds, because h ∈ PH∞.

Furthermore, as Γ̃i(0) = idD2 , it follows that

Γi(0) = h.

It remains to verify the condition (ii);

K
(
Γi(1), t

)
∈ PH∞ ∀t ∈ [ti, ti+1].

As Γi(1) ∈ PH∞, it follows from the statement (b) of Theorem 3.3 that

K
(
Γi(1), t

)
(τj) = τj ∀j 6= i ∀t ∈ [ti, ti+1].

Finally, to prove that K
(
Γi(1), t

)
(τi) = τi ∀t ∈ [ti, ti+1], observe that, for all

x ∈ D2 \Do with h−1(x) ∈ D2 \Do,

Γi(1)(x) =
(
h ◦ gN ◦ Γ̂i(1) ◦ g−1

N

)
(x)

∗=
(
h ◦ gN ◦ h−1 ◦ g−1

N

)
(x)

∗∗=
(
h ◦ gN

)(
h−1(x)

)
∗∗=

(
h ◦ h−1

)
(x)

= x, (C)
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where (∗) is given by the definition of Γ̂i, and (∗∗) holds by the fact that
gN |D2\Do

= Id|D2\Do
. But, by our choice of N ,

κ(t)−1(τi) ∈ D2 \Do, and h−1
(
κ(t)−1

)
(τi) ∈ D2 \Do ∀t ∈ [ti, ti+1],

because Do ⊂ B(τ∞, %N ). Thus, by (C),

K
(
Γi(1), t

)
(τi) =

(
κ(t) ◦ Γi(1) ◦ κ(t)−1

)
(τi)

=
(
κ(t) ◦ Γi(1)

)(
κ(t)−1

)
(τi)
)

=
(
κ(t) ◦ κ(t)−1

)
(τi)

= τi

for all t ∈ [ti, ti+1].

Theorem 3.7. The map

π0ϕ∞ : π0PH∞ → PB∞

is injective.

Proof. Pick any h ∈ PH∞, with

π0ϕ∞
(
[h]
)

= π0ϕ∞
(
[Id]
)
.

We need to show that
[h] = [Id] in π0PH∞.

In other words, we are looking for a path G : I → PH∞, that satisfies

G(0) = h, G(1) = IdD2 .

According to Lemma 3.6, there is a path Γ1 : I → PH∞, such that

Γ1(0) = h, K
(
Γ1(1), t

)
∈ PH∞ ∀t ∈ [t1 ≡ 0, t2].

Moreover, by induction, there is a set of paths {Γi : I → PH∞}i∈N, such that,
for each i > 1,

Γi(0) = Γi−1(1), K
(
Γi(1), t

)
∈ PH∞ ∀t ∈ [ti, ti+1].

Recall that, for every t ∈ [0, 1), there is an i ∈ N, such that t ∈ [ti, ti+1]. This
allows us to define, piecewise for all i ∈ N, a path

G : I → PH∞

t 7→


K
(
Γi

(
2 t−ti

ti+1−ti

)
, ti

)
, t ∈

[
ti,

ti+ti+1
2

]
K (Γi(1), 2t− ti+1) , t ∈

[
ti+ti+1

2 , ti+1

]
IdD2 , t = 1.
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We show that this path is well defined, and that it satisfies the required prop-
erties. First, observe that, at t := t1 ≡ 0,

G(0) = K (Γ1(0), 0) = Γ1(0) = h.

Fix some i ≥ 2. At t := ti,

K

(
Γi

(
2

ti − ti
ti+1 − ti

)
, ti

)
= K

(
Γi(0), ti

)
= K

(
Γi−1(1), 2ti − ti

)
,

whereas, at t := ti+ti+1
2 ,

K

(
Γi

(
2

ti+ti+1
2 − ti

ti+1 − ti

)
, ti

)
= K

(
Γi(1), ti

)
= K

(
Γi(1), 2

ti + ti+1

2
− ti+1

)
.

Thus, G is well defined and continuous at all t ∈ [0, 1). Now, we show the
continuity at t = 1. We need to show that G(t) converges (uniformly) to IdD2

for t → 1. Let {t̂i}i∈N be any sequence in [0, 1] with

lim
i→∞

t̂i = 1.

Pick any ε > 0, and choose an integer n with

2%n < ε,

and an integer N such that

t̂i > tn ∀i ≥ N.

According to part (e) of Theorem 3.3,

K(f, t̂i)(x) ∈ B(τ∞, %n) ∀f ∈ H0, ∀x ∈ B(τ∞, %n), ; ∀i ≥ N.

Thus,∥∥K(f, t̂i)(x)− x
∥∥ ≤ 2%n < ε ∀f ∈ H0, ∀x ∈ B(τ∞, %n), ; ∀i ≥ N.

Moreover, by part (d) of Theorem 3.3,

K(f, t̂i)(x) = x ∀x ∈ D2 \B(τ∞, %N ) ∀f ∈ H0, ∀i ≥ N.

Resuming these facts, we know that∥∥K(f, t̂i)(x)− x
∥∥ < ε ∀f ∈ H0, ∀x ∈ D2, ; ∀i ≥ N.

As this holds for all f ∈ H0, it follows from the definition of G, that∥∥G(t̂i)(x)− x
∥∥ < ε ∀x ∈ D2, ∀i ≥ N,
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which shows the uniform convergence. Thus, G is a well defined path in H0

with G(0) = h and G(1) = IdD2 . It remains to show that G is actually a path
in PH∞, i.e., as we already know that G(1) ∈ PH∞, we need to prove that, for
each i ∈ N,

G(t) ∈ PH∞ ∀t ∈ [ti, ti+1].

Pick some i ∈ N. By part (a) of Theorem 3.3,

G(t) = K

(
Γi

(
2

t− ti
ti+1 − ti

)
, ti

)
∈ PH∞ ∀t ∈

[
ti,

ti + ti+1

2

]
, (A)

because Γi(t) ∈ PH∞ for all t ∈ I by Lemma 3.6. Moreover,

G(t) = K
(
Γi(1), 2t− ti+1

)
∀t ∈

[
ti + ti+1

2
, ti+1

]
.

But for all t ∈
[

ti+ti+1
2 , ti+1

]
,

2t− ti+1 ∈ [ti, ti+1],

such that, by part (ii) of Lemma 3.6,

G(t) ∈ PH∞ ∀ t ∈
[
ti + ti+1

2
, ti+1

]
. (B)

Putting together (A) and (B), we finally obtain that

G(t) ∈ PH∞ ∀t ∈ [ti, ti+1].

Corollary 3.8. The map

π0ϕ∞ : π0H∞ → π0OC∞

is injective.

Proof. This follows directly from Theorems 3.7 and 2.19.
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Chapter 4

The image of the maps
π0ϕ∞ and π0ϕ∞

After proving the injectivity of the maps π0ϕ∞ and π0ϕ∞, we are interested in
identifying their image in PB∞ and B∞, respectively. Again, we can restrict our
attention to the map π0ϕ∞, as Theorem 2.19 directly yields the image of π0ϕ∞,
once the image of π0ϕ∞ is known. In order to identify the image of π0ϕ∞, we
introduce a map π0ϕ

′
∞ that is closely related to the map π0ϕ

′
∞, which admits

an easier identification of its image than the map π0ϕ∞ itself.
First, in section 4.1, we identify Im π0ϕ∞ ⊂ PB∞ in terms of representatives in
ΩF∞. Thereafter, in section 4.2, we introduce a suitable algebraic description
of PB∞ as an infinite semidirect product of free groups, and state a result
concerning the image of π0ϕ∞ within this semidirect product decomposition of
PB∞.
In this chapter, we often work with the configuration spaces of

◦
D 2 \ τ∞. We

thus introduce the following notation.

Definition 4.1. For all n ∈ N ∪∞, define

F ′
n := Fn(

◦
D

2 \ τ∞),

and let PB′
n := π1F

′
n be the corresponding pure braid groups. Moreover, for all

integers m > n, write
s′m,n : F ′

m → F ′
n

for the corresponding (co)- restriction of the projection map sm,n : Fm → Fn.
Similarly, we note

s′∞,n : F ′
∞ → F ′

n

for all n ∈ N.

In this chapter, let K : H0× I → H0 be a contracting homotopy of H0 with the
properties given in Theorem 3.3. As, in particular,

K(h, ·)(τ∞) = pτ∞ ∀h ∈ PH∞,

52



the map

ϕ∞ : PH∞ → ΩF∞

h 7→
(
K(h, ·)(τi)

)
i∈N

corestricts to a well defined map

ϕ∞|ΩF ′∞ : PH∞ → ΩF ′
∞.

to simplify the notation, we write

ϕ′∞ := ϕ∞|ΩF ′∞ .

The inclusion map ι : F ′
∞ ↪→ F∞ thus induces a commutative diagram

π0PH∞
π0ϕ′∞

zzttttttttt
π0ϕ∞

%%JJJJJJJJJJ

PB′
∞

π1ι // PB∞,

which in particular shows that the map π0ϕ
′
∞ is injective, because the map

π0ϕ∞ is injective by Theorem 3.7.

Proposition 4.2. The map π0ϕ
′
∞ : π0PH∞ → PB′

∞ is injective.

In fact, the above diagram allows us to characterize the image of π0ϕ∞ in terms
of the image of π0ϕ

′
∞, which is easier to identify than the image of π0ϕ∞.

Also, we show that there is an isomorphism

Ψ∞ : PB′
∞

∼=−→ PB∞,

which does not correspond to π1ι, however. Clearly, it would be interesting to
know whether π1ι is an isomorphism. We didn’t solve this question.

4.1 Description of the image of π0ϕ∞ in terms of
representatives

Recall the definition

t1 := 0, ti :=
i−1∑
k=1

1
2k

∀i ≥ 2.

Definition 4.3. Define the space of infinite combed braids in ΩF ′
∞ as the

subspace
(
ΩF ′

∞
)
c
⊂ ΩF ′

∞, given by all braids (βi)i∈N ∈ ΩF ′
∞, such that, for

each i ∈ N,
βi(t) = τi ∀t ∈

[
0, ti

]
∪
[
ti+1, 1

]
.

Moreover, for all n ∈ N, define(
ΩF ′

n

)
c

:= Ωs∞,n

((
ΩF ′

∞
)
c

)
.

53



A typical element of
(
ΩF ′

∞
)
c

is drawn below.

τ1 τ∞τ3τ2 . . .

1
2

t2 =

t1 = 0

t5 =1

1
4t3 =
1
8

t4 =

The next theorem characterizes the image of the map π0ϕ∞ in terms of the fol-
lowing subset of

(
ΩF ′

∞
)
c
.

Definition 4.4. Define a subspace
(
ΩF ′

∞
)
cc
⊂
(
ΩF ′

∞
)
c

by(
ΩF ′

∞
)
cc

:=
{

(βi)i∈N ∈
(
ΩF ′

∞
)
c
| lim

i→∞
βi = pτ∞

}
,

where pτ∞ is the constant path at τ∞. We call
(
ΩF ′

∞
)
cc

the space of converg-

ing braids in
(
ΩF ′

∞
)
c

(i.e., converging combed infinite braids). Moreover, let(
PB′

∞
)
cc

be the subset of PB′
∞ defined by(

PB′
∞
)
cc

:=
{[

(βi)i∈N
]
∈ PB′

∞ | (βi)i∈N ∈
(
ΩF ′

∞
)
cc

}
.

Note that, by [11, Thms. 46.7, 46.8], the space C(I,D2) has the topology
of uniform convergence, so that the above given convergence condition on an
element (βi)i∈N ∈

(
ΩF ′

∞
)
cc

is equivalent to the condition that, for every ε > 0,
there is an N ∈ N such that

‖βi(t)− τ∞‖ < ε ∀t ∈ I,∀i ≥ N.

To see that
(
ΩF ′

∞
)
cc

is a strict subspace of
(
ΩF ′

∞
)
c
,(

ΩF ′
∞
)
cc

(
(
ΩF ′

∞
)
c
,

we construct a combed braid that is not convergent. Consider the point x :=(
0, 1

2

)
in D2, and choose, for each i ∈ N, a continuous path

β̂x,i ∈ Ω
( ◦

D
2 \ {τj}j∈N∪∞\i, τi

)
54



that loops around x. Define a braid (βi)i∈N by

βi(t) :=


τi if t ∈ [0, ti]

β̂i

(
2i
(
t− ti

))
if t ∈ [ti, ti+1]

τn if t ∈ [ti+1, 1]

∀ t ∈ I

for all i ∈ N, and observe that (βi)i∈N is a well defined element of
(
ΩF ′

∞
)
c
,

because it satisfies the condition of Definition 4.3, and because, for each i ∈ N,
the map βi : S1 → D2 is continuous, which, by [11, Thm. 19.6], suffices for
(βi)i∈N : S1 → F∞ to be continuous. Notice that (βi)i∈N is not contained in(
ΩF ′

∞
)
cc

, however, because the condition

lim
i→∞

βi = pτ∞

is not satisfied, i.e., the sequence (βi)i∈N does not converge uniformly to pτ∞ .
On the other hand, there is an interesting, unsolved question:

π0

(
ΩF ′

∞
)
cc

?=
(
PB′

∞
)
cc

Theorem 4.5.
Im π0ϕ

′
∞ =

(
PB′

∞
)
cc

.

Proof. To show that
Im π0ϕ

′
∞ ⊆

(
PB′

∞
)
cc

,

pick an element h ∈ PH∞, and write

(βi)i∈N := ϕ′∞(h) ≡
(
K(h, ·)(τi)

)
i∈N.

According to Theorem 3.3, item (b),

βi(t) = τi ∀i ∈ N, ∀t ∈ [0, ti] ∪ [ti+1, 1],

which means that (βi)i∈N∪∞ ∈
(
ΩF ′

∞
)
c
. To show that, moreover, (βi)i∈N ∈(

ΩF ′
∞
)
cc

, pick an ε > 0, and observe that, by the continuity of the map K(h, ·) :
I ×D2 → D2, the subset

K(h, ·)−1
(
B(τ∞, ε)

)
⊂ I ×D2

is an open neighbourhood of I × {τ∞}, which means that, by the tube lemma,
there is an r > 0, such that

I ×B(τ∞, r) ⊂ K(h, ·)−1
(
B(τ∞, ε)

)
,

i.e.,
K(h, t)

(
B(τ∞, r)

)
⊂ B(τ∞, ε) ∀t ∈ I. (A)

Pick an N ∈ N such that

τi ∈ B(τ∞, r) ∀i ≥ N,
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and notice that, by (A),

‖K(h, t)(τi)− τ∞‖ < ε ∀t ∈ I,∀i ≥ N,

which means that the sequence (βi)i∈N =
(
K(h, ·)(τi)

)
i∈N converges uniformly

to the constant path pτ∞ . Thus

(βi)i∈N∪∞ ∈
(
ΩF ′

∞
)
cc

,

i.e.,
π0ϕ

′
∞
(
[h]
)

=
[
(βi)i∈N

]
∈
(
PB′

∞
)
cc

.

It remains to prove that

Im π0ϕ
′
∞ ⊇

(
PB′

∞
)
cc

.

Pick any element b ∈
(
PB′

∞
)
cc

, and let (βi)i∈N ∈
(
ΩF ′

∞
)
cc

be a representative
of b. Also, write

ri := 2 sup
j≥i

{
max
t∈I

‖βj(t)− τ∞‖
}

for all i ∈ N. Note that
ri ≥ ri+1 ∀ i ∈ N,

and, by the definition of
(
ΩF ′

∞
)
cc

,

lim
i→∞

ri = 0.

We show that, for every i ∈ N, there is a path gi ∈ C
(
I,H0

)
, such that, recalling

the sequence (ti)i∈N,

(i) gi(t)(τj) =

{
βi(t) if j = i ∀t ∈ I

τj j ∈ N ∪∞ \ i ∀t ∈ I

(ii) gi(t)|D2\B(τ∞,ri) = Id ∀t ∈ I

(iii) gi(t) = Id ∀t ≤ ti

(iv) gi(t) = gi(1) ∀t ≥ ti+1,

where B(τ∞, ri) is the open ball in R2 with radius ri, centered at τ∞. For some
fixed i ∈ N, the existence can be shown as follows. By the definition of

(
ΩF ′

∞
)
cc

,
we know that, for every t ∈ I, there is at most one i ∈ N, for which βi(t) 6= τi,
i.e.,

βi(t) ∈
◦
D

2 \ {τj}j∈N∪∞\i ∀t ∈ I, ∀i ∈ N.

Fix some i ∈ N, and observe that, by the extreme value theorem [11, Thm.
27.4], there is an r̃ > 0, that satisfies

βi(t) /∈ B(τ∞, r̃) ∀t ∈ I.
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Thus, there is a finite M ∈ N such that τi ∈ B(τ∞, r̃) for all i > M , i.e.,

βi(t) ∈
◦
D

2 \
{

B(τ∞, r̃) ∪ {τj}j∈[1,M ]\i

}
∀t ∈ I.

Thus, we can again apply the extreme value theorem to conclude that there is
a real r > 0 that satisfies⋃

t∈I

B(βi(t), r) ⊂
◦
D

2 \
{

B(τ∞, r̃) ∪ {τj}j∈[1,M ]\i

}
∀t ∈ I,

and thus, in particular,⋃
t∈I

B(βi(t), r) ⊂
◦
D

2 \ {τj}j∈N∪∞\i. (B)

Moreover, as, by the definition of ri,

βi(t) ∈ B(τ∞, ri) ∀ t ∈ I,

we can choose r small enough, such that⋃
t∈I

B(βi(t), r) ⊂ B(τ∞, ri). (C)

By the continuity of βi, there is, for each t ∈ [ti, ti+1], an open interval ]s−t , s+
t [⊂

[ti, ti+1] containing t, such that

βi(t̂) ∈ B(βi(t), r) ∀t̂ ∈ [s−t , s+
t ].

As I is compact, there is an M ∈ N and a point set {t̂j}j∈[1,M ] ⊂ [ti, ti+1], such
that

⋃
j∈[1,M ][s

−
t̂j

, s+
t̂j

] = [ti, ti+1]. In particular, s+
t̂j

> s−
t̂j+1

for all j ∈ [1,M −1],

such that, simplifying the notation by writing sj instead of s+
t̂j

,⋃
j∈[1,M ]

[sj−1, sj ] = [ti, ti+1] ,

where s0 := ti. Also, notice that

βi(t̂) ∈ B(βi(tj), r) ∀t̂ ∈ [sj−1, sj ],∀j ∈ [2,M ].

Observe that that, by Theorem 1.12, the map

evτi : H0 → D2

h 7→ h(τi)

has the path lifting property. For each j ∈ [1,M ], choose a homeomorphism

fj :
◦
D

2 ∼=−→ B
(
βi(tj), r

)
,
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that satisfies
fj(τi) = βi(sj−1),

and consider the following commutative diagram

H0

evτi

��

∼=

fj◦(·)◦f−1
j // HB

0

evB
fj(τi)

��
◦
D 2 ∼=

f // B
(
βi(tj), r

)
,

where HB
0 is the space of homeomorphisms of B

(
βi(tj), r

)
that fix the boundary

∂B
(
βi(tj), r

)
pointwise, and evB

fj(τi)
is the evaluation at fj(τi). Clearly, evB

fj(τi)

has thus the path lifting property, which allows us to construct, for each j ∈
[1,M ], a path g(j) : [sj−1, sj ] → H0 satisfying

g(j)(sj−1) = IdD2 , (D)

g(j)(t)
(
βi(sj−1)

)
= βi(t) ∀t ∈ [sj−1, sj ], (E)

g(j)(t)|D2\B(βi(tj),r) = Id ∀t ∈ [sj−1, sj ]. (F )

Now, define a path gi : I → H0 piecewise by

gi(t) :=


IdD2 , t ∈ [0, ti]
g(j)(t) ◦ g(j−1)(sj−1) ◦ · · · ◦ g(1)(s1), t ∈ [sj−1, sj ] ∀j ∈ [1,M ]
g(M)(sM ) ◦ · · · ◦ g(1)(s1), t ∈ [ti+1, 1] ,

and observe that, by (D), gi is well defined. Moreover, gi satisfies the condition
(i), because, by (B) and by the properties (E) and (F ) of the maps g(j). The
condition (ii) is satisfied by (C) and (F ), whereas the conditions (iii) and (iv)
are given directly by the definition of gi.
For all n ∈ N, write

Gn(−) = gn(−) ◦ · · · ◦ g1(−).

Observe that, by the properties (i) and (iii) of the maps gi, for every n ∈ N,

Gn(0) = IdD2

Gn(t)(τi) = βi(t), ∀ i ≤ n,∀ t ∈ I, (G),

and that, moreover,
Gn(1)(τi) = τi ∀i ∈ N.

To finish the proof, we veriry the following fact.
Claim: There is a path G ∈ C

(
I,H0

)
, such that

lim
n→∞

Gn = G. (H)
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Then, by (G), it is clear that G satisfies

ev∞ ◦
(
G(−)

)
= (βi)i∈N. (I)

Write G(t) := G(1− t) for all t ∈ I, and observe that both

K(G(1),−) and G

are paths in H0 with startpoint G(1) ∈ PH∞ and endpoint IdD2 that, moreover,
satisfy

K(G(1), t)(τ∞) = G(t)(τ∞) = τ∞ ∀t ∈ I

by the property (i) of the maps {gi}i∈N and by Theorem 3.3 (c). Thus, by
Lemma A.3, [

ev∞ ◦K
(
G(1),−

)]
=
[
ev∞ ◦ G(−)

]
in π1F

′
∞,

i.e., writing (βi)i∈N for the inverse path of (βi)i∈N,

π0ϕ
′
∞
(
[G(1)]

)
=

[
(ev∞)∗K(G(1),−)

]
=

[
(ev∞)∗G(−)

]
I=

[
(βi)i∈N

]
.

Analoguous to the prove of Proposition 1.15, one can show that the map π0ϕ
′
∞

is a homomorphism. Thus, defining hβ := G(1)−1, it follows that

π0ϕ
′
∞
(
[hβ ]

)
=
[
(βi)i∈N

]
,

which proves the theorem.
To prove our claim (H), we proceed in two steps. First, we show that, for each
t ∈ I, the sequence (Gn(t) ∈ H0)n∈N converges in H0. In a second step, we show
that the set {G(t)}t∈I depends continuously on t.

First step. Fix some t ∈ I, x ∈ D2, and observe that, for every n ∈ N,

‖Gn(t)(x)− Gn−1(t)(x)‖ = ‖gn ◦ Gn−1(t)(x)− Gn−1(t)(x)‖
≤ 2rn

by the property (ii) of the maps {gi}i∈[1,n]. Thus,

lim
n→∞

‖Gn(t)(x)− Gn−1(t)(x)‖ = 0.

which means that,
(
Gn(t)(x)

)
n∈N is a Cauchy sequence. By the completeness

of D2, this sequence thus converges pointwise in D2, which allows us to define
a map

G(t) :
◦
D

2 →
◦
D

2

x 7→ lim
n→∞

Gn(t)(x).
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To prove the uniform convergence of the sequence
(
Gn(t)

)
n∈N, recall that, for

all n ∈ N,
gn(t)(x) = x ∀ x ∈

◦
D

2 \B(τ∞, rn),

by the property (ii) of gn, and

gn(t)(x) ∈ B(τ∞, rn) ∀ x ∈ B(τ∞, rn)

by construction. As ri+1 ≤ ri for all i ∈ N, it follows that, for every n′ ≥ n,(
gn′(t) ◦ · · · ◦ gn(t)

)
(x) ∈ B(τ∞, rn) ∀x ∈ B(τ∞, rn), and(

gn′(t) ◦ · · · ◦ gn(t)
)
(x) = x ∀x ∈

◦
D

2 \B(τ∞, rn).

In other words, for all integers n, n′ with n′ ≥ n,∥∥Gn′(t)(x)− Gn(t)(x)
∥∥ =

∥∥(gn′(t) ◦ · · · ◦ gn+1(t) ◦ Gn(t)
)
(x)− Gn(t)(x)

∥∥
≤ 2rn+1

for all x ∈ D2. This means that, for every n ∈ N,∥∥G(t)(x)− Gn(t)(x)
∥∥ ≤ 2rn+1 ∀ x ∈

◦
D

2,

which proves the uniform convergence of the sequence
(
Gn(t)

)
n∈N, because

limn→∞ rn = 0. Thus, G(t) is a limit point of H0, because H0 is topologized as

a subspace of D2D2

, endowed with the compact-open topology, that coincides
with the uniform topology by [Munkres, Thms. 46.7/8].

On the other hand, H0 is closed in D2D2

. For any sequence (hi)i∈N in H0 that

converges to an element h ∈ D2D2

, we know that

h ∈ C(D2, D2),

as C(D2, D2) is closed in D2D2

by [Munkres, Thm. 46,5]. By the same argument,

h−1 := lim
i→∞

h−1
i ∈ C(D2, D2),

i.e.,
h ∈ H(D2, D2).

As every element of the sequence (hi)i∈N fixes the boundary ∂D2 pointwise, so
does its limit h, which means that

h ∈ H0.

Thus, H0 is closed in D2D2

, and thus, for every t ∈ I,

G(t) ∈ H0 ∀t ∈ I.
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This finishes the first step of the proof.

Second step. Pick any t ∈ [0, 1), and an integer N , such that

t < tN .

Then, by the property (iii) of the paths {gi}i∈N,

Gn(t) = GN (t) ∀ n ≥ N,

which means that
G(t) = GN (t).

Thus,
G|[0,1) ∈ C

(
[0, 1),H0

)
.

Let (tn)n∈N be a sequence in I that converges to 1. Given any ε > 0, find a
k ∈ N, such that 4rk ≤ ε. Choose some N ∈ N that satisfies

tn ∈ [tk+1, 1] ∀ n ≥ N,

such that, by the property (iv) of the paths gi,

gi(tn) = gi(1) ∀n ≥ N, ∀i ≤ k.

Consequently,
Gk(tn) = Gk(1) ∀n ≥ N. (J)

Moreover, note that, by the property (ii) of the maps gi,

‖G(t)− Gk(t)‖ < 2rk ∀t ∈ I. (K)

Thus, for all x ∈ D2,∥∥G(tn)(x)− G(1)(x)
∥∥ =

∥∥(G(tn)− Gk(tn) + Gk(tn)− G(1) + Gk(1)− Gk(1)
)
(x)
∥∥

J=
∥∥(G(tn)− Gk(tn)− G(1) + Gk(1)

)
(x)
∥∥

≤
∥∥G(tn)(x)− Gk(tn)(x)

∥∥+
∥∥G(1)(x)− Gk(1)(x)

∥∥
K
≤ 4rk ∀n ≥ N

≤ ε

i.e., the sequence
(
G(tn)

)
n∈N converges uniformly to G(1). Thus, by [Munkres.

Theorems 46.7/46.8],
G ∈ C(I,H0),

which proves our claim (H).
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Corollary 4.6. The maps ϕ′∞, ϕ∞ and ϕ∞ induce isomorphisms

π0ϕ
′
∞ : π0PH∞

∼=−→
(
PB′

∞
)
cc

,

π0ϕ∞ : π0PH∞
∼=−→ π1ι

(
PB′

∞
)
cc

,

and a bijection

π0ϕ∞ : π0H∞
∼=−→ π0ζ

(
Σ∞ n π1ι

(
(PB′

∞)cc

))
where ι : F ′

∞ ↪→ F∞ is the inclusion map.

Proof. The result follows directly from Theorems 4.5, 3.7 and Proposition 4.2.

4.2 Algebraic description of PB∞

To algebraically describe the image of π0ϕ∞, we first need an algebraic descrip-
tion of PB∞. The most straightforward way to do this is to use the inverse
system

PB∞ → · · · → PBn+1
π1sn+1,n−→ PBn → · · · → PB1

to decompose PB∞ into an infinite semidirect product

PB∞ ∼= ni≥2Ui,

where, for all i ≥ 2, Ui = Ker π1sn+1,n. In subsection 4.2.5, this is explained
in detail. However, it seems that, within ni≥2Ui, the image of π0ϕ∞ is compli-
cated to describe. To avoid this difficulty, we introduce the braid groups of the
punctured disk PB′

n := π1Fn(
◦
D 2 \ τ∞) for all n ∈ N, and show that PB∞ is

the limit of the resulting inverse system

PB∞ → · · · → PB′
n+1

π1s′n+1,n−→ PB′
n → · · · → PB′

1.

According to subsection 4.2.5, this allows us to write PB∞ as the infinite semidi-
rect product

PB∞ ∼= ni∈NU ′
i ,

where, for all i ∈ N, U ′
i = Ker π1s

′
n+1,n. Within this semidirect product decom-

position of PB∞, the image of π0ϕ∞ seems to be easier to identify (see section
4.3).
Observing that, for all n ∈ N, PB′

n is isomorphic to the braid group of the bi-
infinite cylinder S1×R, which, by an easy argument, is isomorphic to the braid
group of the cylinder, we presume that the groups PB′

n and U ′
n, are well known

for all finite n. Nevertheless, the particular statements concerning these groups
that we need for the identification of Im π0ϕ∞ in section 4.3 seem hard to be
found in literature. Therefore, we fully develop the introduction of these groups,
and identify their presentation using the presentation of the standard pure braid
groups PBn. In particular, we suppose that the content of the present section
is essentially known.
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4.2.1 Introduction of the braid groups of the punctured
disk PB′

n

In this paragraph, we introduce abstract groups PB′
n for all n ∈ N, that we

identify later with π1F
′
n, the groups of n-strand braids in

◦
D 2 \ τ∞.

For all n ∈ N, define an isomorphism Φ̂n of abstract free groups by

Φ̂n :
〈
{Ai,j}1≤i<j≤n−1, {δ(n−1)

i }1≤i≤n−1}
〉

→
〈
{Ai,j}1≤i<j≤n

〉
Ai,j 7→ Ai,j ∀ 1 ≤ i < j ≤ n− 1

δ
(n−1)
i 7→ Ai,i+1 · · ·Ai,n ∀ i ∈ [1, n− 1].

where Φ̂−1
n is given by

Φ̂−1
n :

〈
{Ai,j}1≤i<j≤n

〉
→

〈
{Ai,j}1≤i<j≤n−1{δ(n−1)

i }1≤i≤n−1}
〉

Ai,j 7→ Ai,j ∀ 1 ≤ i < j ≤ n− 1

Ai,n 7→ A−1
i,n−1 · · ·A

−1
i,i+1δ

(n−1)
i ∀i ∈ [1, n− 2].

An−1,n 7→ δ
(n−1)
n−1 .

Identify the set {Ai,j}1≤i<j≤n with the identical set of generators of the group
PBn for all n ∈ N (cf. [Hansen, Lemma 4.2]), and define a projection map

qn :
〈
{Ai,j}1≤i<j≤n

〉
→
∣∣{Ai,j}1≤i<j≤n : rn

∣∣ ∼= PBn,

where rn is the set of the relations in PBn with respect to this presentation,
which are given by

A−1
r,sAi,jAr,s ∼


Ai,j if i < r < s < j or r < s < i < j

Ar,jAi,jA
−1
r,j if r < i = s < j

Ar,jAs,jAi,jA
−1
s,jA

−1
r,j if i = r < s < j

Ar,jAs,jA
−1
r,j A−1

s,jAi,jAs,jAr,jA
−1
s,jA

−1
r,j if r < i < s < j

(4.1)
This presentation is related to Artin’s by

Ai,j = σj−1σj−2 · · ·σi+1σ
2
i σ−1

i+1 · · ·σ
−1
j−2σ

−1
j−1

for all 1 ≤ i < j (see [Birman, p. 20]). For all n ∈ N, define

r′n := Φ̂−1
n (rn),

and, introducing the projection

q′n :
〈
{Ai,j}1≤i<j≤n−1∪{δ(n−1)

i }1≤i≤n−1}
〉
→
∣∣{Ai,j}1≤i<j≤n−1, {δ(n−1)

i }1≤i≤n−1} : r′n
∣∣ := PB′

n−1,
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observe that there is a commutative diagram

〈
{Ai,j}1≤i<j≤n−1 ∪ {δ(n−1)

i }1≤i≤n−1}
〉

q′n

��

bΦn

∼=
//
〈
{Ai,j}1≤i<j≤n

〉
qn

��
PB′

n−1
Φn

∼=
// PBn

,

where
Φn : PB′

n−1

∼=−→ PBn

is the isomorphism of groups induced by Φ̂n.

4.2.2 Identification of π1F
′
n with PB′

n.

Recalling the definition F ′
n := Fn(

◦
D 2 \ τ∞), we now identify the group PB′

n

with the fundamental group π1F
′
n for all n ∈ N, as shown below.

Proposition 4.7. For each n ∈ N, there is an element φ̂n ∈ H0 that satisfies

φ̂n(τ∞) = τn, and

φ̂n(x) = x ∀x ∈ D2 \B
(
τ∞, ‖τn−1 − τ∞‖

)
.

In particular, this map induces a well defined map of pointed spaces

φn :
(
F ′

n−1, Tn−1

)
→

(
Fn, Tn

)
(x1, . . . , xn−1) 7→

(
φ̂n(x1), . . . , φ̂n(xn−1), τn

)
.

Proof. Observe that, as Theorem 1.12 holds for any choice for (τi)i∈[1,n], the
map

ẽvn : H0 → Fn

h 7→
(
h(τi)

)
i∈[1,n−1]∪∞

is a fiber bundle, and thus, in particular, is surjective. Choose any homeomor-
phism

f : D2 ∼=−→ B
(
τ∞, ‖τn−1 − τ∞‖

)
,

and consider the following commutative diagram

H0

fevn

��

∼=

f◦(·)◦f−1

// HB
0

fevB
n

���
�
�

Fn ∼=

f // FnB
(
τ∞, ‖τn−1 − τ∞‖

)
,
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where HB
0 is the space of homeomorphisms of B

(
βi(tj), ‖τn−1 − τ∞‖

)
that fix

the boundary ∂B
(
βi(tj), ‖τn−1 − τ∞‖

)
pointwise, and ẽvB

n is the induced map.
This shows that

ẽvB
n : HB

0 → FnB
(
τ∞, ‖τn−1 − τ∞‖

)
is surjective, which means that there is a map φ̂B

n in HB
0 that satisfies

φ̂B
n (τ∞) = τn,

φ̂B
n (τi) = τi ∀ i ∈ [1, n− 1],

which, when extended by the identity map on D2 \B
(
τ∞, ‖τn−1 − τ∞‖

)
, yields

the required map φ̂n.

Proposition 4.8. For each n ∈ N, the map φn : F ′
n−1 → Fn induces an

isomorphism
π1φn : π1

(
F ′

n−1, Tn−1

) ∼=−→ π1

(
Fn, Tn

)
.

Proof. Fix some n ∈ N. According to [Birman, Thm. 1.2], there is a fiber
bundle (

F ′
n−1, Tn−1

) νn
↪→

(
Fn, Tn

)
−→

( ◦
D 2, τn

)
(x1, . . . , xn−1) 7→ (x1, . . . , xn−1, τn)

(x1, . . . , xn) 7→ xn

Moreover, recalling that

π1(
◦
D

2, τn) = π2(
◦
D

2, τn) = 1,

the corresponding long exact homotopy sequence yields an isomorphism

π1νn : π1

(
F ′

n−1, Tn−1

) ∼=−→ π1

(
Fn, Tn

)
.

Considering the following diagram of pointed spaces commutes(
F ′

n−1, Tn−1

) νn //
(
Fn, Tn

)
(
F ′

n−1, Tn−1

)
,

φc
n

∼=

OO

φn

88ppppppppppp

where the corestricted map

φc
n := φn|

(
F ′n−1,Tn−1

)
is actually a homeomorphism, the induced diagram of fundamental groups yields
the required isomorphism.
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Consider the diagram

π1F
′
n−1 ∼=

π1φn // π1Fn

≡

PB′
n−1

Φn

∼=
// PBn

Definition 4.9. By the fact that, for every n ∈ N, both π1φn : π1F
′
n−1 → π1Fn

and Φn : PB′
n−1 → PBn are isomorphisms of groups, we can identify, for

all n ∈ N, the abstract group PB′
n−1 with the concrete group π1F

′
n−1 and the

isomorphism Φn with π1φn, such that the above diagram completes as follows

π1F
′
n−1

≡
���
�
� ∼=

π1φn // π1Fn

≡
��

PB′
n−1

Φn

∼=
// PBn.

4.2.3 Canonical representatives of the generators of the
groups PB′

n for finite n

The following notation is used repeatedly in the sequel.

Definition 4.10. For all n ∈ N introduce a subset of D2 by

Dn :=
◦
D

2 \
{
{τj}j∈[1,n−1] ∪B

(
τ∞, ‖τn+1 − τ∞‖

)}
.

Here are two examples.

τ3τ2τ1D3 :
τ2τ1D2 :

hole

τ∞

holes

τ∞

τ4τ3

Definition 4.11. For all i, n ∈ N with 1 ≤ i ≤ n, write

κ
(n)
i :

(
Di, τi

)
→ (F ′

n, Tn)

x 7→
(
τ1, . . . , τi−1, x, τi+1, . . . , τn

)
.
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Proposition 4.12. For all integers i, j with 1 ≤ i < j, there is a loop

Âi,j ∈ Ω
(
Dj , τj

)
,

such that, for all n ≥ j,

Ai,j =
[
κ

(n)
j ◦ Âi,j

]
=
[
pτ1 , . . . , pτj−1 , Âi,j , pτj+1 , . . . , pτn

]
in PB′

n. Also, for all i ∈ N, there is a loop

δ̂i ∈ Ω
(
Di, τi

)
,

that satisfies, for all n ≥ i,

δ
(n)
i =

[
κ

(n)
i ◦ δ̂j

]
=
[
pτ1 , . . . , pτi−1 , δ̂i, pτi+1 , . . . , pτn

]
in PB′

n. Moreover, these loops can be chosen such that

Âi,j(t) ∈ Dj ∩B

(
τ∞,

∥∥∥∥1
2
(τi−1 + τi)− τ∞

∥∥∥∥) ∀i, j ∈ N with i < j, ∀t ∈ I,

and
δ̂i(t) ∈ Di ∩B (τ∞, ‖τi−1 − τ∞‖) ∀i ∈ N, ∀t ∈ I,

respectively.

Proof. Fix some n ∈ N, and pick any i, j ∈ N with 1 ≤ i < j ≤ n. According to
basic braid theory, the generator Ai,j of PBn+1 has a combed representative(

pτ1 , . . . , pτj−1 , Âi,j , pτj+1 , . . . , pτn+1

)
∈ ΩFn+1,

where Âi,j ∈ Ω(D2, τj) is a loop that winds around the i-th strand , and doesn’t
wind around any other strand. An example for i = n− 3, j = n is drawn below.
Clearly, Âi,j can be chosen such that

Âi,j(t) ∈ Dj∩B

(
τ∞,

∥∥∥∥1
2
(τi−1 + τi)− τ∞

∥∥∥∥) ∀i, j ∈ N with i < j, ∀t ∈ I, (A)

as required. Recalling Proposition 4.7 and Definition 4.9, notice that, in PBn+1,

Ai,j =
[(

pτ1 , . . . , pτj−1 , Âi,j , pτj+1 , . . . , pτn+1

)]
∗=

[(
φ̂n+1 ◦ pτ1 , . . . , φ̂n+1 ◦ pτj−1 , φ̂n+1 ◦ Âi,j , φ̂n+1 ◦ pτj+1 , . . . , pτn+1

)]
=

[
Ωφn+1

(
pτ1 , . . . , pτj−1 , Âi,j , pτj+1 , . . . , pτn

)]
= Φn+1

[(
pτ1 , . . . , pτj−1 , Âi,j , pτj+1 , . . . , pτn

)]
,

where (∗) follows from the properties of φ̂n, because, by (A),

Âi,j(t) ∈ D2 \B (τ∞, ‖τn+1 − τ∞‖) ∀t ∈ I.
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Thus, in particular,[(
pτ1 , . . . , pτj−1 , Âi,j , pτj+1 , . . . , pτn

)]
= Ai,j in PB′

n.

On the other hand, for each i ∈ [1, n], by Lemma A.9,

Φn+1(δ
(n)
i ) = Ai,i+1 · · ·Ai,n+1 ∼ σi · · ·σn−1σ

2
nσn−1 · · ·σi

in PBn+1. Using standard representatives of the generators σi, one can show,
by choosing an adequate homotopy in ΩFn+1, that

σi · · ·σn−1σ
2
nσn−1 · · ·σi =

[(
pτ1 , . . . , pτi−1 , δ̂i, pτi+1 , . . . , pτn+1 ,

)]
,

where δ̂ ∈ Ω(D2, τi) is a loop that winds around all strands from the i + 1-st to
the n + 1-st, and doesn’t wind around the other strands. An example for i = n
is drawn below. Moreover, δ̂i can be chosen such that

δ̂i(t) ∈ Di ∩B (τ∞, ‖τi−1 − τ∞‖) ∀i ∈ N, ∀t ∈ I, (B)

as required. Thus, in PBn+1,

Φn+1

(
δ
(n)
i

)
= Ai,i+1 · · ·Ai,n+1

=
[(

pτ1 , . . . , pτi−1 , δ̂i, pτi+1 , . . . , pτn+1 ,
)]

∗=
[(

φ̂n+1 ◦ pτ1 , . . . , φ̂n+1 ◦ pτi−1 , φ̂n+1 ◦ δ̂i, φ̂n+1 ◦ pτi+1 , . . . , φ̂n+1 ◦ pτn
, pτn+1

)]
=

[
Ωφn+1

(
pτ1 , . . . , pτi−1 , δ̂i, pτi+1 , . . . , pτn

,
)]

= Φn+1

[(
pτ1 , . . . , pτi−1 , δ̂i, pτi+1 , . . . , pτn

,
)]

,

where (∗) is given the above given properties of φ̂n, because, by (B),

δ̂i(t) ∈
◦
D

2 \B (τ∞, ‖τi − τ∞‖) ∀t ∈ I.

Thus, as required,[(
pτ1 , . . . , pτi−1 , δ̂i, pτi+1 , . . . , pτn

)]
= δ(n) in PB′

n.

The loops Ân−3,n and δ̂
(n)
n , as well as the corresponding braids Ωκ

(n+1)
n (Ân−3,n)

and Ωκ
(n+1)
n (δ̂n) are shown in the following drawings, where the grey zones are

to avoid by the given conditions.
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4.2.4 Inverse system of pure braid groups revisited

In this subsection, we investigate the maps π1sn,n−1 : PBn → PBn−1 and
π1s

′
n,n−1 : PB′

n → PB′
n−1 in algebraic terms, i.e., using the presentation of

the groups PBn and PB′
n, respectively. This allows us thereafter to con-

struct an isomorphism between the inverse systems {PB′
n, π1s

′
n+1,n}n∈N and

{PBn, π1sn+1,n}n∈N.

Proposition 4.13. For each n ≥ 2, the maps π1sn,n−1 : PBn → PBn−1 and
π1s

′
n,n−1 : PB′

n → PB′
n−1 act as follows on the generators.

π1sn,n−1 : PBn → PBn−1

Ai,j 7→ Ai,j ∀ 1 ≤ i < j ≤ n− 1
Ai,n 7→ 1 ∀ i ∈ [1, n− 1]

π1s
′
n,n−1 : PB′

n → PB′
n−1

Ai,j 7→ Ai,j ∀ 1 ≤ i < j ≤ n− 1
Ai,n 7→ 1 ∀ i ∈ [1, n− 1]

δ
(n)
i 7→ δ

(n−1)
i ∀ i ∈ [1, n− 1]

δ(n)
n 7→ 1

Proof. Fix some n ≥ 2. The statement concerning π1sn,n−1 is proved in [Bir-
man, p. 23], whereas the action of π1s

′
n,n−1 follows directly from Proposition

4.12, by looking at representatives of the generators of PB′
n.

For all integers n′ ≥ n ≥ 2, introduce an isomorphism induced by conjugation

cn : PBn′
∼=−→ PBn′

b 7→ σn−1bσ
−1
n−1,

where σn−1 is the usual notation for a generator of Artin’s presentation of the
braid groups.

Lemma 4.14. For every n ≥ 2, the following diagram of homomorphisms of
groups commutes.

PB′
n−1

Φn
∼=

��

π1s′n,n−1// PB′
n−2

Φn−1∼=

��

PBn

cn ∼=
��

PBn

π1sn,n−1// PBn−1
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Proof. Fix some n ≥ 2. We prove that the diagram commutes by chasing each
generator of PB′

n−1 through it. Recall that the set of generators of PB′
n−1 is

given by {Ai,j}1≤i<j≤n−1 ∪{δ(n−1)
i }i∈[1,n−1]. For the following calculations, we

need Artin’s relations of PBn.

σiσj ∼ σjσi if |i− j| ≥ 2, 1 ≤ i, j ≤ n− 1 (A1)
σiσi+1σi ∼ σi+1σiσi+1, 1 ≤ i ≤ n− 2 (A2)

At each stage, we underline the term to move, or to replace by an equivalent
one. For all i, j with 1 ≤ i < j ≤ n− 2, the following holds in PBn−1.

π1sn,n−1 ◦ cn ◦ Φn(Ai,j) = π1sn,n−1 ◦ cn(Ai,j)
= π1sn,n−1 ◦ cn

(
σj−1 · · ·σi+1σ

2
i σ−1

i+1 . . . σj−1

)
= π1sn,n−1

(
σn−1σj−1 · · ·σi+1σ

2
i σ−1

i+1 . . . σj−1σ
−1
n−1

)
A1= π1sn,n−1

(
σj−1 · · ·σi+1σ

2
i σ−1

i+1 . . . σj−1σn−1σ
−1
n−1

)
= π1sn,n−1

(
σj−1 · · ·σi+1σ

2
i σ−1

i+1 . . . σj−1

)
= π1sn,n−1

(
Ai,j

) ∗= Ai,j = Φn−1(Ai,j)
∗= Φn−1 ◦ π1s

′
n,n−1(Ai,j),

where (∗) is given by Proposition 4.13. On the other hand, if j = n − 1, then,
for every i ∈ [1, n− 2],

π1sn,n−1 ◦ cn ◦ Φn(Ai,n−1) = π1sn,n−1 ◦ cn(Ai,n−1)
= π1sn,n−1 ◦ cn

(
σn−2 · · ·σi+1σ

2
i σ−1

i+1 . . . σ−1
n−2

)
= π1sn,n−1

(
σn−1σn−2 · · ·σi+1σ

2
i σ−1

i+1 . . . σ−1
n−2σ

−1
n−1

)
= π1sn,n−1

(
Ai,n

) ∗= 1 = Φn−1(1)
∗= Φn−1 ◦ π1s

′
n,n−1(Ai,n−1),
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where (∗) is given by Proposition 4.13. Furthermore, for every i ∈ [1, n− 2],

π1sn,n−1 ◦ cn ◦ Φn(δ(n−1)
i )

= π1sn,n−1 ◦ cn(Ai,i+1 · · ·Ai,n)
= π1sn,n−1(σn−1Ai,i+1 · · ·Ai,nσ−1

n−1)
∗= π1sn,n−1

(
σn−1σiσi+1 · · ·σn−3σn−2σn−1σn−1σn−2σn−3 . . . σiσ

−1
n−1

)
A1= π1sn,n−1

(
σiσi+1 · · ·σn−3σn−1σn−2σn−1σn−1σn−2σ

−1
n−1σn−3 . . . σi

)
A2= π1sn,n−1

(
σiσi+1 · · ·σn−3σn−2σn−1σn−2σn−1σn−2σ

−1
n−1σn−3 . . . σi

)
A2= π1sn,n−1

(
σiσi+1 · · ·σn−3σn−2σ

2
n−1σn−2σn−1σ

−1
n−1σn−3 . . . σi

)
= π1sn,n−1

(
σiσi+1 · · ·σn−3σn−2σ

2
n−1σn−2σn−3 . . . σi

)
∗= π1sn,n−1

(
Ai,i+1 · · ·Ai,n−1Ai,n

)
∗= Ai,i+1 · · ·Ai,n−1 = Φn−1(δ

(n−2)
i )

∗∗= Φn−1 ◦ π1s
′
n,n−1(δ

(n−1)
i ),

where (∗) and (∗∗) are given by Lemma A.9, and Proposition 4.13, respectively.
Finally, if i = n− 1, then,

π1sn,n−1 ◦ cn ◦ Φn(δ(n−1)
n−1 ) = π1sn,n−1(σn−1An−1,nσ−1

n−1)

= π1sn,n−1(σn−1σ
2
n−1σ

−1
n−1)

= π1sn,n−1(σ2
n−1) = 1 = Φn−1(1)

= Φn−1 ◦ π1s
′
n,n−1(δ

(n−1)
n−1 ).

Proposition 4.15. The space F ′
∞ is the inverse limit of pointed spaces

F ′
∞ = lim

{
F ′

n, s′n,n−1

}
n∈N.

Proof. Similar to the proof of Proposition 1.19.

Proposition 4.16.

PB′
∞ := π1F

′
∞ = lim

{
PB′

n, π1s
′
n,n−1

}
n∈N .

Proof. Similar to the proof of Theorem 1.22 (see [5]), one can prove that the
maps

s′n,n−1 : F ′
n → F ′

n−1

are fiber bundles, such that, by Proposition 4.15, the result can be proved by
[12], similarly to the proof of Corollary 1.23.

For every n ≥ 2, define an isomorphism Ψn : PB′
n−1

∼=−→ PBn by iterated
conjugation

Ψn := c2 ◦ · · · ◦ cn ◦ Φn.
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Theorem 4.17. For each n ∈ N, the isomorphism Ψn : PB′
n−1

∼=−→ PBn

induces an isomorphism of inverse systems

{Ψn}n≥2 : {PB′
n−1, π1s

′
n−1,n−2}n∈N

∼=−→ {PBn, π1sn,n−1}n∈N,

which itself induces an isomorphim

Ψ∞ : PB′
∞

∼=−→ PB∞

on limits.

Proof. First, observe that the diagram

PBn

ci ∼=
��

π1sn,n−1// PBn−1

ci∼=
��

PBn

π1sn,n−1// PBn−1

commutes for every n ∈ N and i ∈ [1, n− 1], because, for each b ∈ PBn,

ci ◦ π1sn,n−1(b) = σi−1π1sn,n−1(b)σ−1
i−1

∗= π1sn,n−1

(
σi−1bσ

−1
i−1

)
= π1sn,n−1 ◦ ci(b),

where (∗) holds, because π1sn,n−1 is a homomorphism, and

π1sn,n−1(σi) = σi ∀i ∈ [1, n− 2].

By suitably putting together such diagrams for i varying from 1 to n − 1, it
follows that the diagram

PBn

c2···cn−1 ∼=
��

π1sn,n−1// PBn−1

c2···cn−1∼=
��

PBn

π1sn,n−1// PBn−1

(A)

also commutes for every n ≥ 2. Using Lemma 4.14, it thus follows that the
diagram

. . . // PB′
n−1

Φn
∼=

��

π1s′n,n−1 // PB′
n−2

Φn−1 ∼=
��

// . . . // PB′
1

Φ2 ∼=
��

PBn

cn ∼=
��

PBn−1

cn−1 ∼=
��

PB2

c2 ∼=
��

PBn (A)

c2◦···◦cn−1 ∼=
��

π1sn,n−1

66mmmmmmmmmmmmmm
PBn−1

c2◦···◦cn−2 ∼=
��

PB2

=

��
. . . // PBn

π1sn,n−1 // PBn−1
// . . . // PB2
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commutes, which shows that the maps {Ψn}n≥2 yield the required isomorphism
of inverse systems. Moreover, according to Corollary 1.23 and Proposition 4.16,
the upper and lower inverse system have PB′

∞ and PB∞ as limits, respectively.

Recall that, by the comments on the beginning of the present chapter, there is
a commutative diagram

PH∞
ϕ′∞

{{www
ww

ww
ww ϕ∞

$$HHHHHHHHH

ΩF ′
∞

� � Ωι // ΩF∞,

where ι is the inclusion map. However, it is important to keep in mind that
the map Ψ∞ : PB′

∞ → PB∞ is different from the map π1ι. In particular, the
diagram

π0PH∞
π0ϕ′∞

zzttttttttt
π0ϕ∞

$$JJJ
JJJ

JJJ
J

PB′
∞

Ψ∞
∼=

// PB∞

does not commute.

Definition 4.18. For every n ∈ N, define subgroups Un ⊂ PBn and U ′
n ⊂

PB′
n+1 by

Un := Ker
(
π1sn,n−1

)
, U ′

n := Ker
(
π1s

′
n,n−1

)
.

Proposition 4.19. For every n ∈ N, the subgroups Un CPBn, U ′
n CPB′

n+1 are
presented as follows.

Un =
〈
{Ai,n}i∈[1,n−1]

〉
, U ′

n =
〈
{Ai,n}i∈[1,n−1], δ

(n)
n

〉
In particular, these groups are free.

Proof. Fix some n ∈ N. The presentation

Un =
〈
{Ai,n}i∈[1,n−1]

〉
is given in [Birman, p. 23]. Recalling that both π1sn+1,n and π1s

′
n+1,n are

epimorphisms, the diagram of Lemma 4.14 can be extended to the following
commutative diagram with exact rows

1 // U ′
n

cn+1◦Φn+1|U
′
n ∼=

��

� � // PB′
n

cn+1◦Φn+1 ∼=
��

π1s′n,n−1// PB′
n−1

Φn
∼=

��

// 1

1 // Un+1
� � // PBn+1

π1sn+1,n// PBn
// 1,
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where the corestricted map cn+1◦Φn+1|U
′
n is an isomorphism by the five lemma.

Therefore, according to the presentation of Un+1, U ′
n must be the free group

presented by
U ′

n
∼=
〈{(

cn+1 ◦ Φn+1

)−1(Ai,n+1)
}

i∈[1,n]

〉
.

Recalling the identities

Ai,n+1 := σnσn−1 · · ·σi+1σ
2
i σ−1

i+1 · · ·σ
−1
n−1σ

−1
n

for all 1 ≤ i ≤ n, the generators are given by(
cn+1 ◦ Φn+1

)−1(Ai,n+1) = Φ−1
n+1 ◦ c−1

n+1(Ai,n+1)

= Φ−1
n+1(σ

−1
n σnσn−1 · · ·σi+1σ

2
i σ−1

i+1 · · ·σ
−1
n−1σ

−1
n σn)

= Φ−1
n+1(σn−1 · · ·σi+1σ

2
i σ−1

i+1 · · ·σ
−1
n−1)

= Φ−1
n+1(Ai,n)

= Ai,n

for all i ∈ [1, n− 1]. On the other hand,(
cn+1 ◦ Φn+1

)−1(An,n+1) = Φ−1
n+1 ◦ c−1

n+1(An,n+1)

= Φ−1
n+1(σ

−1
n σ2

nσn)

= Φ−1
n+1(σ

2
n)

= Φ−1
n+1(An,n+1)

= δ(n)
n .

4.2.5 Semidirect product decomposition of the pure braid
groups

Proposition 4.20. For each n ∈ N, there is an isomorphism

µn : U ′
1 n · · ·n U ′

n → PB′
n

(u1, . . . , un) 7→ u1 · · ·un.

Proof. Fix some n ∈ N, and consider the split short exact sequence

1 → U ′
n → PB′

n

π1s′n,n−1−→ PB′
n−1 → 1.

Thus,
PB′

n = PB′
n−1U

′
n, U ′

n C PB′
n, PB′

n−1 ∩ U ′
n = {1},

which means that there is an isomorphism

PB′
n−1 n U ′

n

∼=−→ PB′
n

(b, u) 7→ b · u.

75



Iterating this procedure yields the above defined isomorphism

µn : U ′
1 n · · ·n U ′

n → PB′
n

(u1, . . . , un) 7→ u1 · · ·un.

We now recall some basic facts concerning iterated products. First, note that,
for any given n ≥ 2,

U ′
1 n · · ·n U ′

n =
n∏

i=1

U ′
i , as sets.

Moreover, the group structure of U ′
1 n · · ·n U ′

n is given as follows.

nn
i=1Ui ×nn

i=1U
′
i → nn

i=1U
′
i(

(ui)i∈[1,n], (vi)i∈[1,n]

)
7→

(
u1v1, v

−1
1 u2v1v2, . . . , v

−1
n−1 · · · v

−1
1 unv1 · · · vn

)
.

That this structure is preserved by the map µn : nn−1
i=1 U ′

i → PB′
n can be

illustrated as follows, for any given (ui)i∈[1,n] and (vi)i∈[1,n].

µn

(
(ui)i∈[1,n] · (vi)i∈[1,n]

)
= µn

(
u1v1, v

−1
1 u2v1v2, . . . , v

−1
n−1 · · · v

−1
1 unv1 · · · vn

)
= u1 · · ·unv1 · · · vn

= µn

(
(ui)i∈[1,n]

)
µn

(
(vi)i∈[1,n]

)
.

Consider the following inverse system.

· · · → ni∈[1,n+1]U
′
i

pn+1,n−→ ni∈[1,n]U
′
i → · · · → U ′

1

As a set, its limit ni∈NU ′
i is given by

ni∈NU ′
i =

∏
i∈N

U ′
i .

Moreover, ni∈NU ′
i has a group structure induced by the group structure of the

groups in the inverse system.

Proposition 4.21. There is an isomorphism of inverse systems

. . . // ni∈[1,n+1]U
′
i

∼=µn+1

��

pn+1,n // ni∈[1,n]U
′
i

∼=µn

��

// . . .

. . . // PB′
n+1

π1s′n+1,n // PB′
n

// . . . ,

where pn,n−1 is the canonical projection. Thus, there is an induced isomorphism
of limits

µ∞ : ni∈NU ′
i

∼=−→ PB′
∞.
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Proof. Recalling that U ′
n ≡ ker π1s

′
n,n−1 for all n, it follows directly from the

definition of the implied maps that each square commutes. Moreover,

lim
n

PB′
n = PB′

∞

by Proposition 4.16.

Similar to the maps µn, introduce maps of standard braid groups

µs
n : U2 n · · ·n Un → PBn

(u2, . . . , un) 7→ u2 · · ·un

for all n ≥ 2.

Proposition 4.22. For each n ∈ N, the map µs
n is an isomorphism. Moreover,

there is an isomorphism of inverse systems

. . . // ni∈[2,n+1]Ui

∼=µs
n+1

��

pn+1,n // ni∈[2,n]Ui

∼=µs
n

��

// . . .

. . . // PBn+1
π1sn+1,n // PBn

// . . . ,

where pn+1,n is the canonical projection, which induces an isomorphism

µs
∞ : ni≥2Ui

∼=−→ PB∞.

on limits.

Proof. Fix some n ≥ 2. The proof of the fact that µs
n is an isomorphism is similar

to the proof of Proposition 4.20. Moreover, recalling that Un ≡ ker π1sn,n−1

for all n, it follows directly from the definition of the implied maps that each
square commutes. Moreover, by Corollary 1.23,

lim
n

PBn = PB∞.

4.2.6 Canonical representatives of the elements of the groups{
PB′

n

}
n∈N

Definition 4.23. Introduce a map

µ̂∞ :
∏
i∈N

Ω
(
Di, τi

)
→

(
ΩF ′

∞
)
c

(βi)i∈N 7→
(
(β′i)i∈N

)
,
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where, for each i ∈ N, β′i is given by

β′i(t) :=


τi if t ∈ [0, ti]

βi

(
2i
(
t− ti

))
if t ∈ [ti, ti+1]

τi if t ∈ [ti+1, 1]

∀ t ∈ I.

Also, write, for all n ∈ N,

µ̂n :
∏

i∈[1,n−1]

Ω
(
Di, τi

)
→ ΩF ′

n

(βi)i∈[1,n−1] 7→ (β′i)i∈[1,n−1],

where, for each i ∈ N, the loop β′i is defined as above.

Remark 4.24. For any given (βi)i∈N ∈
∏

i∈N Ω(Di, τi), write

µ̂∞(βi)i∈N := (β′i)i∈N,

and observe that, for all t ∈ I,

β′i(t) = β′j(t) ⇔ i = j.

Thus, (β′i)i∈N : I → F ′
∞ is a well defined map. Moreover, for each i ∈ N,

β′i : I → D2 is continuous, which is a necessary and sufficient condition for
(β′i)i∈N : I → F ′

∞ to be a continuous map (see [11, Thm. 19.6]). This shows
that µ̂∞ : ×i∈NΩ

(
Di, τi

)
→
(
ΩF ′

∞
)
c

is indeed well defined.
Finally, note that the map µ̂n just concatenates braids:

µ̂∞(βi)i∈N =
(
β1, (pτi

)i≥2

)
?
((

pτi
, β2, (pτi

)i≥3

)
? . . .

)
.

Recall that, for all n ∈ N the group U ′
n is given by

U ′
n =

〈
{Ai,n}1≤i<n, δ(n)

n

〉
.

Recall the maps
κ

(n)
i :

(
Di, τi

)
→ (F ′

n, Tn)

that we introduced in Definition 4.11 for all n ∈ N and i ∈ [1, n − 1]. By

Proposition 4.12, there are loops {Âi,n}1≤i<j≤n, {δ̂i}i∈[1,n] in
◦
D 2 that satisfy

Ai,j =
[
κ

(n)
j ◦ Âi,j

]
∀i ∈ [1, n− 1],

δ
(n)
i =

[
κ

(n)
i ◦ δ̂j

]
∀i ∈ [1, n].

Definition 4.25. For all n ∈ N, define a map repU ′n
: U ′

n → Ω
(
Dn, τn

)
by

repU ′n

(
Ai,n

)
:= Âi,n ∀i ∈ [1, n− 1]

repU ′n

(
δ(n)
n

)
:= δ̂n,
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on the generators, and, for any u ∈ U ′
n, by

repU ′n
(u) := repU ′n

(u1) ?
(
repU ′n

(u2) ?
(
. . .
))

where u1 · · ·uk is the (unique) reduced word that represents u.

Proposition 4.26. For all integers i ≤ n,[
κ

(n)
i ◦ repU ′i

]
= IdU ′i

.

Proof. By Proposition 4.12, this follows directly from the definition of repU ′i
.

Proposition 4.27. For each n ∈ N, the maps
[
repU ′n

(·)
]

and π1κ
(n)
n are mutu-

ally inverse isomorphisms.

U ′
n

[repU′n
(·)]

∼=
//

π1

(
Dn, τn

)
π1κ(n)

n

oo

.

Proof. Fix some n ∈ N, and extend κ
(n)
n to a well defined map

κ(n)
n :

(
D2 \

{
{τi}i∈[1,n−1]∪∞

}
, τn

)
→ (F ′

n, Tn)

x 7→
(
τ1, . . . , τn−1, x

)
.

Observe that, by [Birman, Thm. 1.4], the sequence

1 → π1

(
D2 \

{
{τi}i∈[1,n−1]∪∞

}
, τn

)
π1κ(n)

n−→ π1F
′
n

π1s′n,n−1−→ π1F
′
n−1 → 1

is exact. Thus,

π1κ
(n)
n : π1

(
D2 \

{
{τi}i∈[1,n−1]∪∞

}
, τn

) ∼=−→ ker π1s
′
n,n−1 =: U ′

n.

Observing that the injection

i : Dn := D2 \
{
{τi}i∈[1,n−1] ∪B

(
τ∞, ‖τn+1− τ∞‖

)}
↪→ D2 \

{
{τi}i∈[1,n−1]∪∞

}
is a homotopy equivalence, and that, moreover,

π1κ
(n)
n = π1κ

(n)
n ◦ π1i,

it follows that π1κ
(n)
n is an isomorphism. Moreover, by Proposition 4.26

π1κ
(n)
n ◦

[
repU ′n

]
= IdU ′n ,

which finishes the proof.
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The following proposition gives a tool to find canonical representatives of finite,
and also infinite braids in

◦
D 2 \ τ∞ (see Corollary 4.29).

Proposition 4.28. For each n ∈ N, the following diagram of sets commutes.∏
i∈[1,n] U

′
i

(repU′
i
)i∈[1,n]

��

∼=

µn // PB′
n

∏
i∈[1,n] Ω

(
Di, τi

) bµn //
(
ΩF ′

n

)
c

[·]

OO

Moreover, these diagrams induce a commutative diagram of limits.∏
i∈N U ′

i

(repU′
i
)i∈N

��

∼=

µ∞ // PB′
∞

∏
i∈N Ω

(
Di, τi

) bµ∞ //
(
ΩF ′

∞
)
c

[·]

OO

Proof. Fix some n ∈ N. To see that the diagram commutes, pick any (ui)i∈[1,n] ∈∏
i∈[1,n] U

′
i , and verify that[
µ̂n

(
repU ′1

(u1), . . . , repU ′n
(un)

)]
=
[(

repU ′1
(u1), pτ2 , . . . , pτn

)]
· · ·
[(

pτ1 , pτn−1 . . . , repU ′n
(un)

)]
= π1κ

(n)
1

[
repU ′1

(u1)
]
· · ·π1κ

(n)
n

[
repU ′n

(un)
]

∗= u1 · · ·un,

where (∗) is given by Proposition 4.26. This proves that the first diagram com-
mutes for all n ∈ N. Moreover, these diagrams induce a commutative diagram
of inverse systems{∏

i∈[1,n] U
′
i , pn,n−1

}
n∈N

{(repU′
i
)i∈[1,n]}n∈N

��

∼=

{µn}n∈N //
{

PB′
n, π1s

′
n,n−1

}
n

{∏
i∈[1,n] Ω

(
Di, τi

)
, pn,n−1

}
n

{bµn}n∈N//
{

ΩF ′
n,Ωs′n,n−1

}
n
,

{[·]}n∈N

OO

where we write pn,n−1 :
∏

i∈[1,n] Xi →
∏

i∈[1,n−1] Xi for the natural projection.
Therefore, the induced diagram of limits also commutes, where

lim
n

PBn = PB∞, lim
n

PB′
n = PB′

∞

by Corollary 1.23 and Proposition 4.16, respectively.

The next corollary follows immediately from the proposition above.
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Corollary 4.29. For each n ∈ N ∪∞, the map

repPB′
n

: PB′
n → ΩF ′

n

b 7→ µ̂n

((
repU ′i

(
µ−1

n (b)
)
i

)
i∈[1,n−1]

)
satisfies [

repPB′
n
(b)
]

= b ∀b ∈ PB′
n.

Moreover,
Im repPB′

n
⊂
(
ΩF ′

n

)
c
.

In particular, this result allows us to attribute canonical representatives to the
elements of PB′

n for any n ∈ N ∪∞.

4.3 Towards an identification of Im π0ϕ∞ in ni∈NU ′
i.

Recall that, in Theorem 4.5, we identified the image of π0ϕ
′
∞ in terms of repre-

sentatives in PB′
∞. Using the semidirect product decomposition

PB′
∞ ni∈NU ′

i .∼=

µ∞oo

of the preceding section, we now characterize a certain subset of Im π0ϕ∞ ⊂
PB∞ within ni∈NU ′

i (see Proposition 4.31).

Definition 4.30. For each i ∈ N, define a map θi : U ′
i → N by

θi(b) := min
{

i, j ∈ [1, i− 1] | the reduced word that represents b

contains the letter Aj,i

}
for all b ∈ U ′

i .

Proposition 4.31.(
PB′

∞
)
cc
⊃
{

µ∞
(
(bi)i∈N

)
| (bi)i∈N ∈

∏
i∈N

U ′
i s.t. lim

i→∞
θi(bi) = ∞

}
.

The question whether the inverse inclusion also holds seems to depend on
whether

(
PB′

∞
)
cc

is equal to π0

(
ΩF ′

∞
)
cc

. Unfortunately, we did not solve this
problem.

Proof. Pick some (bi)i∈N ∈
∏

i∈N U ′
i with limi→∞ θi(bi) = ∞. Fix some i ∈ N,

and write bi as a word
bi = u1 · · ·uk

in the alphabet Gen(U ′
i). As, by the definition of the map θi,

θi(bi) = min
j∈[1,k]

θi(uj),
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it follows by our choice of the point set {τj}j∈N that

‖τθi(bi)−1 − τ∞‖ = max
j∈[1,k]

‖τθi(uj)−1 − τ∞‖. (A)

Moreover, recall that

repU ′i
(bi) = repU ′i

(u1) ?
(
repU ′i

(u2) ?
(
repU ′i

(u3) ? (. . . )
))

,

and that, by Proposition 4.12,

repU ′i
(uj)(t) ∈ B

(
τ∞, ‖τθi(uj)−1 − τ∞‖

)
∀t ∈ I, ∀ j ∈ [1, k].

Thus, by (A),

repU ′i
(bi)(t) ∈ B

(
τ∞, ‖τθi(bi)−1 − τ∞‖

)
∀t ∈ I, ∀ i ∈ N.

In particular, this means that

lim
i→∞

repU ′i
(bi)(t) = τ∞ ∀t ∈ I,

because limi→∞ θi(bi) = ∞, such that, according to Proposition 4.28,

µ∞
(
(bi)i∈N

)
=
[
µ̂∞
(
(repU ′i

(bi)
)
i∈N

]
∈
(
PB′

∞
)
cc

.

We now can consider the following commutative diagram, which summarizes
Propositions 4.21 and 4.22 and Theorem 4.31. Some maps are tacitly (co-)
restricted, without changing the notation.

π0PH∞

π0ϕ′∞

$$

π0ϕ′∞
∼=

//
(
PB′

∞
)
cc� _

��

{
see Prop 4.31. 4.5

}
� _

��

bµ∞◦(repU′
i
)i∈N
nnn

wwnnnn

? _
µ∞oo

(
ΩF ′

∞
)
cc

[·]
eeJJJJJJJJJJ

� _

��

PB′
∞ ni∈NU ′

i

bµ∞◦(repU′
i
)i∈N
mmmm

vvmmmm

µ∞

∼=
oo

(
ΩF ′

∞
)
c

[·]
ffLLLLLLLLLL

As we pointed out above, the image of π0ϕ∞ seems to be difficult to describe
within the semidirect product decomposition ni≥2Ui. We now underline this
by an example.

82



Example. Pick an element (ui)i∈N ∈ ni∈NU ′
i given by

ui =

{
δ
(n)
n , i = n,

1, i 6= n

for some n ∈ N. Clearly, (ui)i∈N ∈ µ−1
∞
(
PB′

∞
)
cc

, such that, by Theorem 4.5,
there is a homeomorphism h ∈ PH∞ such that

π0ϕ
′
∞[h] = µ∞

(
(ui)i∈N

)
.

In particular,
(βi)i∈N := repPB′

∞

(
(ui)i∈N

)
is a combed, convergent representative of π0ϕ

′
∞[h], given by

βi =

{
δ̂n, i = n

pτi
, i 6= n

,

i.e., all strands are straight, except the n-th strand that winds once around all
points τi with i > n (see p. 69). Writing,

(vi)i≥2 := µs
∞
−1 ◦ π1ı ◦ µ∞

(
(ui)i∈N

)
= µs

∞
−1 ◦ π1ı

[
(βi)i∈N

]
= µs

∞
−1[(βi)i∈N

]
in ni≥2Ui, where ι : F ′

∞ ↪→ F∞ is the inclusion map, one can verify that (vi)i≥2

is given by

vi :=

{
1, i ≤ n

An,i, i > n.

It might be difficult to find criteria to find out reversely that the given sequence
(vi)i≥2 ∈ ni≥2Ui is in the image of π0ϕ∞, i.e., in the image of π1ι

(
PB′

∞
)
cc

,
whence the advantage of working with the semidirect decomposition

PB∞ ∼= ni∈NU ′
i

rather than with the (more natural) semidirect decomposition

PB∞ ∼= ni≥2Ui.
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4.4 Generalization of the choice of T∞
Recall our choice of a particular basepoint T∞ of the spaces F∞ and F ′

∞, given
in Definition 2.1. To conclude the section, we return to an arbitrary choice of
T∞.
Let T ∗∞ ≡ (τ∗i )i∈N ∈ F∞ be any infinite configuration with a single accumulation

point τ∞ ∈
◦
D 2, i.e., limi→∞ τi = τ∞, and such that

τi 6= τ∞ ∀i ∈ N,

and write
PH∗

∞ :=
{

h ∈ H0 | h(τ∗i ) = τ∗i ∀i ∈ N
}

.

Also, write

ϕ∗∞ : PH∗
∞ → Ω(F ′

∞, T ∗∞)
h 7→

(
K(h, ·)(τ∗i )

)
i∈N,

similarly to the definition of the map ϕ∞. Furthermore, according to Proposi-
tion A.7, there is a homeomorphism h ∈ H0 such that

h(τi) = τ∗i ∀i ∈ N,

which allows us to define pointed maps

Ψ1 :
(
PH∞, IdD2

) ∼=−→
(
PH∗

∞, IdD2

)
Ψ2 :

(
F∞, T∞

) ∼=−→
(
F∞, T ∗∞

)
f 7→ h ◦ f ◦ h−1 (xi)i∈N 7→

(
h(xi)

)
i∈N.

Furthermore, write

Ψ1 :
(
H∞, IdD2

) ∼=−→
(
H∗
∞, IdD2

)
Ψ2 :

(
C∞, T∞

) ∼=−→
(
C∞, T ∗∞

)
f 7→ h ◦ f ◦ h−1

[
(xi)i∈N

]
7→

[(
h(xi)

)
i∈N

]
,

where, in the lower diagrams, the maps Ψ2 and Ψ2 are suitably (co-) restricted.

Proposition 4.32. For any choice of T ∗∞ such that, in D2, the set {τ∗i }i∈N

accumulates at a single point τ∗∞ ∈
◦
D 2, and such that

τ∗i 6= τ∗∞ ∀i ∈ N,

the following diagrams commute

π0PH∞

π0Ψ1 ∼=
��

π0ϕ∞ // π1F∞

π1Ψ2∼=
��

π0PH∗
∞

π0ϕ∗∞ // π1(F∞, T ∗∞)

π0H∞

π0Ψ1
∼=

��

π0ϕ∞ // π0OC∞

π1Ψ2
∼=

��
π0H

∗
∞

π0ϕ∗∞ // π0(OC∞, T ∗∞)
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π0PH∞

π0Ψ1 ∼=
��

π0ϕ′∞ // π1F
′
∞

π1Ψ2∼=
��

π0PH∗
∞

π0ϕ′∗∞ // π1(F ′
∞, T ∗∞)

π0H∞

π0Ψ1
∼=

��

π0ϕ′∞ // π0OC ′
∞

π1Ψ2
∼=

��
π0H

∗
∞

π0ϕ′∗∞ // π0(OC ′
∞, T ∗∞),

where the maps Ψ1,Ψ2,Ψ1,Ψ2 are defined as above.

Proof. To prove that the first diagram commutes, we show that the following
diagram commutes up to homotopy.

PH∞

Ψ1 ∼=
��

ϕ∞ // ΩF∞

ΩΨ2∼=
��

PH∗
∞

ϕ∗∞ // Ω
(
F∞, T ∗∞

)
Pick some f ∈ PH∞, recall the contracting homotopy K : H0 × I → H0, write
K(·, t) := K(·, 1− t) for all t ∈ I, and verify that

ΩΨ2 ◦ ϕ∞(f) =
((

h ◦K(f, ·)
)
(τi)
)

i∈N
∗'

((
K(h ◦ f, ·) ◦K(h, ·)

)
(τi)
)

i∈N
∗∗=

((
K(h ◦ f, ·) ◦K(h, ·) ◦ h−1

)
(τ∗i )

)
i∈N

∗'
((

K(h ◦ f ◦ h−1, ·)
)
(τ∗i )

)
i∈N

= ϕ∗∞ ◦ Φ1(h),

where (∗) is given by Lemma A.3, and (∗∗) holds because h(τi) = τ∗i for all
i ∈ N. Similarly, one can prove that the remaining diagrams commute.

This result generalizes the main results of this section to an arbitrary choice
for T ∗∞, as we show next. Before, we note that the definition of the spaces(
Ω(F∞, T ∗∞)

)
c

and
(
Ω(F∞, T ∗∞)

)
cc

makes sense for any basepoint T ∗∞ = (τ∗i )i∈N,

as long as the sequence (τ∗i )i∈N converges in
◦
D 2.

Theorem 4.33. The diagram on page 82 generalizes to any choice of T ∗ =
(τ∗i )i∈N such that

lim
i→∞

τ∗i = τ∗∞

for some τ∗∞ ∈
◦
D 2.

Proof. The result follows directly by suitably attaching the commutative dia-
grams given in Proposition 4.32 to the diagram on page 82.
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Chapter 5

An application to
homoclinic tangles

In this chapter, we apply the injectivity of the map

π0ϕ∞ : π0H∞ → π0OC∞

to prove a result that can be used for the study of homeomorphisms with a
homoclinic fixed point (see Theorem 5.13).
Moreover, we allow the basepoint T∞ ∈ F∞ be any configuration T = (τi)i∈N
satisfying

lim
i→∞

τi = τ∞

for some τ∞ ∈
◦
D 2. Note that, under this condition, the map

π0ϕ∞ : π0H∞ → π0OC∞

is injective, according to Theorem 4.33. The proof of the main theorem requires
some preliminary results involving the winding number, which we introduce
next. For a detailed introduction to this subject, see [11].

Definition 5.1. Given any loop α ∈ C(S1, R2 \ 0), define a loop

α : S1 → S1

s 7→ α(s)
‖α(s)‖

Let α̃ : I → R be a lifting of α with respect to the standard covering map
q : R → S1, and define the winding number of α by

w(α) := α̃(1)− α̃(0).

The following two propositions give alternative ways to define the winding num-
ber.
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Proposition 5.2. [11, Lemma 66.3] For any loop α ∈ C(S1, R2 \ 0),

w(α) =
1

2πi

∮
α

dz

z
.

In other words, given a lifting α̃ : I → R of the map α
‖α‖ : S1 → S1 with respect

to the standard covering map q : R → S1, then,

w(α) =
1

2πi

∫ 1

0

dα̃/dt

α(t)
dt.

Proposition 5.3. Given any α ∈ C(S1, R2 \ 0), let p : R2 \ 0 → S1 be the
canonical retraction, write A for the generator of π1(S1, ∗), where we choose
∗ := p

(
α(1)

)
for the basepoint of S1. Then,

[p ◦ α]∗ = A±w(α) in π1(S1, ∗),

where the sign depends on the choice of the representative of A.

Proof. This follows easily from the definition of the winding number.

Three elementary properties of the winding number are given in the following
proposition.

Proposition 5.4. For all β ∈ C(S1, R2 \ 0),

w(β) = −w(β),

where β is the inverse path of β.
If two loops α, β ∈ C(S1, R2 \ 0) are homotopic, then,

w(α) = w(β).

For all β, γ ∈ C(S1, R2 \ 0) that satisfy β(1) = γ(1),

w(β ? γ) = w(β) + w(γ).

Proof. The proof of the first two facts are given in [11, Lemma 66.1]. The third
fact follows easily from the definition of the winding number.

Lemma 5.5. Let
Γ : I → C(S1, R2)

be a path that satisfies
Γ(0) = Γ(1),

and such that Γ(t) : S1 → R2 is injective for all t ∈ I (i.e., such that, for all s, s′

in S1 with s 6= s′, Γ(·)(s)− Γ(·)(s′) is a well defined element of C(S1, R2 \ 0)).
Then, there is an n ∈ Z such that

w
(
Γ(·)(s)− Γ(·)(s′)

)
= n

for all s, s′ ∈ S1 with s 6= s′.
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Proof. Let Γ : I → C(S1, R2) be a path with the required properties, and pick
some s, s′ ∈ S1 with s 6= s′. We show that the path(

Γ(·)(s)− Γ(·)(s′)
)

: I → R2

is homotopic to the path(
Γ(·)(1)− Γ(·)(1/2)

)
: I → R2,

where S1 is identified with I/İ.
We assume that

s > s′,

where the converse case is proved similarly. Observing that

s + t(1− s) 6= s′ + t(1/2− s′) ∀t 3 I,

there is a well defined homotopy

G : S1 × I → R2 \ 0
(z, t) 7→ Γ(z)

(
s + t(1− s)

)
− Γ(z)

(
s′ + t(1/2− s′)

)
that satisfies

G(·, 0) =
(
Γ(·)(s)− Γ(·)(s′)

)
, G(·, 1) =

(
Γ(·)(1)− Γ(·)(1/2)

)
,

as required.

In the sequel, we consider loops (βi − βj) : S1 → D2 \ 0 for some integers i 6= j,
where (βi)i∈N is in ΩF∞. As, for all i 6= j, βi(t) 6= βj(t) for all t ∈ I, (βi − βj)
is indeed an element of C(S1, R2 \ 0).

Lemma 5.6. For every (βi)i∈N ∈ ΩF∞,

w(βi − βj) = 0 ∀i, j ∈ N, i 6= j

if and only if [
(βi)i∈N

]
=
[
(pτi)i∈N

]
in PB∞.

Proof. The “if”-part follows directly from Proposition 5.4 To prove the “only
if”-part, pick any (βi)i∈N ∈ ΩF∞ with

w(βi − βj) = 0 ∀i, j ∈ N, i 6= j,

and, by contradiction, assume that[(
βi

)
i∈N

]
6=
[(

pτi

)
i∈N

]
in PB∞.

Recalling that PB∞ = limn PBn, it follows from the basic properties of inverse
limits that, in PB2, [(

βi, βj

)]
6=
[(

pτi , pτj

)]
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for some i, j ∈ N. Recalling that PB2 has one single generator B (corresponding
to σ2

1 in Artin’s presentation of B2), there is thus an n ∈ Z \ 0 such that, in
PB2, [(

βi, βj

)]
= Bn

From this, it is easy to see that,

[p ◦ (βi − βj)]∗ = A±n in π1(S1, ∗),

where A is the generator of π1(S1, ∗), and the basepoint of S1 is ∗ := p(βi(1)−
βj(1)). Thus, it follows by Prop 5.3 that

w
(
βi − βj

)
= ±n,

which contradicts our assumption, because n 6= 0.

In the sequel, we identify R2 canonically with the complex plane C.

Definition 5.7. For each n ∈ Z, and for each r ∈
]
supi∈N ‖τi‖, 1

[
, define an

element ρn,r in PH∞ by

ρn,r(x) :=

{
x, ‖x‖ ≤ r

xexp
(
−2πin‖x‖−r

1−r

)
, ‖x‖ ≥ r.

Observe that, for all possible choices of n and r, ρn,r|∂D2 = Id, and that, as
‖τi‖ < r for all i ∈ N,

ρn,r(τi) = τi ∀i ∈ N.

Thus, indeed, ρn,r ∈ PH∞. The following drawing illustrates how ρ1(r) maps
the given dotted line.

r r
ρ1,r :

Writing
H∞ :=

{
h ∈ H∞ |

{
h(τi)}i∈N = {τi}i∈N

}
for the space of homeomorphisms that fix the set {τi}i∈N, but that don’t neces-
sarily fix the boundary ∂D2, we make the following observation.
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Proposition 5.8. For all n ∈ Z and r ∈
]
supi∈N ‖τi‖, 1

[
,

[ρn,r] = [IdD2 ] in π0H∞.

Proof. For all n ∈ Z and r ∈
]
supi∈N ‖τi‖, 1

[
, the right adjoint of the homotopy

Rn,r : D2 × I → D2

(x, t) 7→

{
x, ‖x‖ ≤ r

xexp
(
−2πint 1−‖x‖

1−r

)
, ‖x‖ ≥ r.

is a path in H∞ from ρn,r to IdD2 .

Proposition 5.9. For all n ∈ Z and r ∈
]
supi∈N ‖τi‖, 1

[
,

w
(
K(ρn,r, ·)(τi)−K(ρn,r, ·)(τj)

)
= −n ∀i, j ∈ N, i 6= j.

Proof. Fix some n ∈ Z and r ∈
]
supi∈N ‖τi‖, 1

[
, and define a path Λ : I → H0

by

Λ(t)(x) :=

{
x exp

(
− 2πin(1− t)

)
, ‖x‖ ≤ r

x exp
(
−2πin(1− t)‖x‖−r

1−r

)
, ‖x‖ ≥ r

for all t ∈ I, x ∈ D2. Note that, for all n ∈ Z,

Λ(0) = ρn,r, Λ(1) = IdD2 .

Observing that K
(
ρn,r, ·

)
: I → H0 is a path with the same start- and endpoint

as Λ, it follows from Lemma A.3, that there is a homotopy

Γ : S1 × I → F∞

from ev∞ ◦K(ρn,r, ·) to ev∞ ◦ Λ. Its adjoint is a path

γ := (γi)i∈N : I → ΩF∞

with
γ(0) = ev∞ ◦K(ρn,r, ·), γ(1) = ev∞ ◦ Λ.
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It follows that, for any i, j ∈ N with i 6= j, and r ∈
]
supi∈N ‖τi‖, 1

[
,

w
(
K(ρn,r, ·)(τi)−K(ρn,r, ·)(τj)

)
= w

(
γi(0)− γj(0)

)
∗= w

(
γi(1)− γj(1)

)
= w

(
Λ(·)(τi)− Λ(·)(τj)

)
=

1
2πi

∫ 1

0

d
(
Λ(·)(τi)− Λ(·)(τj)

)
/dt

Λ(·)(τi)− Λ(·)(τj)
dt

=
1

2πi

∫ 1

0

d
(
(τi − τj) exp(−2πint)

)
/dt

(τi − τj) exp(−2πint)
dt

=
1

2πi

∫ 1

0

(−2πin)(τi − τj) exp(−2πint)
(τi − τj) exp(−2πint)

dt

=
1

2πi

∫ 1

0

−2πindt

= −n,

where (∗) is given by the fact that

w
(
γi(·)

)
: I → Z

is a continuous map when I has the metric- and Z has the discrete topology,
and thus is constant.

Definition 5.10. Let (si)i∈N be any list of points of S1 such that

lim
i→∞

si = 1.

Definition 5.11. Define a set

A :=
{

α : S1 →
◦
D

2 | α is a homeomorphism onto its image, and

{α(si)}i∈N = {τi}i∈N

}
,

and endow it with the subspace topology A ⊂ C(S1,
◦
D 2).

The main theorem of this chapter, Theorem 5.13, can be seen as a first appli-
cation of our preceeding results on infinite mapping class groups and infinite
braids to the study of a particular subspace of H∞ that is of interest in fields
other than low-dimensional topology. To give a typical example of a case where
the theorem can be applied, let f ∈ H∞ be a diffeomorphism, of which τ∞ is
a hyperbolic fixpoint, and let W̃ s

f and W̃u
f be the corresponding stable- and

unstable manifolds, which are defined by

W̃ s
f :=

{
x ∈

◦
D

2 | lim
i→∞

‖f i(x)−τ∞‖ = 0
}
, W̃u

f :=
{
x ∈

◦
D

2 | lim
i→∞

‖f−i(x)−τ∞‖ = 0
}
,
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respectively. According to [9, Thm. 10.1.6], there are C1-embeddings W s
f :

I →
◦
D 2 and Wu

f : I →
◦
D 2, such that

W̃ s
f =

⋃
i∈N

f−i ◦W s
f , W̃u

f =
⋃
i∈N

f i ◦Wu
f .

Write W̃ s
f [x, y] for the section on W̃ s

f between any points x and y on W̃ s
f (as

W̃ s
f does not intersect itself, this notion makes sense), and similarly for W̃u

f . As
f is differentiable, the following is easy to prove.

Proposition 5.12.

For any x, y ∈ W̃ s
f , W̃ s

f [x, y] is a C1 embedding of I in
◦
D

2.

For any x, y ∈ W̃u
f , W̃u

f [x, y] is a C1 embedding of I in
◦
D

2.

Moreover, for any points x, y in W̃ s
f ∩ W̃u

f , such that

W̃ s
f [x, y] ∩ W̃u

f [x, y] = {x, y},

the union W̃ s
f [x, y]∪ W̃u

f [x, y] is an embedding (not differentiable in general) of

S1 in
◦
D 2.

In particular, assuming that τ0 is a primary intersection point of W̃ s
f and

W̃u
f , i.e.,

W̃ s
f [τ∞, τ0] ∩ W̃u

f [τ∞, τ0] = {τ∞, τ0}

(see [15]), it follows that there is an embedding α : S1 →
◦
D 2, such that

Im α = W̃ s
f [τ∞, τ0] ∪ W̃u

f [τ∞, τ0].
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τ∞

f -1(τ0)

f( τ0)

f 2(τ0)

f -2(τ0)

τ0

α f

Now, let g ∈ H∞ be another diffeomorphism with homoclinic fixpoint τ∞ and
primary intersection point τ0, and let β : S1 →

◦
D 2 be its associated embedding,

defined similarly to α.
Now, assume that the orbit of τ0 with respect to f and g coincide with the set
{τi}i∈N, i.e., {

f i(τ0)
}

i∈Z =
{
gi(τ0)

}
i∈Z = {τi}i∈N,

and, furthermore, that {
α(si)

}
i∈N =

{
β(si)

}
i∈N

for some sequence (si)i∈N in S1, such that, moreover,

lim
i→∞

si = 1,

i.e., (si)i∈N satisfies the condition of Definition 5.10. Then, in particular,

α, β ∈ A.

Under these assumptions, Theorem 5.13 can be applied.

Theorem 5.13. Let f, g ∈ H∞. If there are elements α, β ∈ A such that

[α] = [β], [f ◦ α] = [g ◦ β] in π0A.

Then,
[f ] = [g] ∈ π0H∞.
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Proof. Pick any f, g ∈ H∞, and let α, β : S1 →
◦
D 2 be as required. Moreover,

by Proposition A.2, we can assume that

f, g ∈ H∞.

According to Proposition 5.8, it suffices to show that there is an n ∈ Z and an
r ∈ I, such that

[g] = [f ◦ ρn,r] in π0H∞.

Claim: There is a homeomorphism κ1 ∈ PH∞ that satisfies

κ1 ◦ β = α, [κ1] = [Id] in π0PH∞. (A)

Proof of the claim: Observe that, as α and β are homeomorphisms onto their
image, there is a homeomorphism

Imα
∼=→ Imβ

α(s) 7→ β(s) ∀s ∈ S1.

Consequently, by the Schoenflies Theorem (e.g. [7, Cor. 9.25]), there is a

homeomorphism ̂̂
k ∈ H(D2) that satisfies

̂̂
k ◦ α = β.

As we now show, we can choose this homeomorphism to be in H0, i.e., such that
it fixes ∂D2 pointwise. Choose any r0 ∈ ]0, 1[ such that

Imα ∪ Imβ ⊂ B(0, r0).

As the Schoenflies Theorem also holds by replacing D2 with B(0, r0), there is a
homeomorphism k̂ ∈ H

(
B(0, r0)

)
such that

k̂ ◦ α = β.

Now, define a homeomorphism as follows, where we use polar coordinates.

k : D2 ∼=−→ D2

x 7→

{(
‖x‖, arg x +

(
arg k̂(r0, arg x)− arg x

) 1−‖x‖
1−r0

)
, ‖x‖ ≥ r0,

k̂(x), ‖x‖ ≤ r0.

This map is well defined, because, for all x ∈ D2 with ‖x‖ = r0,

k(x) =
(
‖x‖, arg k̂(r0, arg x)

)
=

(
‖x‖, arg k̂(x)

)
∗=

(
‖k̂(x)‖, arg k̂(x)

)
= k̂(x),
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where (∗) holds, because k̂ maps ∂B(0, r0) onto itself. Moreover, observe that,
as Im α, Im β ⊂ B(0, r0),

k ◦ α = k̂ ◦ α = β. (B)

Also, note that k|∂D2 = Id, i.e., k ∈ H0, and that

k(τi) = k
(
α(si)

)
= β(si) = τi ∀i ∈ N,

which means that
k ∈ PH∞.

Now, recall that
[α] = [β] in π0A,

i.e., there is a path Λ1 : I → A such that

Λ1(0) = α, Λ1(1) = β. (C)

Thus, it follows by the definition of A, that(
Λ1(·)(si)

)
i∈N =

(
pτi

)
i∈N ∈ ΩF∞. (D)

Furthermore, define a path

Λ2 : I → C(S1,
◦
D

2)
t 7→ K(k, t) ◦ α(·),

and observe that it satisfies

Λ2(0) = K(k, 0) ◦ α = k ◦ α = β,

and
Λ2(1) = K(k, 1) ◦ α = Id ◦ α = α.

Recalling (C), this allows us to define a path Λ : I → C(S1,
◦
D 2) by

Λ = Λ1 ? Λ2,

which, in particular, satisfies

Λ(0) = Λ(1) = α.

As Λ(t) : S1 →
◦
D 2 is a homeomorphism onto its image for all t ∈ I, Lemma 5.5

applies, which means that there is an m ∈ Z such that

w
(
Λ(·)(si)− Λ(·)(sj)

)
= m ∀i, j ∈ N, i 6= j. (E)
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Now, observe that, in PB∞,

[ϕ∞(ρm,r0 ◦ k)] ∗= [ϕ∞(ρm,r0)] [ϕ∞(k)]

=
[(

K(ρm,r0 , ·)(τi)
)
i∈N

] [(
K(k, ·)(τi)

)
i∈N

]
=

[(
K(ρm,r0 , ·)(τi)

)
i∈N

] [(
Λ2(·)(si)

)
i∈N

]
D=

[(
K(ρm,r0 , ·)(τi)

)
i∈N

] [(
Λ1(·)(si)

)
i∈N

] [(
Λ2(·)(si)

)
i∈N

]
=

[(
K(ρm,r0 , ·)(τi)

)
i∈N

] [(
Λ(·)(si)

)
i∈N

]
, (F )

where (∗) is given by Proposition 1.15. Also, for any integers i 6= j,

w
(
K(ρm,r0 , ·)(τi) ? Λ(·)(si)−K(ρm,r0 , ·)(τj) ? Λ(·)(sj)

)
= w

((
K(ρm,r0 , ·)(τi)−K(ρm,r0 , ·)(τi)

)
?
(
Λ(·)(si)− Λ(·)(sj)

))
∗= w

(
K(ρm,r0 , ·)(τi)−K(ρm,r0 , ·)(τi)

)
+ w

(
Λ(·)(si)− Λ(·)(si)

)
∗∗= m−m = 0,

where (∗) is given by Proposition 5.4, and (∗∗) follows from Proposition 5.9 and
(E). Using Lemma 5.6, this allows us to conclude that[

ϕ∞(ρm,r0 ◦ k)
] F=

[(
K(ρm,r0 , ·)(τi)

)
i∈N

][(
Λ(·)(si)

)
i∈N

]
=

[(
K(ρm,r0 , ·) ? Λ(·)(si)(τi)

)
i∈N

]
=

[
(pτi

)i∈N
]

in PB∞.

Thus, recalling that π0ϕ∞ is injective, it follows that

[ρm,r0 ◦ k] = [Id] in π0PH∞.

Writing
κ1 := ρm,r0 ◦ k,

it thus follows that

κ1 ◦ β = α, [κ1] = [Id] in π0PH∞,

which proves the claim.

Furthermore, by the fact that

[f ◦ α] = [g ◦ β] in π0A,

we can show in exactly the same way as above, that there is a homeomorphism
κ2 ∈ PH∞ that satisfies

κ2 ◦
(
f ◦ α

)
= g ◦ β, [κ2] = [Id] in π0PH∞. (G)
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Now, write h := g−1◦κ2◦f ◦κ1, observe that h ∈ PH∞, because κ1, κ2 ∈ PH∞,
and g−1 ◦ f ∈ PH∞, because, as [α] = [β] in π0A, there is, for each i ∈ N, a
j ∈ N with

τi = α(sj) = β(sj),

such that, moreover,

f(τi) = f ◦ α(sj)
∗= g ◦ β(sj) = g(τi),

where (∗) is given by the fact that [f ◦α] = [g ◦ β] in π0A. Furthermore, notice
that

h ◦ β = g−1 ◦ κ2 ◦ f ◦ κ1 ◦ β
A= g−1 ◦ κ2 ◦ f ◦ α
G= g−1 ◦ g ◦ β

= β.

Also, the right adjoint K̂ : I → C(S1, D2) of the homotopy

K(h, ·) ◦ β : S1 × I →
◦
D

2

(s, t) 7→ K(h, t)
(
β(s)

)
satisfies the condition of Lemma 5.5, which means that there is an integer n
such that, for all i, j ∈ N with i 6= j,

w
(
K(h, ·) ◦ β(si)−K(h, ·) ◦ β(sj)

)
≡ w

(
K̂(h)(·) ◦ β(si)− K̂(h)(·) ◦ β(sj)

)
= n.

Thus,

w
(
K(h, ·)(τi) ? K(ρn,r0 , ·)(τi)−K(h, ·)(τj) ? K(ρn,r0 , ·)(τj)

)
= w

((
K(h, ·)(τi)−K(h, ·)(τj)

)
?
(
K(ρn,r0 , ·)(τi)−K(ρn,r0 , ·)(τj)

))
∗= w

(
K(h, ·)(τi)−K(h, ·)(τj)

)
+ w

(
K(ρn,r0 , ·)(τi)−K(ρn,r0 , ·)(τj)

)
= n− n = 0,

where (∗) is given by Proposition 5.4. Thus, according to Lemma 5.6,

π0ϕ∞ [h ◦ ρn,r0 ]
∗= [ϕ∞(h)]

[
ϕ∞
(
ρn,r0

)]
=

[
ϕ∞(h) ? ϕ∞

(
ρn,r0

)]
=

[(
K(h, ·)(τi) ? K(ρn,r0 , ·)(τi)

)
i∈N

]
=

[(
pτi

)
i∈N

]
,

where (∗) is given by Proposition 1.15. Moreover, as π0ϕ∞ is injective by
Theorem 3.7, it follows that[

h ◦ ρn,r0

]
=
[
Id
]

in π0PH∞.
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This finishes the proof, because then,[
Id
]

=
[
h ◦ ρn,r0

]
=
[
g−1 ◦ κ2 ◦ f ◦ κ1 ◦ ρn,r0

] A,G
=
[
g−1 ◦ f ◦ ρn,r0

]
in π0PH∞.
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Appendix A

Various technical results

Proposition A.1. For all n ∈ N ∪ ∞, the spaces Fn and Cn are pathwise
connected.

Proof. We prove that Fn is pathwise connected for all n ∈ N ∪∞. If, for some
n ∈ N∪∞, x and y are points in Cn, then any path in Fn between representatives
x, y of x and y, respectively, projects to a path in Cn between x and y.
Pick two points x := (xi)i∈N, y := (yi)i∈N ∈ F∞. We prove by induction that

there is a path in F∞ from x to y. Clearly, there is a path γ1 : I → F1 =
◦
D 2

from x1 to y1. Assume that, for some n > 1, there is a well defined path

Γn := (γi)i∈[1,n] : I → Fn

from (xi)i∈[1,n] to (yi)i∈[1,n]. As both {xi}i∈[1,n+1] and (yi)i∈[1,n+1] are sets of

pairwise distinct points, there is, by the separability of
◦
D 2, a real number ε > 0

such that

xn+1 ∈
◦
D

2 \
⋃

i∈[1,n]

B(xi, ε), yn+1 ∈
◦
D

2 \
⋃

i∈[1,n]

B(yi, ε), (A)

and ⋂
i∈[1,n]

B(xi, ε) = ∅,
⋂

i∈[1,n]

B(yi, ε) = ∅. (B)

Moreover, by the continuity of the paths {γi}i∈[1,n], there is a 0 < t̂ < 1/2 such
that, for all i ∈ [1, n],

γi(t) ∈ B(xi, ε) ∀t ∈ [0, t̂], γi(t) ∈ B(yi, ε) ∀t ∈ [1− t̂, 1]. (C)

As, by (B),
◦
D 2 \

⋃
i∈[1,n] B(xi, ε) is homeomorphic to

◦
D 2 \

⋃
i∈[1,n] xi, which is

a pathwise connected space, it follows that
◦
D 2 \

⋃
i∈[1,n] B(xi, ε) too is pathwise
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connected, which, similarly, also holds for
◦
D 2 \

⋃
i∈[1,n] B(yi, ε). Consequently,

by (A), there are paths

γ0
n+1 : [0, t̂] →

◦
D

2, γ1
n+1 : [1− t̂, 1] →

◦
D

2

that satisfy
γ0

n+1(0) = xn+1, γ1
n+1(1) = yn+1

and
γ0

n+1(t̂) = γ1
n+1(1− t̂) =: x̂,

where x̂ is some point in
◦
D 2\

⋃
i∈[1,n] B(xi, ε)∪B(yi, ε) that, moreover, satisfies

x̂ /∈
⋃

i∈[1,n]

⋃
t∈I

γi(t). (D)

Observe that there is a well defined path

γn+1 : I →
◦
D

2

t 7→


γ0

n+1(t), t ∈ [0, t̂]
x̂, t ∈ [t̂, 1− t̂]
γ1

n+1(t), t ∈ [1− t̂, 1],

from xn+1 to yn+1, such that, by (C) and (D),

γn+1(t) 6= γi(t) ∀i ∈ [1, n],∀t ∈ I,

i.e., there is a well defined path

Γn+1 := (γi)i∈[1,n+1] : I → Fn+1

from (xi)i∈[1,n+1] to (yi)i∈[1,n+1].

By induction, we thus can conclude that there is a sequence of paths(
Γn : (I, 0, 1) →

(
Fn, (xi)i∈[1,n], (yi)i∈[1,n]

))
n∈N

that constitutes a map from I to the inverse system {Fn, sn+1,n}n∈N, i.e., for
each n ∈ N, there is a commutative diagram

I
Γn+1

}}{{
{{

{{
{{

Γn

��?
??

??
??

?

Fn+1
sn+1,n // Fn

.
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Consequently, by the universal property of the inverse limit F∞, there is a map
Γ : I → F∞ that makes the diagram

I

Γn+1





Γn

��

Γ

���
�
�

F∞

s∞,n+1
yyy

y

||yyy
y s∞,n

BB
B

!!B
BB

Fn+1
sn+1,n // Fn

commute for all n ∈ N. Moreover, Γ(0) = x, and Γ(1) = y, because Γn(0) =
(xi)i∈[1,n] and Γn(1) = (yi)i∈[1,n] for all n ∈ N.

Let the basepoint T∞ ∈ F∞ be as chosen in Definition 2.1, and recall that H∞
is the subspace of H(D2, D2) of homeomorphisms that fix the point set {τi}i∈N
as a set. Also, recall that

%i := ‖τi − τ∞‖ ∀i ∈ N.

Proposition A.2. For each f ∈ H∞, there is an element f̂ ∈ H∞, such that

[f ] = [f̂ ] in π0H∞.

Proof. Pick some f ∈ H∞, and, in polar coordinates, extend as follows to a
map

fext : B(τ∞, 2) → B(τ∞, 2)

(r, ϕ) 7→

{
f(r, ϕ), 0 ≤ r ≤ 1(
r, ϕ +

(
arg

(
f(1, ϕ)

)
− ϕ

)
(2− r)

)
, 1 ≤ r ≤ 2,

where arg (r̂, ϕ̂) := ϕ̂ for all (r̂, ϕ̂) ∈ B(τ∞, 2). Recalling that f induces a
homeomorphism

f |∂D2 : ∂D2 ∼=−→ ∂D2,

it can be easily verified that fext is a well defined element ofH
(
B(τ∞, 2), B(τ∞, 2)

)
that satisfies

fext|∂B(τ∞,2)
= Id. (A)

Furthermore, define a continuous map κ : I → C
(
D2, B(τ∞, 2)

)
by

κ(t) : D2 → B(τ∞, 2)

(r, ϕ) 7→

{
(r, ϕ), 0 ≤ r ≤ %1(
r + t r−%1

1−%1
, ϕ
)
, %1 ≤ r ≤ 1
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for all t ∈ I. Observe that κ(t) is an embedding for all t ∈ I, and that, moreover,

κ(0) = IdD2 , and κ(1) ∈ H
(
D2, B(τ∞, 2)

)
. (B)

As, moreover, κ(t)|
B(τ∞,%1)

= Id, it follows that

κ−1(t) ◦ fext ◦ κ(t)(τi) = f(τi) ∀t ∈ I,∀i ∈ N,

Thus, there is a well defined map

Γ : I → H∞

t 7→ κ−1(t) ◦ fext ◦ κ(t)

that satisfies Γ(0) = f , and Γ(1)|∂D2 = Id, i.e., Γ(1) ∈ H∞. Writing

f̂ := Γ(1)

finishes the proof.

Lemma A.3. For any n ∈ N ∪∞, let Γ,Γ′ : I → H0 be paths such that

Γ(0) = Γ′(0) ∈ PHn, Γ(1) = Γ′(1) ∈ PHn.

Then, [
evn ◦ Γ

]
=
[
evn ◦ Γ′

]
in π1Fn.

If, moreover,
Γ(t)(τ∞) = Γ′(t)(τ∞) = τ∞ ∀t ∈ I,

then, [
evn ◦ Γ

]
=
[
evn ◦ Γ′

]
in π1F

′
n.

Finally, for any n ∈ N ∪∞, let Γ,Γ′ : I → H0 be paths that satisfy

Γ(0) = Γ′(0) ∈ Hn, Γ(1) = Γ′(1) ∈ Hn.

Then,
evn ◦ Γ '∗ evn ◦ Γ′ in π1Cn (or π0OC∞, if n = ∞).

Proof. In this proof, we use a contracting homotopy K : H0× I → H0 with the
properties given in Theorem 3.3. To prove the first statement for any n ∈ N∪∞,
pick any Γ,Γ′ with the required properties. Define a map

Ĥ : I × I → Fn

(s, t) 7→ evn ◦ Γ(s) ◦K
(
(Γ(s)−1 ◦ Γ′(s), t

)
,

and observe that, for all t ∈ I,

Ĥ(0, t) = evn ◦ Γ(0) ◦K
(
(Γ(0)−1 ◦ Γ′(0), t

)
= evn ◦ Γ(0) ◦K

(
Id, t

)
∗= evn ◦ Γ(0)
= Tn,
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and

Ĥ(1, t) = evn ◦ Γ(1) ◦K
(
(Γ(1)−1 ◦ Γ′(1), t

)
= evn ◦ Γ(1) ◦K

(
Id, t

)
∗= evn ◦ Γ(1)
= Tn,

where (∗) is given by the property (f) of Theorem 3.3. Thus, identifying (I, İ)
with (S1, 0) leads to a well defined homotopy

H : S1 × I → Fn

(s, t) 7→ Ĥ(s, t),

which has the required properties, because

H(·, 0) = evn ◦ Γ′(·), H(·, 1) = evn ◦ Γ(·).

Moreover, if both paths Γ,Γ′ : I → H0 satisfy

Γ(s)(τ∞) = τ∞ ∀t ∈ I,

then, it follows from Theorem 3.3 (c) that

Γ(s) ◦K
(
(Γ(s)−1 ◦ Γ′(s), t

)
(τ∞) = τ∞ ∀s, t ∈ I,

i.e., Ĥ is a well defined path in F ′
n, because

Γ(s) ◦K
(
(Γ(s)−1 ◦ Γ′(s), t

)
(x) 6= τ∞ ∀x ∈ D2,∀s, t ∈ I.

The remaining statement is proved similarly.

Lemma A.4. The topology of the group of infinite permutations Σ∞ is metric.

Proof. As Σ∞ is topologized as a subspace of the mapping space NN, where NN

has the topology of pointwise convergence, it suffices to show that NN is metric.
Endow N ⊂ R with the subspace topology (i.e., N has the discrete topology),
and endow

∏
i∈N N and

∏
i∈N R with the product topology. Then,

∏
i∈N N is

a subspace of
∏

i∈N R, and, as
∏

i∈N R is metric by [11, Thm 20.5],
∏

i∈N N is
metric too. With our choice of the topologies, NN is homeomorphic to

∏
i∈N N

by [11, p. 282], which means that NN is metric.

Remark A.5. Choose any n ∈ N, or n = ∞, and let γ = (γi)i∈n ∈ C(I, Fn) be
a path such that pnγ(0) = pnγ(1) = T n, i.e., pnγ ∈ ΩCn. As usual, we write

pnγ = [γ] = [(γi)i∈n] ∈ ΩCn,

where [γ] denotes the orbit Σn(γi)i∈n. When we consider the class of γ in π1Cn,
we write again

[γ] = [(γi)i∈n] ∈ π1Cn,

where [γ] denotes the orbit in π1Cn of the orbit in ΩCn of γ.
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Lemma A.6. Pick any n ∈ N∪∞. If a pair of paths γ1, γ2 ∈ C
(
I,H0

)
satisfies

γ1(0) = γ2(0) ∈ PHn and γ1(1) = γ2(1) = idD2 ,

then,
[evn(γ1)] = [evn(γ2)] ∈ π1Fn.

Moreover, any pair of paths γ1, γ2 ∈ C
(
(I, 0, 1), (H0,Hn, IdD2)

)
, such that

γ1(0) = γ2(0),

satisfies
[evn(γ1)] = [evn(γ2)] ∈ π1Cn.

Proof. Recalling the contracting homotopy K : H0×I → H0, there is an ambient
isotopy given by

L : C(I,H0)× I → C(I,H0)

(γ, s) 7→
(

t 7→ K
(
γ2(t) ◦

(
γ1(t)

)−1
, 1− s

)
◦ γ(t)

)
.

Clearly, L(γ1, 1) = γ2, and L(γ, 0) = γ for all γ ∈ C(I,H0). Also, L(γi, s)(0) =
γi(0) and L(γi, s)(1) = γi(1) for all s ∈ I, where i = 1, 2. It follows, that

evnL(γ1,−) : I → ΩFn

is a path in ΩFn from evn(γ1(−)) to evn(γ2(−)). This proves the first assertion.
The second assertion is proved similarly.

Proposition A.7. For every configuration (xi)i∈N ∈ F∞ that converges to a

point x∞ ∈
◦
D 2, i.e.,

lim
i→∞

xi = x∞,

there is an element h ∈ H0 such that

h(τi) = xi ∀i ∈ N.

Proof. Pick some (xi)i∈N ∈ F∞ such that

lim
i→∞

xi = x∞,

for some x∞ ∈
◦
D 2. Observing that there is an element h1 ∈ H0 such that

h1(τ∞) = x∞,

it remains to prove the existence of an h2 ∈ H0 that satisfies

h2

(
h1(τi)

)
= xi ∀i ∈ N.
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The existence of h1 allows us, without restricting the generality, to assume that

x∞ = τ∞.

For each i ∈ N, write

ri := 4 sup
j≥i

max
(
‖τ∞ − xi‖, ‖τ∞ − τi‖

)
,

and let α̂i : I →
◦
D 2 be a continuous path satisfying the following conditions.

(i) α̂i(0) = τi

(ii) α̂i(1) = xi

(iii) α̂i ∩
(
{xj}j∈[1,i−1] ∪ {τj}j≥i+1

)
= ∅

(iv) α̂i(t) ⊂ B

(
τ∞,

1
2
ri

)
∀t ∈ I.

Now, recall the definition

t1 := 0, ti :=
i−1∑
k=1

1
2k
∀i ≥ 2,

and define a path set (αi)i∈N by

αi(t) =


τi ,∀t ∈

[
0, ti

1
2k

]
α̂i

(
2i
(
t− ti

1
2k

))
,∀t ∈

[
ti

1
2k , ti

1
2k

]
xi ,∀t ∈

[
ti

1
2k , 1

]
.

By the properties (i)− (iii) of the path set {α̂i}i∈N, it follows that these paths
define a well defined path (αi)i∈N : I → F∞ from (τi)i∈N to (xi)i∈N.
Note that, by the property (iv) of the paths α̂i,

lim
i→∞

αi(t) = τ∞ ∀t ∈ I,

because limi→∞ ri = 0. As in the proof of Theorem 4.5, this allows us to show
that, for each i ∈ N, there is a path gi ∈ C

(
(I, 0, 1), (H0, Id, PH∞)

)
that satisfies

(i) gi(t)(τj) =

{
αi(t) ∀t ∈ I if j = i

τj ∀t ∈ I j 6= i, and

(ii) gi(t)|D2\B(τ∞,ri) = Id ∀t ∈ I

(iii) gi(t) = Id ∀t ≤ ti
1
2k

(iv) gi(t) = gi

(
ti

1
2k

)
∀t ≥ ti

1
2k

.
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Now, write
Gn(−) = gn(−) ◦ · · · ◦ g1(−)

for all n ∈ N, and observe that, for every n ∈ N,

Gn(0) = IdD2

Gn(t)(τi) = αi(t) ∀ i ≤ n,∀ t ∈ I

by the properties of the maps gi. Moreover, one can show in analogy to the
proof of Theorem 4.5 that the sequence Gn converges uniformly, which means
that there is a path G ∈ C

(
(I, 0, 1), (H0, Id, PH∞)

)
such that

lim
n→∞

Gn = G.

By the properties of the paths Gn, it follows that G satisfies

G(1)(τi) = xi ∀i ∈ N.

Thus, writing h2 := G(1) finishes the proof.

Next, we present two lemmas that are used in the text. The proof of the first
lemma requires long calculations, whereas both lemmas can be understood quite
easily by geometric interpretation.
For every n > 1, let {σi}i∈[1,n−1] be the set of generators of the group Bn with
respect to Artin’s presentation, and, for every pair of integers i, j ∈ [1, n] with
i < j, write, as usual,

Ai,j := σj−1σj−2 · · ·σi+1σ
2
i σ−1

i+1 · · ·σ
−1
j−2σ

−1
j−1.

Recall Artin’s presentation of Bn

σiσj ∼ σjσi if |i− j| ≥ 2, 1 ≤ i, j ≤ n− 1 (A1)
σiσi+1σi ∼ σi+1σiσi+1, 1 ≤ i ≤ n− 2 (A2).

Lemma A.8. For every n ∈ N and i ∈ [1, n−1], the following two word classes,
with respect to Artin’s presentation of Bn, are equal.

Ai,n ∼ σ−1
i . . . σ−1

n−2σ
2
n−1σn−2 . . . σi.

Proof. Fix some n ∈ N. Observe that the case i = n− 1 is trivial, and fix some
i ∈ [1, n−2]. To prove the required result, we need the following equivalences in
Bn, which follow immediately from Artin’s relations, valid for all k, l ∈ [1, n−2]
with |k − l| ≥ 2.

σ−1
k σ−1

l ∼ σ−1
l σ−1

k ∀|k − l| ≥ 2 (A)
σ−1

k σ−1
k+1σ

−1
k ∼ σ−1

k+1σ
−1
k σ−1

k+1 (B)

σk+1σk ∼ σ−1
k σk+1σkσk+1 (C)

σ−1
k+1σ

−1
k ∼ σ−1

k σ−1
k+1σ

−1
k σk+1. (D)
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We need to prove that

σn−1 · · ·σi+1σ
2
i σ−1

i+1 · · ·σ
−1
n−1σ

−1
i . . . σ−1

n−2σ
−2
n−1σn−2 . . . σi ∼ 1.

For every j ∈ [i, n− 2], define

Mj := σn−1 . . . σj+1σ
2
j σ−1

j+1σ
−1
j σ−1

j+2σ
−1
j+1 . . .

σ−1
k+1σ

−1
k σ−1

k+2σ
−1
k+1 . . . σ−1

n−1σ
−1
n−2σ

−2
n−1σn−2σn−3.

We claim that, for every j ∈ [i, n− 3],

Mj ∼ σ−1
j Mj+1. (E)

The claim is proved as follows, where at each stage, the term in brackets is
replaced by an equivalent one.

Mj = σn−1 . . . σj+1σ
2
j

[
σ−1

j+1σ
−1
j

]
σ−1

j+2σ
−1
j+1 . . .

σ−1
k+1σ

−1
k σ−1

k+2σ
−1
k+1 . . . σ−1

n−1σ
−1
n−2σ

−2
n−1σn−2σn−3

D∼ σn−1 . . .
[
σj+1σj

]
σ−1

j+1σ
−1
j σj+1σ

−1
j+2σ

−1
j+1 . . .

σ−1
k+1σ

−1
k σ−1

k+2σ
−1
k+1 . . . σ−1

n−1σ
−1
n−2σ

−2
n−1σn−2σn−3

C∼ σn−1 . . . σj+2σ
−1
j σj+1σjσj+1σ

−1
j+1σ

−1
j σj+1σ

−1
j+2σ

−1
j+1 . . .

σ−1
k+1σ

−1
k σ−1

k+2σ
−1
k+1 . . . σ−1

n−1σ
−1
n−2σ

−2
n−1σn−2σn−3

∼ σn−1 . . . σj+2σ
−1
j σ2

j+1σ
−1
j+2σ

−1
j+1 . . .

σ−1
k+1σ

−1
k σ−1

k+2σ
−1
k+1 . . . σ−1

n−1σ
−1
n−2σ

−2
n−1σn−2σn−3

A∼ . . .
A∼ σ−1

j σn−1 . . . σj+2σ
2
j+1σ

−1
j+2σ

−1
j+1 . . .

σ−1
k+1σ

−1
k σ−1

k+2σ
−1
k+1 . . . σ−1

n−1σ
−1
n−2σ

−2
n−1σn−2σn−3

= σ−1
j Mj+1
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Also, observe that

Mn−3 = σn−1σn−2σ
2
n−3

[
σ−1

n−2σ
−1
n−3

]
σ−1

n−1σ
−1
n−2σ

−2
n−1σn−2σn−3

D∼ σn−1σn−2σn−3σ
−1
n−2σ

−1
n−3σn−2σ

−1
n−1σ

−1
n−2σ

−2
n−1σn−2σn−3

= σn−1σn−2σn−3σ
−1
n−2σ

−1
n−3σn−2

[
σ−1

n−1σ
−1
n−2σ

−1
n−1

]
σ−1

n−1σn−2σn−3

B∼ σn−1σn−2σn−3σ
−1
n−2σ

−1
n−3σn−2σ

−1
n−2σ

−1
n−1σ

−1
n−2σ

−1
n−1σn−2σn−3

∼ σn−1σn−2σn−3σ
−1
n−2σ

−1
n−3

[
σ−1

n−1σ
−1
n−2σ

−1
n−1

]
σn−2σn−3

B∼ σn−1σn−2σn−3σ
−1
n−2σ

−1
n−3σ

−1
n−2σ

−1
n−1σ

−1
n−2σn−2σn−3

∼ σn−1σn−2σn−3

[
σ−1

n−2σ
−1
n−3σ

−1
n−2

]
σ−1

n−1σn−3

B∼ σn−1σn−2σn−3σ
−1
n−3σ

−1
n−2σ

−1
n−3σ

−1
n−1σn−3

∼ σn−1σn−2σ
−1
n−2σ

−1
n−3σ

−1
n−1σn−3

∼ σn−1σ
−1
n−3σ

−1
n−1σn−3

A1∼ σ−1
n−3σn−1σ

−1
n−1σn−3

∼ 1. (F )

Now, we can prove the required result as follows.

σn−1 · · ·σi+1σ
2
i σ−1

i+1 · · ·σ
−1
n−1σ

−1
i . . . σ−1

n−2σ
−2
n−1σn−2 . . . σi

A∼ . . .
A∼ σn−1 . . . σi+1σ

2
i σ−1

i+1σ
−1
i σ−1

i+2σ
−1
i+1σ

−1
i+3σ

−1
i+2 . . .

σ−1
k+1σ

−1
k σ−1

k+2σ
−1
k+1 . . . σ−1

n−1σ
−1
n−2σ

−2
n−1σn−2 . . . σi

= Miσn−4 . . . σi

E∼ σ−1
i Mi+1σn−4 . . . σi

E∼ . . .
E∼ σ−1

i . . . σ−1
n−4Mn−3σn−4 . . . σi

F∼ σ−1
i . . . σ−1

n−4σn−4 . . . σi

∼ 1

Lemma A.9. For all integers i, n with i ∈ [1, n], the following two terms are
equivalent with respect to Artin’s presentation.

Ai,i+1 · · ·Ai,n+1 ∼ σi · · ·σn−1σ
2
nσn−1 · · ·σi.

Proof. Recall the definition

Ai,j := σj−1σj−2 · · ·σi+1σ
2
i σ−1

i+1 · · ·σ
−1
j−2σ

−1
j−1
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for all 1 ≤ i < j. Pick some i, n ∈ N with i ∈ [1, n]. If i = n, the required
equivalence is trivial.

An,n+1 = σ2
n

Assume that i < n, and write

Aii+1 · · ·Ai,n ∼ σi · · ·σn−2σ
2
n−1σn−2 · · ·σi

for the induction hypothesis. Then,

Aii+1 · · ·Ai,nAi,n+1 ∼ σi · · ·σn−2σ
2
n−1σn−2 · · ·σiAi,n+1

∗∼ σi · · ·σn−2σ
2
n−1σn−2 · · ·σiσ

−1
i . . . σ−1

n−1σ
2
nσn−1 . . . σi

∼ σi · · ·σn−2σn−1σ
2
nσn−1 . . . σi,

where (∗) is given by Lemma A.8.
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