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The eternal mystery of the world is its comprehensibility… The fact that it is

comprehensible is a miracle.

A. Einstein, “Physics and Reality,” Journal of the Franklin Institute, March 1936

To my Parents         
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Abstract

Electro-static or electro-dynamic fields generated by micro- or nano-

electrodes are today widely used in many different fields, such as micro- and

nanogripping, “lab on a chip”, and “lab in a cell”, for the purpose of

manipulation, separation, or analysis of micron-sized particles, cells, or single

molecules. Commonly numerical simulations and Electrostatic Force

Microscopy (EFM) methods, based on Atomic Force Microscopy (AFM), are

used to study and predict the electrostatic force fields above produced

structures. However, this measurement methods have several disadvantages.

These disadvantages range from simple limitations (e.g. it is not possible to

measure in three dimensions or expensive new equipment is needed) to

much more serious disadvantages (e.g. missing compensation for known AFM

problems, which results in wrong measurements).

In this thesis we propose a new EFM method based on simple static force

distance curves, which allows measuring accurately, and simultaneously the

topography, vertical electrostatic force field and attraction forces. The

method is numerical simulated in 3D to study in detail, with simulations and

measurements, electrostatic force fields above nanoelectrodes. To do this,

we show for the first time the fabrication of interdigitated nanoelectrodes with

pitches down to 50 nm with gas assisted focused ion beam milling. We

present as well for the first time the fabrication of Pt coated AFM tips with radii

between 50 and 600 nm, together with their calibration.

These tips not only close the gap between conventional tips with tip radii of

about 10 nm and cantilevers with attached spheres. They show as well high

mechanical stability, which solves a common problem in EFM, the mechanic
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stability of the tip. The shape of the tip greatly influences the measurement.

We demonstrate this using numerical simulations, and show that already small

tip discrepancies can change the measured force up to 50 %. Moreover, we

proved that changes in the relative humidity result in electrostatic force

changes of up to 45 %. 

We discovered that the resolution of EFM measurements on nanoelectrodes

can be enhanced by using a tip radius of 2 to 2.5 times the pitch of the

measured interdigitated nanoelectrode. Based on this and its influence on

topography measurements, which are usually made before, in between or at

the end of EFM measurements, we give hints for measurements with different

tip radii.

Beside these important general improvements, discoveries and hints for EFM,

we show as well some applications of our new EFM method and the before

obtained results. We show that our new method can distinguish the force field

caused by trapped charges in SiO2 from the force field caused by

nanoelectrodes below it. This enables to study the influence of charge

trapping in future semiconductor chips, which use charge trapping to store

information.

Furthermore, we used our new EFM method and some gripping experiments

to study electrostatic micro-and nanogripping. This experiments lead to some

propositions for improvements in electrostatic micro-and nanogripping. Such

as a new gripper design with gripping object size independent centering

effect, which is studied using 3D numerical simulations.
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Zusammenfassung
 

Elektrostatische und elektrodynamische Felder die durch Mikro- oder

Nanoelektroden erzeugt werden, finden heute in vielen unterschiedlichen

Gebieten wie beispielsweise in „micro- and nanogripping“, “lab on a chip”

und “lab in a cell” Verwendung. Mittels der elektrischen Felder werden Mikro-

oder Nanopartikel, Zellen oder Moleküle manipuliert, separiert oder analysiert.

Um die erzeugten Felder vorherzusagen und studieren zu können, verwendet

man nummerische Simulationen oder die Elektrostatische Kraft Mikroskopie

(EFM), die auf der Raster Kraft Mikroskopie (AFM) basiert.

Die bisher verfügbaren EFM Methoden haben jedoch einige gravierende

Nachteile. Diese reichen von einfachen Limitierungen (wie z.B. es ist keine

Messung in 3D möglich oder ein komplett anderer neuerer und teurerer AFM

Aufbau ist nötig) bis zu gravierenden Fehlern (wie z.B. keine Kompensation

von bekannten AFM Messfehlern, die in falschen Resultaten münden). Im

Rahmen dieser Doktorarbeit wurde eine neue EFM Messmethode entwickelt,

die auf statischen Kraftkurven basiert und es erlaubt, gleichzeitig und akkurat

die Topographie, das senkrechte elektrostatische Kraftfeld in 3D, und die

Anziehungkraft zu messen. Diese neue Methode wurde auch numerisch

simuliert (in 3D), um die elektrostatische Kraftfelder über den Nanoelektroden

intensiv zu studieren.

 

Für diese Studien haben wir Nanokammelektroden mit bis zu einer minimalen

Rasterbreite (pitch) von 50 nm mit Gas unterstütztem Ionenstrahlätzen

hergestellt. Die Herstellung von 50 nm Kammelektroden ist hierbei besonders
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hervor zu heben, da die Fabrikation solch kleiner Kammelektroden mittels Gas

unterstütztem Ionenstrahlätzen erstmals publiziert wurde. Weiterhin haben wir

zum erstem Mal erfolgreich mittels der Sputter-Deposition von Platin,

metallische AFM Fühler mit Spitzenradien zwischen 100 und 600 nm herstellen

und kalibrieren können. Die so erzeugten AFM Fühler schliessen die bisherige

Lücke zwischen normalen AFM Fühlern mit Spitzen (Radius ca. 10 nm) und

AFM Fühlern mit aufgeklebter Kugel (Radius ab 2 μm). Durch die neue

mechanisch sehr stabile Platinspitze verändert sich der Radius während

mehreren tausend durchgeführten Kraftkurven nicht mehr, was bei

kommerziell erhältlichen metallisch beschichteten AFM Fühlern der Fall ist.

Die Form der AFM Spitze beeinflusst sehr stark die Kraftfeldmessung. Dies

haben wir durch mehrere 3D Simulationen bewiesen. Kleine Unebenheiten in

der Form können den gemessenen Kraftwert um bis zu 50 % verändern.

Weiterhin haben wir festgestellt, dass eine Änderung der Luftfeuchtigkeit eine

Kraftänderung um bis zu 45 % verursachen kann. Wir haben auch festgestellt,

dass ein Verhältnis von 2 bis 2,5 zwischen Spitzenradius und pitch die beste

Auflösung bei Kraftfeldmessungen auf Nanoelektroden ermöglicht. Basierend

auf dieser Entdeckung und Ihrer Auswirkung auf topographische Messungen

die normalerweise vor, während oder nach der EFM Messung erfolgen, geben

wir einige Vorschläge für EFM Messungen mit AFM Spitzen mit

unterschiedlichen Radien.

Neben diesen wichtigen generellen EFM Verbesserungen, Entdeckungen und

Vorschlägen befassten wir uns auch mit Anwendungen der neuen EFM

Methode und den erzielten Resultaten. Wir zeigen beispielsweise, dass wir mit

unserer neuen Methode das Kraftfeld von Ladungen, welche in einem Oxid

eingeschlossen sind, von einem Kraftfeld unterscheiden können, das durch

darunter liegende Nanoelektroden erzeugt wird. Dies ermöglicht das Studium

von in Oxiden eingeschlossenen Ladungen für zukünftigen Halbleiterchips die
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mit neuen Technologien gefertigt werden und die diese für die Speicherung

von Informationen verwenden.

Weiterhin haben wir mit unserer neuen Methode und einigen Mikrogreifer

Experimenten den Prozess des elektrostatischen Mikro- und Nanogreifens

untersucht. Diese Experimente resultierten in Vorschlägen um elektrostatische

Mikro- und Nanogreifer zu verbessen. So haben wir ein neues Design

entworfen und simuliert, das zu greifende Objekte grössenunabhängig in der

Mitte zentrieren kann.

Schlüsselworte
SPM, AFM, EFM, Kraft-Abstands- Kurven, elektrostatische Felder, Kraft Felder,

Mikrogreifer, Nanogreifer, Kalibrierung von AFM cantilever, AFM cantilever mit

unterschiedlichem Spitzen Radius.
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1)1)
Introduction

1.1) General Introduction

Driven by the ongoing miniaturisation in the semiconductor industry many

scientific fields reach today the nano-scale (1 nm = 10-9m). Today we can

produce structures, which are about 7000 times smaller as an adult human

blood cell. Scientists speculate already about “lab in a cell” applications,

where we insert nanostructures in human cells and which can influence

certain parts of the cell1.

The ability to produce smaller and smaller structures creates a need of

advanced analysis techniques and methods to analyse such structures. One

of the important inventions of the last century is the development of the

atomic force microscope (AFM) in 1986 by Binnig, Quate and Gerber2. The

relative simple construction of the AFM enabled a fast spreading of AFM and

with it the possibility to investigate the nano world. Today, AFM and it's

uncountable derivatives allow nanoscopic investigations in many different

fields to a broad range of users.

However, as simple as AFM is, the obtained data are often misinterpreted. For

example, most users usually interpret all AFM data as topographical

information. This is correct only for one basic AFM mode (contact

mode(chapter1.2.3.)) but not always correct for the other basic AFM modes

(tapping / non contact mode(chapter1.2.3.)). Highly skilled users are

therefore needed for the correct interpretation of AFM measurements and for
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correct measurements with advanced AFM modes as magnetic force

microscopy (MFM), electrostatic force microscopy (EFM) and others. 

The development of AFM techniques and methods is still progressing. For

example, within the electrostatic force microscopy sector exist already

several measurement methods and techniques, but each of them have

several disadvantages (see chapter 1.2.4.). At the same time electrostatic

fields are of growing importance for different scientific fields, such as quantum

electronics3,4, micro- and nanogripping5,6, “lab on a chip”7,8, and “lab in a

cell”1, for the purpose of manipulation, separation, or analysis of micron-sized

particles, cells, single molecules or nanotubes.

Therefore, there is a high need for an AFM method, which delivers accurate

measurements in three dimensions and can be easily integrated in every

high-end AFM. The challenges of such a method are that it must use available

techniques, and deliver stable and accurate results. For the later, one has to

improve several aspects of the EFM measurements. For example, cantilevers

with a stable tip radius are needed and different surface information have to

be acquired at the same time. 

To test such a new method one needs to fabricate as well test structures at

the nanoscale. We decided to use focused electron and ion beam methods

for the fabrication of our test structures. The FEB and FIB methods have the

advantage of high flexibility and are commonly used for the fabrication of

prototypes in scientific research and industry. This will enable a faster transfer

of several aspects of our results for further scientific or industrial research or

development.
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1.2) Atomic Force Microscope (AFM)

Binnig, Quate and Gerber2 developed in 1986 the atomic force microscope

(AFM) with the aim to overcome some of the drawbacks of scanning

tunnelling microscopy (STM). The Atomic force microscopy should work as well

on insulating sample surfaces with a comparative resolution to STM. To reach

atomic resolution with the AFM turned out to be a difficult, but not an

impossible task9. Much more important today is the flexibility of the AFM. The

first AFM operated only in normal environmental conditions (air, 20 - 30°C, 30 -

60 %rh) with a cantilever made of a small diamond, hand-glued onto a strip

of gold foil. Today, the AFM operates under diverse physical conditions such

as high or cryogenic temperature, ultra-high vacuum, controlled atmosphere

or even in liquids. A wide variety of AFM cantilevers are available. The modern

standard AFM cantilever is made of silicon (Si) or silicon nitride (SixNy), is

between 100 and 400 μm long, has a width between 50 and 100 μm, and a

thickness of 1 to 3 μm. Its shape is either triangular or rectangular. 

1.2.1) Detection Types

Binnig, Quate and Gerber used an STM tip to determine the deflection of the

AFM cantilever for the first AFM. The STM tip is placed at a short distance

above the cantilever. During scanning, the tunnel current between the STM

tip and cantilever is recorded and the deflection of the cantilever

determined. This method offers high sensitivity, but is extremely sensitive to

cantilever surface contamination. In addition, the tunnelling current can

change the cantilever’s effective spring constant.

For this and other reasons (complicated to build...) the method is today rarely

used. In modern AFMs a laser beam is focused on the end of the cantilever.

The laser beam is reflected by the cantilever’s backside and one mirror

before hitting a split-photodiode. Recording the motion of the laser spot on
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the diode allows one to determine the deflection of the cantilever10, 11 (figure

1-1). This method is much less sensitive to surface roughness and

contamination on the backside of the cantilever. However, it requires

cantilevers with high backside reflectivity and is less sensitive (1x 10-13 m/Hz1/2)12

than the STM tip method.

For a higher sensitivity (1.7x 10-13 m/Hz1/2)12 the laser – reflection setup is

changed to a laser interferometry setup. The laser beam is focused again on

the backside of a cantilever, but on the way back it interferes with a

reference beam producing an interference pattern. The cantilever deflection

is measured by observing the variation in the intensity of the interference

pattern.

The ongoing miniaturisation allows one to fabricate AFMs with laser –

reflection detection set-up in only hand filling size and with a mass of only a

few 100 grams. This has led to a nearly complete vanishing of the

piezoresistive cantilever deflection detection method, which was a long time

method of choice if space is limited. There, in the arms of the cantilever

embedded piezoresistors measure the deflection of the cantilever13. 

The deflection changes are detected as resistance changes of the
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Figure 1-1: Sketch of an AFM with split-detector11.



piezoresistive layer using a Wheatstone bridge. This method is still used for

special cases, like vacuum or light sensitive systems.

1.2.2) The Scanner

Today, PZT ceramic (Pb-Zr-Ti-O) piezoelectric tube scanners are usually used

for the cantilever movement in x, y, z. Depending on the scanner design and

type the scanner can perform movements from a few micrometers to several

hundred micrometers with a precision down to a few nm. Piezoelectric

materials however have three major problems: hysteresis, non-linearity and

creep. These problems can be corrected during post-processing or by using

detectors that allow one to track the real movement of the scanner and

correct it using a feedback loop. For the latter strain gauges14 are fixed to the

x, y and z-piezos, and the movement of the piezos is corrected in a closed

loop. Strain gauges have less than 0.5% non-linearity and no hysteresis. 

1.2.3) Basic AFM Modes

The variety of AFM modes is today endless. However, there exist three basic

AFM modes, which are commonly used. These are the contact, non contact

and tapping modes. The modes differ mainly in the distance of the tip from

the surface and whether the cantilever vibrates or not.

Contact Mode

In contact mode, the AFM tip touches the surface and doesn't vibrate. Within

this mode the AFM generates images by operating in two different

configurations: constant-height (figure 1-2 (b)) or constant-force (figure 1-2

(a)). In constant-height mode, the spatial variation of the cantilever

deflection is used to construct directly a topographical image of the surface.
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This mode is usable for acquiring atomic-scale images of flat surfaces, but not

for rough surfaces, where the AFM tip can be easily damaged.

In constant-force mode, the cantilever’s deflection signal is fed into the input

of a feedback circuit. The feedback circuit moves the piezo-scanner up and

down in the z-direction and tries to keep the cantilever deflection constant.

The z-piezo-scanner signal therefore corresponds to the topography of the

sample. Both modes can be used in different environments, including liquids.

This is one of the reasons why this mode is the most used AFM mode.

Non-Contact Mode

Non-contact AFM (NC-AFM) is a group of related techniques in which the

cantilever is actively oscillated with a piezo-actuator near the surface, usually

with a frequency close to or at one of its resonance frequencies. Force

interactions between the tip and the sample surface, more precisely their

gradient16, change the resonance frequency, oscillating amplitude and

phase of the cantilever. These changes are tracked and used to control the

tip-sample distance. A feedback loop is used to maintain either the resonant

frequency (frequency modulation mode)17 (figure 1-3) or the oscillating

amplitude (amplitude modulation mode)18 constant by moving the scanner in

the vertical direction. Whereas, the frequency modulation mode is much
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Figure 1-2: Contact AFM modes: (a) Constant force mode. (b)
Constant height mode15.



more sensitive as the amplitude modulation mode, because the frequency

modulation mode is adapted for high-Q (quality) AFM measurements in

vacuum. However, the z-piezo movement recorded with both modes

corresponds to force changes. These force changes are often interpreted as

height changes. This interpretation is not correct because there exist many

reasons for interaction force changes beside height changes (e.g. different

materials, charging...).

Semicontact / Tapping / Intermittent Contact Mode

In the tapping mode (figure 1-4) the cantilever is again oscillated close to the

first of its resonance modes. In contrast to non-contact AFM the tip is hitting

the surface. The sample is scanned similarly to the non-contact mode using a

feedback loop that controls the height according to the amplitude. Tapping

mode AFM is often used to measure material properties and biological

samples. The reason for the latter is that the mode was adapted for working in

liquid environment19.
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Figure 1-3: Non contact AFM frequency modulation mode: (a)
The cantilever is far from the surface and exited at its resonance
frequency (ω0). (b) The cantilever approaches the sample until a
before defined tip to sample surface distance is reached. The
cantilever scans at this distances the sample surface.
Topographical variations during this scanning result in surface
force gradient and cantilever resonance frequency changes. A
FM demodulator detects the resonance frequency changes and
adjust the tip to sample distance to maintain the original
resonance frequency (ω0).



1.2.4) Electric Field Related AFM Modes

In addition to the presented basic AFM modes there exist several other AFM

modes. In the following I present a few AFM modes for the measurement of

electric fields, which are important for this work. 

Non-Contact Electric Force Microscopy (EFM)

EFM is used to measure electric fields on surfaces. The fields are usually

generated by structures on or under a sample surface. These structures often

cause surface topography changes. In order to compensate for these

topography changes, two-pass techniques are used (figure 1-5). With the first

scan the topography is measured using the AFM tapping mode. For the

second scan the AFM tip is retracted to a previously defined distance from

the surface. During the scan the z-piezo follows the previously measured

topography profile performing a non-contact mode scan with an applied

voltage between tip and surface. As result the amplitude changes

correspond to the electrical potential distribution on the surface at this
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Figure 1-4: Tapping AFM mode: (a) The cantilever is far
(several μm) from the surface. No damping due to tip-surface
interaction forces. (b) When the cantilever approaches the
sample surface, the surface force gradient increases. The
cantilever vibration is damped. In contrast to the non-contact
mode, the cantilever approaches now further until the tip
touches the sample surface15.



distance. The obtained images are determined by the capacitive tip-sample

electric force derivative20. As a result non-contact EFM has a higher resolution

than the often used Scanning Kelvin Microscopy (SKM).

Scanning Kelvin Microscopy (SKM)20

Scanning Kelvin Microscopy is a two pass or one pass technique similar to

non-contact EFM. At the two pass technique one obtains the topography

with the first pass (figure 1-6 (a)). At the second pass (figure 1-6 (b) / (c)) the

topography recorded with the first pass is retraced at a set distance from the

sample surface. During the second pass the cantilever is no longer exited

mechanically but electrically by applying a voltage (Vtip) with DC and AC

components between tip and substrate. 

sin( )tip dc acV V V tω= +        Eq. 1-2

The resulting capacitive force (Fcap) between tip and a surface at potential

(Vs) is:

( )21 ( )
2cap tip

dCF V x
dz

φ ⎛ ⎞= − ⎜ ⎟
⎝ ⎠

       Eq. 1-3

where C(z) is the tip-surface capacitance and Φ(x) the surface potential. The
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Figure 1-5: Non-Contact Electric Force Microscopy (EFM): (a)
1st pass: Sample profile acquisition with tapping mode scan. (b)
2nd pass: Surface potential acquisition by applying a dc voltage
(V) between tip and substrate



resulting first harmonic force is:

( )( ) sin( )cap dc ac
dCF V x V t
dz

φ ω⎛ ⎞= −⎜ ⎟
⎝ ⎠

       Eq. 1-4

The feedback loop changes during the SKM measurement the DC tip

potential Vdc until the ω component vanishes, e.g. Vdc(x) becomes equal to

Φ(x). Therefore, Vdc(x) reflects the surface potential distribution on the sample.

The one pass technique is similar to the two pass technique. One applies only

an additional small AC-bias, which excites a higher eigenmode as used for

the surface potential measurement. This higher eigenmode can now be used

to detect in the same non contact scan the surface potential and the

topography.

 - 26 -

Figure 1-6: Scanning Kelvin Probe Microscopy: (a) 1st
pass: Sample profile acquisition with tapping mode scan.
(b) (c) 2nd pass: Surface potential acquisition by applying
a voltage (Vtip) with DC and AC components between tip
and substrate15.



However, non-contact EFM and SKM have several disadvantages: During

acquisition it can happen that the sample shifts (e.g. due to external stimuli).

In this case, topography and E-field measurements do not correlate any

more, if one uses the above described two pass techniques. All dynamic AFM

measurements detect usually only normal forces, but no lateral forces. Lateral

forces are usually detected with static AFM methods. Furthermore, even if

theoretically 3D measurements are possible with both techniques only 2D

measurements in an area parallel to the sample surface are usually

performed.

Layered / Volume Imaging or Mapping (LI)

Layered Imaging (LI)21-24 (also called Volume Imaging (VI) or Mapping) uses

periodically performed static force distance curves (FDCs). For a FDC the

cantilever is moved to a distance zx above the surface. The cantilever

approaches the surface from this position until the tip touches it and a

previously defined deflection value is reached. At this moment the movement

is reversed and the cantilever moves back to position zx. During the

movement, the cantilever deflection is monitored. From the deflection, the

tip-sample force can be determined. The surface force is the sum of all long

(e.g. electrostatic) and short range surface forces (e.g. Van der Waals)

above the sample. The disadvantages of this method are: 1.) The surface

forces can not be separated; 2.) Usually no corrections on the obtained data

are performed; 3.) No topographical information are included. 

Pulsed Force Mode (PFM)

The group of Marti et al. 25 26 introduced around 1997 the pulsed force mode

(PFM). In the PFM a sinusoidal voltage is used to modulate the z-piezo of the

AFM leading to oscillation amplitudes of typically 20–500 nm at a frequency of

100 Hz–2 kHz (up to 50kHz in the Ptak mode27). The average distance between

tip and sample is adjusted such that the tip is in contact with the sample at
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the lowest point of the oscillation and reaches a defined maximum deflection

at the highest point of the oscillation. In principle this allows recording static

force curves at high frequency (figure 1-7 (a)). Due to the fast cycling the

cantilever performs a free oscillation after each cycle (figure 1-7 (b)). This

oscillation plus the information from the FDC and the z-piezo allows one to

obtain topography, adhesion and cantilever stiffness simultaneously. The

mode has been developed further by Stifter, Sun, Krotil and others28-31. The

latest development was published 2006 by Ptak27. His work was done in

collaboration with one of the biggest AFM producers (Veeco) and allows high

rate PFM. This work is the reason for the integration of this mode into

commercial AFMs in 2006 / 07. The mode allows high speed, full FDC

recording, with simultaneous topography and hardness measurements.

However, like all method's this method has its disadvantages. Similar to the

non-contact mode, the cantilever stiffness has to be higher than for normal

contact or FDC measurements, which results in less sensitivity. 

As in all high speed or dynamic AFM modes the cantilever tip is quickly

damaged. In addition, for the latest development27 a special cooled z-piezo is

used in combination with an extremely fast data treatment, to obtain high
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Figure 1-7: Pulsed force mode: (a) top: Voltage signal applied on z-piezo. bottom:
Resulting deflection signal. (b) The cantilever oscillates freely with its resonance
frequency the first milliseconds after the detachment from the sample surface.



acquisition rates. This makes it necessary to buy an AFM specially built for this

mode.

Regarding this work, the new Ptak27 method already includes some of the

advantages of our new method, which is presented in the next chapters.

However, it demonstrates as well the importance of this work and of static

force distance curves in general, which are during recent years treated with

less importance than dynamic FDCs. In addition, our new method includes

additional procedures. In fact, an integration of our new method into PFM is

possible and will result in new possibilities for both techniques.

1.3) Focused Electron and Ion Beams (FEB / FIB)

1.3.1) FEB / FIB History

Focused electron beams (FEB) are routinely used today in Scanning Electron

Microscopes (SEMs). The first SEM was constructed in the late 1930’s by “von

Ardenne” and was known as the “Universal Microscope”32-37. The first usable

SEM however was constructed 1942 by Zworykin’s at al. and had already a

resolution of 50 nm38. Afterwards, SEM was for a long time forgotten by the

scientific community. It took until 1962 to construct the first commercial SEMs

(Cambridge Instrument Company). In the same year Oatley’s team39-46

started investigating potential applications of FEB, which already included

etching, microfabrication and microelectronics.

Ion beam sources and Focused Ion Beams (FIBs) were developed in the

1970’s to 1990’s47-50. Due to the long experience with FEBs the first commercial

systems were already available in the 1990’s, which is fast in comparison with

the time needed to produce the first commercial FEB systems. FIB systems

operate in a similar fashion to a scanning electron microscope (SEM) except

they use an ion beam, instead of an electron beam. FIB systems today use

typically a finely focused beam of gallium ions that can be operated at low
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beam currents for imaging or high beam currents for site specific sputtering,

milling or deposition51-53.

1.3.2) FEB / FIB Structuring Basics

Both, FEB and FIB systems allow removal and deposition of materials, and

photolithographical processing. Photolithography masks of modern computer

chips are produced by FEB. For this, commonly a polymer layer is spin-coated

on a quartz substrate with a metal layer on top. An electron beam is scanned

over the surface, which changes the chemical composition of the polymer

network on different parts of the mask. These parts are successively removed

using chemicals. Afterwards, the non-protected metal is removed by

standard dry or wet etching. E-beam lithography systems have, typically,

beam energies of 20 to 100 keV and minimum beam diameters down to 1

nm. Single line widths down to 10 nm are achieved54. More complicated

structures, however, have typical minimal structure sizes above 20 nm, due to

proximity effects.

FEB induced etching and deposition is a reaction of surface adsorbed

molecules with the electron beam (figure 1-9). For this a gas is introduced
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Figure 1-8: SEM of needle
for gas injection above a
structured surface.



using a needle above the sample surface directly in front of the electron

beam path (figure 1-8).

The vertical etch or deposition rate (R(r)) in a simplified rotational symmetry

system can be theoretical calculated as a function of the distance r from the

centre of the primary beam using55:

R r =Vn r ∫
0

E 0

σ  E  f  r , E dE        Eq. 1-5

where V is the volume of the decomposed molecule or etched atom, n(r) is

the number of adsorbed molecules per surface unit, σ(E) is the energy

dependent electron impact dissociation cross section, E0 is the energy of the

incident primary electrons and f(r,E) the flux distribution.

Similar considerations apply to FIB induced etching and deposition (figure

1-10). The only difference is that one must take into account the physical

sputter contribution of the much heavier ion (in comparison with the

electrons).57
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Figure 1-9: Processes during FEB induced (a)etching: The surface-adsorbed molecules
dissociate under electron impact into reactive species and react with the substrate material to
create volatile compounds. (b)deposition: The non-volatile dissociation products form the
deposit growing coaxially into the beam. Volatile fragments are pumped away.56



R r =Vn r ∫
0

E 0

σ  E  f  r , E dE±S P        Eq. 1-6

The plus sign applies for gas-assisted FIB etching whereas the minus sign stands

for gas-assisted FIB deposition. A more practical expression for the etch or

deposition rate can be obtained when the volume of the removed

/deposited material (V), the required ion current (Ii), and the milling /

deposition time are known58:

i

V VR = 
Q I t

=        Eq. 1-7

An important disadvantage of FIB in comparison with FEB is the implantation

of ions into the substrate (etching / milling) or the deposit. A clear advantage

of FIB is its high etch / milling rate in nearly all materials and the possibility to
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Figure 1-10: Principle of FIB milling (or
sputtering) without gas assistance. This purely
physical material removal is also present
during gas-assisted FIB etching, deposition
and observation. Hence, the FIB damages the
sample in low depth and as well implants ions
during observation.56



obtain small structure sizes on charging substrates if a charge neutralization by

FEB is used.

1.3.3) FEB / FIB Raster Scan Exposures

For obtaining complex exposure figures very often serpentine scans controlled

by pixel stream files, or bitmap files are used. The beam rasters (Δx, Δy) a

surface as shown in figure 1-11 and dwells for a time td (/ty) at each position.

Hence, each pixel is exposed during td (/ty) and, in case of overlap (figure

1-11), also from adjacent pixels of multiples of td and ty. After one pattern scan

is completed, the beam is blanked for the refresh time tr. The scan pattern is

repeated p times (p = number of passes).

Knowing the overlap, total area of the milled pattern (A), number of pixels

(nw), beam diameter (db) and the depth / height of the milled / deposited

material, one can calculate the pixel density (ρp) of the bitmap58:
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Figure 1-11: Schematic of the beam movement
during a raster scan with overlap. The beam
moves in Δx/Δy steps with a dwell time td and a
refresh time tr..56



p
b

1 m x 100 =
d  overlap
μρ       Eq. 1-8

the dose (D):

w d
i

n t pD =  I
A

      Eq. 1-9

and the sputtering rate (R) using equation 1-7.
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2)2)
Fabrication of Micro- and Nanoelectrodes

Electrostatic fields can be generated by micro- and nano-electrodes of

different shapes. For this thesis interdigitated comb electrodes with different

pitches (/period) (figure 2-1) and active area are fabricated in order to

investigate the influence of different electrode sizes on electric force field

measurements. The produced pitch size ranges from 10 μm down to 50 nm

and the active area size ranges from 36 mm2 down to 1 μm2. However, for

some specific applications (e.g. microgripping; chapter 11) we fabricated, as

well, interdigitated electrodes with other shapes. In this chapter the applied

fabrication processes are described on the example of interdigitated comb

electrodes.

2.1) Microelectrodes

The interdigitated comb microelectrodes are fabricated using the EPFL clean

room facilities (CMI) with the following micro-fabrication steps: A 50 nm Ti (to

improve adhesion) and a 100 nm Pt layer are sputtered (Spider-600, Pfeiffer

Vacuum, D) onto a 525 ± 50 μm thick 4 inch double-side polished fused silica
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Figure 2-1: Definition of pitch and period.



wafer. The metal layer is structured using standard positive UV

photolithography (MA6, Süss MicroTec Inc., USA; Shipley, Microposit S1805,

USA) and a high density inductively coupled plasma etcher with chlorine

chemistry (STS Multiplex ICP, Surface Technology Systems (STS), UK). 

Different types of micrometer sized electrodes have been produced using this

fabrication method. Interdigitated comb electrodes with active areas

between 40 mm2 and 900 μm2 and pitches from 15 μm to 1 μm (figure 2-2 /

2-). In addition, electrodes of special shape have been produced for micro-

gripping applications.

The minimum pitch size we fabricated with UV (290 to 390 nm wavelength)

lithography is about 1 μm on an area of 400 μm2. The yield at this pitch size is

low, 25 % (= 1.5 electrodes per wafer). For pitch sizes >2 μm the yields are

usually close to 100%. In contrast to these “small” area electrodes, which are

limited mainly by resolution, electrodes with 36 mm2 are mainly limited by

contamination due to particles and residual resist spots. Due to this, the

minimum producible pitch size increases to 5 μm. The average yield is 50% for

5 μm pitch size electrodes and above. One resist spot and one particle failure

are shown in figure 2-4.

 - 40 -

Figure 2-2: Topview microscope image of
microelectrodes with (a) 10 μm and (b) 4 μm
pitch. The active area are 40 mm2 and 900
μm2, respectively. Figure 2-3: Microelectrodes with about

1 μm pitch and 400 μm2 area. The design
is optimised for gripping tests.



2.2) Nanoelectrodes

For the fabrication of nano-sized pitch electrodes several different fabrication

methods have been tested in parallel; namely, electron beam lithography

(EBL), electron beam deposition, focused ion beam milling and focused ion

beam gas assisted milling (FIBgam). The best experimental results were

obtained with EBL and FIBgam. Therefore, we will concentrate in the following

on these two techniques. For our experiments we used a dual beam

instrument, a Nova 600 NanoLab from FEI, equipped with a electron and a

Ga+ ion gun. The principle of a dual beam system is described in detail

elsewhere1.

Electron Beam Lithography (EBL)

Based on the article "Sub-10 nm Electron Beam Nanolithography Using Spin-

Coatable TiO2 Resists" by M.S.M. Saifullah2 we decided to test TiO2 sol-gel resists

for the fabrication of the electrodes. The advantages of these resists are their

high resolution, relatively high resistance to chemicals (after full exposure) and

relative insensitivity to visible light. Their disadvantages are their high sensitivity

to water and the fact that the resists are not well characterised.
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Figure 2-4: Failures due to (a) particles and (b) remaining
resist spots, on (a) 3 μm and (b) 5 μm pitch electrodes,
respectively.



The used TiO2 sol-gel resist is produced in dry atmosphere by mixing 1.43 g

Benzolylacetone, 3 ml Tetrabutyl orthotitanate and 30 ml Pentanol. 7 ml of the

resist are spin coated with 3000 rpm for 30 sec. on about 1 x 1 cm square Si-

chips in standard environment (room temperature, 30 to 60 %rh). After drying

for 45 min. at 80°C and subsequent 30 min. “cool down” at standard

environment, the resist is “exposed” using the electron beam. The structures

are developed in acetone for 10 min. and rinsed with isopropanol.

During the first tests we successfully fabricated reproducible lines down to

about 50 nm in width using a 65 nm to 77 nm thick TiO2 containing resist (figure

2-5). Despite these good results, we had problems fabricating more

sophisticated and more closely spaced structures due to proximity effects.

The width of exposed lines changed with their distance from the next line.

Backscattered electrons are the reason for this behaviour. They “expose” our

highly sensitive TiO2 containing resist in an area around the primary beam. To

investigate and solve this problem we had the simple idea to use lines with

white to black gradients (figure 2-6). This enables one to test large dose

ranges in the same run.
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Figure 2-5: Array of 6 lines with 52 nm
width and 374 nm length.



Using this method we found out that a dose between 450 and 600 C/m2

enables fabrication on flat substrates structures down to 50 nm pitch with

varying distances of 50, 100 and 200 nm. (figure 2-7)
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Figure 2-7: Measured line width in relation to the
calculated dose. The lines are designed with 50 nm line
width and varying distance. (a) 50 nm (b) 100 nm (c) 200
nm distance to the next line.

Figure 2-6: (a) Bitmap file used to fabricate (b). (b)
SEM of an array of lines with 50 nm pitch. Due to
the white to black gradient exposure doses from
753.29 C/m2 (left) to 0 C/m2 (right) are tested.
(calculated using Eq. 1-9)



It is extremely expensive and time consuming to expose a full wafer at this

resolution. Therefore, we tried to spincoat our resist on prestructured Ti-layers.

This created several problems. The most serious problem is that we did not

achieve a good coverage of the structures during the spin coating.

To conclude, we fabricated lines down to 50 nm in width and varying

distances (down to 50 nm) to the next lines on non-structured Si-wafers. On

the other hand, the spin coating of this resist on structured substrates is

problematic and couldn't be solved. For this kind of substrates, we used

FIBgam, which is presented next.

Focused Ion Beam gas assisted milling (FIBgam)

For gas assisted focused ion beam milling we prestructured a Si-wafer using

the following processes: A 50 nm Ti layer is sputtered (Spider-600, Pfeiffer

Vacuum, D) on a Si-Wafer with thermal dry oxide (100nm). The Ti layer is

photolithographically (MA6, Süss MicroTec Inc., USA; Shipley, Microposit S1805,

USA) prestructured leaving a 10 x 10 μm2 Ti region that is electrically

connected to two large contact pads. This region is structured (design figure

2-8) using a Ga+ focused ion beam milling with XeF2 gas assistance (Nova 600

NanoLab, FEI, USA).
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Figure 2-8: A 50 nm pitch interdigitated
electrodes design.



For this structuring we used the following procedure and processes3:

a) Beam adjustment

For the fabrication of nanostructures the beam diameter and quality

(astigmatism and focus) is of crucial importance, no matter if it is an electron

or ion beam. In order to have a small beam diameter and reasonably short

milling durations the FIBgam experiments have been carried out with an ion

acceleration voltage Ui = 30 kV and current set to Ii = 10 pA, respectively,

which results in a nominal beam diameter db of 12 nm (full width at half

maximum, FWHM)(given by FEI).

To achieve the requested beam quality we adjusted the focus and

astigmatism very carefully. Subsequent to a rough adjustment on an adapted

surface feature, nano-holes and -squares with a diameter of a few hundreds

of nanometers have been milled into the substrate in order to check the

proper adjustment of focus and astigmatism. Analysing the milled test-

structures thoroughly, slight distortions were observed due to surface

charging, although the Ti-structures and the underlying Si-substrate were well

grounded using a Cu-tape covered with conducting glue. An efficient

charge neutralisation can be obtained by using additionally the e-beam

whilst milling the nanostructures. An electron current, which is generated by

the e-beam and on the order of 10 times higher than the ion current, leads in

our experience to a good discharging of the substrate and solved this

problem (e-beam acceleration voltage Ue = 10 kV, current Ie = 130 pA, dwell

time td 1 μs).

The e-beam current Ie used for charge neutralisation was varied in the range

of Ie = 33 pA and Ie = 540 pA in order to examine its influence on the milling

process. The results revealed that the etching by the electron beam can be

neglected compared to the ion induced etching. Therefore, we used for our

experiments the e-beam for charge neutralisation in combination with ion

induced chemical etching.
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b.) FIB XeF2 milling

As mentioned in chapter 1.3., pixel controlled pattering is used in ion or

electron beam structuring to fabricate complex designs. This allows the

pattern to be defined in different ways, such as direct drawing of the patterns

composed of a given set of basic patterns, individual control of pixels (stream

files), or bitmap files (bmp). In our experiments the patterns have been

defined using bitmap files. The patterning proceeds in a pixel-by-pixel

movement, where for black and white pixels the ion beam is either blanked

and not, respectively. For this a fast beam blanker (decay/rise time 1ns) is

used.

Knowing the overlap (50 %), the number of passes (360), the dwell time

(500 ns), the total area of the milled pattern (0.53 μm2), the number of pixels

(14.6 x 103), the depth ds = 40 nm of the structure, we can calculate the pixel

density ρp = 167 pixel μm-1, the dose D = 5 mC cm-2 and the sputtering rate

R = 0.8 μm3 nC-1 using equations 1-7 to 1-9. The electrodes fabricated using

these parameters are shown in figure 2-9 and 2-10. They are the first

fabricated 50 nm pitch electrodes in Ti using Fibgam.
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Figure 2-9: (a) 3D reconstruction of an AFM
contact scan of 50 nm pitch electrodes. (b)
Two line scans taken from (a) at the indicated
positions.



In order to determine the optimal refresh time (tr) and dwell time (td) for the Ti/

XeF2 system, the sputtering rate R was measured as a function of tr and td, all

other parameters are kept constant. This is done by milling square structures of

1 μm length and 500 nm width into a Ti block and subsequent measurement

of the removed volume by SEM (accuracy ± 10 %). The tr is composed of the

scanning time ts of one pass and the waiting time tw for which the beam is

blanked after each pass. The tr was varied by adapting tw, whereas ts was

kept constant. 

The result of the measurements is shown in figure 2-11, the measured values

are represented by dots3. The sputtering rate increases until approximately

0.8 μm3 nC-1 for a refresh time tr > 50 ms. The opposite is the case for the

sputtering rate versus dwell time td. The sputtering rate decreases rapidly with

increasing dwell time.

 - 47 -

Figure 2-10: SEM image of interdigitated
nanoelectrodes of 50 nm width, 50 nm gap, and 40
nm thickness. The electrodes have been fabricated
using gas enhanced etching with XeF2. The
parameters are Ii = 10 pA, Ui = 30 kV, td = 500 ns,
and p = 360 passes. The sample is tilted to 46°.



The measurements reveal that adsorption is slow compared to the surface

depletion in the presence of the ion current. Consequently, td should be as

short and tr as long as possible. Therefore, the optimal conditions for chemical

enhanced milling for Ti using XeF2 are refresh time tr longer than 30 ms and a

dwell time td shorter than 500 ns. For td→∞ the sputtering rate tends to

R=0.12 µm3nC−1, which corresponds to the physical sputtering rate. For tr→∞

the sputtering rate tends to the maximal sputtering rate R=0.88 µm3nC−1.
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Figure 2-11: Sputtering rate R of the Ti in presence of XeF2 as a
function of (a) refresh time tr and (b) dwell time td. (a) Ion current
Ii = 10 pA and dwell time td = 500 ns are constant and the gas
flow is 1.3x1020 molecule cm-2 s- 1. (b) Ion current Ii = 10 pA and
refresh time tr = 150 ms are constant and the gas flow is
1.3x1020 molecule cm2 s- 1. 3



c.) Nanoelectrodes with pitches larger than 50 nm on fused silica substrates

All 50 nm pitch electrodes are fabricated on doped Si-wafers with a SiO2 layer

on top, because this enables one to ground the doped Si. This helps to avoid

charging of the substrate due to the ion beam. However, this creates

parasitic capacitances between the metallic structures (contact pads, wires,

electrodes) and the doped Si-wafer.

For nanoelectrodes with 500 nm and 200 nm pitch we used fused silica

wafers instead of doped Si wafers with an SiO2 layer4. This avoids the parasitic

capacities between substrate and metallic structures. The disadvantage of

using fused silica wafers is their charging during FIB. Therefore, fused silica

substrates do not permit fabrication of very small structures. The smallest pitch

size we were able to produce on fused silica substrates was 200 nm.

For the fabrication we used prestructured samples prepared as described

before, prior to a FIBgam process using the following parameters: number of

passes p = 800, dwell time td = 1 μs, magnification M = 3500, ion current II =

10 pA, acceleration voltage UI = 30 kV, no i-beam spot overlap. The

theoretical ion beam diameter (given by FEI) for these conditions is 12 nm. The

parameters for the e-beam used for charge neutralization were: electron

current Ie = 210 pA and acceleration voltage Ue = 2 kV. Examples of these

electrodes are shown at figure 2-12.
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Figure 2-12: Tilted (52°) secondary electron microscope (SEM) image of the (a)
500 nm and (b) 200 nm pitch interdigitated Ti nanoelectrodes, on fused silica
substrates.



d.) Electrode Coverage and Electrical Measurements

After fabrication, all electrodes are covered with a SiO2 layer using RF

sputtering with an O2 (1 sccm) and Ar (15 sccm) gas mixture. The SiO2 films

obtained with this method have been investigated and compared with

thermally grown SiO2 films using XPS (=X-Ray photoelectron spectroscopy) and

Auger spectroscopy. The Si to O ratio of a dry thermally grown film is 1 : 1.92.

The ratio of the sputtered film is 1 : 1.89. Despite the discrepancy of these

ratios the electrical resistance of our sputtered films was good.

The electrical resistance of the fabricated 50 nm, 200 nm and 500 nm pitch

interdigitated electrodes was measured. The contact pads of the electrodes

are connected using a manual wafer prober (Karl & Süss PM5). Voltage –

Current (V-I) diagrams are taken with a precision semiconductor parameter

analyser (Hewlett Packard 4156A). After SiO2 coverage the 50 nm pitch

electrodes showed a resistance of 2 ±0.5 GΩ  (Figure 2-13). The 200 and 500

nm pitch electrodes had a resistance of about 14.8 ± 5 TΩ, after the SiO2

deposition (figure 2-14). The resistance of the 200 and 500 nm is one order of

magnitude higher, but the resistance of all electrodes is high enough to
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Figure 2-13: V-I diagram for a two-point electrical measurement of 50 nm pitch
interdigitated electrodes, after covering the electrodes with a protective SiO2

layer. The resistance determined from this graph is 2 ±1 GΩ  3. 



enable good EFM measurements.
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Figure 2-14: V-I diagram for a two-point electrical
measurement of 500 nm pitch interdigitated electrodes.
The electrodes are covered with a 60 nm thick protective
SiO2 layer. The resistance of this electrode is 14.8 ±10 TΩ.
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3)3)
Experimental AFM Setup

In this chapter an overview on the AFM setup used for our experiments and its

calibration is presented. This is important for an estimation on the precision of

the performed EFM measurements.

3.1) General Overview

Pictures and a sketch of the experimental AFM setup are shown in figure 3-1.

The setup consists essentially of an AFM (Topometrix, Explorer) with linearised x,

y, z piezoelectric actuators (see chapter 1.2.2. ) and a glove box with

controllable environment. Temperature (T), relative humidity (Rh), and

pressure (P), are monitored using a Rotronic HygoPalm3 with calibrated

HygroClip SC05.

The relative humidity can additionally be controlled by adjusting the inflowing

gas mixture of dry N2 and humid air. The humid air is generated by using

several stages of bubbler's and droplet filters. This allows one to vary the

humidity between approximately 1 %rh and 75 %rh, the latter being the

maximum allowed humidity for the AFM according to the manufacturer. The

temperature is controlled by the air conditioning of the laboratory (21±2 °C).

The pressure in the box is always about 867±5 hPa.

During the measurement, the angle between the cantilever and the x-axis, Θ,

is kept between 10° to 12°, as indicated in figure 3-1 (b). Voltages between

±25 VDC are applied using a HP E3631A power supply (Hewlett Packard, USA)

and bonded Al wires. The cantilever is always grounded during the

measurements using the same power supply.
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Finally, the setup (AFM, Rotronic and power source) is controlled by a home

made visual basic program running on a PC.

3.2) Humidity Measurement and Control

Today, many different methods to measure humidity1-6 exist. We decided to

use a sensor that combines a capacitive method with a highly hygroscopic

polymer (Rotronic, HW3, Hygroclip SC05, Switzerland), because it allows fast

measurements within 1.5 %rh and 100 %rh with an accuracy of ±1.5 %rh and

has a low drift. Regular measurements of 10 and 50 %rh commercial

calibration standards revealed no drift of the sensor over the whole time of

usage. The disadvantage of this sensor is its detection limit of 1.5 %rh due to its

accuracy. Therefore, we have to use another humidity sensor to determine
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Figure 3-1: Sketches (a)(b) and pictures (c) of the experimental AFM setup. The setup was
constructed during this PhD work to allow AFM measurements in a controlled manner under
different environmental conditions.



the humidity inside the environmental box after many hours (up to several

days) of N2 flushing.

This sensor does not need to be constantly mounted in our setup, because

once we have “calibrated” our setup, we can observe with the HW3 the

progression of the humidity down to 1.5 %rh. Afterwards, we wait for the

determined time to reach a specific humidity.

We used for this a Xentaur XTR-100 Al2O3 thin film capacitance dew-point

sensor. The sensor has a dew-point measurement range of +20 °C to -100 °C

with an accuracy of ±3 °C. This corresponds to a measurement range of 0 %rh

to 100 %rh with an accuracy of about ±0.0004 %rh for low relative humidities

and about ±17 %rh for high relative humidities, due to the exponential

relationship between dewpoint and relative humidity7, 8:

[ ] [ ]
1 15417.12*

273.15+T(°C) 273.15+DP(°C)% 100*erh
⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪−⎜ ⎟ ⎜ ⎟⎨ ⎬⎜ ⎟ ⎜ ⎟⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭=

       Eq. 3-1

where DP(°C) is the dewpoint in °C and T(°C) is the room temperature in °C.

Figure 3-2 shows the changing of the relative humidity with time during the

flushing of the environmental box with N2, recorded with both humidity sensors

at the same time.

For the higher relative humidity the HW3 delivers the more accurate results for

the lower relative humidity the accuracy of the Xentaur is higher. Therefore,

figure 3-2 can be interpreted as followed: The humidity in the environmental

box decreases fast within the first hour from 61 %rh to 2.93 %rh, after 24h the

humidity is around 2.71 %rh and decreases slowly until 0.94 %rh after 69 h.

Therefore, the environmental box is flushed for at least 24 h prior to all force

measurements conducted in N2 atmosphere. This should results always in 2 to

3 % relative humidity.
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3.3) AFM 

All AFM measurements within this thesis are performed using a Topometrix

(now Veeco) Explorer AFM. A detailed view of the AFM system is shown in

figure 3-3. The advantages of this AFM are its high flexibility. Almost all AFM

signals can be connected to external instruments, nearly all measurement

parameters can be changed and custom routines can be integrated using

Visual Basic. This is why, this AFM model is, despite its age (produced 1996), a

good choice for developing new AFM modes.

As already mentioned in the chapters 3.1.1 and 1.2.2 the x, y and z-piezo's of

the AFM are linearised9. As for every AFM, this linearisation has to be checked

and recalibrated from time to time. The calibration is done using silicon

samples with precisely fabricated Si-structures on top. The structures are

usually lines or rectangular blocks with a defined width, length and height.
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Figure 3-2: Humidity vs time graph for N2 flushing of the
environmental box with 10 lpm. The changing of the humidity
is recorded with two humidity sensors. The HW3 has a good
accuracy down to 3 %rh, and the Xenaur has a good accuracy
below it.



The calibration samples are scanned using contact mode and the measured

dimensions are compared with the reference values. Finally, the linearisation

parameters of the AFM are adjusted accordingly.

The calibration procedure is performed several times with different

calibrations samples of different dimensions in order to minimize the error

within the entire scan range of interest. Table 3-1 shows the resulting errors at

different heights after the z-piezo calibration.

The piezos have been calibrated regularly during this PhD. In general, the

error of the z-piezo is kept below ±5 % and the errors for x and y piezos are

kept below ±6 %. 
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Figure 3-3: Images of the AFM (Topometrix / Veeco Explorer) used for this
thesis. Left: Bottom view of the AFM, with a mounted cantilever. Right:
Tilted view of the AFM mounted on a X-Y table. The X-Y table is used to
position our samples.

Table 3-1: Z-piezo calibration with different calibration
samples. The error between expected and measured height is
always below ±5 %.
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4)4)
Coating of Cantilevers

Commonly, cantilevers with a metallic tip or coating (Ti/Au) are used for EFM.

Cantilevers with dielectrics can be used as well, but the production of these

tips is often complicated and the tip-surface interaction of dielectric tips is

orders of magnitude weaker in comparison with metals1. Metallic tips disturb

the electrical field, therefore, the tips have to be taken into account in the

final analysis.

We bought Ti / Au coated tips from two producers (Veeco, Novascan) and

conducted several EFM tests with these tips. During those tests we began to

observe a degradation of the tip quality after only a few measurements. After

100 to 800 force distance curves these tips are broken or deformed, and

therefore, no accurate measurements can be performed any more with

these tips. In addition, the continuous deformation of the tip has an

uncontrollable influence on the measured values, since the tip shape

influences the measurements. Therefore, these tips cannot be used for

quantitative measurements. Figure 4-1 (a) and (c) shows damaged and

deformed tips.

Hence, we decided to coat our own tips. Important features of a tip coating

material are its electrical conductivity, hardness at room temperature,

adhesion on silicon (Si) (we use Si-cantilevers), diffusion rate in Si, harmlessness

(e.g. not radioactive), availability (must be easily available for us), and we

must be able to sputter it, because a good coverage is needed. Most metals

can be sputtered and all metals are conductive, but some metals oxidise

(e.g. Al), are too soft (e.g. Au or Ag) or diffuse in Si (e.g. Cu).
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As a result of these considerations we decided to use platinum (Pt) as a

coating material. It is available for us as a sputtering target, hard, has low

electrical resistivity, does not oxidise and its adhesion to silicon is good.

There exist better coating materials for EFM as Pt, for example Tantalum (Ta),

which was not available in the sputtering machine at the beginning of this

thesis. By the end of this thesis, Ta became available in the cleanroom and it is

possible to use it in future experiments (Table 4-1). However, it is not

mandatory to change the material. As long as the chosen material fulfils the

above mentioned criteria, it does not matter, which material one uses. The
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Table 4-1: Material properties of Pt and Ta. Both materials
can be used to coat AFM tips, in order to obtain stable EFM
tips.

Figure 4-1: Two commercially available EFM tips. (a) A Gold coated cantilever with
sphere, after 100 to 800 FDC. A Ti / Au coated cantilever with tip, (b) before and (c)
after several FDC.



measured electrostatic force field values will not be affected. This changes if

one uses semiconductors with low or no doping. Highly doped

semiconductors are considered as metals in EFM2-4.

4.1) Cantilever with Tips

We performed several sputtering and process flow tests. The sputtering energy

was varied between 400 and 1000 Watt. The deposition rate was measured as

described in the following: Pt is sputtered for 1 min. on a Si-wafer with kepton

tape stripes on top. After removing the tape the sputtered thickness is

measured at five different positions on the wafer using an alpha step 500

(TENCOR). After averaging these five values, the sputtering speed is

calculated.

Figure 4-2 shows the results of these tests. There is obviously a linear

relationship between sputter rate and energy. For the sputtering on the

cantilevers a sputter rate of about 110 nm/min. is reasonable. This rate
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Figure 4-2: Sputter rate versus sputter energy. Each point is
obtained as described in the text. The measured values follow
the linear equation: sputter rate = 0.265 * watt + 5.



theoretically enables one to control the sputtered thickness with a precision of

about 1.8 nm.

However, we observed that the sputtering rate at 400 Watts changes every

day and varies between 120 and 100 nm/min. Therefore, it is necessary to

measure the sputter rate each day in order to enable good process control. 

The following process flow gave the best reproducible results and was

therefore used for the fabrication of several cantilevers:

The cantilevers (Veeco, Model: 1950-00, USA) were cleaned using O2 plasma.

The sputtering speed of the Pt sputtering (26°C; DC; 400W; 432V; 0.9A)(Spider,

Pfeifer Vaccum, Switzerland) was measured as described before. Afterwards,

the cantilevers were mounted with the tip oriented upwards (cantilever front

side up) on a Si-wafer using kepton tape. The wanted thickness of Pt was

sputtered using the measured sputtering speed and calculating the

sputtering time. After the sputtering was finished the cantilevers are

unmounted, and turned, in order to coat the backsides of the cantilevers. The

cantilevers were mounted on a special distance holder, mounted on a Si-

wafer, to prevent the tip from touching the Si test wafer. The same Pt thickness

as on the front was then deposited. The complete setup (Si-wafer with

distance holder and mounted cantilever) was placed under an optical

microscope, which enables one to measure height differences. The bending

of each cantilever, which is caused by the internal stress in the Pt layer, is

measured by measuring the height difference between both cantilever ends.

Depending on the measured bending additional Pt is sputtered on each

cantilever individually until the cantilevers were straight.

Cantilevers with different radii were produced using this procedure. Figure 4-3

shows the obtained tip radius (R) versus sputtered thickness (T) of 14

cantilevers:
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There is an evident linear relationship between the obtained tip radius (R) and

the sputtered thickness (T). The linear fit shown in figure 4-3 (dashed line)

follows the equation:

0.542* 13R T= +        Eq. 4-1

The factor 13 in the equation is close to the nominal tip radius (10 nm) and is

likely the real tip radius. The factor 0.542 results probably from different

geometrical and physical parameters. The thickness T of a film obtained by

sputter deposition is influenced, by5, 6:

− The geometry and temperature of the sputtering chamber.

− The geometry, position and temperature of the sample.

− The sputtering material and its properties.

− The sample material and its properties.
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Figure 4-3: Tip radius vs. sputtered Pt thickness. The red
triangle marks the initial nominal tip radius given by the
producer. A linear fit that follows equation 4-1 is shown as
dashed line. Three SEM pictures of tips with three
different radii are shown as well.



The growth rate of a sputtered film at each point of a sample is determined

mainly (if no resputtering occurs) by the “visible” area of the sputter target7-10.

Therefore, we can approximate roughly the sputtering process on our tip as

follows:

Figure 4-4 (a) shows a two dimensional schematic drawing of the sputter

deposition chamber with two tips. At the position P1 the sample is flat and P1

is visible from all points of the sputter source(black line). Therefore, every point

of the sputter source contributes to the sputtered thickness at point P1. At

point P2 a part of the sputter source is hidden by the tip geometry (black

large spaced dotted line). Hence, only a part of the sputter source

contributes to the sputtered thickness. The area of the sputter source that

contributes to the sputtered thickness of the tip side walls, depends on the
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Figure 4-4: (a) Schematic drawing of a sputter deposition
chamber with two tips, source diameter L and sample to
source distance H. A magnified cross-section through the
tip with position P2 and P3 is shown in (c) and (b),
respectively. (a), (b) and (c) show that the resulting tip
radius depends on the tip and chamber geometry but not on
the position of the tip in the chamber.



position of the tip (red small spaced dotted line). For example, the thickness

at position P3 will be higher as at position P2, because more area of the

sputter source can contribute to the film growth.

Figure 4-4 (b and c) presents a cross-section through the two tips illustrated in

(a). Figure 4-4 (c) shows the tip in the middle of the sputter chamber (right tip).

Both tip side walls have the same sputtered film thickness, because the area

of the sputter source that contributes to the film thickness on both tip side

walls is the same. The tip radius is equal to the sputtered film thickness at one

side. Figure 4-4 (b) shows the tip on the left of (a). The sputtered film thickness

on the right wall is higher than on the left wall, because the area of the

sputter source that contributes to the film thickness on the left wall is less than

on the right wall. However, in total one has sputtered the same thickness onto

the tip. Therefore, the radius of the tip will be the same as before for the right

tip. This effect can be as well seen in SEM pictures in figure 4-3.

In our case we use a round sputter source with a diameter (L)of about 20 cm.

The distance between sample and source (H) is about 4 cm. The chosen

cantilever tips have a nominal apex angle (α) of 30°. With this geometric

information, we can calculate, using simple triangular equations, how much

of the area contributes to the sputtered thickness on one tip wall. In our case

this is 11.07 cm. Normalized to the diameter of the sputter source we get a

factor of 0.554. This factor is very close to the factor 0.542, which we get from

our linear fit. This indicates that the assumptions we made and our model are

correct and this factor results mainly from the geometry of the tip and

chamber.

Furthermore, figure 4-3 presents the limits of our fabrication method. The

distribution of the obtained tip radii for each sputtered thickness increases

with the sputtered thickness. The fabrication of tips with a tip radius above

600 nm is therefore not advisable. However, a tip radius of 600 nm equals a tip

diameter of 1.2 μm, which is already close to the diameter of the smallest

commercial available spheres (2 μm) glued on cantilevers. 

During the FDC measurements (chapter 6) all produced tips did not change
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their radius for several thousand's of FDC measurements11. Figure 4-5 shows an

example of a tip before and after several thousands of FDCs.

This process is a small but significant step forward for the EFM measurement

community, because it offers metallic tips with stable tip shape and

adjustable tip radius that can be produced using a simple fabrication

process. In addition, the fabricated tips close the gap between conventional

tips with small tip radius and cantilevers with glued spheres.

4.2) Cantilever with Spheres 

Cantilevers with glued spheres instead of tips are often used for the

determination of surface forces (e.g. Van der Waals). The advantages of

using spheres instead of tips are: 1.) Since several decades very good

analytical equations for the theoretical calculation of the surface energy and

other parameters between a sphere and flat surface are available. 2.) Due to

a larger interaction surface in comparison with a small tip, the measurement

signal is enhanced, resulting in a higher signal to noise ratio.
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Figure 4-5: Two SEM pictures of an EFM tip
produced as described in the text. (a) shows the tip
before and (b) after several thousand's of FDC
curves. The tip did not change its shape during the
measurements.



At the same time the larger interaction surface is as well the main

disadvantage of using spheres, because the measured surface forces are an

average over the whole interaction surface. However, when big sample

surfaces are used, cantilevers with spheres are preferable.

Cantilevers with spheres are usually fabricated by gluing a metallic or

dielectric sphere on a cantilever without tip using a micro-manipulator. In our

case we bought cantilevers with glued SiO2 spheres (Novascan, USA) and

sputtered about 50 nm Ti and 80 nm Pt using the same sputtering equipment

and process as described in chapter 4.1. The Ti layer is deposited to enhance

the adhesion between the SiO2 (sphere) and the Pt layer.

The O2 plasma cleaning step turned out to be very important for cantilevers

with spheres. Due to the gluing of the spheres by eye invisible glue and/or

solvent residues remain on the cantilever and sphere. These residues need to

be removed with the O2-plasma cleaning before sputtering, because they

cause topographic irregularities on the coated cantilever surface (figure 4-6

(a)). On the other hand, if the duration of the O2-plasma process is too long

the sphere detaches from the cantilever. Two test series with six cantilevers

were carried out to find the optimal process time. As optimal process time we

found 2 min. 30 sec. It enables both, cleaning of the surface, and no

detachment of the sphere. Figure 4-6 (b) shows a coated sphere with

cantilever after coating and after several measurements.
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Table4 2: The oxygen plasma time, plasma RF power and
remarks (about sphere detachment) of two test series conducted
with six cantilevers with glued sphere. The maximal process
time that didn't lead to a detachment of the sphere is 2 min. 30
sec..(0.4 mbar)
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Figure 4-6: Two cantilevers with spheres after Ti / Pt coating. (a) shows a cantilever
without and (b) with proper O2-plasma cleaning. In (a) we clearly see dots on the
sphere, which result from glue and/or solvent residues.
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5)5)
Cantilever Calibration

Atomic force microscopy and its variants are used in a wide variety of force

measurement applications. With AFMs physicists and material scientists

measure electrostatic and magnetic fields1-3, and structural properties of

materials4,5. Biologists study molecular binding forces6-11 and intra-molecular

folding forces12-14. All these techniques rely on the accurate determination of

the cantilever spring constant k in order to get quantitative results. The

cantilever deflection can be measured today with high accuracy.

Converting these measurements into force via Hooks law:

F k x= − i         Eq. 5-1

requires that one determines accurately the spring constant for each

cantilever. Even today this is still a challenging task, because the applied

methods are very sensitive (to thermal fluctuations, laser deflection

changes...), therefore, the obtained k’s can vary widely. 

Numerous methods have been proposed to measure AFM cantilever spring

constants: Dimensional methods require precise knowledge of the cantilever

dimensions and material15. Static experimental methods employ deflection by

calibrated standards16-21, glass fibres22,23 or added masses24. Dynamic

experimental methods detect the shift in resonance frequency caused by an

added mass25, utilize thermal vibration noise26-34, employ knowledge of

cantilever mass and resonance frequency35, or are derived from fluid

dynamics theory36,37. Today, dimensional methods are commonly used for a

rough approximation of the spring constant (k) and resonance frequency (f).

After these rough approximation dynamical methods are used to determine

the exact values for k, f and the quality factor Q.
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The fabrication process discussed in chapter 4 involves the coating of the

cantilevers with a thick metal (Pt) film. Not many calibration methods are

adapted for cantilevers with thick metal coatings. In the following we will

present a few dimensional and dynamical experimental methods for

cantilevers with thick metal coatings.

5.1) Dimensional Methods

The most used and basic equation for a simple rectangular beam, derived

from the Euler-Bernoulli beam theory38, is given by:

3

34
Ewtk

l
=        Eq. 5-2

where E is the elastic modulus of the cantilever material (ESi = 98 GP;

EPt = 170 GP), w the width of the cantilever, t its thickness, and l its length. The

resonance frequency f of a rectangular beam can be calculated using2:

20.162 t Ef
l ρ

=        Eq. 5-3

where ρ is the density of the cantilever material (ρSi = 2.2 x 103 kg/m3 ; ρPt = 21.4

x 103 kg/m3 ). However, in the present form both equations are not usable for

cantilevers with thick metallic coating. Therefore, we have extended the

rectangular beam equation 5-2.

Equation 5-2 is deduced from basic mechanical equations. The inertia I of a

rectangular beam cross section can be calculated, with respect to the x-

axis(figure 5-2 (a)), using:

3/ 22 2

/ 2 12
t

t

wtI y dA y wdy
−

= = =∫ ∫        Eq. 5-4

The deflection of a beam with a fixed end A and a free end B, with a

concentrated load F on B can be calculated using a second moment-area

 - 72 -



theorem. Whereas, the first moment is equal to the deflection δΒ, which results

in (figure 5-1):

3

3B
Fl
EI

δ =        Eq. 5-5

Inserting equation 5-4 in 5-5 and using 5-1 (with -x = δΒ ) results in equation 5-2. 

If one wants to extend equation 5-2 to a Si-beam with Pt sputtered on both

sides of the cantilever, one is confronted with the problem that two materials

are used. There exist several methods to extend mechanical models to two or

more material models. We have chosen the transformed section method39,

together with three simplifications:

1.) For most cantilevers t is much smaller than w, therefore we neglect the

cantilever edges.

2.) Pt sputtering on the front side of the cantilever causes internal stress in the

cantilever. To counter balance for this internal stress the same Pt thickness as

on the front of the cantilever is sputtered on the backside of the cantilever

(see chapter 4). Therefore, the Pt thickness on each sides of the cantilever

can be calculated by subtracting the initial thickness of the cantilever from

the thickness after the sputtering and dividing the resulting thickness by two. 

3.) The Pt thickness is homogeneous over the whole cantilever after the

coating. At least, we observed no thickness difference between both ends of
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Figure 5-1: Schematic drawing of the deflection δB of a beam
with a fixed end A, a free end B, an applied concentrated
load F at B and the length l.



the cantilever after the coating by Secondary Electron Microscopy (SEM).

Applying these simplifications, our new cantilever cross section can be

schematically drawn as shown in figure 5-2 (b).

The neutral axis of the cross section of a composited beam of two materials is

obtained by:

1 21 2
0E ydA E ydA+ =∫ ∫        Eq. 5-6

introducing a modular ratio of the form:

2

1

En
E

=  with 2 1E E>        Eq. 5-7

equation 5-6 can then be rewritten to:

1 2
0ydA yndA+ =∫ ∫        Eq. 5-8

This shows that the neutral axis is unchanged if each element of area dA in

material 2 is multiplied by the factor n, provided that the y coordinates for
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Figure 5-2: Cross section through a cantilever used for (a)
equation 5-2 and (b) equation 5-10. (td1 = distance between
neutral axis and top of cantilever; td2 = distance between
neutral axis of Si and neutral axis of Pt). (a) represents a
standard Si cantilever and (b) a Si cantilever with a thick Pt
coating on both sides.



each element stay the same. In other words, we can change the width of

both Pt layers by n and calculate the new inertia using the “parallel axis

theorem” 39. The total inertia of figure 5-2 (b) is then:

23 3( ) ( )2
48 2 2 12
Pt Pt Si Si

Si Pt
t t t tI w n t

⎧ ⎫⎛ ⎞⎪ ⎪⎛ ⎞= + + +⎜ ⎟⎨ ⎬⎜ ⎟⎜ ⎟⎝ ⎠⎪ ⎪⎝ ⎠⎩ ⎭
       Eq. 5-9

Inserting equation 5-9 in 5-5 and using 5-1 (with -x = δΒ ) results in the following

equation for k:

23 3

3

3 ( ) ( )2
48 2 2 12

Si Si Pt Pt Si Si
Pt

E w t t t tk n t
l

⎧ ⎫⎛ ⎞⎪ ⎪⎛ ⎞= + + +⎜ ⎟⎨ ⎬⎜ ⎟⎜ ⎟⎝ ⎠⎪ ⎪⎝ ⎠⎩ ⎭
       Eq. 5-10

5.2) Dynamic Experimental Methods

Dynamical calibration methods are accurate but as well sensitive methods for

cantilever calibration. Due to the fact that most AFM applications use

standard Si or silicon nitride (SiN) cantilevers most dynamical calibration

methods are only investigated for such cantilevers. The only method which is

investigated for cantilevers with thick coating and provides accurate k values

is the method of Sader35,36. Therefore, we will concentrate in the following on

this method.

The “Sader Method” is one of the three most used and most accurate

calibration methods. Other methods are the “Thermal Noise Method”27 and

“Cleveland method”25. All three methods are commonly used and well

described, but only the thermal noise method in often integrated in AFMs.

Therefore, we developed our own calibration setup including software, based

on Saders method. 

The first step in implementing the Sader method is to record the thermal free

vibrations of the cantilever. This signal is captured by positioning the cantilever

far away from the sample surface and recording the photodetector voltage
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variations as function of time, V(t). Fourier transformation is performed on the

obtained V(t) signal to get the detector-voltage spectral power density, PV. In

our case PV is obtained using a 1 GHz digital oscilloscope (LeCroy, LC564A,

Switzerland), which is directly connected to the four quadrant photo-diode of

the AFM. PV can be converted into the deflection spectral power density (Pd)

by the following relation:

2
2 2

1 1
cosd VP P

S
χ

α
=        Eq. 5-11

where α is the inclination of the non deflected cantilever with respect to the

laser beam. This angle is usually given by the AFM producer and is in our case

12°. Factor χ compensates for an S acquired with an end-loaded cantilever

(see next paragraph), whereas PV is acquired with the freely oscillating

cantilever. According to references27,32,34 χ is 1.09 in our experiments.

The conversion factor or sensitivity S converts the detector voltage into

cantilever deflection. S is equal to the gradient of the FDCs in figure 5-3 in

between points 3 and 4 or 5 and 4. We acquired the same FDC with our

1 GHz digital oscilloscope (figure 5-3 (a)) and AFM (figure 5-3 (b)). From the
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Figure 5-3: FDC curve obtained with (a) a 1 GHz digital oscilloscope (b) with the AFM.
Points 1 to 5 represent respectively: (1) deflection of the free non influenced cantilever; (2)
snap out (adhesion force); (3) sample surface point; (4) highest force / reverse of movement;
(5) snap in (attraction force).



obtained V(t) (figure 5-3 (a)) and deflection [nA] versus distance [nm] (figure

5-3 (b)) graphs, we calculated the sensitivity S (nA/nm) of this cantilever for

both instruments. We calculated a factor C (0.155951 nV/nA) for converting

the S of the AFM into the S of the oscilloscope. This will enable us to convert in

the future all S obtained with the AFM to the S for the oscilloscope without

further measurements.

Figure 5-4 shows the Pd plot of a cantilever at its first resonance peak. The plot

is the average of 700 spectra (Sampling rate: 500 kHz; total acquisition time:

100 ms).

In order to extract the resonance frequency (ω ) and quality factor (Q) the Pd

curve is fitted using a single harmonic oscillator (SHO) model:

4
1 1

2
2 0
1( )

white
AA A

Q

ω

ωωω ω

= +
⎛ ⎞

− + ⎜ ⎟
⎝ ⎠

       Eq. 5-12
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Figure 5-4: Power spectral density (Pd) plot of thermal
fluctuations in the output of the cantilever deflection
detector. The resonance peak is fitted with a single
harmonic oscillator (SHO) model to obtain k, f and Q.



where Awhite is a white noise fit baseline33,37 and A1 the amplitude of the 

first resonance frequency. The fitting curve is shown in Figure 5-4. The SHO

model fits well the deflection PSD signal.

The Sader method is based on the theory of a driven cantilever response in a

fluid of known density and viscosity33,37. In air the cantilever response can be

calculated using:

( )2 20.1906 i R Rk w l Qρ ω ω= Γ        Eq. 5-13

where l is the length, w the width of the cantilever, ρ the density of air, Q the

quality factor, ωR the resonance frequency in polar notation and Γi(ωR) the

imaginary part of the hydrodynamic function derived by Sader35. 

5.3) Measurements and Comparison of Methods

We calibrated several cantilevers using the above mentioned methods. The

cantilevers were with or without spheres and with or without Pt coating. The

cantilevers with sphere were additionally calibrated by the company

(Novascan, USA) using the “Cleveland method”. Our calibration of these

cantilevers is done after a thin Ti/Pt coating as described in chapter 3.2.2. The

calibration results using the Sader method together with the values of the

company are presented in table 5-1.

The measured k values differ by 6 to 16 % from those given by the company.

The frequencies differ by 2 to 23 %. This is due to the facts that we removed

some mass from the cantilevers during O2 cleaning, added some mass during

Ti/Pt deposition and that the Cleveland and Sader method have an error

margin of about 30 % and 4 %, respectively40. The errors in k and ω are within

the expected margin. This shows that our calibration setup works and gives

meaningful k values.
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We did not use the dimensional methods, which we discussed and further

developed in chapter 3.3.2 for the cantilevers with sphere, because the

sphere represents a non negligible load to the cantilever. The discussed

methods are not applicable for this kind of cantilevers. However, for the

following cantilevers with tip they can be used.

Tables 5-2 and 5-3 present the geometrical dimensions measured by SEM and

calibration values of several cantilevers with a tip. All cantilever dimensions

are measured before and after the coating, abbreviated in the tables by b

and a, respectively. This enables us to calculate the theoretical shift of k and

ω due to the coating and to compare them to actual measurements. The

value for ω has to be calculated twice, once with the young modulus and

density of silicon and once with the young modulus and density of platinum,

because we have no equation for a mixed structure (equation 5-3).

The ωSader measured with the Sader method is within the range of the two

calculated ω (ωSi, ωPt). The measured ωSader is always between 1 to 4 kHz higher

than ωPt. Hence, we assume ωSader ≅ ωPt + 2 kHz. The measured ωSader is in fact

lower than the original theoretical ω before the coating. These results from the

high density of Pt which leads to a lower resonance frequency according to

equation 5-3. 

For 6 out of 8 k values, the developed dimensional model for cantilevers with

thick double-side Pt coating (kmix) (equation 5-10), delivers k values that differ

up to 40 % from kSader. For 3 out of 8 k values, the conventional Young equation

(kYoung)(equation 5-2), determines as well k values within this range. The
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Table 5-1: Geometrical dimensions (determined with SEM), k, ω and Q of three calibrated
cantilever with sphere and Pt coating.



measured kSader values of these 3 cantilevers are lower than kmix. One possible

reason for this is that the Young’s modulus of these cantilevers differ from the

estimated one. According to Bhushan, B. et al.41, the Young’s modulus of p-

doped (100) silicon varies between 62 and 203 GPa, depending on the

measurement methods and doping levels.

To conclude, our developed dimensional model for cantilevers with thick

double side coating delivers in most cases better k values in comparison with

the conventional Young equation. The value for ω can be approximately

calculated by adding 2 kHz to ωPt. The Sader method delivers accurate values

of k, ω and Q for cantilevers with thick double side coating.
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Table 5-2: Geometrical dimensions (by SEM) and Q values (by SHO fit) measured (b) before
and (a) after Pt sputtering of eight cantilevers with tip.
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6)6)
New EFM Method

6.1) Introduction

We presented in chapter 1.2.4. different methods for the measurement of

electrostatic force fields. Some of them use two passes and dynamic

techniques, others one pass and static techniques. Each of these techniques

has its advantages and disadvantages. Some methods (like LI) provide

inaccurate force measurements but are easily implemented, other very

advanced methods like PFM provide high precision force and topography

measurements, but need extensive and expensive hardware and software

changes.

We will present in this chapter in detail a new static force distance curve

(FDC) based method that can be easily implemented in existing AFM systems.

The method allows high precision measurements of the electrostatic force

field in three dimensions, the surface topography and the attraction and

adhesion force, simultaneously.

Static FDCs are already roughly described in chapter 1.2.4. and 3.3.2. In the

following we describe in detail how static FDCs are influenced by electric

fields. We describe as well a treatment of the recorded static FDCs, which

enables one to distinguish between tip-electric field and tip-surface

interactions.
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6.2) Static FDC Basics / Balance of Forces

Many different interaction forces between cantilever tip and sample

contribute to the total force variation with the tip to sample distance in a FDC

(figure 5-3 (b)), namely Van der Waals, contact, capillary and electrostatic

forces1. Varying the relative distance between a cantilever (represented by

the plate and spring in figure 6-1) and a sample surface changes the vertical

position (d) of the tip and the acting tip-sample interaction forces.

The balance between the acting surface forces and the spring force of the

cantilever determines the elongation of the spring (or the deflection of the

cantilever). In other words, the tip position depends on the acting surface

forces and vice versa. The acting surface forces and the spring force of the

cantilever are at every distance in equilibrium. Typically, the surface forces

increase non-linearly with the distance from the sample. Therefore, the

elongation of the spring is non-linear as well, with distance. For example the

Van der Waals force between a sphere and a flat surface, and a cone and

flat surface can be approximated using Equation 6-1. The later is used often

for the approximation of the Van der Waals force between an AFM tip and a

flat surface.
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Figure 6-1: Simple model for the cantilever –
sample system.
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d d− −

Θ
= =         Eq. 6-1

where H is the Van der Waals constant, d the sphere-/cone-flat surface

distance, R the radius of the sphere and Θ the tip angle of the cone.

A special situation occurs when the tip is very close to the surface. There the

tip-sample interaction force increases strongly. Due to this increase no

equilibrium between the acting surface forces and the spring force of the

cantilever can be reached. Hence, the elongation of the spring continuous

until the tip touches the surface. This position is called the snap-in point in the

FDC (figure 5-3). The distance at which this snap-in occurs depends on the tip

and sample properties (e.g. surface energy, k...), and the environmental

conditions. For example, in humid air the snap-in occurs earlier, because tip

and sample are covered with a water film. When these water films touch

each other, they form a liquid bridge between tip and sample. In this case

strong capillary forces attract the tip and drag it to the surface until they

touch. Moving the cantilever away from the surface one has to overcome

the acting contact forces between the tip and sample surface. This happens

when the spring force is equal to the adhesion force. At this point the tip

jumps out of contact. In the FDC this position is called the snap-out point

(figure 5-3).

6.3) Static FDCs in Electric Fields 

As explained earlier, electrostatic fields (e.g. the one above interdigitated

electrodes) contribute to the total acting interaction force between tip and

surface, which varies with the tip to sample distance in a FDC. An electrical

field for example attracts already the cantilever tip at a distance far away

from the surface (Figure 6-2). Many other forces (e.g. Van der Waals) attract

the cantilever tip only at a much shorter distance from the surface. Therefore,

many EFM methods neglect the contribution of the short range forces. This
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assumption is correct as long as we have no other long range forces, like

other electrostatic forces generated by charge injection into oxides, caused

by strong electric fields. In nanoelectronic applications these strong electric

fields are often reached due to the small distances. To exclude as well these

kinds of surface forces we developed a differential measurement procedure.

We take, at every measurement point along a line or in an area, two

successive FDCs, one with and one without applied potentials on the

underlying structures (in our case interdigitated electrodes). The FDC

performed with applied potentials on the interdigitated electrodes result of a

sum of several interaction forces including the electrostatic force between

the tip and sample due to the underlying structures. The FDC without applied

potentials result of about the same sum, differing only in the electrostatic

force between the tip and sample due to the underlying structures. This

double-FDC method has the additional advantage that it cancels out

systematic errors, such as signal variations from laser beam interferences and

therefore increases the signal-to-noise ratio (see figure 9-3). Afterwards, each

individual FDC is corrected using developed voluminous data treatment

algorithms that are based on suggestions of Cappella2 and Butt3. In brief, the

data treatment consists of:

(1) Separation of the approach and retraction parts.

(2) Multiplication of vertical deflection with k and S (see chapter 5)

provides the acting force in nN.

(3) Automatic surface point and snap-in /-out point recognition.

(4) Real tip – sample height and offset corrections.

(5) Subtraction of the two treated FDCs to obtain the electrostatic force

field.

Automatic FDC recognition and data treatment is not easy and often

unstable due to random fluctuations (see figure 9-3), especially point 3 is

difficult to achieve. Due to the iterative algorithm we use, the recognition

yield of our program is very high. If the shape of the obtained FDC is close to
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the “standard” shape of a FDC, which means at least the points 1,2 and 4 in

figure 5-4 are present, a recognition yield close to 100% can be obtained. The

complete program is attached in the appendix.

Figure 6-2 shows how the measured FDC attraction parts evolve with each

data treatment step: (a) the measured FDC attraction parts after step 2, (b)

after offset corrections, (c) after step 4 and (d) after step 5.

6.4) Topography

To obtain simultaneously the surface topography and the electrostatic force,

we added a step between the consecutive FDC measurements. There the
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Figure 6-2: (a) The two measured FDCs. (b) Both FDCs after surface point recognition
and offset correction. (c) The FDCs after real tip sample height correction. (d) The
resulting measured vertical electrostatic force as function of the distance.



cantilever tip is in contact with the sample surface and we are able to adjust

the voltage on the z-piezo such that the cantilever applies always the same

force on the sample. The z-piezo voltage, necessary to obtain this

force(/deflection), changes with the position of the cantilever tip on the

surface and reflects therefore the topography of the sample. The topography

variation can now be obtained from the applied z-piezo voltage changes by

multiplication with S (in nm/nV). This combination allows obtaining

simultaneously the surface topography as well as the electrostatic force at

any given point. 

Figure 6-3 shows a comparison of the obtained contact scan and a normal

AFM contact scan at about the same position. The scans are very similar. This

proves that we get with our method the same results as with a normal

contact AFM scan.
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Figure 6-3: Comparison between a standard AFM
contact scan (black dash-dotted line) and a contact scan
performed as described in the text (blue line) made with
the same cantilever on the same 500 nm pitch electrodes
at approximately the same position and nearly the same
orientation between cantilever and electrodes.



6.5) Vertical Electrostatic Force Field

The methods introduced above, are used to determine the vertical

electrostatic field above 500 nm pitch electrodes with high resolution4,5. The

scan is carried out perpendicular to the electrode orientation in a glove box

with the following controlled environmental conditions: 21±1 °C; 60±5 %rh;

867±5 hPa. The 500 nm pitch interdigitated Ti nanoelectrodes were fabricated

on quartz substrates as explained in chapter 2.2 and covered with 30 nm of

SiO2. 

The Si cantilever with Pt coating utilized for the measurement had a tip radius

of approximately 380 nm, a spring constant of k = 0.79 N/m, a quality factor of

Q = 284, a resonant frequency of ωR = 1.844 kHz and a conversion factor of

S = 0.12 nA/nm. All values are determined as described in chapter 5. During

the measurement, the angle between the cantilever and the y-axis, Θ, is kept

between 10° and 12°, as shown in figure 3-1 (a). Voltages of -20 VDC and
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Figure 6-4: Measured force field and topography of 500 nm
pitch electrodes with ±20 V applied, alternately. A cantilever
with a tip of 380 nm in radius and a spring constant of 0.79 N/m
is used to perform the measurements.



+20 VDC are applied to the interdigitated nanoelectrodes via bonded Al

wires. The cantilever is grounded during the measurement.

In the vertical plane perpendicular to the orientation of the nanoelectrode

array, an area of 4.5 μm in width and 450 nm in height was scanned by the

cantilever with a lateral sampling rate of 25 nm and a vertical sampling rate

of 2 nm. Figure 6-4 shows the obtained force field distribution above the

arrays of interdigitated nanoelectrodes with topography. The shape of the

topography shown in figure 6-4 is a convolution of the real topography (500

nm pitch electrodes) and the shape of the AFM tip6. It can be seen from the

same figure that each equi-force line below z = 150 nm reaches its local

height minima at an x position right in between two adjacent electrodes.

There the tip passes its lowest point above the surface and is subjected to

strongest attraction by the two nearest electrodes. The electrostatic force

decreases rapidly with increasing distance from the electrode surface. At a

distance of 800 nm from the surface, the electrostatic force becomes too

small to be detected (< 1 nN). 
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7)7)
Numerical Simulation of the new Method

7.1) Introduction

The theory of tip–sample interactions has been extensively discussed in the

literature1, 2. Beside Van der Waals forces1-4, electrostatic interaction forces are

the most discussed surface forces5-7. However, many of the theoretical

publications focus on a conductive tip / cantilever over an unlimited

expanding plane 3, 8-14. Only few publications discuss interactions of

conductive tips with structured samples 15-17. Several analytical models exist for

the unlimited expanding plane case but only a few for the tips with structured

samples case, which are limited to specific geometries. These models try to

reduce the complexity of the geometry by making several assumptions (e.g.

sharp knife instead of tip) and using 2D models as done by Böhm et al.15. They

obtained a electrical force F per effective area A, which is expressed as

follows:

2
0

2 2

4( ) 1S P
y y

U UF
A x h

ε
π

=
+

e e        Eq. 7-1

where, h is the tip-sample distance, UP the applied voltage on the sample, US

the applied voltage on the tip, ε0 the dielectric constant and x the position of

the tip. This model delivers a very rough estimation for the force of a metallic

tip over interdigitated electrodes. Gómez-Moñivas et al.16 developed a

model, which delivers a more accurate estimation for the force of a metallic

tip over interdigitated electrodes. The model uses analytical equations in

connection with numerical methods. The sample and tip geometry is given in

a 3D model together with the boundary conditions. With the analytical
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equations one calculates the force between tip and sample for all distances

and positions on the 3D surface model.

7.2) Our Numerical Model

Based on the mentioned difficulties to develop good analytical “tips with

structured samples” models we decided to develop a numerical model of our

measurement method. With this model one can compare the measurements

with theoretical calculations and study more in detail the developed EFM

method, and EFM in general.

The model is developed in three major steps:

A.) Identification and Reduction

To save calculation time we reduced the model to the absolutely necessary

geometries, physical parameters and movements. In detail, for pitches below

1 μm we include in our model only a part of the tip (up to a height of 6 μm)

and only the number of electrodes that are necessary (figure 7-1 (a)).

Cantilever and other geometry influences can be neglected because the

range of the electric field for pitches below 1 μm is in the order of a few

100 nm (figure 7-1 (b)). Assuming the tip moves slowly enough during the

measurement to fulfil the condition: FSpring = Fsurface at all points before the snap-

in and after the snap-out. One can replace the constant movement of the tip

by a sequential movement and use static conditions for the calculation of the

force on the cantilever at each tip position. At each of these tip positions the

full 3D electrical field has to be calculated, which can be extremely time

intensive. To reduce the calculation time the movement of the tip is often

limited to a vertical plane perpendicular to the orientation of the

nanoelectrodes array(chapter 6). 
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B.) Physical background

The coulomb force on a point charge (QP) in an electrical field (E) is given by

electrostatic field physics18:

PF Q E=
�� ��

       Eq. 7-2

This equation can be only used for point charges or a discrete number of

charges. For charges with a spatial extension, one needs to calculate a force

density (f) using:

d Ff E
dV

ρ= =

��
�� ��

       Eq. 7-3

were ρ is the spatial charge density. This spatial charge density can be

located in free space (not attached to a body), on a deformable or non-

deformable body. In the later case, it is possible to calculate the total force

(F) on this body by integration over the total volume of the body:
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Figure 7-1: (a) Simulated geometry. (b) Norm E-field at the position of the tip, calculated
with the geometry shown in (a). One can see that the E-field doesn't exceed the first few
100 nm.



V V

F f dV EdVρ= =∫ ∫
�� �� ��

       Eq. 7-4

For the special case of a metallic body the spatial charge density can be

replaced by the surface charge density σ, which is localized at the surface of

the metallic body. To obtain the surface charge density σ one has to

integrate the spatial charge density over the thickness δ (figure 7-2) at every

point of the surface of the metallic body:

( ) ( ), , ,x y x y dδ
δ

σ ρ δ= ∫        Eq. 7-5

The E-field varies with the charge density over the total thickness δ of the first

atomic layers of the metallic body. Using equations 7-4 and 7-5, one can

derive an equation for the total force per area of the metallic body caused

by the electric field and surface charge:

d F E d
dA δ

σ δ= ∫
��

��
       Eq. 7-6

Independent of the progression of σ and E along δ, the integral always results

in:
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Figure 7-2: (a), (b) and (c) show the development of
the spatial charge density ρ and electric field E on
the surface of a metallic body.18



2
d F E
dA

σ
=

�� ��
       Eq. 7-7

were E is always parallel to the surface normal. Using equation 7-7 we can

calculate the total electrostatic force on a metallic body by

2A

EF dAσ
= ∫

��
��

       Eq. 7-8

C.) Programming

3D numerical calculations are very time consuming, therefore professional

numerical solvers are needed in order to carry out the simulations within a

reasonable time frame using a commercial PC. We have chosen to use the

commercial simulation software Comsol together with Matlab and Solid

Works. This enables designing the AFM tips as accurately as possible,

importing the model in a powerful numerical solver, and to carry out post

data treatment routines for calculating the total electrostatic force on the tip.

For the latter, one has to take into account the before performed numerical

calculations of the simulation software. In our case equation 7-8 can be

reduced and rewritten to:

( ), , , ,  X Y Z X Y Z
A

F E d Aσ= ∫
��

       Eq. 7-9

were, X,Y,Z represents the integration in X, Y and Z direction over all tip

boundaries.

As already mentioned, in order to simulate our new measurement method we

have to move the tip in our model in discrete steps and calculate at each

position the E-field and the total force on the tip. This can be expressed by

extending Equation 7-9 to:
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F E d Aσ⎛ ⎞= ∫⎜ ⎟
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��
       Eq. 7-10

were the Z is the vertical compound of the force field, which corresponds to

the deflection of the cantilever19, and x, y,z is the position of the tip. (The

complete Matlab code is shown in the appendix.)

Performing the numerical calculation with the same geometries as used for

the measurement in chapter 6 results in the vertical force field shown in figure

7-3 (b).

Figure 7-4 shows a detailed comparison of the simulated vertical force field

(figure 7-3 (b)) with the measured vertical force field (figure 7-3 (a)). The

electrostatic force between the nanoelectrode arrays and the cantilever tip

is plotted as function of the vertical distance at two places on the surface,

one on top of an electrode and one between two interdigitated electrodes,

corresponding to the x positions 0.5 μm and 1 μm in figure 7-3 (a) and (b),

respectively. The calculated values fit well with the measured ones. Only

differences in the shape of the curve are observed. These force differences

result probably from slight tip shape differences between simulation and

experiment. These slight tip shape differences cannot be fully included in the

3D model, but influence the force curve. However, in our case the force
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Figure 7-3: Vertical force field of interdigitated electrodes with 500 nm pitch. (a) shows the
measured and (b) the simulated force field.



discrepancies are very small (1 to 2 nN) and we can therefore conclude that

the simulation confirms the eligibility of our vertical electrostatic force field

measurements. The influence of tip shape discrepancies will be discussed in

more detail in chapter 8.1.
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Figure 7-4: Direct comparison of measured (meas.)
and simulated (calc.) vertical force field. Obtained
on the electrodes (on el.) and in between two
electrodes (in between el.).
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8)8)
EFM Results: Characterisation

This chapter is dedicated to the characterization of the new Electrostatic

Force Microscopy (EFM) method introduced in chapter 7 and EFM in general.

It will answer the questions: How does the tip shape and environment

influence the measurement? Which tip diameter should be used for which

pitch? Where are the limits of the new EFM method? Moreover, we will

present an analytical equation, which enables us to calculate the vertical

electrical force field without performing numerical simulations. 

8.1) Influence of Tip Shape Discrepancies

As mentioned at the end of chapter 7 slight tip shape differences influence

the measured force. To proof this and to investigate in more detail the

influence of the tip shape we performed simulations with two modified tips

and compared them with the simulations of a non-modified tip (tip radius:

300 nm). Figure 8-2 (a) and 8-3 (c) show the two modified tips, one has a half

sphere (diameter: 100 nm) on the upper part of the tip (modtip1) and the

other further down (modtip2). Figure 8-1 shows the simulated vertical force

field of the non-modified tip and modtip1.

The force field with modtip1 decreases differently by moving from one

electrode to the next one. The maximal force of the modified tip is much

higher, about 25 nN, in comparison with the non-modified tip.
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Figure 8-2 presents the two force fields as a function of the vertical distance

from the electrodes at two places on the surface, one in the center of an

electrode and one between two interdigitated electrodes, corresponding to

the x positions 0.5 μm and 1 μm in figure 8-1 (a) and (b), respectively. 

 - 102 -

Figure 8-1: Simulated force fields of 500 nm pitch electrodes. Obtained with (a) a tip of 300
nm tip radius and (b) a tip of 300 nm tip radius with an added half sphere (as shown in figure
8-2). On the electrodes +20 V and -20 V were applied, alternately. The added half sphere
changed the shape of the obtained field and it's maximal force.

Figure 8-2: Force vs. distance from surface graph
obtained in the center of an electrode and in between
two interdigitated electrodes. Simulated with the
modified tip shown in (a) (solid lines) and a not
modified tip (dashed lines).



The maximal attraction of modtip1 above the electrodes is about 45 % higher

as the one with no modification. This is a high force increase for a surface

increase of only about 0.01 μm2. The force difference between modtip1 and

the non-modified tip decreases fast increasing distance. In contrast, the

attraction force of modtip1 between the electrodes is at all distances only

slightly higher as the attraction force of the non-modified tip.

What happens if the half sphere is positioned even closer to the electrode

surface? Figure 8-3 (a) and (b) show this situation (modtip2). 

The maximal force above the electrodes increased once more, but only by

about 3 nN, from 70 to 73 nN (figure 8-3 (b)). The force between the

electrodes increases by about the same value. Therefore, the effect of the

moving of the half sphere seems to be negligible.

To conclude, tip shape differences that result in total area changes of only

0.01 μm2 change the maximal force by about 45 % and the shape of the total

force field. However, their influence decreases fast with increasing distance.

The position of the tip shape discrepancies seems to have a negligible
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Figure 8-3: Force field (a) and force vs. distance graph (b) of a second modified tip (red solid
line), presented in (c). The shape of the force field didn't change in comparison with modtip1.
The attraction force on and between the neighbouring electrodes increased by 3 nN. (black
dashed line: Force vs. distance graph of the unmodified tip.)



influence. This means, EFM measurements are extremely sensitive to any kind

of surface changes, including shape and roughness changes.

All these conclusions can be applied, only in the case that the tip shape

discrepancies are within the E-field and not closer to the surface than the

main tip. When they are outside of the E-field, their influence on the force is

negligible. If the tip shape discrepancies are closer to the surface than the tip

they have an influence on the tip-sample distance, which have to be taken

into account.

8.2) Resolution of EFM

In order to determine the resolution of our force field measurements we need

first to define the term resolution. Typically when one talks about resolution

one means the spatial resolution. The spatial resolution is the minimum

distance between two individual objects that can be distinguished with the

used measurement method. This distance is often defined by a ratio between

the maxima and the minima of the measured signals as shown in figure 8-4.

 - 104 -

Figure 8-4: Schematic drawing of two amplitudes obtained from two separate objects at
two different distances: (a) The two amplitudes are well spaced and the difference (ΔA)
between curve maxima and minima is high. The two objects are well resolved. (b) The
two amplitudes are very close together. The difference (ΔA) between curve maxima and
minima is therefore low and the two objects are hardly distinguishable.



Based on this definition we define the resolution as the difference between

the maximal force (Fmax) and minimal force (Fmin) divided by Fmax. To determine

this force ratio we averaged the force values at 4 different x-axis positions and

at several tip-sample distances (figure 8-5, pos1 to pos4). 

Afterwards, we calculated the force differences (Fmax – Fmin) and the force

ratios ((Fmax-Fmin)/Fmax) between these positions in function of the tip-surface

distance. This results in four force differences and ratios for each tip-surface

distance, which we averaged to get one force difference and force ratio

value per distance (figure 8-5).

These calculations are performed on several simulated force fields. We

simulated the force field above 63, 125, 250, 500 and 1000 nm pitch

electrodes with +15 and -15 Volts applied (figure 8-5), determined with tip

radii of 50, 100, 200, 300, 400, 500, 600 and 700 nm. Moreover, the force field

above the 300 nm pitch electrodes was determined for applied voltages

between 5 and 30 Volts in steps of 5 Volts using a tip with a tip radius of

300 nm. We performed as well measurements with three different tip radii on
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Figure 8-5: Position of the force field values taken, to determine
the difference and ratio between Fmax and Fmin.



500 nm pitch electrodes with +15 and -15 Volts applied on the electrodes and

for a tip radius of 300 nm, with +20 and -20 Volts applied. However, one has to

be aware, that we always simulated tips with the same “main body”

geometries (as shown in figure 8-6). Only the radius of the tip changed during

the calculation.

This is done in order to be able to compare better the influences of the tip

radius. Tips that are fabricated with the method presented in chapter 4 or

others can have a shape that differs from the simulated shape. The tip shape

differences have a huge influence on the measurements as shown before,

therefore, the simulated values can differ from the measurements.

Figure 8-7 presents the simulation results of the 63 nm pitch electrodes. The

force field above the electrodes decreases rapidly in the first 100 nm. The

force ratio to distance curves are very irregular, but it seems that the force

ratio curves of the 100, 200 and 300 nm tip radius decreases in average with

distance in a similar manner. The best resolution is, therefore, given by a

100 nm, 200 nm or 300 nm tip. This corresponds to a pitch to tip radius ratio RTR

between 1.6 and 4.8.
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Figure 8-6: 3D model of a tip with 300 nm tip radius. (a) Side view: The tip is
about 6 μm high and has a maximal width of about 2.5 μm. (b) Zoom on the tip
area of (a). The (blue) circle represents the tip radius of 300 nm. The centre of
this circle is about 50 nm away from the vertical (green) line, which represents the
beginning of the tip curvature. All tip models in this sub chapter have these
dimensions. Only the tip radii are changing. (c) shows a perspective view on the
tip.



Figure 8-8 shows the results obtained for the 125 nm pitch electrodes. The

force difference decreases rapidly with increasing distance and becomes

nearly 0 at a distance of about 250 nm from the electrode surface. The force

ratio (Fmax-Fmin)/Fmax decreases rapidly as well until a distance of about 300 nm

and is then nearly constant. It is remarkable that a tip with a radius (500 nm) or

4 times the pitch (125 nm) still delivers a high resolution. The best resolution

with distance is obtained with a tip radius of 300 nm, because it has the

highest force ratio with distance. This corresponds to an RTR of 2.4. The highest

force difference is obtained with a 500 nm tip.
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Figure 8-8: Simulated difference and ratio between Fmax and Fmin above 125 nm pitch
electrodes.

Figure 8-7: Simulated difference and ratio between Fmax and Fmin above 63 nm pitch
electrodes.



The electrodes with 250 nm pitch (Figure 8-9)shows a similar behaviour. The

best resolution with distance is given with tip radii of 50, 100 and 500 nm, this

corresponds to an RTR of 0.2, 0.4 and 2. The highest force difference is

obtained with a 700 nm tip, whereas the force difference increases more

slowly for tip radii bigger than 500 nm.

It seems, that an RTR of 2 to 2.5 delivers a good resolution for all presented

pitches. In the case of the following electrodes with 500 nm pitch this would

be equal to a tip radius of 1000 nm to 1250 nm. These large tip radii are,

however, not realisable with our fabrication method (chapter 4). Therefore,

we have chosen to use spheres instead of tips. This is a radical change in

geometry and influences strongly the results, but is closer to reality.

Furthermore, the change in geometry enables to test if a RTR of 2 to 2.5

delivers the best resolution as well for cantilevers with attached spheres.

Figure 8-10 and 8-11 presents the simulation results of the 500 nm and 1 μm

pitch electrodes, respectively. The best force ratio above the 500 nm pitch

electrodes is obtained with a sphere of 1 μm radius, and above the 1 μm

pitch electrodes with a sphere of 2 μm radius, which corresponds to an RTR of 2

in both cases. These results confirm our before made observations that the

best force resolution on interdigitated electrodes is obtained with a pitch to

tip/sphere radius ratio of 2 to 2.5. The highest force difference on both
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Figure 8-9: Simulated difference and ratio between Fmax and Fmin above 250 nm pitch
electrodes.



electrodes is obtained with the largest sphere, whereas the force difference

increases more slowly for radii bigger than RTR = 2. 

How does the force field develop with applied voltage?

We simulated the force field above 500 nm pitch interdigitated electrodes

with ±5, ±10, ±15, ±20, ±25 and ±30 Volt applied, alternately, and obtained

with a tip radius of 300 nm. Figure 8-12 shows the force differences and ratios

as a function of applied voltage. 
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Figure 8-10: Simulated difference and ratio between Fmax and Fmin above 500 nm pitch
electrodes.

Figure 8-11: Simulated difference and ratio between Fmax and Fmin above 1000 nm pitch
electrodes.



We can clearly see that the force ratio is independent of the applied voltage

(all curves coincide) and depend therefore only on the used geometries (tip

and electrodes). The force difference and range increases with the applied

voltage. Whereas the shape of the curve is always the same only the

obtained maximal forces increase with applied voltage.

How well do these simulations fit the measurements? 

To answer this question we measured the force field above 500 nm pitch

electrodes with tips of 100 nm, 300 nm and 1000 nm radius with +15 and -15

Volts and for a tip radius of 300 nm as well with +20 and -20 Volts applied on

the electrodes, alternately.

Figure 8-13 shows the results of the measurements, performed with a tip radius

of 100 nm. The force difference curve of the measurement decreases faster

with the distance than the force differences curve of the simulation. The

difference between these two curves is always about ±1 nN. The measured

force ratio curve doesn't fit well with the force ratio curve of the simulation. 
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Figure 8-12: Force difference and ratio between Fmax and Fmin for different Voltages
above 500 nm pitch electrode simulated with a tip with a radius of 300 nm. The force
ratio is independent of the applied voltage (all curves coincide).



The simulated force ratio curve is about 0.2 lower at a distance of 100 nm and

about 0.4 higher at a distance of 400 nm than the measured force ratio

curve. This indicates that the differences between the measured and

simulated curves may result from tip shape differences. Indeed, the tip shape

of the simulated tip differs from the real tip. As shown in figure 8-14, the real tip

is at its end longer as the simulated tip.

Figure 8-15 presents the measurement results with the 300 nm tip radius. The

 - 111 -

Figure 8-13: Comparison of measured and simulated force difference and ratio between
Fmax and Fmin above 500 nm pitch electrodes. Obtained with a tip with a radius of
100 nm and an voltage of ± 15 Volt applied on the electrodes, alternating.

Figure 8-14: Real tip with
100 nm radius.



measured and simulated force difference curves fit perfect. The simulated

force ratio curve doesn't fit well again with the measured force ratio curve, at

a distance of 100 nm. The measured force ratio is about 0.2 higher than

simulated. This difference decreases with the distance. 

The same behaviour appears for the tip with 500 nm radius. The results of

these measurements are presented together with the simulations in

figure 8-16.
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Figure 8-15: Comparison of measured and simulated difference and ratio between Fmax

and Fmin above 500 nm pitch electrodes, obtained with a tip with a radius of 300 nm and
a voltage of ± 15 V applied on the electrodes, alternately.

Figure 8-16: Comparison of measured and simulated difference and ratio between Fmax

and Fmin above 500 nm pitch electrodes, obtained with a tip with a radius of 500 nm and
an voltage of ± 15 V applied on the electrodes, alternately.



The measurement with ±20 V is presented in figure 8-17. The results are once

more similar to the previous results. The force difference curve of the

simulation and measurement fits well, whereas the force ratio curves differ by

about 0.2 to 0.4.

To conclude, the force difference (Fmax – Fmin) curves of the simulations and

measurements fit well. On the other hand, the force ratios curves always differ

by about 0.2 to 0.4. Probably, this results from small tip shape differences

between the 3D model and the real tip, because the force ratio is much

more sensitive to tip shape differences than the force difference.

The noise in the force ratio measurements increases with increasing distance.

The maximum shown distance in the force ratio graphs, is the distance at

which the force ratio starts to fluctuate over the whole y-axis range. This is the

case at a distance of 400 nm for a tip radius of 100 nm, at a distance of

300 nm for the tip radius of 300 nm and at a distance of 350 nm for a tip radius

of 500 nm. When we increase the applied voltage to ±20 V the distance

increases to 475 nm for a tip with a radius of 300 nm. This indicates that a

higher applied voltage improves the signal to noise ratio. In addition, the

results of the 100 nm tip indicate that it is favourable to use tips with steep side

walls.
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Figure 8-17: Comparison of measured and simulated difference and ratio between Fmax

and Fmin above 500 nm pitch electrodes. Obtained with a tip with a radius of 300 nm
and ± 20 Volt applied.



8.3) Resolution Comparison between Force Field 

and Topography

As discussed, we measure with our new EFM method the force field and the

topography of the sample simultaneously. This has the advantage that we

can assign to every force measurement a position on the surface and a

distance from this surface position. This is an additional advantage compared

to other EFM methods.

To do this we measure the topography in a similar manner as a normal AFM

contact scan. The major problem of the AFM contact mode is that the

measured topography is a convolution of tip and sample geometry. In order

to determine the dependence between tip, pitch and resolution we used the

following simplified geometry:

Using geometric relationships we developed the following equation, which

allows one to calculate x as function of R, p and d:

2
2

2
px d R R

⎛ ⎞⎛ ⎞⎜ ⎟= − − − ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
       Eq. 8-1
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Figure 8-18: Schematic drawing of the geometrical
relationships between tip radius (R) and electrode
pitch (p).



With this equation one can calculate the ratio x/d, which provides a value for

the topographical resolution. The dependence of this ratio on R and p is

shown in figure 8-19, d is kept equal to p/2:

The figure reveals, a tip with 300 nm radius does not touch the substrate while

scanning 500 nm pitch electrodes, if the electrodes are thicker than 120 nm.

This calculation does not take into account that a SiO2 layer is deposited onto

the electrodes for electrical isolation, which reduces the distance between

the electrodes. However, for a rough calculation of a x/d vs. tip radius graph

the electrode pitch can be still used.

Combining these calculations with the results of the previous chapters, the

ideal tip for force field measurements has the following characteristics:

− To have a sufficient topographical resolution one should choose a value

for x/d that is well below the bending of the x/d vs. radius graph. For the

500 nm pitch electrodes this is the case with an x/d ratio of about 0.5. The

corresponding tip radius is 300 nm, calculated by the following equation:
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Figure 8-19: Ratio x/d vs. tip radius (R) for different
electrode pitches. The ratio x/d is a measure for the
topographical resolution.



( )
( )

21 1
2 2 2

x d pR
x d

⎛ ⎞− + − ⎛ ⎞= ⎜ ⎟⎜ ⎟⎜ ⎟− ⎝ ⎠⎝ ⎠
       Eq. 8-1

With a tip radius to pitch ratio between 2 and 2.5, the best

measurement results of the force field can be obtained. This is

contradictory to the last point. Therefore, one can measure only either

the force field or the topography precisely, or make a compromise

between the two.

The height to width ratio of the tip and the applied voltage should be

both as high as possible in order to have a good signal to noise ratio.

However, the applied voltage should not be too high, because high

voltages lead to charge injection into the oxide or damage to the

electrodes. These topics will be discussed in chapter 9.

8.4) Force Field of 50 nm Pitch Electrodes

In order to show the limits of the new EFM method, but as well how small

forces and electrode pitches can be observed with it, we fabricated 50 nm

pitch electrodes and measured their force fields. We used a highly doped

silicon tip with a nominal tip radius of about 10 nm, a force constant of

0.26 N/m and steep side walls. The tip was checked using SEM before and

after the measurement, and did not change visibly.

Figure 8-20 shows the result of the measurement. The surface and the

corresponding force field are presented. The topography and force field

were recorded every 10 nm. These steps are visible in the graph. The force

field is quite fragmented but still well resolved. The fragmentation is so high

because we measure force difference of less than 0.1 nN. This high

electrostatic force resolution is to our knowledge only possible at the moment

with the new developed EFM measurement method. Normal layered imaging

methods or single FDC based methods have a too low signal to noise ratio, as
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indicated in figure 9-3 (a) and (b), to measure such small electrostatic forces.

8.5) Influence of Humidity on the Force Field

In order to determine the influence of the humidity on the force field, we

measured the force field above 500 nm pitch electrodes using a tip with a

radius of about 350 nm, at different relative humidities. In detail, we measured

the force field at about 0 %rh, 30 %rh and 60 %rh. Figure 8-21 shows the

resulting force fields. Roughly comparing figure 8-21 (a) to (c) one can see

that the force field becomes more homogeneous and stronger with humidity.

An increase of the humidity from 0 %rh to 30 %rh has nearly no influence,

further increasing to 60 %rh significantly increases the forces.

 - 117 -

Figure 8-20: Measured vertical electrostatic force field of 50 nm
pitch electrodes. Obtained with a tip with a radius of about
10 nm and ± 5 V applied on the interdigitated electrodes,
alternately.



Figure 8-22 shows a detailed comparison of the force progression versus

distance above the electrodes. The force at 60 %rh is about 13 nN higher at

the first nanometers from the electrodes in comparison with 0 %rh and 30 %rh.

This difference decreases with distance. Figure 8-22 shows, as well, a

simulation of the force field of a tip with 350 nm tip radius for 0, 30 and 60 %rh.

According to Picard et. al.1 the relative permittivity of air increases with

humidity. The relative permittivity is 1,0 for 0 %rh, 1,1485 for 30 %rh and 1.2391

for 60 %rh. We increased for our simulation the relative permittivity in the

space between tip and electrodes according to these values. The simulation

fits quite well for 0 %rh and for 60 %rh to a distance of about 50 nm, and for

30 %rh until a distance of about 200 nm. The simulated force of 30 %rh is

always about 1 to 2 nN too high for distances below 200 nm, and for 60 %rh
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Figure 8-21: Measured vertical force field of 500 nm electrodes, obtained with a tip radius of
300 nm, with ± 20 Volt applied at (a) 0 %rh, (b) 30 %rh and (c) 60 %rh.



up to 15 nN to low for distances below 50 nm. 

Both measurements, at 30 %rh and 60 %rh, show a strong increase close to the

surface, 60 %rh much more than 30 %rh. This increase results from the water

film on the surface of the electrodes and tip2. The water film can influence the

electrostatic force close to the surface by two ways:

1.) The closer we come to the surface, the more contribute the two water

films to the total relative permittivity (water film/air/water film) between

tip and surface, similar to the increase of the relative permittivity with

the humidity.

2.) Or the strong electrical fields between tip and substrate increase the

desorption of water molecules from the water film and increase,

therefore, the relative permittivity between tip and surface. Due to the

fact that the E-field increased with decreasing distance, this effect

increases, as well, with decreasing distance. The first layers of a water
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Figure 8-22: Detailed comparison of the force field vs.
distance above the electrodes shown in figure 8-21 for 0, 30
and 60 %rh. The measured (meas.) and simulated (sim.)
force fields are presented.



film are usually ordered water, which are more strongly bound than the

higher (volume) water layers. At 30 %rh one has only ordered water on

the surface and the strength of the electric field is most likely not high

enough to increase the desorption of water molecules. At 60 %rh one

has loosely bound volume water on the top of the water layer, there it is

much easier for the electrical field to increase the desorption of water

molecules.

So far, we have presented only measurements over 3 or 4 electrodes. The

measurements can as well be done over many more electrodes. To show this

we present in figure 8-23 the force field measured along the entire electrode

length.

8.6) Analytical Force Field Description

Due to the numerical simulations performed in the previous chapters, we are
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Figure 8-23: Full scale measurement of the vertical force field of 500 nm electrodes, obtained
with a tip radius of 300 nm, with an applied voltage of ± 20 Volt and at 60 %rh.



now able to develop an empirical equation for the force field above 500 nm

pitch electrodes, with a tip radius of 300 nm. Similar expressions can be

developed for all other cases using the presented approach.

Due to the periodical character of the interdigitated electrodes one can

approximate the force variation perpendicular to the interdigitated

electrodes by a sinusoidal (figure 8-24) function of the form:

( )   A+B sinpos
x CF

D
π⎛ ⎞−⎛ ⎞= × ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

       Eq. 8-3

where A and B can be expressed by Fmax and Fmin:

max min
min2

F FA F−
= +        Eq. 8-4

max min

2
F FB −

=        Eq. 8-5

Figure 8-25 (b) shows that the ratio of Fmin/Fmax changes with the square root of
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Figure 8-24: Simulated force at different voltages above 500 nm pitch electrode,
obtained at a height of 40 nm from the electrodes with a tip radius of 300 nm.



the distance independently of the applied voltage. This graph can be

approximated by:

min

max

 A+B zF
F

=        Eq. 8-6

where z is the distance from the surface. 

The square root dependence of z results from the 1/z2 dependence of the

force from the distance. The maximal force variation with distance and

applied voltage is presented in figure 8-25 (a).

These variations of the maximal force can be expressed by:

2
max   F BV=        Eq. 8-7

where V is the applied voltage on the electrodes. Fmax depends quadratic on

V because of:

0 0

*
with results in

2 2r r
A A

E EEF dA E F dAσ σ ε ε ε ε
⊥

⊥

⎛ ⎞
⎜ ⎟= = =
⎜ ⎟
⎝ ⎠

∫ ∫
��� ����

�� ��� ��
       Eq. 8-8

Using equation 8-6 and 8-7 we can express Fmin using Fmax and calculate Fmax

by knowing the applied voltage and tip-electrode distance. Combining this
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Figure 8-25: (a) Simulated force and (b) ratio between Fmax and Fmin vs. distance from
electrodes.



with equations 8-3 to 8-5 enables one to obtain an equation that allows to

calculate the force above the electrodes for all positions of the tip and for all

applied voltages. 

( )2 3
( , , ) 1 2

4

 3 10 sinx z V
x CF C V C z z

C
π

⎛ ⎞⎛ ⎞⎛ ⎞−
= + + −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠

i i        Eq. 8-9

where C1 to C4 are constants: C1 = 0.00134, C2 = 65, C3 = 0.2, C4 = 0.54.
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9)9)
EFM Results: Hints and Interesting
Aspects

We presented and characterized in the previous chapters a new Electrostatic

Force Microscopy (EFM) method. On the way to these results we encountered

several problems and found interesting aspects of EFM on nanoelectrodes. In

this chapter we present a few of these problems and aspects, which are

either very important for future EFM measurements or will enable new

applications. We will give, as well, some practical advice for doing EFM

measurements.

9.1) Cantilever Influence

One often discussed topic concerning EFM is the influence of the cantilever

on the measurements, which was neglected in the early times of EFM. Sacha

et al1 have shown that this is not correct, and that the cantilever must be

taken into account. This holds for microelectrodes, but not for

nanoelectrodes. The simulations in the last chapters have shown, that the

cantilever has no influence on EFM measurements of nanoelectrodes, due to

the confinement of the field near the surface. It is sufficient to simulate the first

few μm of the cantilever tip to obtain simulation results that fit well with the

measurements. This simulations show as well that the tip apex contributes most

to the total measured force (figure 7-1). Therefore, z3, the tip apex to sample

distance was chosen as the distance of the measured force from the surface

(figure 6-2 and 9-1 (a)).

However, we agree with sacha et al1 that the influence of the cantilever can't
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be neglected when microelectrodes are used. The attraction of the

cantilever can be even higher than the attraction of the tip. This combined

attraction of tip and cantilever makes the positioning of the force difficult.

Many other distance definitions as z3 could be used, as shown in figure 9-1 (a).

To avoid this positioning problem, to measure the influence of the cantilever

and to show that it is possible to use only the cantilever for the force

measurements, we made measurements with a Si-cantilever with a 2 μm

diameter SiO2 sphere glued at its end (Novascan Technologies Inc., Ames,

USA). The real spring constant of the cantilever is k = 6.41 N/m. It is determined

by the supplier using the Cleveland method2. The attached SiO2 sphere acts

only as a spacer to the electrode surface, because the attraction of

dielectrics in an inhomogeneous electrostatic field is several orders of

magnitude smaller compared to metals or doped semiconductors3-6. The

acting forces are, therefore, dominated by the doped silicon cantilever and

not by the sphere. All distance values are, therefore, related to the

cantilever’s front edge to sample distance (zSP in figure 9-1 (b)).

Figure 9-2 shows vertical force field measurements performed on 10 μm pitch

interdigitated electrodes. The force field is measured at 0 %rh using the new

measurement method as presented above. The cantilever and one of the

two interdigitated electrodes are grounded during the measurement. On the
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Figure 9-1: (a) distances from surface, which are possible to take for the distance of the
measured force from the surface, above microelectrodes. (b) A cantilever with SiO2 sphere
avoids this problem. One takes as distance from the surface the distance between cantilever
front edge and sample zSp.



second electrode a potential of +25 V is applied. An equidistant grid having

an interval of 2 μm is placed on the 50 x 50 μm2 scan field. This results in a

3 dimensional matrix. A horizontal cross-section through the vertical force field

matrix at z = 2200 nm is shown in figure 9-2 (b).

At this distance from the surface the maximum electrostatic attraction force is

100 nN. A vertical cut, schematically indicated by a white line in figure 9-2 (b),

through the vertical force field matrix at y = 25 μm is shown together with the

approximate position of the electrodes (indicated by black dotted lines) in

figure 9-2 (a). The force field extending several micrometers from the surface,

has its minimum above the electrodes of identical potential and its maximum

above the electrodes at +25 V.

We measured, as well, the force field for several voltages. The horizontal cross-

section through the obtained vertical force field matrix at z = 2200 nm is

shown in figure 9-3. We can easily observe the development of the force field

with voltage in the area. These results show that it is possible to get very good

EFM measurements on microelectrodes using a cantilever with a SiO2 sphere

as spacer.
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Figure 9-2: Measured vertical force field of 10 μm electrodes, obtained with a grounded
cantilever with a SiO2 sphere and with 0 V and + 25 V applied on the electrodes, alternately.



9.2) Charge Injection

A typical problem for nanoelectrodes is the work function depended injection

of charges into the oxide between the electrodes. Due to high electrostatic

fields between the electrodes charge injection into the oxide can occur even

at low voltages. Figure 9-4 shows one EFM measurement of 500 nm pitch

interdigitated electrodes performed with our new EFM method. As

mentioned, we perform two FDC measurements (with and without applied

voltage) and a topographical measurement simultaneously. 
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Figure 9-3: Measured vertical force field of 10 μm electrodes, obtained with a grounded
cantilever with a SiO2 sphere and with 0 Volt and (a) + 5 V / (b) + 10 V / (c) + 20 V applied on
the electrodes, alternately.



Figure 9-4 (a) to (d) shows these measurements separately and enable one to

observe two kinds of charge injection cases:

(a) shows the resulting force field when no voltage is applied on the

electrodes. The two red circles mark two places with charging. The left one is

between the electrodes, the right one on top of one electrode; (b) shows the

resulting force field when ±20 V are applied on the electrodes, alternately.

The in (a) observed charges influence clearly the force field. The injected

charges shield a part of the electrical field, this reduces the measured forces.

The new EFM method presented in chapter 6, subtracts the force field without
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Figure 9-4: Vertical force field of 500 nm electrodes, obtained with (a) no voltage applied on
the electrodes; (b) ± 20 V applied alternately; (c) difference of (a) and (b); (d) difference of
(a) and (b) combined with topographical information.



voltage from the one with voltage to exclude other forces and, as well, other

electrostatic forces. The results of this subtraction is shown in (c). Due to the

subtraction, the charging and shielding effect the force field in the charged

areas, is almost vanished. (d) finally includes also the topography of the

electrode array. The information given by the 4 figures, obtained in one single

scan enables the detection and investigation of charge injection in

nanostructures. This opens new possibilities for research and development of

new semiconductor chips.

However, two open questions are still remaining:

1. Why do we have charge injection in-between and on top of our

electrodes?

Charge injection due high electric fields between nanostructures, like

our interdigitated electrodes with small pitch, is well known and

described in literature7. The on the work functions of the materials

dependent effect is even used for new memory applications8.

The charge injection on top of the electrodes results of the touching tip.

The touching tip represents the top electrode of a capacitor, which is

separated by a thin oxide layer (usually only 50 nm) from the counter

electrode that is a electrode of the electrode array. We simply “wrote”

these charges into the oxide, during a previous scan. Figure 9-4(a),

however, shows that only two electrodes are charged. This suggest that

we have only one for charging favourable configuration of material

work functions. The work function of Ti (3.9 eV) is lower than the one of

Pt (5.7 eV), therefore it is easier for the electrons to leave the Ti of the

electrodes as the Pt of the tip. Hence, the charging likely occurs only on

the negative electrode. However, due to the humid environment

charges written with the Pt-tip on the SiO2 surface will be fast

discharged. Therefore, more detailed investigations would be needed

to clarify this question. 

Charge injection can be partly avoided by increasing the oxide
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thickness, which changes the “capacitor” properties. However, the

charge injection can be used to study easily charge injection into

different materials.

2. How long do these charges stay in the oxide and how can these

charges be removed?

Concerning the lifetime of the injected charges and their removal no

clear conclusions could be drawn from our experiments. The lifetime of

the charges can be several days, if the charges are written at low

relative humidity and afterwards stored at higher relative humidity.

However, this fluctuated a lot.

The removing of the charges remains challenging. We investigated

several discharging methods, but only one method successfully

removed sometimes the charges. The method is based on the

application of an AC signal, which must have a frequency of about

100 kHz and a amplitude similar to the before applied DC voltage. The

amplitude was reduced in several steps within 1 hour to 0 V. After this

procedure, the charges where often removed.

9.3) Practical Advices for Nanoelectrode Handling

Finally, we want to give a few practical advises on how to avoid electrical

destruction of the nanoelectrodes? In our experience there exist three main

causes for destruction:

1. Electrical shorts that are made during the fabrication, which lead to a

breakdown at low voltages.

This can be avoided, most of the time, by SEM inspection. However,

one has to take care that the SEM dose no carbon deposition during

observation, which could lead again to electrical shorts.
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2. The second cause is characterized by a burning through of the

electrodes during the measurement. This usually happens when the

oxide has a poor quality or is simply too thin. The tip touches the oxide

above the first electrode, a high current flows between tip and

electrode causing the electrode to melt.

This can be avoided by measuring the oxide quality and performing

breakdown voltage calculations.

3. The third cause are barely visible damages created during the

deposition of the oxide. The electrodes are damaged due to side

effects (e.g. higher Ga+ implantation during FIB) or poor SiO2 sputtering.

Often the electrode looks fine and the electrical properties are good as

well. However, there exist several defects, which will lead to a burn

through as soon as the tip comes close to it.

There exist badly no possibility for avoiding this kind of problem.

Figure 9-5 shows AFM contact scans of two damaged electrodes as

examples. Electrode (a) is completely damaged, whereas electrode (b) has

only two unconnected fingers. 
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Figure 9-5: AFM scans of damaged electrodes.
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10)10)
Micro- and Nanogripping

In this chapter we concentrate on the application of the fabricated

structures, presented methods and the knowledge gained in the last chapters

for micro- and nano-gripping. We will not give a general overview nor a

detailed introduction in micro- and nano-gripping. This can be be found

elsewhere1. Here we will concentrate on the principle of micro- and nano-

gripping with electrodes and some possible improvements.

10.1) Introduction

In micro- and nanogripping the balance between attraction (snap-in) and

adhesion (snap-out) forces is very important. This balance determines if an

object can be picked at one place and released at another place. For this

“pick and place” operation the forces between gripper and object have to

be controlled. One can use, for example, interdigitated electrodes to vary

the electrostatic force on the gripper, as shown in figure 10-1. On the left side

of figure 10-1 the picking-up of a sphere is shown. The adhesion force at the

gripper-sphere interface must be higher than the adhesion force at the

substrate-sphere interface. The middle part shows the transfer of the sphere.

On the right side the release is shown. The force at the substrate-sphere

interface has to be higher than at the gripper-sphere interface. Hence, the

ideal micro- and nano-gripper has the following properties: 

− The force at the gripper-sphere interface without applied voltage must be

as low as possible.

− The force at the gripper-sphere interface with applied voltages must be as

high as possible.
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The bigger this difference the better “pick and place” operations can be

performed on different substrates and in different environments.

With electrostatic gripping, the successful manipulation of conductive2 and

non-conductive objects3 has been shown. The high influence of surface

roughness4 on the adhesion force, and with it on gripping, is presented. Other

important effects, such as the variation of the adhesion force with humidity5

have been studied for particle systems, but never in connection with

electrostatic microgripping. Both effects, roughness and humidity, are studied

in the following sub chapters for a specific system.

10.2) Tests for Electrostatic Microgripping

In order, to determine the best conditions for our pick and place studies we

performed several experiments. As seen in the previous chapters the

electrostatic field of the nanoelectrodes does not exceed the first 150 nm

(figure 9-3). Due to this small interaction volume (surface to maximal extension

of the electric field) one has to position the gripper very accurately on the

gripping object, in order to pick it up. It is easier to use interdigitated

electrodes with 1 μm pitch, which have a much bigger interaction volume. In
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Figure 10-1: Principle of electrostatic microgripping. A sphere is picked up on the
left side, transferred and then released on the right side. The forces during the
manipulation are shown schematically.



addition, the electrodes are much easier to fabricate and bigger pitches

allow one to apply higher voltages, which enables one to apply higher forces

and perform more tests.

To know how far the electrostatic force field extends, we measured it as

described in chapter 6, but without topographical measurement (figure 10-2).

With ±20 V applied alternately, the electrostatic force field of the 1 μm pitch

interdigitated electrodes reaches about 2.5 times as far as the one of the

500 nm pitch electrodes. This distance and the applied force will increase with

the applied voltage. To estimate the maximal voltage we can theoretically

apply between the electrodes we assumed: The electrodes are fully buried in

SiO2 with a breakdown voltage of 10 MV/cm. With these assumptions we

calculated the maximal voltage to be 1000 V. However, this value will never

be reached, because our electrodes are not fully buried in SiO2.

Measurements have show that the maximal potential difference that can

safely be applied is about 130 V. 
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Figure 10-2: Vertical electrostatic force field of 1μm pitch
electrodes. Measured with ±20 V applied alternately on
the electrodes (white rectangles), and a grounded
cantilever with tip (about 350 nm tip radius).



Another important parameter for the adhesion force is the roughness of the

electrode area. The adhesion on rough surfaces is much lower than on flat

surfaces. To determine the roughness of the electrodes the topography of the

electrodes was measured using an AFM contact scan (figure 10-3 (a)). A line

scan taken at the position indicated in figure 10-3 (a) and presented in (b)

reveals that 38 % of the electrode area are below the electrodes. This means

that the contact area between the electrode and the gripping object will be

about 38 % smaller than on a flat surface, which corresponds to roughness

values of: Ra = 49.68, RMS = 57.00.

After the determination of the force field and roughness some preliminary

gripping tests are preformed using a model system. Our model system consist

of 4 samples and a Si cantilever with a SiO2 sphere of 10 μm diameter, which is

coated with a 130 nm thick Ti/Pt layer (see chapter 4.2). The 4 samples are

two 1 μm pitch interdigitated electrodes and two planar Si wafer chips. All
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Figure 10-3: Contact AFM scan (a) of 1μm pitch
electrodes. A line scan (b) is taken on the line
indicated in (a).



samples are O2 plasma (50 W, 15 min.) treated prior to every set of

measurements. Two samples (one of each sort) are vapour coated for 30 min.

with a perfluoroalkylsilane layer (hydrophobic layer) (PFS)6. The other two

samples (DOX) are stored during this time in a box under N2 atmosphere.

Afterwards, all samples are placed in the environmental box with the AFM

(chapter 3) and the box is flushed for 12 h with a gas composition with

appropriate relative humidity. The particular gas compositions were: N2

atmosphere (0 %rh) and N2 / Air mixtures resulting in 30 %rh and 60 %rh. We

performed 15 FDCs on all samples at two different positions. The attraction

and adhesion force of each of the 30 measurements is determined and the

results are averaged. Figure 10-4 shows the results of the measurements on

the Si-chips. 

The attraction force on the Si-chips is (in this scale) about constant with

changing humidity. The adhesion force on the DOX samples increases rapidly

(ΔF0-30%rh ≈ 800nN) with humidity until 30 %rh and increases then more slowly
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Figure 10-4: Attraction and adhesion forces on a flat Si-
wafer with and without PFS coating, at different humidities.
The PFS coating decreases the adhesion force at 30 %rh and
60 %rh, but has no influence on the attraction force and the
adhesion force at 0 %rh.



(ΔF30-60%rh ≈ 200nN) until 60 %rh, which conforms to the literature11. The adhesion

force on the PFS sample increases constantly with the humidity until 60 %rh

and is for 30 %rh and 60 %rh below the one of the DOX sample.

The silane layer(PFS) is a hydrophobic coating. This layer decreases the

capillary force. The capillary force is a strong adhesion force that results from

the surface tension of a water layer. This means that the sphere needs to be in

contact with the sample surface and one needs to have a water layer on

either the sample or the sphere or on both. Therefore, the contribution of the

capillary force to the adhesion force is negligible for 0 %rh and the attraction

force, but contributes important to the adhesion force at 30 %rh and 60 %rh.

This is as well what is shown in figure 10-4. At 30 %rh and 60 %rh the adhesion

force is reduced due to the PFS coating by about 400 and 250 nN,

respectively. This corresponds to 1/6 to 1/3 of the total force.

Figure 10-5 and figure 10-6 show the changing of the attraction and adhesion

force with humidity and voltage on the not coated (DOX) and coated (PFS)
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Figure 10-5: Attraction and adhesion forces on 1μm pitch
electrodes, embedded in SiO2. The forces are measured
without and with ±10 V applied alternately, at different
humidities.



electrodes. 

The attraction and adhesion forces on the electrodes are without any applied

voltage about 10 time smaller than on the flat Si-chips (figure 10-4). This results

from the previously mentioned roughness of the electrodes and the sphere

diameter. A sphere of 10 μm diameter does not touch the whole electrode

area. Depending on the position of the sphere on the electrodes the sphere

touches only on a few points on the electrode. This explains the large

decrease of the adhesion force.

Due to applying ±10 V alternately on the interdigitated electrodes, the

attraction force increases in the order of 60, 80 and 120 nN for 0 %rh, 30 %rh

and 60 %rh, respectively. The adhesion force increases by about 50, 80 and

140 nN for 0 %rh, 30 %rh and 60 %rh, respectively. This corresponds to an

average increase of 2.5 times of the attraction force and 1.7 times of the

adhesion force. The force to pick up the sphere with the gripper would be

therefore 2.5 higher, in comparisons with a surface of the same roughness.

However, to pick up the sphere from a flat substrate would be impossible,

because the adhesion force on the flat substrate is 2 to 10 times higher (figure

10-4) than the adhesion force on the electrodes with ±10 V applied. If we

assume a quadratic increase similar to the one for the electrostatic force in

figure 8-10 for the adhesion force with an applied voltage, we would need to

apply 35 V to be able to pick up the sphere from a flat surface at 0 %rh.

If we coat the electrodes with the hydrophobic coating, the adhesion on the

electrodes is further reduced at 30 %rh and 60 %rh, by about 60 nN.(figure

10-6). Hence, a hydrophobic coating on the electrodes is not advantageous,

for the presented case.
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10.3) Electrostatic Gripping Measurements

After the pre-tests described in chapter 10.2 we performed pick and place

studies in collaboration with the LSRO2 group at EPFL7-9. We used the same

interdigitated microelectrodes presented as in chapter 10.2. The design of the

microelectrodes allows mounting in a special holder (figure 10-7 (a)). It

contains, as well, alignment marks, which enable the automatic recognition

of the position of the interdigitated electrodes (figure 10-7 (b)).

Metallic spheres are not commercially available, therefore, we used 50 μm

polystyrene beads instead. The main problem with polystyrene bead is that

they easily charge during contact with other dielectric surfaces. In addition,

the attraction of dielectrics in electrostatic fields is much lower than that of

metals. Therefore, we expect to grip the PS spheres at higher voltages than

calculated for the metal coated spheres and a strong variation of the results
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Figure 10-6: Attraction and adhesion force on 1μm pitch
electrodes, embedded in SiO2 and PFS coated. The forces are
measured with and without ±10 V applied alternately. The
humidity is varied between 0 and 60 %rh.



due to charging effects. To avoid charging the tests were carried out at

about 30 %rh on (rough) microscope glass slides, which are coated with our

hydrophobic PFS coating. 

Seventeen manipulations (pick and place) per volt span are preformed and

the success rate calculated using:

*100number of successful manipulationssuccess rate
total number of manipulations

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
       Eq. 10-1

The results of the tests are shown in figure 10-8.

We achieved the highest success rate with applied potentials between 50

and 60 V. Potentials between 70 and 90 V delivered, as well, good results, but

we observed a charging increase for voltages above 70 V. We also observed

releasing problems on the microscope glass slides, in this case, we tried to

release the sphere on a second PS sphere lying on the glass slide. This usually

worked well.
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Figure 10-7: Mounted electrostatic gripper (a) and its
design(b). The design allows an automatic recognition of the
interdigitated electrode position.



10.4) Proposed Improvements for Electrostatic 
Gripping

Figure 10-5 and 10-6 show that the difference between the attraction and

adhesion force with no and with applied potentials increases with humidity. In

chapter 8.5 we presented the reason for this behaviour. The dielectric

constant of air increases with increasing humidity, thus, influencing the

gripping force dramatically. The force on the electrode surface increases and

the range of the electrostatic force decreases. Depending on the material

and shape of the object this can either decrease or increase the applied

force on the object. As well side effects like charging or discharging are

influenced. This should systematically be investigated in a further work using

the presented methods as shown in chapter 9-2.

We observed during the measurements that a better control of the

placement of the particle is needed. To improve the control we designed an

electrode, with electrostatic force centering effect (Figure 10-9 (a)). The
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Figure 10-8: Electrostatic gripping test results. The tests were
carried out with the electrostatic gripper setup shown in figure
10-7 and 50 μm polystyrene beads as gripping objects.



automatic centering effect allows the positioning of smaller parts with much

higher accuracy. Figure 10-9 (b/c) presents numerical simulations as

described in chapter 7 applied on the new design. 

(b) Shows the vertical force field (z-direction). The vertical force field

decreases rapidly from the outer ring to the inner ring. Due to this force

gradient all attracted parts will be guided to the inner ring. (c) Confirms this

effect, because it shows the force field parallel (y-direction) to the electrodes.

The parallel force of the electrodes decreases as well from the outer to the

inner ring.
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Figure 10-9: Special designed electrodes for electrostatic gripping. The design is shown
in (a). The numerical simulated (b) vertical (z-force) and (c) parallel (y-force)
electrostatic force field shows a centering effect for this design.



As already mentioned, a problem of electrostatic gripping is its sensitivity to

charged dielectric objects. This could be avoided, if another gripper principle

is used. To do this one has to change the whole gripping setup. In addition,

other gripper principles have other disadvantages (too high gripping force,

introduces liquids, rapid temperature changes are needed...). It would be

much more convenient, to use the same setup and to add only an active

coating on the gripper. This coating changes for example its surface energy,

to enable gripping by changing the capillary force.

To do this one needs a chemical layer, which can be influenced by an

electrical field. Furthermore, the electrostatic field has to be confined in this

polymer layer. Our force field measurements in the previous chapters have

shown that this is possible by using electrodes of 1 μm pitch and below. After

some discussion with Prof. Hilborn (Uppsala University) we identified one

polymer, which can be influenced by the E-field. A modified

Polytrimethylenecarbonate (=PTMC)10 with protonated amino-head groups

(figure 10-10) and Cl − counter anions should be sensitive enough to the

electrostatic field to enable such changes in surface energy. The protonated

amino-head groups of the polymer should be in a humid environment on the

surface of a layer of this material. Such a layer is hydrophilic. In presence of

the E-field the positive charged end groups should be pulled into the surface

and the hydrophobic backbone of the polymer should remain at the surface.

To prove this behaviour we spin coated a layer of PTMC on 5 μm pitch

electrodes (chapter 2.1) and measured the contact angle change of a water

droplet with applied voltage on the electrodes. The results of this

measurement are presented in figure 10-11. The contact angle of the water
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Figure 10-10: Modified Polytrimethylenecarbonate (=PTMC)10 with positive
amino head groups. (counter ion = Cl  -)



droplet increases with applied voltage from 27 to 65°. To exclude other

changes of the surface during the measurement we performed identical

measurements on another place of the electrodes, without applied voltage.

These measurements are shown as well in figure 10-11 (red line). The contact

angle decreases slowly with the number of experiments if no voltage is

applied. Hence, one can exclude surface changes as a cause for the

increasing contact angle. On the other hand, an influence of the electric

field on the water droplet cannot be excluded. However, a water droplet in

an electric field reduces its contact angle, because the water dipoles are

attracted by the electric field. This led to the conclusion that our polymer

changes its surface energy only due to the applied electrostatic field.

However, we were not able to change the contact angle back to its initial

value. Therefore, further research needs to be performed on such surfaces in

order to enable gripper applications.
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Figure 10-11: Water contact angle measurements on modified PTMC. The contact angle
change is measured with (black line and square dots) and without (red line and round
dots) applied voltage on the underlining 5 μm pitch electrodes.
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11)11)
Conclusions and Perspectives

We tested in this thesis electron beam lithography, electron beam deposition,

focused ion beam milling and focused ion beam gas assisted milling as

methods for the fabrication of interdigitated nanoelectrodes. Gas assisted

focused ion beam milling, as best method, was used for fabricating

interdigitated nanoelectrodes with pitches down to 50 nm on fused silica and

oxidized Si wafers, with a prestructured Ti layer on top. After SiO2 coverage,

the 50 nm pitch electrodes had a resistance of 2 ±0.5 GΩ , the 200 and 500 nm

pitch electrodes of about 14.8 ±5 TΩ.

The vertical components of the electrostatic force fields above the 500 and

50 nm pitch interdigitated electrodes are measured using a new EFM method.

This method is based on simple static force distance curves. It allows one to

measure accurately, and simultaneously the topography, the vertical

electrostatic force field, and the adhesion and attraction forces.

For these measurements we fabricated Pt coated cantilevers with tip radii

between 100 and 600 nm. These tip radii close the gap between

conventional tips with small tip radius (≈ 10 nm) and cantilevers with glued

spheres (≥ 2 μm). It was shown that the tip radius (R) of these tips depend

linearly on the deposited thickness (T) and follows in our case the equation:

0.542* 13R T= + , where 13 is the real tip radius and the factor 0.542 results

from the geometry of the tip and the deposition chamber.

The fabricated tips did not degrade during several thousand's of FDC

measurements and are therefore much better than commercial available

tips. These tips are a small but significant step forward for the EFM

measurement community.
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The spring constant of these Pt coated cantilevers with different tip radii is

determined using a modified dimensional method and the dynamical

method of Sader. This allows the accurate determination of the force.

A 3D numerical and an analytical model of the new EFM method were

developed. The combination of measurements and theoretical calculations

allowed us to study in more detail our method and EFM in general. We

investigated the influence of small tip shape discrepancies and showed their

big influence (up to 50 % force increase) on the measured or simulated

electrical force fields. The position of the tip shape discrepancies on the other

hand had no big influence, if they are within the E-field and not closer to the

surface than the main tip.

We determined the resolution of the force field measurements and

discovered that a pitch to tip radius ratio of 2 to 2.5 delivers a good resolution

for all presented pitches. We have shown that this ratio is unfavorable for

parallel topography measurements with good quality. Compromises between

topographical and force measurement have to be made.

We investigated the influence of relative humidity changes on electrical force

field measurements. The vertical electrostatic force increases significantly (up

to 45 %) with increasing relative humidity, because the relative permittivity of

the gas between tip and electrodes increases accordingly. Furthermore, a

strong force increase at low distances to the surface is measured. We believe

this increase is caused by the water film on the surface. The closer the tip

comes to the surface the higher is the contribution of the water film to the

relative permittivity between tip and electrodes. Similar to the relative

permittivity increase with the relative humidity, as described before.

We have shown that the cantilever is not measurably attracted during our

nanoelectrode measurements, whereas the attraction of the cantilever has

to be taken into account for EFM measurements on microelectrodes. We

used this effect for measuring the electrostatic field above 10 μm pitch

interdigitated electrodes using a cantilever with a glass sphere.
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We have demonstrated that the new EFM method enables one to identify

and characterize regions with trapped charges within electrical force fields. In

parallel it is shown how charges can be written in oxides and consecutively

measured. This allows one to study the trapping behavior of materials and

opens new possibilities for research and development in semiconductor

industry where trapped charges are used to store information. 

The fabricated electrodes and the new EFM method were used to improve

micro- and nano-gripping. The electrostatic force field above 1 μm pitch

interdigitated electrodes and the change of the adhesion force with humidity

and applied potential was measured. The change of the adhesion force on

flat Si-chips, without and with a hydrophobic chemical coating

(perfluoroalkyl-layer) was measured, as well. According to these

measurements the best conditions for the manipulation of a metallic sphere

of 10 μm diameter is at 0 %rh with a voltage of about 35 V applied on 1 μm

pitch interdigitated electrodes. Pick and place operations with a polystyrene

(PS) sphere of 10 μm diameter have shown that a voltage of about 60 V

applied on the 1 μm pitch interdigitated electrodes delivers the best results for

dielectric spheres. 

Moreover, a new electrode design for micro- and nano-gripping has been

proposed and simulated. Objects gripped with the new design are

automatically centered on theses electrodes. This allows one to grip objects

with higher position accuracy and smaller objects. The fabrication and

implementation of the new gripper design will result in a significant step

forward in micro- and nano-gripping. The centering effect of this new design

could be measured with our new EFM method, for this, torsional deflection

changes of the cantilever have to be measured. This possibility is already

integrated in the AFM software written in this PhD.

A detailed study of the influence of the water film under different humidity

and temperature conditions on the electrical force field could be very

interesting for several applications. The humidity measurements indicate that

it is possible to determine with the new EFM method, the thickness of the
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water film on the surface due to its effect on the force field. This could be

used to study the distribution of the water film on different surfaces.

The results of this work are also important for EFM measurements on future

chips, potentially including nanowires and nanotubes. We showed that the

measurement of very small structures can be done with a tips radius much

bigger than the actual structure, if one is not interested in the real

topography. This enables one to measure much smaller forces, and to have a

much better signal to noise ratio.
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12)12)
Appendix

12.1) SiO2

Silicon dioxide is used within this work for electrical insulation. In order to have

a good control on the quality of the used oxides we tested the chemical

composition of different silicon dioxides. 

Three oxides are tested : Thermally grown silicon dioxide, reactive gas assisted

sputtered silicon dioxide and evaporation of SiO in oxygen environment. The

produced oxides were analysed by Auger spectroscopy (figure 12-1).

Figure 12-1: Auger spectroscopy measurement of a thermal oxidised silicon
wafer with evaporated titanium and under O2 pressure evaporated SiO on top.
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The following table presents the Si to O ratios found by this fabrication

methods:

The best oxides are the thermal and in O2 environment sputtered SiO2.

12.2) Thermal Noise Method

We presented and applied in chapter 5 the method of Sader for the

calibration of our cantilevers. We introduced as well the thermal noise

method but did not use it, because it was never proven that this method

delivers correct values for cantilevers with thick metal coating. In the following

we want to give a small introduction to this important method for non coated

cantilevers:

The thermal noise method (sometimes as well called thermal tune method) is

based on the equipartition theorem of the thermodynamic theory1-9. The

equipartition theorem states that for a generalized position or momentum

coordinate (denoted here as X), which stores energy according to EX ∝ X2, the

average energy stored in X, EX is given by:

1
2X BE k T=        Eq. 12-1

where kB is the Boltzmann's constant and T the absolute temperature in kelvin.

If one consider only small cantilever deflections, the force and deflection are

linearly related, therefore, the energy stored in the deflection (dC) can be

written accordingly as:
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Si to O ratio
Thermal SiO2 1:1.91
Sputtered SiO2 1:1.89
Evaporated SiO2 1:1.68



21
2X CE k d=        Eq. 12-2

Equating equation 12-1 with equation 12-2 results in:

2
B

C

k Tk
d

=        Eq. 12-3

Thus measuring 2
Cd  (total power in thermal vibrations) and T allows

theoretically to calculate the spring constant. However, in practice the

situation is a bit more complicated.

It is theoretically possible to calculate  2
Cd  by integrating Pd (chapter 5.2) over

all frequencies. In practice this is not possible because Pd contains as well

background noise and for some cantilevers not all resonance frequencies are

accessible or are hidden in the background noise.

Butt et al.2 found a relationship between the power in the lowest resonance

peak and the total power using a vibrational mode analysis and introduced a

factor for compensation into equation 4-13:

2
1

0.971 Bk Tk
d

=        Eq. 12-4

 2
1d  can be now easily obtained by integrating Pd over the first resonance

peak (chapter 5.2).
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12.3) AFM Software

a.) FDC force field scan

The new EFM method is based mainly on a modification of the AFM software

and data treatment. The user interface for the AFM software programmed in

this thesis is the following: 
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The Visual Basic code important for the acquisition of the FDC curves and the

topography with our AFM is the following:

Private Sub Acquire_Click()

Dim zpiezo, zpiezo2 As Double

Dim count As Long

Dim fso, txtfile

Dim i2 As Integer

Dim Layer As Integer

Dim pullback As Integer

Dim linename, runxtxt As String

Dim runx, runy As Double

Dim fso7, txtfile7

Layer = 600

pullback = -4000

    Call vSetSpectParam(s, 0)

    Acquire.Enabled = False

    valstartx = Val(Textstartx.text)

    valstarty = Val(Textstarty.text)

    valendx = Val(Textendx.text)

    valendy = Val(Textendy.text)

    valstepx = Val(Textstep.text)

    valstepy = Val(Textstep2.text)

    movebool = False

    specbool = False

    s.iAvgPoint = 8

    s.fDelaySample = 10

    s.iLayers = Layer

    s.fVzPullback = pullback

    Call vSetSpectParam(s, 0)

    count = 0

    send Val(2), "Output OFF", stat%

    send Val(2), "Apply P25V," & Text1.text & ",0.001", stat%

    send Val(2), "Apply N25V,-" & Text1.text & ",0.001", stat%

    For runx = valstartx To valendx

     If (Check2.Value = 0) Then

     runxtxt = Format(Str(runx), "########0")

     linename2 = "lineactiv" + runxtxt

     filename7 = path.text + linename2

     Set fso7 = CreateObject("Scripting.FileSystemObject")
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     Set txtfile7 = fso7.CreateTextFile(filename7, True)

     End If

     For runy = valstarty To valendy

     If (Check2.Value = 0) Then

      movebool = bMoveToXY(runx, runy, 500, XYMOVE_DIST)

      For i = 1 To 2000

      Next i

      Call vGetPresentZvoltage(zpiezo)

      For i = 1 To 20000

      Next i

      send Val(2), "Output ON", stat%

      For i2 = 1 To 2

       For i = 1 To 20000000

       Next i

      Next i2

      specbool = bSampleSpectroscopy(lData(0), ipts(0), itypes(0), nHalf)

      For i = 1 To 20000

      Next i

      filename1 = path.text + "volt\a\" + Str(runx) + "_" + Str(runy) + ".txt"

      filename2 = path.text + "volt\r\" + Str(runx) + "_" + Str(runy) + ".txt"

      filename3 = path.text + "volt\old\" + Str(runx) + "_" + Str(runy) + ".txt"

      Call vDrawGraph

      send Val(2), "Output OFF", stat%

      For i2 = 1 To 3

       For i = 1 To 20000000

       Next i

      Next i2

      specbool = bSampleSpectroscopy(lData(0), ipts(0), itypes(0), nHalf)

      For i = 1 To 20000

      Next i

      filename1 = path2.text + "0\a\" + Str(runx) + "_" + Str(runy) + ".txt"

      filename2 = path2.text + "0\r\" + Str(runx) + "_" + Str(runy) + ".txt"

      filename3 = path2.text + "0\old\" + Str(runx) + "_" + Str(runy) + ".txt"

      Call vDrawGraph

      send Val(2), "Output OFF", stat%

      count = count + 1

      Call vGetPresentZvoltage(zpiezo2)

      xvaltxt = Format(Str(runx), "########0.######0")

      yvaltxt = Format(Str(runy), "########0.######0")

      zvaltxt = Format(Str(zpiezo), "########0.######0")

      zvaltxt2 = Format(Str(zpiezo2), "########0.######0")
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      txtfile7.WriteLine (xvaltxt + ";" + yvaltxt + ";" + zvaltxt + ";" + zvaltxt2 + ";")

     End If

     runy = runy + valstepy - 1

     Next runy

    txtfile7.Close

    runx = runx + valstepx - 1

    Next runx

b.) FDC point measurements

The FDC point measurements conducted for chapter 11 are performed with

the following user interface:

and Visual Basic code:

Private Sub Acquire_Click()

Dim count As Long

Dim fso, txtfile

Dim i2 As Integer

    valx1 = Val(Textx1.Text)
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    valy1 = Val(Texty1.Text)

    valx2 = Val(Textx2.Text)

    valy2 = Val(Texty2.Text)

    valx3 = Val(Textx3.Text)

    valy3 = Val(Texty3.Text)

    flimit = Val(flimit.Text)

    valrepeat1 = Val(Textrepeat1.Text)

    valpoints = Val(Textpoints.Text)

    movebool = False

    specbool = False

    count = 0

    s.fVzLimit = flimit

    Call vSetSpectParam(s, 0)

    Acquire.Enabled = False

    send Val(2), "Output OFF", stat%

    send Val(2), "Apply P25V," & Text1.Text & ",0.01", stat%

    send Val(2), "Apply N25V,-" & Text1.Text & ",0.01", stat%

  For run = 1 To valpoints

   If (run = 1) Then

    valx = valx1

    valy = valy1

   End If

   If (run = 2) Then

    valx = valx2

    valy = valy2

   End If

   If (run = 3) Then

    valx = valx3

    valy = valy3

   End If

    For run2 = 0 To valrepeat1

    If (Check2.Value = 0) Then

    movebool = bMoveToXY(valx, valy, 100, XYMOVE_DIST)

     If (Check5(0).Value = 1) Then

      send Val(2), "Output ON", stat%

      'For i2 = 1 To 15

      ' For i = 1 To 20000000

      ' Next i

      'Next i2

      For i2 = 1 To 2

       For i = 1 To 20000000
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       Next i

      Next i2

       For i = 1 To 200000

       Next i

      specbool = bSampleSpectroscopy(lData(0), ipts(0), itypes(0), nHalf)

       For i = 1 To 200000

       Next i

      'specbool = bSampleSpectroscopy(lData(0), ipts(0), itypes(0), nHalf)

      'For i = 1 To 200000

      'Next i

      filename1 = path.Text + "volt\a\" + Str(run) + "_" + Str(run2) + ".txt"

      filename2 = path.Text + "volt\r\" + Str(run) + "_" + Str(run2) + ".txt"

      filename3 = path.Text + "volt\old\" + Str(run) + "_" + Str(run2) + ".txt"

      Call vDrawGraph

     End If

     If (Check6(0).Value = 1) Then

      send Val(2), "Output OFF", stat%

      For i2 = 1 To 3

       For i = 1 To 2000000

       Next i

      Next i2

      specbool = bSampleSpectroscopy(lData(0), ipts(0), itypes(0), nHalf)

      For i = 1 To 200000

      Next i

      filename1 = path.Text + "0\a\" + Str(run) + "_" + Str(run2) + ".txt"

      filename2 = path.Text + "0\r\" + Str(run) + "_" + Str(run2) + ".txt"

      filename3 = path.Text + "0\old\" + Str(run) + "_" + Str(run2) + ".txt"

      Call vDrawGraph

     End If

      send Val(2), "Output OFF", stat%

      runx = runx + valstepx - 1

      count = count + 1

    End If

    Next run2

    Next run
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12.4) Datatreatment Software

After the acquisition of the FDC curves, extensive data treatment had to be

performed, as described in the previously. The essentially matlab code for the

final treatment is the following:

%Input

file = ['F:\']; %path

zscalediv = 2;

zscalemax = -50;

zscalemin = -750;

cal1nAnm = 0.063;

cal2nNnA = 1;

cut = -750;

xstart = 56000;

ystart = 19500;

xend = 56000;

yend = 39900;

decx = 10;

decy = 50;

%load

zscale = (zscalemin:zscalediv:zscalemax);

xscale = (xstart:decx:xend);

yscale = (ystart:decy:yend);

filenameline = [file 'linescan.mat'];

load (filenameline);

%max detection

steigval1 = 20;

steigdeg1 = 0.1;

posarea1 = 20;

steigval2 = 80;

steigdeg2 = 0.01;

posarea2 = 60;

%crossection

x = xstart;

y = ystart;

x2 = 0;
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y2 = 0;

figure;

figure;

figure;

figure;

while x < xend + decx

x2 = x2 + 1;

    while y < yend + decy

        y2 = y2 + 1;

        stx = num2str(x);

        sty = num2str(y);

        %read files

        filename1 = [file '0\a\' stx '_ ' sty '.txt'];

        filename2 = [file 'volt\a\' stx '_ ' sty '.txt'];

        fdca0 = dlmread(filename1, ';');

        fdcaV = dlmread(filename2, ';');

        figure(1);

        plot(fdca0(:,1), fdca0(:,2));

        hold all;

        plot(fdcaV(:,1), fdcaV(:,2));

        hold off;

        [m1,n1] = size(fdca0);

        %attraction part 0V

        total0 = 0;

        count0 = 0;

        clear run1 run2 run3 run2max steig minfdca0;

        for run1 = 1:m1

         if fdca0(run1,1) < cut

          total0 = total0 + fdca0(run1,2);

          count0 = count0 + 1;

         end  

        end

        average0 = total0/count0;

        run2 = m1;

        run3 = 1;

        steig = fdca0(run2,2) - fdca0((run2-steigval1),2);

        while steig  > steigdeg1

         steig = fdca0(run2,2) - fdca0((run2-steigval1),2); 

         run2 = run2 - 1;

        end

        if (run2+posarea1)> m1
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            run2max = m1;

        else

            run2max = run2 + posarea1;

        end

        for run1 = (run2-posarea1):(run2max)

         minfdca0(run3,1) = fdca0(run1,1);

         minfdca0(run3,2) = fdca0(run1,2);

         run3 = run3 + 1;

        end

        [C0h,I0h] = min(minfdca0);

        I0h(2) = find (fdca0(:,1) == minfdca0(I0h(2),1));

        min0h = (m1-I0h(2));

        for run1 = 1:min0h

         run2 = m1 - (run1 - 1);

         if fdca0(run2,2) > average0

          height10 = fdca0(run2,2);

          pos0 = fdca0(run2,1);

         end   

        end

        height20 = fdca0(I0h(2),2);

        attractionforce1 = height10 - height20;

        attgradient0 = (fdca0(I0h(2)+10,2)-fdca0(m1,2))/(fdca0(I0h(2)+10,1)-fdca0(m1,1));

        for run1 = 1:m1

          fdca0new(run1,2) = fdca0(run1,2) - average0;

          fdca0new(run1,1) = fdca0(run1,1) - (fdca0new(run1,2)/cal1nAnm) - pos0;

        end

        pos02(x2,y2) = pos0;

        %attraction part with V

        clear run1 run2 run3 run2max steig minfdcaV;

        totalV = 0;

        countV = 0;

        for run1 = 1:m1

         if fdcaV(run1,1) < cut

          totalV = totalV + fdcaV(run1,2);

          countV = countV + 1;

         end  

        end

        averageV = totalV/countV;

        run2 = m1;

        run3 = 1;

        steig = fdcaV(run2,2) - fdcaV((run2-steigval2),2);
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        while steig  > steigdeg2

         steig = fdcaV(run2,2) - fdcaV((run2-steigval2),2); 

         run2 = run2 - 1;

        end

        if (run2+posarea2)> m1

            run2max = m1;

        else

            run2max = run2 + posarea2;

        end

        for run1 = (run2-posarea2):(run2max)

         minfdcaV(run3,1) = fdcaV(run1,1);

         minfdcaV(run3,2) = fdcaV(run1,2);

         run3 = run3 + 1;

        end

        [CVh,IVh] = min(minfdcaV);

        IVh(2) = find (fdcaV(:,1) == minfdcaV(IVh(2),1));

        minVh = (m1-IVh(2));

        for run1 = 1:minVh

         run2 = m1 - (run1 - 1);

         if fdcaV(run2,2) > averageV

          height1V = fdcaV(run2,2);

          posV = fdcaV(run2,1);

         end   

        end

        height2V = fdcaV(IVh(2),2);

        attractionforce2 = height1V - height2V;

        attgradientV = (fdcaV(IVh(2)+10,2)-fdca0(m1,2))/(fdcaV(IVh(2)+10,1)-fdca0(m1,1));

        for run1 = 1:m1

          fdcaVnew(run1,2) = fdcaV(run1,2) - averageV;

          fdcaVnew(run1,1) = fdcaV(run1,1) - (fdcaVnew(run1,2) /cal1nAnm) - posV;

        end

        %plot corrected FDCS

        figure(2);

        plot(fdca0new(:,1), fdca0new(:,2));

        hold all;

        plot(fdcaVnew(:,1), fdcaVnew(:,2));

        hold off;

        clear run1 run2 run3 run4 run2max steig minfdcaV;

        %substract FDCS and plot resulting graph 

        newpos0 = find(fdca0new(:,1) > -10, 1);

        newposV = find(fdcaVnew(:,1) > -10, 1);
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        if isempty(newpos0) == 1 | isempty(newposV) == 1

           y = y + decy; 

        else

        fdca0new2(:,1) = zscale;

        fdcaVnew2(:,1) = zscale;

        fdca0new2(:,2) = interp1(fdca0new(1:newpos0,1),fdca0new(1:newpos0,2),zscale,'linear');%,
'extrap');

        fdcaVnew2(:,2) = interp1(fdcaVnew(1:newposV,1),fdcaVnew(1:newposV,2),zscale,'linear');%,
'extrap');

        figure(3);

        plot(fdca0new(:,1), fdca0new(:,2));

        hold all;

        plot(fdcaVnew(:,1), fdcaVnew(:,2));

        plot(fdca0new2(:,1), fdca0new2(:,2));

        plot(fdcaVnew2(:,1), fdcaVnew2(:,2));

        hold off;

        diff(:,1) = fdca0new2(:,1);

        diff(:,2) = fdca0new2(:,2) - fdcaVnew2(:,2);

        figure(4);

        plot(diff(:,1), diff(:,2));

        fdca0new3(x2,y2,:) = -fdca0new2(:,2);

        fdcaVnew3(x2,y2,:) = -fdcaVnew2(:,2);

        %correction for height (contact linescan)

        % scale change Volt to nm

        ind1 = find(linex2 == y);

        linerunconv(:,1) = linex2;

        linerunconv(:,2) = lineynew2;

        [CV1,IV1] = min(linerunconv);

        linerunconv(:,2) = linerunconv(:,2) - CV1(2);   

        lineyval = linerunconv(ind1,1);

        linezval = linerunconv(ind1,2);     

        [CV2,IV2] = max(linerunconv);

        [m2] = size(zscalenew2);

        m4 = m2(2);

        [m3,n3] = size(diff);

        pos = abs(find(zscalenew2 >=(zscalemax-linezval)));

        pos2 = pos(1);

        run4 = m3;

         for run3 = 1:m3

             diff2(x2,y2,(pos2-run4+1)) = diff(run3,2);

             run4 = run4 - 1;

         end
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         for run3 = 1:m3

             diff2old(x2,y2,run3) = diff(run3,2);

         end

        clear difftest;

        difftest(:,:) = diff2(x2,y2,:);

        figure(5);

        plot(difftest);

        %attraction force

        attractionforce(x2,y2) = attractionforce2 - attractionforce1;

        %gradient attraction part

        attgradientVolt(x2,y2) = attgradientV;

        attgradient0Volt(x2,y2) = attgradient0;

        y = y + decy;

        end

    end

    y2 = 0;

    y = ystart;

    x = x + decx;

end

12.5) Simulation Software

Each numerical simulation conducted in this thesis needs its own individual

matlab code. In the following the matlab-comsol code for the numerical

simulation of a tip with 500 nm radius on 500 nm pitch electrodes is presented.

The code for the other pitches and tips is similar to it.

% COMSOL Multiphysics Model M-file

flclear fem

% COMSOL version

clear vrsn

vrsn.name = 'COMSOL 3.3';

vrsn.ext = 'a';

vrsn.major = 0;

vrsn.build = 511;

vrsn.rcs = '$Name:  $';

vrsn.date = '$Date: 2007/02/02 19:05:58 $';
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fem.version = vrsn;

% Geometry

% Import CAD data

garr = geomimport('E:\sim_newr4\tipigs\500nm.IGS');

[g1]=deal(garr{:});

% Geometry

g2=cadconvert(g1);

% Geometry

g2=scale(g2,1e-6,1e-6,1e-6,0,0,0);

g3=block3('5.0E-7','1.0E-5','1.0E-7','base','corner','pos',{'2.23528E-6','-2.5E-6','6.5E-6'},'axis',{'0','0','1'},'rot','0');

[g4]=geomcopy({g3});

[g5]=geomcopy({g4});

g5=move(g5,[1.0E-6,0,0]);

[g6]=geomcopy({g4});

g6=move(g6,[2.0E-6,0,0]);

[g7]=geomcopy({g4});

g7=move(g7,[3.0E-6,0,0]);

[g8]=geomcopy({g4});

g8=move(g8,[-1.0E-6,0,0]);

[g9]=geomcopy({g4});

g9=move(g9,[-2.0E-6,0,0]);

[g10]=geomcopy({g4});

g10=move(g10,[-3.0E-6,0,0]);

g11=block3('1.1E-5','1.1E-5','1.1E-5','base','corner','pos',{'-3.01472E-6','-3.01472E-6','-4.2E-6'},'axis',
{'0','0','1'},'rot','0');

x = 1;

z = 1;

while x <= 22

while z <= 11

clear appl bnd equ fcns fem fem0 lib map s units vrsn I1 intbound;

% Analyzed geometry

clear s

s.objs={g2,g3,g5,g6,g7,g8,g9,g10,g11};

s.name={'CO1','BLK1','BLK2','BLK3','BLK4','BLK5','BLK6','BLK7', ...

  'BLK8'};

s.tags={'g2','g3','g5','g6','g7','g8','g9','g10','g11'};

fem.draw=struct('s',s);

[fem,map]=geomanalyze(fem);

% (Default values are not included)

% Application mode 1

clear appl
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appl.mode.class = 'ElectrostaticsGeneralized';

appl.module = 'ACDC';

appl.border = 'on';

appl.assignsuffix = '_emqv';

clear bnd

bnd.V0 = {0,0,-15.0,15};

bnd.type = {'r','V','V','V'};

bnd.ind = [1,1,1,1,1,3,3,3,3,3,3,2,2,2,2,4,4,4,4,4,4,3,3,3,3,3,3,2,2,4, ...

  4,4,4,4,4,2,3,3,3,3,3,3,4,4,4,4,4,4,3,3,3,3,3,3,1];

appl.bnd = bnd;

clear equ

equ.sigma = {0,'mat2_sigma','mat3_sigma'};

equ.ind = [1,2,3,2,2,2,2,2,2];

appl.equ = equ;

fem.appl{1} = appl;

fem.frame = {'ref'};

fem.border = 1;

clear units;

units.basesystem = 'SI';

fem.units = units;

% Library materials

clear lib

lib.mat{1}.name='Air, 1 atm';

lib.mat{1}.varname='mat1';

lib.mat{1}.variables.nu0='nu0(T[1/K])[m^2/s]';

lib.mat{1}.variables.eta='eta(T[1/K])[Pa*s]';

lib.mat{1}.variables.C='Cp(T[1/K])[J/(kg*K)]';

lib.mat{1}.variables.rho='rho(p[1/Pa],T[1/K])[kg/m^3]';

lib.mat{1}.variables.k='k(T[1/K])[W/(m*K)]';

lib.mat{1}.variables.cs='cs(T[1/K])[m/s]';

clear fcns

fcns{1}.type='inline';

fcns{1}.name='nu0(T)';

fcns{1}.expr='(-7.887E-12*T^2+4.427E-08*T+5.204E-06)/(1.013e5*28.8e-3/8.314/T)';

fcns{1}.dexpr={'diff((-7.887E-12*T^2+4.427E-08*T+5.204E-06)/(1.013e5*28.8e-3/8.314/T),T)'};

fcns{2}.type='inline';

fcns{2}.name='cs(T)';

fcns{2}.expr='sqrt(1.4*287*T)';

fcns{2}.dexpr={'diff(sqrt(1.4*287*T),T)'};

fcns{3}.type='inline';

fcns{3}.name='Cp(T)';
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fcns{3}.expr='0.0769*T+1076.9';

fcns{3}.dexpr={'diff(0.0769*T+1076.9,T)'};

fcns{4}.type='inline';

fcns{4}.name='rho(p,T)';

fcns{4}.expr='p*28.8e-3/8.314/T';

fcns{4}.dexpr={'diff(p*28.8e-3/8.314/T,p)','diff(p*28.8e-3/8.314/T,T)'};

fcns{5}.type='inline';

fcns{5}.name='eta(T)';

fcns{5}.expr='-7.887E-12*T^2+4.427E-08*T+5.204E-06';

fcns{5}.dexpr={'diff(-7.887E-12*T^2+4.427E-08*T+5.204E-06,T)'};

fcns{6}.type='inline';

fcns{6}.name='k(T)';

fcns{6}.expr='10^(0.8616*log10(abs(T))-3.7142)';

fcns{6}.dexpr={'diff(10^(0.8616*log10(abs(T))-3.7142),T)'};

lib.mat{1}.functions = fcns;

lib.mat{2}.name='Ti';

lib.mat{2}.varname='mat2';

lib.mat{2}.variables.nu='0.36';

lib.mat{2}.variables.E='40e9[Pa]';

lib.mat{2}.variables.sigma='2.6e6[S/m]';

lib.mat{2}.variables.alpha='8.60e-6[1/K]';

lib.mat{2}.variables.C='522[J/(kg*K)]';

lib.mat{2}.variables.rho='4506[kg/m^3]';

lib.mat{2}.variables.k='21.9[W/(m*K)]';

lib.mat{3}.name='Pt';

lib.mat{3}.varname='mat3';

lib.mat{3}.variables.nu='0.38';

lib.mat{3}.variables.E='168e9[Pa]';

lib.mat{3}.variables.sigma='8.9e6[S/m]';

lib.mat{3}.variables.alpha='8.80e-6[1/K]';

lib.mat{3}.variables.C='133[J/(kg*K)]';

lib.mat{3}.variables.rho='21450[kg/m^3]';

lib.mat{3}.variables.k='71.6[W/(m*K)]';

fem.lib = lib;

zposstart = 0.040E-6;

xposstart = -1.5E-6;

zpos = zposstart + ((z-1)*0.04E-6);

xpos = xposstart + ((x-1)*0.1E-6);

co1 = drawgetobj(fem,'CO1');

fem = drawsetobj(fem,'CO1',move(co1,xpos,0,zpos)); 

[fem,map]=geomanalyze(fem);
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fem.lib = lib;

% Multiphysics

fem=multiphysics(fem);

% Initialize mesh

fem.mesh=meshinit(fem, ...

                  'hauto',6);

% Extend mesh

fem.xmesh=meshextend(fem);

% Solve problem

fem.sol=femstatic(fem, ...

                  'solcomp',{'V'}, ...

                  'outcomp',{'V'});

pause(1);

% Integrate

intbound(1) = find(map{3,1} == 12);

intbound(2) = find(map{3,1} == 13);

intbound(3) = find(map{3,1} == 14);

intbound(4) = find(map{3,1} == 15);

intbound(5) = find(map{3,1} == 28);

intbound(6) = find(map{3,1} == 29);

intbound(7) = find(map{3,1} == 36);

F5(x,z) = postint(fem,'(nD_emqv * Ez_emqv)', ...

           'unit','N', ...

           'dl',intbound, ...

           'edim',2);       

numx = num2str(x);

numz = num2str(z);

string = strcat('E:\sim_newr4\500nmpitch\500\mat',numx,'_',numz,'.mat');

save(string);

pause(1);

z = z + 1;

end;

x = x + 1;

z = 1;

end;
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German (mother tongue), English (good), French (fair), Dutch (basic)

Professional Experiences

2003 to 2008 PhD at EPFL (Swiss Federal Institute of Technology Lausanne) in
the field of Surface- and Nanoengineering (LOA/NRG) (Prof. Dr.
René-Paul Salathé, Supervisor: MER Dr. Patrik Hoffmann; Jury:
Prof. Dr. Bharat Bhushan, Prof. Dr. Ernst Meyer, Prof. Dr. Andreas
Stemmer, Prof. Dr. Cécile Hébert)

2002 to 2003 Research Assistant at EPFL (Swiss Federal Institute of Technology
Lausanne) in the field of Microengineering and Biotechnology
(LMIS1) (Ass. Prof. Jürgen Brugger)

2000 to 2002 Infineon Technologies (Division: Corporate Research – Nano
Processes) (Internship and Student Trainee)

2000 PTS Munich (Research centre for paper technologies) 
(Student Trainee)

1998 InfraServ Gendorf (formerly: Hoechst AG Gendorf) (Internship)
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