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Abstract

Competing orders in strongly correlated systems lead to rich phase diagrams com-

prising many electronic phases, such as superconductivity, charge/spin density wave,

charge order, or bad metallicity. These phases are generically sensitive to a variety of

parameters, for example temperature, magnetic field, dimensionality, presence of dis-

order, geometrical frustration. In this thesis, we employ electronic transport measure-

ments under high pressure on few model compounds to gain insight into the complex

physics of strongly correlated compounds. The transport coefficients, resistivity and

thermoelectric power, shed light onto conduction processes and the thermodynamics.

The pressure is a perfect tool to investigate competition of different ground states:

by modifying the lattice parameters, it can tune the interactions without introducing

disorder.

Several representative compounds were chosen for this study. In the first part,

we focus on the transport properties of the quasi-one dimensional BaVS3. The main

characteristic of this 3d1 system is the coexistence of a broad one-dimensional dz2

electronic band and a narrow isotropic eg band at the Fermi level. The suppression of

the insulating phase by high pressure leads to a non-Fermi liquid phase. We showed

that magnetic field does not recover the Fermi liquid behavior, and that the disorder

pushes the system further into non-Fermi liquid state. This is at variance with what has

been observed in other non-Fermi liquid compounds, and confirms the novelty of the

mechanism for non-Fermi liquid behavior in BaVS3. To achieve better understanding

of the role of the localized electrons, we investigated systematically the influence of

disorder. In addition, we studied the properties of the BaVSe3, which due to the

reinforced interchain interactions may be considered as the high-pressure counterpart

of BaVS3. The system is a metallic ferromagnet, in which the strong interaction of

dz2 and eg electrons dictates the behavior of transport coefficients.

In the following part we studied the rich physics of quasi-one dimensional β-

vanadium bronzes. In the stoichiometric β-SrV6O15, we followed the pressure de-

pendence of the semiconductor-insulator transition by resistivity and thermopower.

We found evidence suggesting that the ground state is charge ordered. Under pres-

sure, the changing character of the transport coefficients implied a competition of

different ground states. Moreover, we observed resistive switching in the insulating

phase. When strontium doping is decreased, in SrxV6O15 and x < 1, the disorder

starts governing the physics of the system. The off-stoichiometric compounds are

characterized by the absence of phase transition, absence of resistive switching, and

possibly by the presence of polarons.

We also found resistive switching in another charge ordered transition-metal oxide,

Fe2OBO3. This system shows an interplay of commensurate and incommensurate
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charge order. The switching is restricted to the incommensurate phase, whose origin

probably lies in the geometrical frustration of the interactions between iron atoms.

With pressure we enhance the Coulomb repulsion, and the incommensurate phase

shrinks in temperature.

In the final part, we address the high-pressure transport of a superconductor on

a geometrically frustrated pyrochlore lattice, KOs2O6. The potassium atoms are en-

closed in oversized cages and their rattling motion introduces a localized low-energy

mode. The transport coefficients in this compound are highly anomalous: the resis-

tivity shows no saturation at low temperatures, and the scythe-shaped thermoelectric

power is reminiscent of the one observed in cuprates. We were able to reproduce

the temperature and pressure dependence of the transport coefficients within a simple

model of the density of states.

Keywords: strongly correlated materials, high pressure, electronic transport, com-

peting interactions.
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Version abrégée

L’existence de nombreuses structures dans lesquelles cristallisent les matériaux forte-

ment corrélés illustre la diversité des propriétés, telles que la supraconductivité, les

ondes de densité de charge ou de spin, l’ordre de charge ou la mauvaise métallicité,

rencontrées dans leur diagramme de phases électroniques. Ces différentes phases

sont sensibles à plusieurs paramètres extérieurs, tels que la température, le champ

magnétique appliqué, mais aussi à des paramètres intrinsèques liés à leur structure

cristallographique tels que la dimensionnalité, la présence de désordre ou les frustra-

tions géométriques. Dans le cadre de cette thèse, nous avons réalisé des mesures de

transport électrique sous pression de plusieurs composés afin d’étudier la physique,

complexe, des matériaux fortement corrélés. L’étude des coefficients de transport,

de la résistivité et du pouvoir thermoélectrique, nous a permis de comprendre les

mécanismes de conduction et la thermodynamique de ces matériaux. L’effet de la

pression est essentiel à l’étude d’une compétition entre les différents états fonda-

mentaux. Elle modifie les paramètres de mailles du réseau cristallin et l’intensité des

interactions sans introduire de désordre dans la structure.

Dans une première partie, nous avons concentré nos travaux sur l’étude des pro-

priétés de transport de cristaux quasi unidimensionnels de BaVS3. La principale car-

actéristique de cette structure électronique 3d1 est la coexistence d’une bande large

unidimensionnelle dz2 et d’une bande étroite isotrope eg autour du niveau de Fermi.

Sous haute pression, la phase isolante est transformée en une phase de type non-liquide

de Fermi dont le comportement est renforcé par l’introduction d’un désordre struc-

tural. Toutefois, l’application d’un champ magnétique ne permet pas de restaurer un

comportement de liquide de Fermi. De tels phénomènes n’ont été observés dans aucun

autre composé de type non-liquide de Fermi, ce qui confère un caractère exceptionnel

au mécanisme non-liquide de Fermi de BaVS3. Afin d’approfondir la compréhension

du rôle des électrons localisés, nous avons étudié de manière systématique l’influence

du désordre structural. A cette fin, l’étude des propriétés du BaVSe3 a été entreprise.

Celles-ci sont proches de celles du BaVS3 sous haute pression, en raison du renforce-

ment des interactions entre les châınes. BaVSe3 est un métal ferromagnétique, dans

lequel les fortes interactions entre électrons dz2 et eg contrôlent le comportement des

coefficients de transport.

Dans une deuxième partie, nous avons étudié les β bronzes de vanadium quasi

unidimensionnels. Pour la stoechiométrie β-SrV6O15, la transition semiconducteur -

isolant est dépendante de la pression. Ceci a été mis en évidence par des mesures de

résistivité et du pouvoir thermoélectrique. Nous avons observé que l’état fondamental

correspond à un ordre de charge. Sous pression, le changement de comportement

des coefficients de transport implique une compétition entre différents états fonda-

mentaux. De plus, nous avons observé une commutation de résistivité dans la phase
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isolante. Quand le dopage en strontium diminue, dans SrxV6O15 avec x < 1, le

désordre gouverne les propriétés du composé. Les composés non stoechiométriques

sont caractérisés par l’absence de transition de phase, l’absence de commutation de

résistivité et la présence possible de polarons.

Dans la partie suivante, nous avons aussi mis en évidence une importante commu-

tation de résistivité dans un autre oxy-borate de métal de transition ayant un ordre de

charge : Fe2OBO3. Ce composé montre une compétition entre un ordre de charge

commensurable et non commensurable. La commutation est restreinte à la phase non

commensurable, ce qui est probablement dû à une frustration géométrique des interac-

tions entre les atomes de fer. Sous pression, les répulsions coulombiennes augmentent

et la plage de température de la phase incommensurable rétrécit.

Dans la dernière partie, nous avons étudié le transport sous haute pression d’un

supraconducteur présentant une structure pyrochlore frustrée : KOs2O6. Chaque

atome de potassium présente un volume de coordination élargi qui lui donne un mou-

vement oscillatoire semblable à celui d’un hochet. Ceci introduit un mode localisé de

faible énergie. Les coefficients de transport dans ce composé sont clairement anor-

maux : la résistivité ne montre pas de saturation à basse température, et la forme du

pouvoir thermoélectrique ressemble à celle observée dans les cuprates. Nous avons pu

reproduire la dépendance en température et en pression des coefficients de transport

dans un modèle simple de densité d’états.

Mots-clés: matériaux fortement corrélés, haute pression, transport électronique,

interactions compétitives
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1 Preface

Dadnos, santos del cielo, una visión global bastante aproximada.

(Give us, O Saints of God, a global vision sufficiently approximate.)

– José Luis Cuerda, “Amanece, que no es poco”

A snowflake possesses an intriguing and fragile beauty. This beauty arises from

the simplicity of its composition - like ordinary water, it contains only oxygen and

hydrogen - and from the complexity of its structure. The number of possible shapes is

infinite. Which form is realized depends in an intricate way on molecular interactions

between tiny ice crystals and on the conditions under which a snowflake is created,

like temperature and pressure.

In physics of condensed matter, we study complex systems in which many differ-

ent interactions between the basic elements occur. Models have been developed to

understand how materials behave. For instance, ordinary metals like copper can be

understood by assuming that electrons can wander freely through the metal. How-

ever, in some other compounds, the correlations between the electrons become of

crucial importance, leading to a wealth of behaviors. Such systems are called strongly

correlated systems, and they are the subject of this thesis.

The range of applications of these materials is potentially as ample and vast as

the properties which they show are amazing: from colossal magnetoresistance to

high-temperature superconductivity. The understanding and manipulation of these

materials could lead to applications ranging from nonvolatile computer memories to

low-consumption high-speed trains.

To understand the way electrons conduct electric current and heat inside the mate-

rials, we perform measurements of transport properties: resistivity and thermoelectric

power. Transport coefficients, in particular the resistivity, have always held a distin-

guished place in condensed matter research. It was by measuring the low-temperature

resistivity of mercury in 1911 that the group of Kamerlingh Onnes first encountered

the perplexing and important phenomenon of superconductivity. It took the theoret-

ical physicists almost 50 years to give a microscopic explanation [1]. A similar story

started in 1930s with measurements of resistivity of copper with a small concentra-

tion of magnetic impurities: as the temperature is decreased, the resistivity reaches a

minimum and then quite unexpectedly rises. The theoretical explanation of resistiv-

ity minimum had to wait for more than 30 years [2], but it uncovered universal and

fundamental physics which is now known as Kondo effect.

If the transport coefficients can give such valuable insight into the physics of the

‘simple’ systems such as copper or mercury, it is fair to expect them to uncover

a great deal of information in the case of more complex materials. Indeed, the

discovery of unconventional properties in transport continued through the study of
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1. Preface

quasi-one-dimensional organic conductors, conducting polymers, charge density wave

conductors, two-dimensional dichalcogenides, cuprate superconductors, manganites

and other novel electronic materials. By now it is known that the simple transport

picture described by the semiclassical theory of Bloch and Boltzmann breaks down

if the following parameters are strongly expressed: i) electronic correlations; ii) low-

dimensionality; iii) temperature and iv) frustration and disorder.

Figure 1: Left: Crystal structure of the high-temperature superconducting cuprate

Bi2Sr2CaCu2O8+δ. Right: Zigzag stacking of TMTSF molecules in an organic conductor.

Anions are intercalated in cavities which remain in the structure.

Electronic correlations can cause an insulating ground state. The compound V2O3
is a classical example. It is considered that the sudden loss of metallic conductivity

at 150K is due to a Mott-transition: the strong Coulomb repulsion between the

conduction electrons localizes each electron on a separate vanadium atom, and the

material becomes an insulator.

In lower dimensions, especially in one-dimensional systems, the effect of Coulomb

correlations is more pronounced, since the available space is more restricted. Every

perturbation provokes a response from the whole electronic system. Prime examples

are the single-walled carbon nanotubes, the ultimate one-dimensional conductors, in

which the conductance decreases with decreasing temperature, instead of increasing

like in normal metals, such as gold, copper or platinum.

A further parameter which has perturbed our simple vision of the electronic trans-

port in periodic solids is temperature. If the temperature is high enough, the electrons

no longer obey the semiclassical transport theory. One can imagine that the electrons
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1. Preface

do not travel far enough as to ‘feel’ the periodicity of the atomic lattice, so the old

theory of transport must be abandoned. Instead of continuing to grow, the resistivity

saturates as the temperature increases.

Disorder is always present in the real materials, and has an important role in trans-

port. It can enhance the effects of the correlations between electrons. Large amounts

of disorder, introduced for instance by alloying or creating defects, can shorten the

electronic mean free path, and ruin the applicability of semiclassical theory.

Electronic transport on geometrically frustrated lattices, such as Kagomé or py-

rochlore lattice, may also cause deviations from a conventional description. The idea

is that destructive interferences of the electronic wave functions can slow down the

electrons, and accentuate the role of repulsive interactions. But a detailed theoretical

description of this phenomenon is missing.

All these phenomena strongly depend on the interatomic distances, which one can

tune by pressure. My task in this thesis was to investigate the transport coefficients,

resistivity and thermoelectric power under high pressure, on a few model compounds

where dimensionality, strong correlations, disorder and frustration are present.
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2 Strongly correlated systems:

from Fermi liquid to competing instabilities

This web of time – the strands of which approach one another,

bifurcate, intersect or ignore each other through the centuries

– embrace every possibility.

(Jorge Lúıs Borges, “The Garden of Forking Paths”)

In 1926, Erwin Schrödinger devised the famous equation which describes the time

and space dependence of the quantum wave function. For a system composed of a

multitude of constituents, the many-particle wavefunction Ψ(~x1, ~x2, ..., ~xN, t) is given

by: [
− ~

2

2m

N∑

j=1

∇2j +
∑

i<j

V (~xi − ~xj) +
∑

j

U(~xj)

]
Ψ = i~

∂Ψ

∂t
(1)

This equality describes microscopic laws which govern all the materials. However,

to understand what happens in a macroscopic system, typically of sizes comparable

to 1 cm3 and containing N ∼ 1023 particles, this equation is not extremely helpful.
First of all, it would be practically impossible to know all the 1023 border condi-

tions. From a more pragmatic point of view, even if one could be given a solution for

Ψ(~x1, ~x2, ..., ~xN, t), the knowledge of the wave function would in no evident way relate

the macroscopic properties of the many-particle system. Therefore, a new level of

understanding is needed, which it is not possible to reach from the study of isolated

atoms or molecules.

The author of the above equation realized the insufficiency of the basic equations

to describe complex systems. Thinking about the nature of life, he wrote: “Living

matter, while not eluding the ’laws of physics’, is likely to involve ’other laws,’ which

will form just as integral a part of its science” [3]. In a way, his statement also applies

to the study of condensed matter. Much of modern condensed matter physics is

based on paradigms which enable intuitive description of the processes taking place in

a complex entity made out of 1023 particles. For example, to think about electrical

conduction in a metal, it is often reasonable to employ a simple picture in which an

electron swims through the sea of other electrons [4]. In such a picture one ignores

the strong Coulomb interactions which the electron surely experiences, and the only

important effect is that the electron effectively becomes heavier because it is slowed

down by interactions and thus harder to accelerate. The fact that we can use such a

rudimentary representation in an immensely intricate system is by no means obvious.

The purpose of this chapter is to give a brief tour through some of the concepts

and models used in the study of strongly correlated matter, in particular those which

are relevant to the systems we investigate in this thesis.
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2.1 Landau quasiparticles and the Fermi liquid

2.1 Landau quasiparticles and the Fermi liquid

Landau’s Fermi liquid theory, proposed in 1957, provides the foundations for the under-

standing of interacting fermionic systems. The theory explains why the non-interacting

picture can be applied so successfully to systems such as metals, where interactions

are indubitably very important [5, 6].

0

1

0

1

F

Probability

Energy F

Probability

Energy

z

Figure 2: For free electrons, the occupation probability has a sharp drop of amplitude 1 at the

Fermi surface (left panel). In a Fermi liquid, the occupation maintains a discontinuity at εF,

although its amplitude is reduced, z < 1.

The central idea of Landau’s theory is the principle of adiabatic continuity. He

envisions the interactions being turned on slowly in a free electron gas and argues that

the low energy eigenstates of the interacting electrons would map one-to-one onto

the eigenstates of the free electron gas. This means that the wave vector k which

describes the state of a free electron may also be used as a quantum number labeling

an eigenstate of the interacting system. The picture of a single particle may therefore

be retained. However, such individual object in an interacting system is no longer an

electron, but a quasiparticle - an electron dressed into a cloud of density fluctuations.

The probability that a state of energy ε is occupied at T = 0K is in the case of a

free electron gas equal to 1 below the Fermi energy, and 0 above it (Figure 2). The

excitations correspond to individual electrons of a momentum k. For an interacting

Fermi liquid, the occupation probability is smaller than 1 below εF and larger than zero

above it. However, it is very important to note that the sharp drop of occupation

probability remains at εF, with an amplitude z < 1. The size of the discontinuity z

is considered as the order parameter of the Fermi liquid. The excitations in such a

system are quasiparticles with the electronic weight z .
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2.2 Strong correlations and strange metals

Figure 3: The ground state of the free electron gas in reciprocal space. An excitation cor-

responds to an electron being promoted from a state below εF to an empty state above it.

Figure is taken from [6].

Figure 3 shows the ground state of the free Fermi gas. Consider an electron with

an energy εk above the Fermi surface. If this electron wants to scatter, it can only

do so with another electron which is energetically within the thin shell of εk below

the Fermi surface. Otherwise, the second electron would not have enough energy to

be promoted above the Fermi level, and since most states below the Fermi level are

occupied, it would have nowhere to go. Therefore, the total phase space available for

scattering will be proportional to ε2k for a three-dimensional system. This is the reason

behind the famous T 2 dependence of the resistivity in a Fermi liquid.

The applicability of the Fermi liquid theory is not restricted to weak coupling

[7]. The fermionic quasiparticles are robust because of strong constraints posed on

the scattering kinematics by the sole existence of the discontinuity on the Fermi

surface. Because of the Pauli exclusion principle, the total phase space available

for the scattering rapidly decreases as the quasiparticle energy approaches εF, which

in turn leads to the divergence of the quasiparticle lifetime close to the Fermi level.

Since in solids the temperatures of practical importance are very small compared to

the Fermi energy, the excitations are always in the vicinity of εF. To invalidate the

Fermi liquid state, one needs either very strong interactions or the occurrence of some

other instability.

2.2 Strong correlations and strange metals

The history of the strongly correlated systems began in the 1930s. The theoretical

concepts emerged first, long before the intensive experimental research started. The

early ideas came from Wigner, who introduced the notion of an electron crystal lattice
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2.2 Strong correlations and strange metals

[8], and Heitler and London, who developed a theory of chemical bonds based on

strongly correlated electrons [9].

The band theory of solids had great successes in predicting properties of many

materials, but in certain compounds they failed. In 1937 de Boer and Verwey pointed

out that various transition metal oxides which were half-filled and therefore expected to

be metallic, were found to be insulating instead [10]. Commenting on their paper, Mott

and Peierls suggested that the insulating state may be explained revoking Coulomb

interactions between electrons [11]. Historically the most famous example of a a half-

filled insulator (a Mott insulator) is nickel oxide, NiO. In 1949, Mott proposed that

this compound should be insulating and that the conduction happens through hopping:

(Ni2+O2−)2 → Ni3+O2− +Ni1+O2−

and that the d-band splits because of the Coulomb repulsion.

It soon became clear that the simplest band theories, based on the independent-

electron approximation, are not sufficient for understanding and describing the tran-

sition metals. The inner electronic shells, partially unfilled, greatly determine the

behavior of transition metals and their compounds. They lead to the strong elec-

tronic correlations, which is a common name for all the phenomena which cannot be

described within the Hartree-Fock approach. It was recognized that these systems

should be treated by more sophisticated theoretical tools. The main actors in the

development of the theoretical modeling were Mott and Hubbard [12, 13].

Strong electronic correlations lead to novel phenomena, such as metal-insulator

transition, non-Fermi liquid behavior, heavy fermion physics, colossal magnetoresis-

tance, and finally high temperature superconductivity. It was precisely the discovery

of copper-oxide superconductors in 1986 that gave a huge impetus to the field of

condensed matter physics [14].

2.2.1 Mott-Hubbard physics

A prime example of Mott-Hubbard physics and its importance are the superconducting

cuprates. The strong electronic correlations in the undoped cuprates (mother com-

pounds of high Tc superconductors) destroy the metallic phase and lead to an insulating

antiferromagnetic ground state instead - a Mott insulator. That a half-filled system

can be insulating is incomprehensible within Bloch theory of electron bands. The sim-

plest model which explains why this may be so, is given by the Hubbard Hamiltonian

[13]:

H = −t
∑

〈i ,j〉

∑
σ

(c†iσcjσ + c
†
jσciσ) + U

∑

i

n̂i↑n̂i↓ (2)
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2.2 Strong correlations and strange metals

Here, c†iσ creates an electron with spin σ on the lattice site j , and n̂iσ = c
†
iσciσ is

the corresponding number operator. Parameter t is called the transfer integral, and is

obtained from the overlap of two atomic orbitals. Hubbard U is the Coulomb repulsion

of two electrons on the same site.

Hubbard Hamiltonian is the minimal many-body Hamiltonian which captures the

essence of the competition between two mutually antagonistic phenomena. If the

electrons are delocalized into Bloch states, the kinetic energy gains and the metallic

state prevails. On the contrary, if the electron-electron repulsion dominates, the

electrons localize onto atomic sites and the system becomes a Mott insulator [15].

Metallic state can become unstable in other ways as well. As the temperature is

decreased, electron charge and spin may order due to correlations. In the systems

studied here, several different interactions compete. The prevailing one is responsible

for the nature of the ground state. In the following sections, we briefly review the two

most relevant types of instabilities.

2.2.2 Charge order

Wigner was the first to introduce the concept of charge ordering as he studied a gas of

electrons spread over a homogeneous positive background [8]. He showed that if the

density of the electronic gas is sufficiently low, the Coulomb repulsion will dominate

over the electron delocalization. At low temperatures, Coulomb interaction produces

a long range ordered charge pattern of localized electrons arranged into a hexagonal

lattice, like in Figure 4.

Figure 4: Left: A two dimensional Wigner crystal. Right: Wigner crystal formed on the surface

of a multi-electron bubble, created close to the surface of liquid helium (from [16]).
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2.2 Strong correlations and strange metals

Charge ordering is a rather common occurrence in transition metal compounds, a

notable example being manganese oxides (Figure 5). As opposed to Wigner’s homo-

geneous positive background, these compounds have a discrete underlying lattice. The

presence of reasonably localized d orbitals, with little interatomic overlap, enhances

the effect of the short-range Coulomb repulsion between electrons on different lattice

sites. As a consequence, charge order appears at much higher electron densities than

in the original Wigner’s homogeneous system, and it must be commensurate with the

atomic lattice [9].

Figure 5: A signature of charge ordering in Bi0.24Ca0.76MnO3 observed by scanning tunneling

microscopy [17]. The image shows a grain boundary between a charge ordered region (upper

right) and a metallic region (lower left).

The elementary Hamiltonian which describes charge ordering needs to take into

account Coulomb interaction not only within the same site (U), but also between

neighboring sites (Vi j). Such a Hamiltonian represents what is known as the extended

Hubbard model [18]:

H = −t
∑

〈i ,j〉

∑
σ

(c†iσcjσ + c
†
jσciσ) + U

∑

i

n̂i↑n̂i↓ +
∑

〈i ,j〉
Vi j n̂i n̂j (3)

The Coulombic Vi j term is crucial for understanding the charge ordered states, and it

is in some compounds estimated to amount to half the onsite term U.
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2.2 Strong correlations and strange metals

When a complete charge order takes place, the system becomes insulating. The

instability is electronic in nature, although oftentimes one detects a slight deformation

of the underlying lattice. It is presently not clear exactly how important the structural

changes are. In many cases the dramatic changes occur in the conductivity and other

physical properties of the charge-ordering system only below the temperature where a

symmetry break happens in the lattice [19].

2.2.3 Peierls instability and density waves

Charge order is a real-space phenomenon. A similar effect of long range charge mod-

ulation in a metal can be reached through an entirely distinct mechanism, which has

its roots in the reciprocal space (Figure 6). In this case it is the geometry of the

Fermi surface that causes the charge modulation, whereas no strong correlations are

required.

Figure 6: Left: a metal with a homogeneous charge distribution, ρ = const, and a conduction

band filled up to the Fermi energy. Right: The charge modulation with a wavelength π/kF
changes periodicity and thereby reduces the Brillouin zone, producing a gap at ±kF. The
energy of the filled portion of the band is lowered and the system becomes insulating. Figure

is taken from [20].

The charge instability, called a charge density wave (CDW), is driven by the min-

imization of the kinetic energy of the conduction electrons, which leads to a recon-

struction of the Fermi surface and results in the Peierls transition. It occurs in many

materials with a highly anisotropic band structure, such as blue bronze (K0.3MoO3),

NbSe3, (TaSe4)2I, or in potassium platinocyanide (KPC). However, the most promi-

nent example with very rich phase diagrams are the organic conductors. In particular,

the family of TMTCF salts, where C is either sulphur or selenium, was explored in

great detail and can serve as a model system for the quasi-one dimensional systems.
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If an electron-phonon interaction is present, it may be energetically favorable that

a periodic lattice distortion occurs [21]. Its wavelength is related to the Fermi wave

vector, as shown in Figure 6, and does not necessarily have to be commensurate to the

lattice. The crucial condition is that the original Fermi surface has nesting properties.

The nesting parts are connected by a vector Q which determines the wavelength and

the direction of the charge density modulation [9]. Finally, the gain in electronic energy

has to compensate for the energy of the lattice modulation.

A Hamiltonian which describes the main features of the Peierls transition and of

the collective mode contains the electron-phonon interaction [21]:

H =
∑

〈k,σ〉
εkc

†
kσckσ +

∑

〈q,σ〉
~ω0qb†qbq +

∑

〈k,q,σ〉
g(k)c†k+q,σck,σ(bq + b

†
−q) (4)

Here c†k and b
†
q create an electron and phonon with momenta k and q; εk and ω

0
q

are electron and phonon dispersions; g(k) is the electron-phonon coupling constant.

The system is a metal above the temperature where the transition occurs. Below, it

becomes a semiconductor with a gap which increases with decreasing temperature.

A analogous modulation of density can happen in the spin sector, without affecting

the charge distribution [20]. This leads to an antiferromagnetic ground state described

by a spin density wave (SDW). If the SDW or CDWmodulation is incommensurate with

the underlying lattice, it can freely move and lead to collective transport. However,

the impurities which are inevitably present in any realistic system pin the phase of the

charge/spin density wave. Hence, collective transport or sliding of the density wave

occurs only above a certain threshold field [21].

2.3 Dimensionality

Low dimensionality is the key to enhancing the effects of correlations and disorder [7].

In the extreme cases, it can lead to the fundamental breakdown of the quasiparticle

picture. Particularly, in a truly one-dimensional system no individual excitations can

exist, because an individual particle has to “push” all the others in order to propa-

gate. Hence, there are no Landau quasiparticles, and only collective excitations are

stable. This implies that spin and charge degrees of freedom are separated, breaking

the electron into two elementary excitations: spinon and holon. The Fermi liquid is

destroyed and replaced by the Luttinger liquid - a theoretical paradigm used to de-

scribe one-dimensional systems. In several quasi-one dimensional systems, like carbon

nanotubes, quantum wires or organic conductors, the Luttinger liquid state was indeed

observed.

In quasi-one or two dimensional compounds, the dimensionality may still augment

the system’s liability to Fermi surface instabilities, leading to the appearance of charge
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2.4 The role of disorder and frustration

Figure 7: Spin-charge separation in a Luttinger liquid. A single-particle excitation, shown in

the top part is converted in a one-dimensional system into an excitation that contains only

charge degrees of freedom (holon) and spin degrees of freedom (spinon), shown in the bottom.

Adapted from [7].

density waves, or “hot spots” on the Fermi surface. When the dimensionality of the

system is modified, usually through external or chemical pressure, one may expect

coexistence of different electronic phases. This is the case for example in the TMTTF

and TMTSF salts, where the pressure or anion substitution increases the interchain

coupling and thus the electronic system is tuned from one- to three-dimensionality

[20].

2.4 The role of disorder and frustration

Strongly correlated systems where competing orders coexist often display remarkable

sensitivity to disorder, fluctuations, or additional degrees of freedom. Presence of

disorder or frustration effectively slows down the electrons, enhancing the effect of

correlations. This may stabilize one ground state at the expense of another. These

two factors, disorder and frustration, turn to be of paramount importance for the

physics of the systems studied in this thesis.

Despite the fact that disorder is practically omnipresent in condensed matter, only

fairly recently (less than 30 years ago) has its role started being studied systematically

[22]. The disorder has turned out to be particularly important in understanding the

anomalous properties of a wide class of novel materials, such as high Tc cuprates,

manganites, or Kondo alloys. For example, in a number of strongly correlated systems

it can lead to non-Fermi liquid behavior [23]. In general, the properties of interacting

disordered systems are still poorly understood. The difficulty lies in the fact that the

disorder and correlations reinforce each other’s effects [24].
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2.4 The role of disorder and frustration

The particularity of frustration is that it introduces low energy scales in comparison

to the Fermi energy, making the system unstable in many directions. The system

cannot achieve a single state which minimizes the total energy. In addition, the

systems with geometrically frustrated lattices can have a large number of low-lying

charge excitations available, which in general suppresses ordering. This is how, for

example, in α′-NaV2O5 the charge ordering is inhibited by the geometric frustration
effects [9]. The effect of frustration on magnetic systems is relatively well-explored

which yielded significant insight into the properties of quantum liquids or the dynamics

of ice. On the other hand, much less is known about the influence of frustration on

the conducting systems.

18



3 Review of electronic transport in solids

On those remote pages it is written that animals are divided into (a) those that belong

to the Emperor, (b) embalmed ones, (c) those that are trained, (d) suckling pigs, (e)

mermaids, (f) fabulous ones, (g) stray dogs, (h) those that are included in this classifi-

cation, (i) those that tremble as if they were mad, (j) innumerable ones, (k) those drawn

with a very fine camel’s hair brush, (l) others, (m) those that have just broken a flower

vase, (n) those that resemble flies from a distance.

(Jorge Lúıs Borges, “The Analytical Language of John Wilkins”)

Transport measurements are among the easiest conceivable experiments that one

can perform on a conducting sample. Resistivity ρ is a basic property of a conductor

and probably the most straightforward transport coefficient, determined by the simple

Ohm’s law:

j = ρE (5)

It states that the current density flowing through the sample is proportional to the

electric field applied across the sample. Despite its apparent simplicity, a sophisticated

understanding of the quantum many body physics is needed to account properly for

Ohm’s law in solids [25].

Another transport coefficient, thermoelectric power or Seebeck coefficient S, is

measured in a similarly simple configuration. One extremity of the sample is heated,

which establishes a temperature difference between the ends of the sample. Con-

sequently, an accompanying voltage difference develops between the hotter and the

colder sample end. If the voltage difference is divided by the temperature difference,

one obtains the value of thermoelectric power. Equivalently, S is the coefficient of

proportionality between the electric field and the thermal gradient:

E = S∇T (6)

This quantity is one of the most sensitive probes of the carriers in the system [26]. It

depends on the Fermi energy and the energy dependence of the relaxation time. The

understanding of thermopower often requires a very detailed microscopic knowledge

of the system.

In this chapter we wish to give a short review of the theoretical models which can

explain or predict values of the above transport coefficients. This may guide the reader

in what sense the transport coefficients of the studied materials are conventional or

peculiar. We start by the most elementary model for transport, the Drude model, and

then go on to the Bloch-Boltzmann formalism which gives a more detailed description

of the single particle transport. In the end, we briefly mention some of the the pitfalls

of the Boltzmann equation in the case that strong interactions are present in the

system.
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3.1 Drude model

3.1 Drude model

The simplest model which allows to analyze the transport coefficients was put forth

by Paul Drude at the turn of the twentieth century, shortly after J.J. Thomson’s

discovery of the electron [27]. Even though its foundation is classical, the model

is still oftentimes used as an intuitive and quick way to understand the transport

properties even in complex systems.

Figure 8: Paul Karl Ludwig Drude

(1863−1906) was a German physicist

specializing in optics. He wrote a fundamental

textbook integrating optics with Maxwell’s

theories of electromagnetism. In 1900, he

became the editor for the scientific journal

Annalen der Physik, the most respected

physics journal at that time. In 1906, he

became a member of the Prussian Academy

of Sciences. A few days after his inauguration

lecture, at the age of 42, for unexplained

reasons, he committed suicide.

The basic idea of Drude model is to

treat the electrons in a metal by applying

kinetic theory of gases. Kinetic theory

was developed by Ludwig Boltzmann in

1872. The particles of gas are considered

as identical solid spheres which move in

straight lines until they collide with one

another. The only forces considered are

the ones acting during the collisions, all

other forces are neglected.

Drude applied kinetic theory to the

gas of conduction electrons, consider-

ing that they move against a background

of heavy and immobile ions. There

are several basic assumptions of Drude’s

model. Firstly, there are no interactions

between electrons or electrons and ions

between the collisions. Moreover, colli-

sions are instantaneous and lead to an

abrupt change of electron velocity. The

probability of collision is constant and

equals 1/τ per unit time, whereby τ is

introduced as the relaxation time. Fi-

nally, collisions are the only mechanism

through which electrons achieve thermal

equilibrium.

The external electric field accelerates

an electron to a velocity δv during an in-

terval of time τ , before a collision takes

place:
eE

m
=
δv

τ
(7)

Corresponding, an electric current is established. Its density is proportional to the
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3.2 Bloch-Boltzmann transport theory

electronic charge, velocity, and the total density of electrons:

j = neδv =
ne2τE

m
(8)

The current density is proportional to the applied field. Therefore, a conductor de-

scribed by Drude’s model obeys Ohm’s law, with a conductivity given by:

σ =
1

ρ
=
ne2τ

m
(9)

The most obvious problem with this derivation of the conductivity is that the electronic

mean free paths in normal metals are much too large to be consistent with electrons

simply bumping off the ions. At room temperature τ is typically about 10−14 to 10−15s,
and the mean free path may be as high as 103Å, which amounts to about a thousand

interatomic distances. Another important issue is the temperature dependence of the

conductivity, for which Drude model cannot account.

Drude model assumes that the bulk of the thermal current in a metal is carried

by the conduction electrons, based on the fact that metals conduct heat much better

then insulators do. If a bar of material is maintained at a constant temperature

gradient ∇T , a uniform flow of heat is established throughout the sample. The
thermal current is proportional to ∇T . The hot-end electrons diffuse faster than the
cold-end electrons. In such open circuit conditions, an electric current flows until the

electric field which develops between the sample ends is strong enough to stop the

further charge accumulation. This leads to Equation 6, E = S∇T . In other words,
the steady state is described by the condition that the mean electron velocity due to

the electric field E and the mean velocity due to the gradient ∇T add up to zero
[28]. From this requirement Drude derived the expression for thermoelectric power of

a classical electron gas:

S = − cv
3ne
= −kB
2e
≈ 43µV/K (10)

The real values of thermopower in metals are about 10-100 times smaller, and they are

not necessarily negative. Of course, for a real metal it is in the first place incorrect to

apply the classical equipartition theorem, cv = 3nkB/2. However, the above expression

provides a very useful simple notion of thermoelectric power: it is a measure of the

heat per carrier over temperature, or the entropy per carrier.

3.2 Bloch-Boltzmann transport theory

The equation of motion for the Drude model is based on treating the electron as a

free particle with a mass m and a charge e, which obeys the laws of classical physics.
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3.2 Bloch-Boltzmann transport theory

However, in order to take into account the influence of the band structure on the

transport properties in a crystal, a conduction electron must be described in terms of

Bloch states with the corresponding wave vector k.

An electron accelerated by external fields propagates coherently through the peri-

odic crystal. If a steady electric field is applied, electrons are displaced at a uniform

rate in k-space. This is of course valid unless they are in a completely filled band, in

which case there is no net effect of the electronic motion, and therefore no conduc-

tion. If only the coherent effect of the field was present, the current would increase

constantly. However, there are also scattering processes, such as collisions with lattice

vibrations (phonons) or with impurities. These random events restore the electrons

to a steady state described by an equilibrium distribution [29].

Figure 9: Felix Bloch (1905-1983) was born in

Zürich. Initially studying engineering, he soon

changed to physics. He worked and studied with

Werner Heisenberg, Wolfgang Pauli, Niels Bohr and

Enrico Fermi. In 1933 he left Germany, and emi-

grated to work at Stanford University in 1934. He

and Edward Mills Purcell were awarded the 1952

Nobel Prize for “their development of new ways

and methods for nuclear magnetic precision mea-

surements.”

In fact, the whole formulation

of the Bloch-Boltzmann transport

theory depends precisely on the ex-

istence of an electron distribution.

The crucial conjecture is that there

are single particle-like excitations

such that they may be described by

a time, space and energy-dependent

distribution function, f (k, r, t). In

the thermal equilibrium, the the

probability of state k being occupied

is given by the Fermi-Dirac function,

f0(k). The effect of an applied elec-

tric field or a temperature gradient

is to move the system away from

equilibrium. The occupation of the

state k may in this general, non-

equilibrium case be described by a

function f (k, r, t). Therefore, at the

heart of the theory lies the Landau

quasiparticle concept. The task in

any transport problem is to calculate

the distribution function f . One way

to do so is through the use of Boltz-

mann equation [30].

Suppose f (k, r, t) describes the state of the electronic system at a time t. If no

collisions take place, then at a time t +∆t the new distribution will be related to the
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3.2 Bloch-Boltzmann transport theory

old one in a simple fashion:

f (k, r, t + ∆t) = f (k− k̇∆t, r − ṙ∆t, t)

= f (k, r, t)−
(
k̇
∂f

∂k
+ ṙ
∂f

∂r
+
∂f

∂t

)
∂t

(11)

If the collisions are also taken into account, then the rate of change of the distribution

function may be described by the Boltzmann equation:

∂f

∂t
= −k̇∂f

∂k
− ṙ∂f
∂r
+

[
∂f

∂t

]

collisions

(12)

The final distribution of the electrons among the available states is determined by

a dynamical balance between the coherent effects of the fields (such as electric or

magnetic field, or a temperature gradient) and the randomizing effects of scattering.

Figure 10: Ludwig Boltzmann (1844–1906) was born in Aus-

tria. He was awarded a doctorate from the University of

Vienna in 1866 for a thesis on the kinetic theory of gases.

Boltzmann invented statistical mechanics and made impor-

tant contributions in electromagnetism, and educated a num-

ber of eminent physicists. He was subject to rapid swings

between happiness and sadness, between depressed and en-

thusiastic moods. Due to an attack of depression, he hanged

himself during family holidays.

The most difficult part in

the solution of the Equation

12 is the construction of the

collision term. Treating the

scattering processes exactly

is possible only in the sim-

plest problems. In more re-

alistic situations one often

uses the relaxation-time ap-

proximation instead. This

means that the actual scat-

tering process is replaced

by a set of fully randomiz-

ing events. In such an ap-

proach, the scattering rate,

τk is introduced as an ad-

justable parameter in order

to fit the experimental re-

sults. We will dwell on its

origin and value later. For

simplicity, we may suppose

that τk is uniform over the

whole Fermi surface. Then

at any point of Fermi sur-

face the rate of change of f

has the same form: [
∂f (k)

∂t

]

collisions

= − f (k)− f0(k)
τk

(13)
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3.3 Electrical conductivity

To solve the above equation of motion (Eq. 12) in the presence of an external

electric field, the first step is to identify ṙ with vk, and ~k̇ with −eE. This allows
expressing the field-induced rate of change of the distribution function in a more

comprehensible manner:

k̇
∂f

∂k
+ ṙ
∂f

∂r
= eτkE · vk∂f0

∂ε
(14)

Putting the two parts of the Boltzmann equation together, one arrives at the following

expression for the distribution function in an external electric field:

f (k) = f0(k)− eτkE · vk∂f0
∂ε

(15)

In the presence of a temperature gradient ∇T , one can employ a similar procedure
to find the distribution function. It now has a somewhat more complicated form:

f (k, r) = f0(k, r)− e(−∇T )LTk
εk − εF
T

∂f0
∂ε

(16)

Here, LTk represents the distance which an electron travels before it forgets how hot

it was, and comes into thermal equilibrium with its surroundings. Except in the

relaxation-time approximation, this distance is not necessarily equal to the electri-

cal mean free path Lk = vkτk, the length traveled before the electron forgets where it

was going, and its direction of motion becomes completely randomized [29].

3.3 Electrical conductivity

Once the distribution function is known, the current density j produced by a field E is

given by:

j(r) = − e
4π3

∫
v(k)f (k, r)d3k (17)

Using the Boltzmann equation 15, this becomes:

j(r) = − e
2

4π3

∫
vk(τkE · vk)∂f0

∂ε
d3k (18)

Unless the crystal is cubic, j need not be parallel to E, and they are in a general case

related by a conductivity tensor σi j . However, we may define σ as an average of of

the conductivity components σi i in any three perpendicular directions. Then we have

j = σE for all directions of E. The conductivity is in this case given by:

σ = σ(εF) =

(
e2

12π3~

∫

ε

dSkvkτ
e
k

)

ε=εF

(19)

This very general expression describes conductivity as the product of the area of the

Fermi surface and the average mean free path. In case of free electrons, the formula

easily reduces to the Drude result, σ = ne2τ/m.
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3.3 Electrical conductivity

3.3.1 Metals

For real metals, the characteristic temperature dependence of σ arises primarily from

the changes of the relaxation time, τ . To determine τ , one needs to know the details

of the scattering processes which take place. The lifetime of quasiparticles in a metal

is always affected by impurities, electro-phonon interactions, and by Coulomb scatter-

ing (electron-electron interaction). For these three processes, the lifetime estimates

through the Fermi golden rule are the following [30]:

~/τim ∼ nimpεF
~/τep ∼ kBT
~/τee ∼ (kBT )2/εF

(20)

In the case of magnetic materials, one must also consider scattering on spin waves

and spin disorder.

The resistivity in the relaxation-time approximation obeys Matthiessen’s rule, which

states that the scattering rates for independent processes are additive:

1/τ = 1/τim + 1/τep + 1/τee (21)

At intermediate temperatures, below the melting point, the contribution of the scatter-

ing on phonons dominates. At the very lowest temperatures, the impurity scattering

is the strongest, unless the Fermi liquid is destroyed by the appearance of super-

conductivity. Since at low temperatures the number of phonons is proportional to

(kBT/~ωph)3, in clean samples there is a temperature window where the Coulomb in-
teraction prevails, and the characteristic Fermi-liquid T 2 dependence of the resistivity

takes over.

In ordinary metals, it is the electron-phonon scattering that accounts for most of

the temperature dependence of the resistivity. For a spherical Fermi surface and a

Debye phonon spectrum, the resistivity is given by the following approximate formula

[31]:

ρBG = ρ0 +
16π2λtrωD
4π(n/m)effe2

(
2T

ΘD

)5 ∫ ΘD
2T

0

dx
x5

sinh2 x
(22)

where the denominator of the factor outside the integral defines the Drude plasma

frequency, ω2P = 4π(n/m)effe
2. This expression is known as Bloch-Grüneisen formula.

It gives an excellent phenomenological description of the temperature dependence of

the resistivity for many metals. The residual resistivity ρ0 is proportional to impurity

concentration and is of no particular interest in ordinary metals. In subsequent chapters

we shall see that the origin of ρ0 is not so straightforward in the case strongly correlated

systems, which is why in many of these material it is not yet properly understood.
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3.3 Electrical conductivity

3.3.2 Semiconductors

The temperature dependence of the conductivity in semiconductors arises primarily

from the temperature changes in the number of charge carriers, which occur because

of a finite energy gap. Carriers are much more dilute than in metals, with at most

1019 cm−3 electrons or holes. On the contrary, their mobilities are typically two or
three orders of magnitude greater than in a metal. The conduction occurs when

carriers, electrons and holes, are thermally activated out of filled bands, produced by

doping, or injected otherwise [29].

To calculate conductivity, we integrate Equation 18 supposing that the constant

energy surfaces are ellipsoidal, ~ki = m∗i vi . A component of the conductivity tensor
will then be equal to:

σi i = − e2

4π3kBT

∫
v 2i τf0d

3k = nee
2 〈τ〉
m∗i

(23)

Here, the energy-average of the scattering rate 〈τ〉 is given by

〈τ〉 = τ0
∫∞
0
x3/2+νe−xdx∫∞
0
x3/2e−xdx

(24)

where τ0 is the value of relaxation time at the energy ε = kBT , and the parameter

ν depends on the scattering process. Because the temperature dependence of ne is

exponential, the electrical transport is also thermally activated:

σ = σ0 exp
−εg
kBT

(25)

εg is the energy of the gap between the highest occupied valence band states and the

lowest empty conduction band states, εg = εc − εv.
With respect to metals, an extra feature in semiconductors is the occurrence of a

mechanism alternative to band transport. The presence of localized charge carriers,

due to impurity states, gives rise to hopping. This additional conduction mechanism

typically dominates at low temperatures.

If the interaction between electrons and optical phonons is strong enough, a small

polaron may be formed. It is created when an electron traps itself into its own polar-

ization cloud. At sufficiently high temperatures this object can hop. The mobility of a

small polaron is determined by an energy WH and is proportional to exp(−WH/kBT ).
The energy WH depends on how exactly an electron can transfer form one site to

another. In the adiabatic regime, the sites are near enough for the electron to tunnel

from one to another and back several times during each lattice excitation, and the

small polaron moves rapidly. The non-adiabatic case is one where the electron stands
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3.4 Thermoelectric power

little chance of tunneling during an excited state. In a polar material, another kind of

hopping motion is also present, namely activated hopping from one localized state to

another. The rate of electron jumps is determined by WD, the difference in the energy

levels for various local arrangements of the ions. The jump rate is proportional to

exp(−WD/kBT ). Both WH and WD determine the conductivity gap Eσ. For adiabatic
small polaron hopping the conductivity is [32]:

σaSP ∝ 1
T
exp
−Eσ
kBT

(26)

In the slower, non-adiabatic case

σnSP ∝ 1

T 3/2
exp
−Eσ
kBT

(27)

The prefactors depend on hopping geometry, jump distance and characteristic fre-

quency.

3.4 Thermoelectric power

When a thermal gradient is applied to the electron system, a flow of thermal energy

occurs. The heat current may be determined in complete analogy to the charge

current, using Equation 16 for the distribution function in the presence of a thermal

gradient [29]:

Q = − 1

4π3T

∫
vk(εk − εF)2(−∇T )LTk

∂f0
∂ε
d3k (28)

Just like electrical conductivity, thermal conductivity is generally a tensor defined by

Qi =
∑
j κi j(−∇T )j . If we define κ as the average of κxx , κyy and κzz , then we have

that Q = κ(−∇T ), and the thermal conductivity is:

κ =
π2k2BT

3

1

12π3

∫

εF

dSkvk
Lk
T

~vk
(29)

The heat current produced by ∇T consists of hot electrons (ε > εF) flowing in one
direction and cold electrons (ε < εF) flowing in the opposite sense. If these two rates

of flow are not equal, a total electrical current sets in. In the same way, the electric

field will produce a net heat current. The flow of charge and the flow of thermal

energy are described by:

j = σE+ AT (−∇T )
Q = AE+ κ(−∇T ) (30)

where the factor A is given by:

A =
e

12π3T

∫
vk · Lk(εk − εF)∂f0

∂ε
d3k (31)
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3.4 Thermoelectric power

Therefore, in the open-circuit configuration when j = 0, the heat flow will be accom-

panied by an electric field, E = S∇T . The thermoelectric power is given by:

S =
A

σ
=
1

eT

1

σ

∫
(ε− εF)∂f0

∂ε
σ(ε)dε (32)

If there are several types of carriers present, each type being represented by resistivity ρi
and a characteristic thermoelectric power Si , then to calculate the total thermoelectric

power S we may use the additivity of the factor A:

A = σS =
∑
Ai =

∑
σiSi ⇒ S =

∑
σiSi∑
σi

(33)

The last expression represents the Gorter-Nordheim rule, which is the thermoelectric

analogue of Matthiessen’s rule in electrical conductivity.

Alternatively, thermopower can also be expressed in the following manner [33]:

S =
1

eT

∫
(ε− εF) j(ε)dε∫
j(ε)dε

(34)

This formulation more explicitly states the idea that the thermoelectric power can

be regarded as a measure of the entropy per carrier for the degrees of freedom of

the accessible part of the system. Using this simple concept, one can make an easy

estimate of the characteristic behavior of thermopower in many systems [28].

3.4.1 Metals

The thermoelectric power of a metal may be calculated from the above Equation 32,

using the fact that ∂f0/∂ε is appreciable only in the kB vicinity of the Fermi level εF.

The resulting expression is known as Mott’s formula for thermopower:

S = −π
2

3

kB
e
kBT
1

σ

(
dσ(ε)

dε

)

εF

(35)

From this expression, it is obvious that the thermoelectric power may serve as a very

fine probe of the electronic structure of the metal. It involves both the conduction

processes and the thermodynamics. While resistivity mostly addresses the electron

scattering rate, the thermoelectric power may give information on electronic disper-

sion and density of states. However, due to the large amount of information on the

electronic structure which is stored in this transport coefficient, its behavior is fre-

quently very complicated. In reality the interpretation of the thermopower data is

often a formidable task.
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3.4 Thermoelectric power

Of course, the difficulty of evaluating thermoelectric power comes from the energy

dependence of the conductivity: it is hard to calculate σ, and even harder to determine

dσ(ε)/dε. This is why in many cases we use a set of simplified expressions describing

idealized systems to help us understand the temperature dependence of thermopower

in real materials. In the independent electron model thermopower is given by the two

terms of the Boltzmann formula [34]:

S(T ) =
π2 kB
3e
kBT

[
N(εF)

n
+
1

τ(εF)

dτ

dεF

]
, (36)

where N(εF ) is the density of states at the Fermi level, n conduction electron den-

sity and τ the relaxation time. If in addition we assume that the relaxation time is

independent of energy, we obtain [35]:

S(T ) =
π2k2BT

2eεF
. (37)

This expression allows to calculate the free electron value of Fermi energy.

3.4.2 Phonon drag

In many metals the thermopower has a pronounced ‘hump’ at low temperatures, which

is ascribed to the phonon drag effect. The prerequisites for its appearance are a modest

electron-phonon coupling and the existence of long-range phonons. When a current j

is flowing through a material, the electron-phonon collisions create an unequal number

of phonons moving in the opposite directions. This way a heat current sets in and is

carried by the phonons. Analogously, if there is a thermal gradient ∇T , the number
of phonons in different parts of the system will be unbalanced. Through the collisions

of electrons and phonons, this will lead to a disparity in the electron distribution,

thus enhancing thermopower. The phonon drag gives an important contribution to

thermopower in the intermediate temperature range, normally delimited by fractions

of Debye temperature, θD/10 < T < θD/5. At high temperatures phonon drag is

negligible because the phonon-phonon collisions are frequent enough to establish an

equilibrium. On the other hand, at very low temperatures the thermal energy carried

by the phonons becomes insignificant [29].

3.4.3 Semiconductors

The thermopower of semiconductors is, just like in the case of metals, given by Equa-

tion 32. However, the integral can be simplified considerably. For example, in case of
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3.4 Thermoelectric power

an n-type semiconductor, where the dominant carriers are electrons, the term ε − εF
can be replaced by a constant:

ε− εF = (εc + kBT )− εF ≈ εc − εF (38)

where kBT is negligible in comparison with the energy of the gap which is normally

of the order ∼ 1 eV. Having done the above simplifications, the expression for the
thermopower of a semiconductor is reduced to:

S = −εc − εF
eT

= −kB
e

εg
2kBT

(39)

Immediately we see that the thermopower of a semiconductor will be much larger than

in a metal. Compared to the simple Drude model estimate, metallic thermopower is

by the factor of kBT/εF smaller, whereas for a semiconductor it is larger by a factor

of the order εg/kBT than the thermoelectric power in a metal.

Analogous expression is valid for a p-type semiconductor, but with an opposite

sign. If the material is intrinsic, the numbers of electrons and holes are equal. The

total thermopower is then given by the Gorter-Nordheim rule as a weighted sum of

the electron and hole contributions:

S =
σeSe + σhSh
σe + σh

(40)

The resulting value may be significantly smaller than the separate contributions. The

temperature dependence of the total thermopower is again ∝ T−1, but the value of
the effective energy gap extracted from the Equation 39 would be smaller than the

one given by the resistivity, Equation 25.

3.4.4 Localized systems - narrow band conductors

Whereas one can successfully apply Boltzmann transport equation to wide band metals

and semiconductors, this approach is not valid in the case of systems with localized

charge degrees of freedom. However, to derive the expressions for thermopower in

simple cases it may be sufficient to use the “entropy per carrier” approach, given in

Equation 3.4, along with basic counting arguments [28]. At high temperatures one

can use the following formula for thermopower [36]:

S(T →∞) = −kB
e

∂ ln g

∂N
(41)

Here, g is the degeneracy of the high-temperature state, and kB ln g is configurational

entropy of the system.
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A simple variant of a localized system is described by the Hubbard model, with

transfer integral t and on-site Coulomb interaction U. In the limit of a very narrow

bandwidth, t ¿ U, the N electrons are localized on one of NA individual sites, and
occasionally hop between them. Determining the configurational degeneracy g is a

question of counting in how many ways one can distribute N electrons on NA sites. If

we take a system of spinless particles and define c = NA/N, then:

g =
NA!

N!(N − NA)! ⇒ S = −
kB
e
ln
1− c
c

(42)

This is the original Heikes formula for the thermopower [37]. However, for a fermionic

system one should also take into account the spin degree of freedom for N electrons.

This means multiplying g with a factor of 2N, which modifies the expression for the

thermoelectric power:

S = −kB
e
ln
2(1− c)
c

(43)

Allowing two electrons to occupy a single site simultaneously gives a slightly different

form of thermopower:

S = −kB
e
ln
2− c
c

(44)

Including the nearest-neighbor interactions, described by the extended Hubbard model,

would further influence the thermopower [36]. To compare the above expressions for

thermopower with real systems, the bandwidth of the system should be smaller than

kBT and the thermoelectric power should saturate to a constant value with increasing

temperature.

3.5 Failures of Bloch-Boltzmann theory

and the non-Fermi liquid behavior

If well-defined quasiparticles exist in the material then the transport phenomena can

be described by the Boltzmann equation. In good metals such as copper, at room

temperature the electrons have a long mean free path. As a consequence, their resis-

tivity can be remarkably well described by the Bloch-Grüneisen formula, Equation 22.

However, there are some cases in which Bloch-Boltzmann approach fails to account

for the transport properties.

One class of systems for which the Bloch-Boltzmann theory fails are those where

the collective behavior takes over at low temperatures. A spectacular example of the

destruction of Fermi liquid is superconductivity. Another example occurs in several

quasi-one dimensional metals, which due to nesting of the Fermi surface undergo
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3.5 Failures of Bloch-Boltzmann theory and the non-Fermi liquid behavior

a Peierls instability and at low temperatures feature collective transport occurring

through sliding charge density waves.

Reduced dimensionality not only influences the Fermi surface, but it also enhances

interactions and may thus cause the breakdown of quasiparticles in a non-trivial way.

In one-dimensional systems such as carbon nanotubes, some organic conductors or

quantum wires, the Fermi liquid ground state is replaced by a Luttinger liquid, whose

transport properties clearly differ from those described by the Bloch-Boltzmann theory

[7].

Besides low dimensionality or peculiar shapes of Fermi surface, frustration may

also lead to the breakdown of the Fermi liquid state. The charge degrees of freedom

on a geometrically frustrated lattice may give rise to a large number of low energy

excitations. In some cases, geometrical frustration can destabilize the quasiparticle

formation. For example, in a two-dimensional quantum magnet piperazinium hex-

achlorodicuprate (PHCC), highly frustrated super-exchange interactions destroy the

quasiparticles beyond a certain energy threshold [38].

A more common way to destroy the validity of the Bloch-Boltzmann formulation

of transport is through the presence of disorder or very strong interactions [31]. In

such cases the mean free path between scattering events becomes too short (typically

less than 10 Å) for the quasiparticle to perceive the periodicity of the lattice through

which it propagates. One then often observes non-Fermi liquid behavior: at low

temperatures, the resistivity deviates from the canonical T 2 dependence, and several

other anomalies appear in properties such as specific heat or magnetic susceptibility.

Deviations from Bloch-Boltzmann theory are sometimes observed at high temper-

atures [39]. When a metallic system is heated to a temperature high enough that the

mean free path l becomes comparable to the interatomic spacing d , the resistivity

typically reaches a critical value and saturates, showing no further increase with tem-

perature. The lower limit onto the mean free path before the resistivity should start

saturating is given by Ioffe-Regel condition, l & d . The saturation of resistivity for
l & d occurs for many metals and is simply a consequence of the breakdown of the
semiclassical Boltzmann description. However, there are some exceptions to the rule.

For example, the resistivities of the superconducting cuprates exceed the Ioffe-Regel

resistivity and show no signs of saturation. Similar behavior was observed in alkali-

doped fullerides and in a number of transition-metal compounds. Several among these

systems also exhibit non-Fermi liquid behavior at low temperatures.

Evidently, in strongly correlated systems the semiclassical Boltzmann approach

cannot always be used to describe the transport properties. Instead, the electrons

have to be treated quantum mechanically. Kubo formalism relates the conductivity

to a response function and enables such a microscopic treatment. It allows to derive

corrections to the Boltzmann theory, such as weak localization effects. However,
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3.5 Failures of Bloch-Boltzmann theory and the non-Fermi liquid behavior

although the Kubo formula is in principle exact, in practice it is often hard to evaluate

[31].
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4 Competing orders in a quasi-one dimensional

two-band conductor: BaVS3

So all the doctors in the country were called in to make a report on this case;

and of course every one of them flatly contradicted the other:

else what use is there in being men of science?

(Charles Kingsley, “The Water Babies”)

4.1 Introduction

Quasi one-dimensional systems, whose one-dimensionality comes from the overlap of π

orbitals of flat organic molecules, have very rich phase diagrams, containing numerous

electronic phases (Figure 11). By pressure, these systems can be tuned through a

number of energetically close ground states. A possible way of extending the phase

diagram is to add new degrees of freedom into play, for example by introducing another

band with almost localized electrons. This is precisely the case of BaVS3, in which

electrons at the Fermi level coexist in a broad quasi one-dimensional band and an

isotropic narrow band. The parallel with quasi one-dimensional organic compounds is

one reason why BaVS3 is interesting. Another important point is the analogy with

the narrow-band magnetism in superconducting cuprates. There are several aspects

which relate BaVS3 to the cuprates: the filling of the d-band, the antiferromagnetic

order at zero doping, octahedral coordination of the d-element.

Ever since it was first synthesized in 1968 [40], BaVS3 has not ceased to present all

sorts of puzzles. A plethora of phases originates from the competition of charge, spin,

lattice and orbital interactions. As a consequence, BaVS3 exhibits a remarkable sen-

sitivity to temperature, pressure, magnetic field and disorder, which is reflected in its

rich phase diagram. At ambient pressure, the compound undergoes three continuous

phase transitions. A structural transition from hexagonal to orthorhombic symmetry

takes place at TS ≈ 240K, when the vanadium chains are deformed in a zigzag fashion
and the unit cell is doubled along c-axis. When the temperature is lowered, a metal-

insulator transition occurs at TMI = 70K. Finally, a magnetic transition happens at

TX = 30K, where an incommensurate antiferromagnetic order is established [41]. The

metal-insulator transition is accompanied by a sharp drop in the susceptibility. Despite

this ordering-reminiscent feature, the system remains paramagnetic down to TX.

Very recent measurements on samples with reduced sulphur content infer that in

such conditions charge ordering occurs in the localized electrons sector. The charge

ordering instability competes with the instability of the quasi one-dimensional band,

adding yet more richness to this system.

Based on its structure, BaVS3 is clearly a quasi one-dimensional system. The ba-
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4.1 Introduction

Figure 11: The rich phase diagram of the quasi-one-dimensional TMTTF and TMTSF salts.

It contains a multitude of phases: charge ordering (CO), localization (loc), spin-Peierls (SP),

antiferromagnetism (AFM), spin density wave (SDW), superconductivity (SC), and a metallic

phase. Dimensionality is tuned by hydrostatic and chemical pressure, whereby the metallic

state changes from a one-dimensional Luttinger liquid to a two and three-dimensional Fermi

liquid. Figure is taken from [20].

sic building blocks are chains made by face-sharing VS6 octahedra, spaced by barium

atoms. The distance between the neighboring vanadium atoms in the same chain

is 2.8 Å is more than two times smaller compared to their minimal intrachain dis-

tance, 6.75 Å. The room-temperature structure of the compound is described by the

hexagonal space group P63/mmc .

Despite the structural quasi one-dimensionality, electrically the system is almost

isotropic [42], making it important to understand the occupation of the different vana-

dium orbitals. Counting the electrons gives a nominal V 4+ valence. The vanadium 3d1

electron is contained within the t2g sub-bands. In the hexagonal phase this manifold

is split into a dz2 state and a doubly-degenerate e(t2g) state (Figure 12). A struc-

tural transition from hexagonal to orthorhombic symmetry taking place at TS causes

Jahn-Teller distortion to lift the degeneracy of the e(t2g) orbitals. Remaining dz2 band

and the eg band coexist at the Fermi level. Their filling is of great importance for

understanding the mechanism of the TMI and TX transitions. The structural data [43]

and the calculations based on dynamical mean-field theory [44] indicate that the 3d1

electron is shared equally between the 2 eV-wide dz2 band and the almost dispersion-

less, 0.4 eV-wide eg band. This is consistent with the findings of an ARPES study [45]

and in accord with the Curie constant of the susceptibility down to TMI, which infers
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Figure 12: The crystal structure of BaVS3 is shown with the low-lying vanadium d-orbitals.

The vanadium atoms are placed in the center of each octahedron, whereas the sulphur atoms

are in their corners. Barium atoms and their s orbitals are shown in green. The red and blue

shapes represent the low-lying vanadium d orbitals, dz2 and eg.

a high density of localized moments and indicates that half of the vanadium atoms

carry a moment corresponding to S = 1/2. The low electrical anisotropy suggests

that the eg electrons have a role in conduction in between the chains.

The quarter-filling of the dz2 band would be enough to account for a Peierls in-

stability. Indeed, a commensurate tetramerized structure was observed below TMI
by diffuse x-ray scattering [43]. Curiously, no charge disproportionation larger than

0.01 e− was found below TMI by anomalous scattering at vanadium K-edge [46]. The
susceptibility anomaly at the metal-insulator transition shows that the eg electrons are

involved as well. In our present understanding [47] the charge density wave instability

occurring in the dz2 band due to the commensurability of order four also has a spin

density wave component, which polarizes the eg electrons and brings about a loss of

the susceptibility. Due to the intricate interplay of these two bands, BaVS3 is far from

being a garden variety Peierls system.

The pressure greatly affects electronic interactions in BaVS3 and produces a rich

phase diagram shown in Figure 13. The metal-insulator transition shifts to lower

temperatures and is finally suppressed at the critical pressure, pcr ≈ 2.0GPa. The
phase boundary consists of two parts. A linear decrease of TMI persists up to p ≈
1.75GPa, where the TMI begins to drop steeply towards zero. It is at present not

entirely clear how TX evolves under pressure above 0.5GPa. However, the appearance

of a hysteresis in the resistivity under high pressure, for 1.75 . p . 2.0GPa, hints
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Figure 13: The phase diagram of BaVS3 encompasses numerous electronic states. The inset

shows the temperature dependence of the resistivity for various pressures.

there is a crossing of the TX and the TMI boundaries in the p−T phase diagram. This
would readily explain the sharp drop of TMI down to pcr: when TX is close to TMI, the

internal magnetic field produced by the eg electrons spoils the nesting in the dz2 band by

Zeeman-splitting of the±kF. Moreover, magnetic field can entirely suppress the metal-
insulator transition when pressure is sufficiently close to pcr. Finally, for p & pcr BaVS3
becomes metallic in the whole temperature range. The suppression of the insulating

phase leads to non-Fermi liquid behavior of the resistivity below 15−20K characterized
by a power-law exponent n ≈ 1.5. As pressure is increased, the system is tuned towards
the canonical value of n = 2, recovering the Fermi liquid behavior [48]. The current

understanding of the non-Fermi liquid behavior is based on the existence of charge

fluctuations in the dz2 band even above pcr [47, 48]. The 2kF charge fluctuations result

in a pseudogap on the Fermi surface. The scattering of the conduction electrons on

the remaining islands of charge density wave (CDW) dominates the conductivity and

results in a non-Fermi liquid dependence of the resistivity. Such a scenario for the

non-Fermi liquid behavior is novel: it may have been overlooked in one-dimensional

CDW organic conductors.

Most of the above facts were known before the start of this thesis. The major

task was to explain the high-pressure phase of BaVS3, characterized by the collapse

of the insulating phase. We study how the phase transition and the ground state are

influenced by the external magnetic field in two different field orientations. In addition,

we investigate the influence of magnetic field on the non-Fermi liquid behavior in the
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metallic phase for p > pcr.

Lastly, we focus on an intriguing issue in the physics of BaVS3: its extreme sen-

sitivity to disorder [49]. For example, sulphur content has a very important influence

on the properties of BaVS3. Strongly sulphur-deficient samples are known to exhibit

no metal-insulator transition and to have a ferromagnetic ground state [50]. More-

over, the structural transition occurring at TS can be detected in the resistivity only in

the samples with a stoichiometric sulphur content. We follow the impact of disorder

throughout the phase diagram, employing transport and magnetic susceptibility mea-

surements. To produce defects in a controlled way, we have used two methods. First,

irradiation by a beam of fast electrons was employed to create an estimable number

of point defects. Second, by heating the samples at sufficiently high temperatures,

we could decrease the amount of sulphur to arrive at progressively spoilt samples.

4.2 Resistivity and its anisotropy throughout the phase diagram

The ambient pressure resistivity and its anisotropy are shown in Figure 14. For investi-

gating the pristine BaVS3 we have exclusively used high-quality crystals, characterized

by a high value of residual resistivity ratio (RRR ∼ 50-60) in the metallic phase, at
p ≈ pcr. The resistivity anisotropy, ρab/ρc , was determined through the Montgomery
method [51].

The behavior of resistivity is metallic down to ∼ 120K, where 1D fluctuations
become predominant, and a steady increase takes over down to TMI. High-quality

single crystals exhibit a change of slope at TS. The most prominent feature in the

resistivity is its abrupt increase at the metal-insulator transition amounting to several

orders of magnitude. Below metal-insulator transition, the resistivity may be described

by the activated behavior, ρ = ρ0 exp
∆
kBT
. The gap value ∆ ∼ 530K shows a certain

sample-dependence.

Although it is evident that the transition is driven by a Peierls mechanism, the role

of the eg electrons is not transparent. This was addressed by the measurements of the

optical conductivity [52], as shown in Figure 15. The results uncover a strikingly clear

separation of the contributions to the optical conductivity. The quasi one-dimensional

metallicity of the dz2 band is superimposed onto the isotropic hopping conduction of

the localized eg electrons. To investigate the issue of the distinct roles of dz2 and

eg electrons under pressure, one has to turn to the study of the anisotropy in the dc

conductivity.

At room temperature the resistivity anisotropy, shown in the inset of Figure 14, is

rather small if one takes into account the quasi one-dimensional structure of the com-

pound. The fact that BaVS3 is electrically nearly isotropic may be caused by electron

correlations which strongly reduce the on-chain conductivity, and it also indicates the
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Figure 14: Ambient pressure resistivity measured along the c-axis. Inset shows the resistivity

anisotropy, determined in the Montgomery configuration [51].

importance of the eg electrons in the conduction. A steady decrease of anisotropy

as temperature is lowered is probably due to the contraction which increases overlaps

perpendicular to the chains. The ratio ρab/ρc exhibits a small dip reaching its minimum

value at the metal-insulator transition, when the gap starts opening along the chains,

and then rapidly increases.

When pressure is applied to BaVS3, its structure changes so that the chains are

pressed closer together. This enhances the orbital overlaps between the chains, and

renders the whole structure more three-dimensional. In turn, resistivity takes up a

progressively more metallic character under pressure. The temperature dependence of

the resistivity for various pressures, from 1 bar to about 2.8GPa, is shown in Figure

14.

It is instructive to follow the conduction anisotropy as pressure is applied. Even

though transport measurements are often painstakingly difficult to understand and

interpret, the conduction anisotropy may be a candidate for an order parameter. Fig-

ure 16 shows how anisotropy evolves with pressure in BaVS3. Expectedly, at room

temperature the anisotropy decreases under pressure from ∼ 4 to ∼ 3.4. This means
that conductivity perpendicular to the chains is enhanced more than along the chains,

which implies that the pressure delocalizes eg electrons more than the dz2 ones. How-

ever, a surprising effect takes place below the metal-insulator transition. Pressure

radically changes the overall shape of the anisotropy curve: from an ambient-pressure
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Figure 15: Optical conductivity at T = 10 and 100K with polarization parallel (red lines)

and perpendicular (black lines) to the c axis. Labels A1g and Eg show the assignment of the

different contributions to the dz2 and eg bands. Figure is adapted from [52].
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Figure 16: Left: The temperature dependence of the resistivity under various pressures, from

ambient to 2.8GPa. Right: The temperature dependence of the resistivity anisotropy under

several pressures.

dip at TMI, a pronounced step develops under p > 0.5GPa, evolving into a strong
peak for higher pressures. The metal-insulator transition occurs at the temperature

where the anisotropy has reached half its maximum value. The peak culminates in the
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high pressure phase for pressures slightly below pcr. The maximum measured value of

ρab/ρc = 17, corresponding to the pressure p = 1.8GPa. Above pcr, when the metal-

insulator transition is completely suppressed, the anisotropy shows a monotonous and

featureless decrease down to the lowest temperatures.

The appearance of the anisotropy peak is somewhat unexpected. One would in

fact expect an inverse effect: since the gap initially opens along the chains, this should

lead to a thermal lag in the response of the eg electrons, and consequently a drop

in the anisotropy. We may envision that the interchain conductivity is warranted by

the overlaps of eg electrons with the dz2 band. As the Peierls transition modifies the

geometry of the vanadium chains, this influences the orbitals overlap. Lowering the

temperature recovers the overlap between eg and dz2, leading to a decrease in the

anisotropy.

4.3 Collapse of the insulating phase:

high-pressure magnetoresistivity

At low temperatures and high pressures, 1.5GPa . p 6 pcr, an electronically soft
state of matter arises due to the presence of competing orders. The sudden collapse

of TMI in this pressure region indicates that the transition is more complex than a

smooth pressure-induced three-dimensionalization of the system [47, 48].

Magnetotransport studies performed up to 1.5GPa have shown a characteristic

spin-Peierls response to the applied field [53],

∆TMI(p,B)

TMI(p)
∝

(
B

Bc(p)

)2

where the critical field Bc depends on pressure and scales together with the zero-field

transition temperature:

µBBc(p) = 1.7kBTMI(p)

In this low-pressure region, no broadening of the transition was observed up to the

highest applied field, Bmax = 12T.

For pressures in the vicinity of pcr, a high magnetic field smears out the transition,

until the system is eventually rendered entirely metallic. This is illustrated in Figure

17, which shows the low-temperature part of the resistivity for various magnetic fields.

At 1.8 and 1.9GPa the transition seems to occur in two steps. The doubling of the

phase transition is related to the close proximity of TMI and TX at these pressures.

Notably, the resistivity curves show hysteresis which opens up slightly below the higher

transition step, both for zero and finite magnetic field. The hysteresis is presumably a

consequence of domain existence and their relaxation [54]. Both steps of the transition
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shift down in temperature as the magnetic field is increased, but at the same time

they widen considerably. In the set of curves for p = 1.8GPa, the first step moves

from the zero-field temperature of 17K down to the B = 12T value of 14K, whereas

the second, lower step has a significant shift from 14K to 7K. When pressure is

increased to 1.9GPa, the main effect of the magnetic field is the suppression of the

transition rather than its shift. A field of B = 12T erases the second part of the

transition, and brings about a reentrant metallic behavior below 5K. At 1.95GPa,

where metal-insulator transition occurs at 7K a magnetic field of 12T is sufficient to

completely restore the metallic phase.

In the phase diagram, the insulating phase rapidly collapses for pressures above

1.7GPa. This collapse is attributed to the strong interaction of the dz2 and eg elec-

trons, leading to the rapid spoiling of the nesting. Pressure decreases the amplitude

of the CDW, by reducing the nesting. On top of that, the internal magnetic field

generated by the eg electrons further diminishes the nesting by the Zeeman splitting

of ±kF . The coupling of the magnetic field to the spins of the eg electrons increases
their destructive influence, which results in a suppression of the Peierls tetramerization

and removal of the charge gap even below pcr.

Shown influence of the magnetic field on the metal-insulator transition hints that

the internal magnetic field of the eg electrons is crucial for the collapse of TMI near

pcr. This suggests that the TMI crosses with TX above p ∼ 1.7GPa. Magnetic
field exerts a strong influence on the properties of BaVS3 even beyond the critical

pressure. For p & pcr, the ground state is a metallic non-Fermi liquid, and by increasing
the pressure this ground state can be tuned towards a Fermi liquid. It has been

demonstrated, for a particular orientation of the magnetic field, B ⊥ c , that the
magnetoresistivity behaves very differently in these two phases. For p ∼ pcr, low-
temperature magnetoresistivity decreases monotonously in magnetic field, reaching a

drop of 20% in a field of ∼ 9T. Beyond that field, a rapid increase takes over up
to Bmax = 12T, and the magnetoresistivity reaches positive values. On the contrary,

when p > pcr, low temperature magnetoresistivity is positive in the whole field-range.

It first shows a steep increase up to ∼ 6T, then a brief decrease, only to resume the
monotonous increase at a slightly lower rate.

Figure 18 displays the results of a field applied parallel to the chain-axis, B ‖ c . The
top-panel data were taken for p = 2.0GPa, which is in the immediate vicinity of the

critical pressure. The bottom panel shows the field dependence for p = 2.7GPa, where

the system is close to Fermi liquid behavior. In both cases, the magnetoresistivity

curves distinctly differ from their B ⊥ c counterparts [47]. Both in the non-Fermi
liquid and in the Fermi liquid phase the field enhances resistivity up to ∼ 5T, but
above that value the magnetoresistivity drops precipitously and becomes negative.

To explain magnetoresistance in case of B ⊥ c at p ∼ 2.8GPa, it has been pro-

43



4.3 Collapse of the insulating phase: high-pressure magnetoresistivity

0.1

1

10

0 5 10 15 20 25 30

0.02

0.04

0.06

0.08

0.10

0.1

1

10

100

(m
cm

)

   0T
   6T
 12T

 

 

1.90 GPa

(m
cm

)

   0T
   4T
   6T
 12T

 
 

T(K)

1.95 GPa

(m
cm

)

   0T
   2T
   4T
   6T
   8T
 10T
 12T

 

 

1.80 GPa

Figure 17: Temperature cycles of the resistivity in magnetic field, perpendicular to the c-axis,

at three pressures close to pcr. Magnetic field suppresses the phase transition and shifts the

TMI to lower temperatures.

posed that the field liberates the dz2 electrons trapped in the remaining islands of

CDW fluctuations [48]. Based on the B ‖ c magnetoresistivity data and on magne-
toresistivity in BaVSe3, we believe this scenario is not likely.

The initial decline of magnetoresistivity when a field B ⊥ c is applied in the
non-Fermi liquid phase may be understood in terms of a field-induced ordering of
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the remaining antiferromagnetic and paramagnetic domains. When all of the non-

ferromagnetic remnants at p ∼ pcr are aligned, the resistivity rises in increasing field
like in an ordinary metal, due to the orbital motion of electrons. Surprisingly, this initial

downturn is not seen for the parallel field orientation and a diminishing magnetore-

sistance is observed above ∼ 5T. Therefore, the non-monotonous field dependence
of the resistivity is more likely to come from a strong interaction between eg and dz2

electrons. The external field causes eg spin canting, which strongly influences the

resistivity.

Nevertheless, the magnetoresistivity measured at higher temperatures (T & 7K)
is characteristic of a paramagnetic metal. The field promotes better alignment of the

eg spins, reducing in turn the scattering of the conduction electrons on disordered

magnetic moments and reducing the resistivity.

4.4 Thermoelectric power

The temperature and pressure dependence of thermoelectric power of BaVS3 have

previously been discussed in considerable detail [47]. The novel results presented

here mainly concern the thermopower anisotropy and its behavior in the presence of

magnetic field under high pressure.

Before embarking upon a more detailed analysis of thermopower in BaVS3, it is fair

to remark that even in expectedly much simpler systems this transport coefficient is not

properly understood. For instance, the interpretation of thermopower in a number of

transition metals is still at a rather rudimentary stage [33, 55]. The experimental data

are abundant, but this topic has seldom been discussed by theorists. As an example,

even the thermopower in platinum is not properly understood. Since platinum is a

good metal, one would expect the thermopower to be described by Mott’s formula:

S = −π
2

3

kB
e
kBT
1

σ

(
dσ(ε)

dε

)

εF

(45)

Even though above 50K this coefficient is linear in temperature, if the high-temperature

part is extrapolated to T = 0K, one encounters a large offset of 9µV/K whose origin

remains unexplained. An obvious suggestion is that there may be some additional

degrees of freedom which carry the entropy. However, their provenance is a so far

unanswered conundrum.

The detailed temperature dependence of the thermopower in BaVS3 [47] is shown

in Figure 19. The complex structure of this transport coefficient in BaVS3, reflected

in the abundance of “fine features”, suggests that a two-band model is clearly indis-

pensable for its understanding:

S =
σ1S1 + σ2S2
σ1 + σ2

(46)
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Figure 18: The magnetic field dependence of the resistivity at several fixed temperatures. The

field is oriented parallel to the chain axis, B ‖ c . The upper panel shows magnetoresistivity in
the non-Fermi liquid region, p ≈ pcr, the data in the bottom panel correspond to the Fermi
liquid phase.

Here, indices 1 and 2 stand for the two d-electron bands, dz2 and eg. Figure 20

shows the ambient-pressure temperature dependence of thermoelectric power for two

different directions of the thermal gradient, Sc and Sab. Generally, thermoelectric

power may be regarded as a sum of the diffusive and the entropy contribution. The

black curve in the inset, Sc(T ) or S(T ) for short, may in this sense be qualitatively

separated into several temperature-dependent components. A linear part, possibly

describable in terms of a Mott contribution, governs the high-temperature behavior.

Its extrapolation into T = 0 is non-zero, which is why we assume the presence of

a temperature-independent contribution of approximately −7µV/K, whose origin has
been suggested as polaronic. Below 150K, a wide hump shapes up, exhibiting a
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Figure 19: The temperature and pressure dependence of the resistivity and the thermoelectric

power. Figure adapted from [47].

maximum around 100K.

Last discernible contribution to thermopower is a giant peak which appears just

below TMI and reaches 550µV/K at T = 40K. This peak occurs in the semiconducting

phase of BaVS3. As we have seen in the previous chapter, the thermopower of a

semiconductor is given as a weighted sum of hole and electronic contributions, Se and

Sh, where:

Se = −kB
e

εg
2kBT

The temperature dependence of S(T ) below the metal-insulator transition indeed

follows the above 1/T law. The existence of a peak may be related to the changes in

the mobility of the carriers below the transition, or alternatively to the change in the

number of carriers.

The shape of Sab(T ) is very similar to S(T ) above the metal insulator transition.

The change of slope below TS is very pronounced in Sab(T ), but otherwise the most

important difference is that the magnitude of thermopower perpendicular to the chains

is several times larger than the one parallel to the chains. The main panel of Figure

20 shows the anisotropy of thermopower. Just like the conductivity anisotropy, it has

a rather small value of Sab/Sc ∼ 3 and very little temperature dependence down to
the metal-insulator transition.

When pressure is applied, the thermopower develops in a rather complicated fash-

ion, as it can be seen in Figure 19. The offset decreases in absolute value until

the pressure approaches 1.0GPa, at which point the becomes positive and continues
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orthogonal orientations of the thermal gradient. The inset displays thermoelectric power

along c-axis, and in the ab plane. The sharp increase below TMI is followed by a large peak in

thermopower (not shown).

growing until the highest applied pressures, p ≈ 2.8GPa. The high temperature linear
term remains present, with a practically unchanged slope. The structure around the

metal-insulator transition evolves through various peaks and dips. The behavior of

thermopower is particularly complex in the region near pcr, where the metal-insulator

transition rapidly collapses. Finally, there is only one low temperature peak left under

high pressure.

For a given pressure, we define S0 as a temperature-independent contribution to

thermopower, with respect to the highest pressure thermopower:

S0(p, T ) = S(2.8GPa, T )− S(p, T )
The present and the previous results [47] show that the application of pressure reduces

S0. For this reason, it has been suggested that the offset in thermopower may be

tentatively explained in terms of a polaronic contribution [47]. Because the eg electrons

are slow and almost localized, they interact more with the lattice. Hence, when the

eg electrons propagate, they also carry the lattice deformation. At low temperatures,

below θD, this contribution naturally disappears as polarons become too heavy for

thermal motion. With pressure eg electrons become more delocalized and mobile, so

the S0 term decreases.
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Figure 21: Thermoelectric power is shown for the pressure p = 1.6GPa, in zero magnetic field

and in the field B = 12T. The inset zooms on the temperature dependence of thermopower

around the metal-insulator transition. Dashed lines represent resistivity, which is shown for

comparison.

In order to verify whether the broad hump in S(T ) involves magnetic fluctuations

participating in the heat transport, we have measured the magnetic field dependence

of thermopower. At atmospheric pressure and a constant temperature (T = 85K),

S showed no observable magnetic field dependence, for 0T 6 B 6 12T. In addition,
the measurements of thermopower at B = 0T and at B = 12T gave identical

temperature dependencies for 25K 6 T 6 300K.

In the low-pressure phase, the influence of magnetic field on the thermopower is

practically insignificant. However, at higher pressures, p & 1.5GPa, this is no longer
the case. Curiously, the magnetic field influences thermopower already below 100K,

which is rather far from the metal-insulator transition. The latter transition happens

below 30K which is already in the proximity of the low-temperature magnetic transi-

tion. The major effect of the field is that it drastically suppresses the low temperature

peak in thermopower, which appears just below the metal-insulator transition. This

is shown in Figure 21 for p = 1.6GPa. The inset shows a blowup of thermopower in

the medium temperature range, together with resistivity for comparison. The ther-

mopower peak slightly above metal-insulator transition corresponds to the minimum in

the resistivity. The local minimum in S(T ) corresponds to the transition temperature,
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TMI. As it was mentioned above, a possible reason behind this peak in the thermopower

is that the temperature influences the mobility and/or the number of carriers. Such

a radical influence of the magnetic field suggests that the main contribution to the

thermopower in the low-temperature phase comes from the eg electrons. Presumably,

these electrons may be somewhat ordered by the external field, whereby the entropy

they carry is reduced. On the other hand, the metallic dz2 electrons seem not to be

too much affected by the field.
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Figure 22: The temperature dependence of thermoelectric power for three pressures slightly

below pcr, in zero magnetic field and in the field B = 12T.
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To gain more insight into the origin of the two peaks in thermopower, one can

follow how they evolve with pressure and magnetic field. Figure 22 shows thermopower

measured for three pressures closely below pcr, in zero field and in 12T. The B =

0 curves exhibit an apparent trend: the pressure gradually reduces both peaks in

thermopower, influencing the low-temperature peak more dramatically, until the two

peaks seemingly blend together at 1.95GPa. The resulting single peak centered at

20K in thermopower at 1.95GPa has been ascribed to phonon drag. This is consistent

with the fact that in most metals phonon drag appears between for θD/10 < T < θD/5,

and that in BaVS3 the ambient pressure Debye temperature was determined to be

θD = 180K. Of course, θD may be expected to increase under pressure, but probably

by a very small amount in the present pressure range.

For 1.8 and 1.9GPa, the magnetic field of 12T wipes out the peak centered at

25K. The peak at 7K is reduced by the field at 1.8GPa, but it is enhanced at 1.9GPa.

The difference between the thermopower with and without magnetic field points to the

presence of magnetic fluctuations at temperatures as high as 100K. This is in stark

contrast with the magnetoresistivity measurements presented in Figure 17, where all

the curves for a given pressure collapsed onto each other above 25K. The suppression

of a significant portion of S(T ) by magnetic field and the absence of any effect in ρ(T )

signifies that the origin of a large part of thermopower below 100K may be ascribed

to the eg electrons. In the conductivity, their contribution is smaller than that of dz2

electrons. However, since they are almost localized, they do have an important impact

on the thermoelectric power.
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Figure 23: Left: Temperature dependence of thermopower at 2.3GPa in zero magnetic field

and in 12T. Right: Magnetic field dependence of thermopower at several fixed temperatures.
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The thermopower at 1.95GPa has a shape characteristic of the high-pressure

phase, where the low-temperature peak was recognized as a signature of the phonon

drag. However, it is puzzling that the magnetic field should shift the temperature of

the phonon drag maximum, since the field is not expected to influence the phonon

distribution. This is why we are induced to suppose that the “phonon drag” con-

tains not only a phononic part, but also a contribution of magnons. In such a picture

the external magnetic field aligns spins and thus reduces a part of electronic entropy,

lessening the magnonic contribution to the heat transport.

Under a higher pressure of 2.3GPa, as shown in the left panel of Figure 23, the

thermopower looks very similar to the one for 1.95GPa. The only differences are

an increased offset S0, which is the overall trend for this material under pressure as

discussed above, and a slightly stronger low-temperature peak in zero field, to which

we shall come back shortly. The fact that there is no shift of the low-temperature peak

with respect to the 1.95GPa data is consistent with the phonon drag interpretation.

The right panel of Figure 23 shows dependence of thermopower on magnetic field, at

a series of fixed temperatures. A steady increase at low temperatures persists up to

10T, where the thermopower saturates. This is replaced by a monotonous decrease

for T > 10K. The observed field dependencies are compatible with the magnon drag

picture. However, like at lower pressures, the magnetic field seems to influence the

magnitude of thermopower far beyond the phonon and magnon drag contribution,

almost up to 100K.
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high pressure phase (p > pcr), as the system is tuned from non-Fermi liquid to Fermi liquid

behavior.
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Finally, we turn our attention to the overall evolution of the thermopower from p ≈
pcr, where BaVS3 exhibits non-Fermi liquid properties, towards higher pressures, where

resistivity approaches the canonical Fermi liquid behavior. The signatures of non-Fermi

liquid behavior have mostly been seen in the resistivity. It is interesting to see whether

one can find traces of anomalous behavior in the thermopower, and how this would

evolve as the system recovers the Fermi liquid behavior. In thermopower it is difficult

to identify the effect of anomalous scattering because there is no direct dependence

of S(T ) on the relaxation time τ . Instead, it is the energy dependence of τ that

enters into the expression for thermopower. Presumably, pressure exerts a negligible

influence on the phonon drag. This assumption is based on the measurement of

thermopower of platinum [56], where it was shown that the phonon-drag contribution

remains unaltered under pressure. Figure 24 shows the quantity ∆S defined by:

∆S = [S(T, p)− S(T, pcr)]− [S0(pcr)− S0(p)] (47)

The change in the diffusive part of the thermopower relative to its value at pcr, ∆S,

may be viewed as a signature of non-Fermi liquid behavior in the thermopower. It

represents the contribution to S(T ) which is suppressed in the non-Fermi liquid phase

and which emerges when the Fermi liquid behavior is recovered.

4.5 Influence of disorder

Already through the early studies of sulphur-deficient samples, BaVS3−δ, it has be-
come evident that disorder and off-stoichiometry influence the phase transitions and

play a major role in the physics of this compound. The orthorhombic phase transition

at TS ≈ 250K has only been observed in high quality samples. In addition, strongly
sulphur-deficient samples exhibit a ferromagnetic ground state, in contrast to the anti-

ferromagnetism of the pristine compound. Most systematic previous study of the role

of disorder in BaVS3 was performed on strontium-doped samples. Partially replacing

barium by strontium atoms influences the metal-insulator transition temperature, the

magnetic nature of the ground state, the phase diagram, and the properties of the

metallic high-pressure phase. Noteworthy, in Ba1−xSrxVS3 the effect of disorder is
coupled to that of chemical pressure.

In order to decouple the effects of disorder from those of chemical pressure, here

we focus on two types of disorder: point defects, produced by fast electron irradiation,

and sulphur deficiency, produced by heating at elevated temperatures. We present a

systematic study of the influence of disorder on the ambient-pressure phase transitions,

on the phase diagram and on the high-pressure metallic phase.

Throughout this section we study the influence of disorder on the metal-insulator

transition throughout the phase diagram. Samples with defects can serve to confirm
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the Peierls nature of the transition. Since no charge disproportionation was observed

below TMI [46], it is still not firmly established what is the mechanism of the metal-

insulator transition. In many classical charge or spin density wave systems it has been

studied how the radiation damage influences the phase transition. Studies of several

systems featuring a Peierls phase transition have shown that point defects locally

perturb the coherency of the static charge ordering, and may ultimately prevent the

system from long-range ordering. A similar response of the metal-insulator transition

in BaVS3 to point defects may also suggest that its origin is in the long-range density

wave formation. Furthermore, the presence of disorder may shed light on the coupling

between the dz2 and the eg electrons in the vicinity of pcr.

4.5.1 Controllable ways of introducing disorder

As a final part of their synthesis, samples of BaVS3 are put in high-pressure sulphur

atmosphere and kept for several days in the furnace, at temperatures between 600

and 700◦C, to ensure a good sulphur stoichiometry. In reverse, heating stoichiometric
samples in vacuum very rapidly leads to sulphur deficiency. For example, keeping a

good BaVS3 sample at 630
◦C for 10 minutes reduces the sulphur content by 5-10%. A

noticeable loss of sulphur atoms begins already at ∼ 400◦C, and in between these two
temperatures it is possible to tune the deficiency rather precisely. To study the role of

sulphur deficiency under ambient pressure, we have successively heat-treated a large

single crystal, cut in two pieces. One part was used for the resistivity measurements,

and the other one for determining the susceptibility. At high pressures, in order to

compare samples of different quality it is vital that the measurements are performed

simultaneously, which ensures that the pressure is almost exactly the same. To this

end, we have used a starting high-quality crystal and cut it in four pieces. Three pieces

were heated at different temperatures, and the last piece remained unspoilt, providing

us with a series of samples with δ varying from 0 to ∼ 0.05− 0.1.
Another kind of disorder one can introduce into pristine BaVS3 samples are point

defects. Irradiating the samples by fast electrons injects interstitials and vacancies

by knock-on collisions. Several long needle-like crystals were cut perpendicular to the

chain direction. We used six samples, coming from two single crystals. The starting

crystals are of high quality, which is evidenced by a sharp metal-insulator transition

at ambient pressure and a high residual resistivity ratio (RRR ∼ 50) in the metallic
phase, under 2.0GPa. The samples obtained by cutting the starting crystals across

the chain direction have typical dimensions 1.25× 0.20× 0.20mm3. The irradiations
are carried out with 2.5MeV electrons in the low temperature facility of the Van de

Graaff accelerator at the LSI of Ecole Polytechnique in Palaiseau. Electron fluences

ranging from 0.0 up to 6.65 ·1019e−/cm2 are applied to various pieces of the cut single
crystals. The irradiation is performed with the samples immersed in liquid hydrogen, at
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the temperature of 20K. The electron flux is limited to 1014 e−/cm2s to avoid heating
of the samples during irradiation. The thickness of the samples (∼ 200µm) is small
compared to the penetration depth of the electrons, warranting homogeneous damage

throughout the samples. Ambient pressure resistivity is measured in situ, along the

VS3 chains.

4.5.2 Influence of point defects

Three transitions take place in the pristine system at the ambient pressure. In contin-

uation, we focus on two of them: the metal-insulator and the magnetic transition.

The top panel of Figure 25 shows the temperature dependence of the resistivity,

for a single sample repetitively treated by electron radiation. The measurements of

resistivity are performed in situ, at ambient pressure, directly after irradiating the

sample and annealing it for a brief interval of several minutes at 100K. The defects

produced by irradiation are fairly sensitive to thermal migration, which is why the

temperature range of the measurement is limited to 20− 80K. The resistivity of the
sample above the MI transition increases under irradiation. The lower panel of the

Figure 25 shows the logarithmic derivative d(log ρ)/d(1/T ) in the same temperature

range. The transition at 70K in the pure sample shifts to lower temperatures, and is

significantly widened by the presence of defects. In fact, before the TMI is decreased by

10K, the metal-insulator transition is already completely smeared out. The broadening

and the shift of the transition under the influence of defects has been seen in several

systems that undergo a CDW transition [57]. Such behavior is reminiscent of a Peierls

mechanism driving the metal-insulator transition. Because the defects pin the phase

of the density wave, the long-range three-dimensional coherence between the chains,

which is needed for the Peierls transition, is weakened. The transition is thus shifted

to lower temperatures and gradually suppressed. The decrease of TMI is monotonous

and approximately linearly dependent on electron fluence, as it can be seen in the

Figure 26.

The resistivity at temperatures below the MI transition decreases as the electron

dose is increased. After irradiating the sample by a fluence of 3.14 · 1019e−/cm2,
the resistivity at 35K decreases by more than 20 times. There are two reasons for

the lowered resistivity. Firstly, the defects introduce localized states through which

electrons can hop, enhancing the conductivity of the insulating phase. Secondly, the

semiconducting gap is weakened because the pinning effect decreases the coherence

volume of the CDWs. The value of the semiconducting gap decreases as the irradiation

dose grows, from the initial value of ∼ 530K to ∼ 440K after the dose of 3.14 ·
1019e−/cm2. Here, the values of gap are extracted from the temperatures dependence
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Figure 25: The temperature dependence of resistivity (top panel) and its logarithmic derivative

for the same single crystal irradiated by different electron fluences. The sample was kept below

100K, except in the case of the last two curves where the annealing time and temperature is

indicated in the parentheses.

of the resistivity between 50 and 30K, using a fit to the activated behavior:

ρ = ρ0 exp
∆

kBT
. (48)

A similar disorder-induced decrease of the gap has previously been observed in several

CDW systems [57].

When the samples of BaVS3 are irradiated by the flux of fast electrons at the

temperature of 20K, various scattering processes may take place, resulting in dis-
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Figure 26: The dependence of the transition temperature on the electron fluence, during the

irradiation of four different samples. The samples were maintained on temperatures below

100K.

placements in all the three atomic sublattices. The cross-sections for Ba, V and S

atoms depend on the value of the threshold energy, Ed , which is the minimum en-

ergy necessary to eject an atom from its site. Typical values of Ed range from 10

to 30 eV depending on the structure and material. For example, Ed values for O and

Cu displacements in YBa2Cu3O7−δ are respectively 10 and 15 eV [58] As BaVS3 is a
rather open structure, we may suppose that the values of Ed are relatively low. The

number of defects created per VS3 unit is nd = σ
i
d · φt where σid is the cross-section

for displacing the atom i from its site and φt is the electron fluence. Calculations of

nd , by taking for instance Ed = 5eV for S and 15 eV for V, lead to a total number

of displaced V and S atoms per VS3 plane nd = 2.0 · 10−2 for an electron fluence of
1019 e−/cm2. Here we do not consider the defects in the Ba sublattice because Ed for
Ba is presumably large and moreover, these defects would not be expected to have

such an important influence onto the physics of BaVS3 as S and V defects. Finally,

even though this absolute value of nd may not be very accurate, it allows a comparison

between the different crystals studied.

Annealing the sample at room temperature drastically reduces the concentration

of impurities. From a sample irradiated by 3.14 · 1019e−/cm2, shown in Figure 25,
where the transition is practically wiped out, the annealing at 300K for several days

57



4.5 Influence of disorder

recovers the phase transition at a temperature with only a slightly less sharp peak in the

logarithmic derivative, and merely ∼ 1K lower than in the pure sample. This indicates
that a vast part of the defects are easily recombined through thermal diffusion. The

peak in the resistivity derivative of the 3.14 · 1019e−/cm2 curve is positioned between
the peaks of the curves measured in situ after irradiation fluences of 0.19 and 0.3 ·
1019e−/cm2. Using the above estimates of displacement cross-sections, this would
correspond to nd ∼ 5 · 10−3, i.e. 0.5% V and S displacements per unit formula. Since
the sulphur atoms are expected to thermally migrate easier than the vanadium atoms,

when the sample is annealed by warming up to room temperature, it is likely that the

majority of remaining defects are in the V sublattice.

Another way of estimating the number of defects which remain after electron irra-

diation and a subsequent annealing at 300K is through a measurement of magnetic

susceptibility. We have investigated three pieces of the starting single crystal, irradi-

ated respectively by the total electron fluences of 3.3 · 1019e−/cm2, 1.6 · 1019e−/cm2
and 0.0 e−/cm2. The irradiated samples showed a decrease in the TMI of 1.9K and
0.8K, respectively. For a pure BaVS3 sample, the temperature dependence of mag-

netic susceptibility shows a 1/T behavior down to TMI, a sharp anti-ferromagnetic-like

drop below the MI transition, and a negligible Curie tail below ∼ 15K [42]. The
presence of defects does not influence the high temperature part significantly, but it

considerably increases the low-temperature Curie contribution. The magnitude of the

Curie tail due to the presence of defects can be evaluated using the following formula:

χ =
Ndef µ

2
ef f

T
(49)

Here Ndef is the density of defects, and µeff is their effective magnetic moment.

If we assume that the majority of the defects in the samples are due to spin-1/2

cations V4+ and spin-1/2 anions S−, we obtain that the effective spin-only moment is
µeff ≈ 1.73µB. Using the above formula, we may estimate that the density of defects
corresponding to a fluence of 1019e−/cm2 and a subsequent annealing at room tem-
perature for several days approximately equals 0.5% of defects per unit formula. The

latter result is approximately a factor of three off the estimate we got from the above

calculation using the cross-sections for V and S atom displacements, which implies

that there may be other non-negligible contributions to the Curie tail.

As we have seen, the MI transition in BaVS3 can be completely suppressed by

introducing disorder. Another way to do so is to apply hydrostatic pressure to the

sample. The temperature dependence of the resistivity under various pressures, for a

pristine sample and a sample with irradiation-produced point defects, is shown in Figure

27. The external pressure gradually diminishes nesting, destroying the tetramerization

along the chains, which leads to a decrease of TMI and a complete suppression of the

insulating phase under pcr ≈ 2.0GPa [59].
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Figure 27: Temperature dependence of the resistivity at different pressures, shown for a pristine

sample (straight line) and a sample irradiated by a fluence of 6.27 · 1019e−/cm2.
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Figure 28: The temperature dependence of resistivity for three pieces of the same single crystal

irradiated by different electron doses, under 2.8GPa.

When p ≥ 2.0GPa, in a pure BaVS3 sample the Peierls transition is suppressed and
a metallic state persists down to T = 0K. Figure 28 shows the resistivity curves for

three parts of a single crystal sample, irradiated by different electron fluences, under

a high pressure, p = 2.8GPa. When defects are introduced into the sample, the

resistivity is enhanced in the whole thermal range. We focus on the high temperature

range. In particular, above ∼ 150K the temperature dependence of the resistivity
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4.5 Influence of disorder

becomes progressively more linear as the defect density increases. A similar progression

can also be seen in the resistivity curves at lower pressures, shown in Figure 27. Such

an effect of defects on the shape of the resistivity indicates that there may be a

change in the energy dispersion of a collective mode responsible for the conduction

electron scattering in this temperature range. Since at such high temperatures the

electronic scale is expected to give less temperature dependence, a remaining possibility

is that the introduced defects alter the phononic energy spectrum. For example, if

point defects broaden the phonon dispersion, by modifying the elastic constants, then

there may be more phonons available for electron-phonon scattering already at lower

temperatures than in the pristine sample. This in turn lowers the temperature where

a term linear in temperature appears in the resistivity. By Raman spectroscopy, two

possible candidates were found: ∼ 193 cm−1 and ∼ 350 cm−1 modes [60], which
appear in the temperature range relatively close to room temperature. Finally, such

a phononic interpretation of the high-temperature part of the resistivity is in accord

with our rather elevated estimate of the defect density, of the order of one percent.

4.5.3 Sulphur deficiency

Sulphur deficient samples are fairly easy to prepare: it is sufficient to heat them. In

comparison to electron irradiation, controlled heating of the samples can also produce

much more disorder. Whereas in the irradiated samples the defects obviously recom-

bine very efficiently, the loss of sulphur is irretrievable. What is more, because the

procedure of eliminating sulphur is so simple, it is also more feasible to perform various

types of measurements successively on the same starting sample.

Sulphur deficiency causes defects in the structure which pin the CDW and scatter

the charge carriers similarly to irradiation-induced defects. But there is also a more

dramatic effect. The decreased charge transfer from vanadium to sulphur sites in

BaVS3−δ is expected to result in the increase of the filling of the vanadium d-bands.
This means that the commensurability is spoiled, hence influencing the phase tran-

sitions. Figure 29 shows selected steps in heat-treatment of a high-quality starting

sample. As δ increases, metal-insulator transition is gradually smeared out. The

highest temperature reached was 630◦C. The resistivity for the consequent sulphur
deficiency δ is represented by the blue curve in the main panel of Figure 29, which

shows that there is no trace of a metal-insulator transition. Another BaVS3 sample

heated at a similar temperature has been analyzed in the group of J.-P. Pouget and

it was found that δ is in the range 5-10%.

Inset of Figure 29 shows the shift of TMI with respect to the number of times the

sample has been heated. The steps were uniform in temperature, starting from 410◦C,
up to 560◦C. TMI was extracted from the resistivity and susceptibility measurements. It
is worth noting that, in comparison with results shown in Figure 25, TMI can be shifted
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Figure 29: Main panel displays the temperature dependence of the resistivity of a consecutively

heated sample. The arrow indicates growing sulphur off-stoichiometry, δ. The inset shows the

reducing of TMI as the sample is desulphurized.

to lower temperatures than in irradiated samples, before the transition is completely

suppressed.

Another way to follow the influence of sulphur deficiency is through the temperature

dependence of magnetic susceptibility, which is displayed in Figure 30. The cusp in

the susceptibility at TMI, characteristic of the pristine compound, is gradually smeared

out. Eventually, when no transition can be traced in either ρ or χ, the ground state

of the system becomes ferromagnetic. The inset shows the Curie dependence of a

stoichiometric sample, which crosses the axis for θ < 10K. The sulphur-deficient

sample with δ ∼ 5− 10% shows a transition to ferromagnetic state at Tc ≈ 20K.
The transport coefficients in such a highly sulphur-deficient sample differ greatly

from the pristine system. Figure 31 shows the resistivity and thermoelectric power in

a wide temperature range. The resistivity is weakly metallic above ∼ 400K, cross-
ing over into a semiconducting behavior below that temperature. In the logarithmic

derivative there is only a very broad maximum centered at 80K, and no discernible

transitions. Below 30K the slope of increase diminishes, probably due to conduction

via impurity levels.

The thermopower is radically different from that of the pristine system. The high-

temperature behavior is metallic, but with a slope twice smaller than in the stoichio-

metric compound and a large offset S0 = 20µV/K. Below 300K the thermopower

starts to decrease. The steep drop below ∼ 140K is interrupted by a strong peak
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Figure 30: The temperature dependence of the magnetic susceptibility of a progressively

desulphurized sample of BaVS3. The arrow indicates increasing sulphur off-stoichiometry, δ.

The inset shows a comparison between the starting sample, where metal-insulator transition is

discernible and the ground state is antiferromagnetic, and the final state of a sample with δ ∼
5-10%, where the phase transition has been wiped out and the ground state is ferromagnetic.
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Figure 31: Left, main panel: The temperature dependence of the resistivity of a strongly

sulphur-deficient sample, δ ∼ 5-10%. Right: Thermoelectric power up to high temperatures.
The inset shows a blowup of the low-temperature part of resistivity and thermopower curves.

The ferromagnetic transition takes place at 20K.
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reaching 0µV/K. This narrow peak is centered at 20K, which is precisely where the

ferromagnetic ordering takes place.

The resistivity and thermopower of strongly sulphur-deficient BaVS3 indicate that

the metal-insulator transition is suppressed, and probably replaced by another instabil-

ity whose signature is found at high temperatures, when both the transport coefficient

change their behavior from metallic to semiconducting.
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Figure 32: The temperature dependence of the resistivity of four pieces of a high-quality

starting single crystal of BaVS3 under p = 1.8GPa. Labels indicate the temperature of the

heat treatment, except in the case of the pristine sample, which was not heated. Arrows mark

the direction of the thermal hysteresis, which is the same for all the four samples.

The effect of sulphur deficiency on the high-pressure phase is analogous to that

of point defects. To illustrate this, Figure 32 shows low-temperature dependence of

resistivity at 1.8GPa for four pieces of a single starting high-quality sample, heated at

different temperatures, hence containing different amounts of off-stoichiometry. This

is reflected in their ambient pressure values of TMI, which span from 69.8K in the

pristine sample to 67.9K in the sample heated at 570◦C. A clear trend is suppression
of the metal-insulator transition as δ increases. The transition is not only pushed

to lower temperatures, but also considerably widened as sulphur deficiency grows.

Although ρ is increased in the metallic phase, T ≥ 20K, it is continuously reduced
below the transition. However, we note that the four curves all show similar hysteretic

behavior.

63



4.5 Influence of disorder

4.5.4 Phase diagram in the presence of disorder

The left panel of Figure 33 shows the phase diagram of BaVS3 in the presence of

defects, in comparison to a pure sample. We observe that the TMI phase boundary is

shifted to lower pressures and lower temperatures as the number of defects increases.

The pcr for a sample irradiated by 6.27 · 1019e−/cm2 is 0.3GPa lower than for the
pristine sample. We believe that the reason there is a decrease in TMI is the same as

for the ambient pressure: adding the defects pins the phase of the CDW in the dz2

band, which weakens the coherence between the chains. The semiconducting gap is

related to the transition temperature through the mean field relation ∆ = mkBTMI.

They are both determined by the energy gain which results from lowering the electronic

states energy due to the lattice deformation. If the 3D coherence volume of the CDWs

is reduced by pinning effects on defects, the electronic energy gain is diminished and

so is the Peierls gap. In case of BaVS3, m ≈ 12 and seems to be approximately
independent of pressure up to ∼ 1.8GPa [61] and of defect concentration.
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Figure 33: Left panel: Phase diagram of a pristine sample of BaVS3, compared to two

samples where different doses of defects were introduced by electron irradiation. Right panel:

A tentative phase diagram for the sulphur-deficient samples. The absolute value of the off-

stoichiometry displayed on the x-axis is rather approximate, 0.05 6 δmax 6 0.1.

The most interesting part of the effect of point defects on the phase diagram

is in the vicinity of pcr. In the pristine sample the insulating phase rapidly collapses

above 1.7GPa [54] This collapse is attributed to the strong interaction of the dz2 and

eg electrons. When pressure decreases the amplitude of the CDW, by reducing the

nesting, the internal magnetic field generated by the eg electrons further diminishes

the nesting by the Zeeman splitting of ±kF . When point defects are present, they not
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only pin the CDW, but also introduce disorder into the ferromagnetically arranged eg
electrons. The long range magnetic order of the eg electrons is then reduced and the

collapse of the insulating phase becomes more gradual than for the pristine sample.

The phase diagram for the sulphur-deficient BaVS3 is proposed in the right panel

of Figure 33. It is based in part on our transport measurements of a strongly deficient

sample presented above, but it heavily relies on the structural studies performed in the

group J.-P. Pouget, which we briefly resume below.

Figure 34: X-ray pattern taken on BaVS3−δ, with δ ≈ 5 − 10%, at T > 140K. The arrows
point towards the observed q′ satellite reflections, with q′ = (2/3, 0, 0.21 ± 0.01). The
observation of a three-dimensional regime of fluctuations indicates a charge modulation in the

eg sector, as suggested in the scheme on the right [62].

The x-ray studies of BaVS3−δ with δ ≈ 0.05-0.1 show evidence of a new in-
stability [62]. At Tc ≈ 140K a short range modulation with a wave vector q′ =
(2/3, 0, 0.21 ± 0.01) was observed, and this is shown in Figure 34. The absence of
metal-insulator instability at q = (1, 0, 1/2) has also been confirmed. In contrast to

the one-dimensional nature of metal-insulator transition, the q′ instability is character-
ized by a three-dimensional pretransitional regime of fluctuations. Similar structural

features have been found in strongly strontium-substituted samples [63], as well for

the samples where vanadium was substituted by niobium and titanium [49]. It has also

been seen that in all the cases studied (including sulphur deficiency and various substi-

tutions) the hexagonal-orthogonal structural transition is shifted to low temperatures.

Consequently, it appears that any kind of perturbation of the pure BaVS3 system leads

to a similar ground state [63, 49]. The competition of the q and q′ charge modulations
results from the fact that the two instabilities are never observed simultaneously. The

q′ instability seems not to be related to a particular type of chemical substitution or
deficiency. Due to the three-dimensional nature of the q′ modulation, it is probably
related to a charge ordering of the eg electrons.
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4.6 High pressure metallic phase:

From non-Fermi liquid to Fermi liquid behavior

One of the major unresolved issues in condensed matter physics is non-Fermi liquid

(NFL) behavior in metals. Such behavior is commonly observed in several heavy-

fermion materials in the proximity of a T = 0 quantum critical point, for example

when the metallic antiferromagnetic (AFM) phase is suppressed by pressure. NFL

phases are also encountered in f -electron Kondo alloys [64], where correlation effects

strongly enhance the impact of the extrinsic disorder and lead to the breakdown of

Fermi-liquid behavior.

In BaVS3, an NFL phase has been discovered under high pressure almost a decade

ago. In contrast to f -electron systems, BaVS3 is a 3d-electron compound where the

conduction electrons are far from being heavy, meff ≈ 7me [52]. The metal-insulator
transition has a first order nature immediately below pcr, which brings in question the

quantum critical scenario. The high values of RRR ∼ 50 − 60 assert that this is a
very clean system in which disorder may not play a role similar to that in the NFL

Kondo alloys.

Although the relevance of the quantum critical scenario for BaVS3 is not certain,

analogies may be conjectured between this compound and the heavy-fermion systems

on the verge of a magnetic instability. In the latter compounds, scattering off the

quantum-critical AFM spin fluctuations leads to “hot lines” around the Fermi surface

- portions connected by the ordering wave vector Q. This is where the gap would open

in the antiferromagnetically ordered phase. In BaVS3, our current understanding is

that the 2kF charge fluctuations of the dz2 band partially gap the Fermi surface, in the

analogy with “hot spots”, and give the non-Fermi liquid character to the resistivity

[47, 48]. This novel NFL scenario relies on the existence of tetramerized islands

above pcr, on which the conduction electrons scatter. Because the tetramerization

is quickly suppressed by pressures higher than pcr, this scenario also explains why the

NFL behavior is restricted to a very narrow pressure window.

There is yet another point of similarity between the systems where NFL behavior

is governed by the proximity to an AFM quantum critical point and BaVS3. In both

cases, the anomalous NFL phase is restricted to a small portion of the phase diagram

close to the suppression of the phase transition. The NFL behavior is, on the contrary,

robust in heavy fermion Kondo alloys where disorder drives the anomalous properties

of transport. Similarly, the NFL resistivity in the cubic itinerant-electron ferromagnet

MnSi is insensitive to pressure from 1.5GPa to at least 5GPa.
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4.6.1 Influence of the disorder

In the majority of known cases, the presence of disorder is of paramount importance

for the appearance of non-Fermi liquid physics. In the case of proximity to a quantum

critical point, the disorder influences the power law exponent. Moreover, it seems

that the presence of small amounts of disorder is vital for the manifestation of NFL

behavior [65]. In Kondo alloys, which make another well-represented class of NFL

systems, the disorder enhances the effect of strong correlations and leads not only to

NFL behavior, but to a genuine breakdown of quasiparticles.

The only exception we are aware of is MnSi. In that system, the electrons have

very long mean free paths on the order of 5000Å [66, 67]. In contrast to BaVS3,

the NFL phase is remarkably robust to pressure, as it persists from 1.5GPa up to at

least 5GPa. The NFL state seems not to be connected to any instability. In three-

dimensional MnSi, the sensitivity to fine-tuning of the interactions seems to be absent,

and the disorder seems to have no influence on the NFL behavior.

In case of quantum-critical AFM spin fluctuations, scattering is anomalous only

along “hot spots”. For a perfectly clean system, the strong scattering near “hot”

parts is short-circuited by the “cold” regions of the Fermi surface, where the scat-

tering rates are small [68], which leads to a Fermi liquid response, ρ = ρ0 + AT
2.

However, in the presence of disorder, the impurity scattering is sufficient to average

the scattering rate over the Fermi surface and to bring about a manifestation of NFL

physics. Furthermore, in a wide class of systems the anomalous behavior is very likely

induced by the interplay of quenched disorder and strong electronic correlations [23].

Recently, A. Rosch performed theoretical calculations in the frame of semiclassi-

cal Boltzmann equation for electrons interacting with spin fluctuations and impurities

[65]. First of all, he showed that in the case of AFM metals in proximity of a QCP, the

required purity for a T 2 behavior to be observed is experimentally inaccessible. The

quantity of disorder is parameterized by x ∼ 1/RRR. According to the calculations,
even minute amount of disorder leads to a NFL dependence of the resistivity. Only

for x = 0 would an exponent n = 2 be observed. Furthermore, he demonstrates that

in those systems disorder tunes the exponent n from 1 in clean samples to 1.5 in dirty

samples. Such is indeed the case of CePd2Si2: as RRR changes from 5 to 50, the

power law exponent is tuned from nRRR=5 ∼ 1.5 to nRRR=50 ∼ 1 [69]. The experi-
mentally observed non-Fermi liquid behavior, n < 2, can in the theoretical treatment

be understood in terms of a nearly antiferromagnetic Fermi liquid. Importantly, the

disorder plays only an auxiliary role and is not the driving mechanism for the NFL

behavior.

On the other hand, Miranda et al. [64] have shown that in Kondo alloys, which

have very low RRR values, disorder may lead to a Fermi liquid breakdown and the
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Figure 35: The resistivity exponent n defined by ρ = ρ0 + AT
n, for a number of samples

of varying residual resistivity ratio, RRR. The pressure is fixed, p ≈ pcr. Different colors are
used to distinguish the samples produced by introducing point defects from the samples whose

sulphur content was varied.

appearance of a linear resistivity with a negative coefficient, ρ ≈ ρ0−AT . The reason
behind this scenario is that the cooperative effect of correlation and disorder generates

an extremely broad distribution of Kondo temperatures, leading to the destruction of

coherence and ultimately to invalidity of the Fermi liquid picture.

The dependence of the NFL behavior BaVS3 in the presence of disorder does not

seem to fit into either of the above pictures. Figure 35 shows how the exponent n

depends on the sample purity quantified by the RRR value, at pressure p ≈ pcr. Here,
n is determined from fitting ρ = ρ0+AT

n to the resistivity data from 1.6K to ∼ 15K.
RRR value is calculated as ρ(300K)/ρ0. The graph includes values of the exponent

both for the samples with point defects, and for the sulphur deficient samples. The

trend is exactly the inverse of what seems to be the case for NFL behavior in the

proximity of the AFM quantum critical regime: as the crystal quality improves from

RRR < 15 to RRR > 60, the exponent n is tuned from 1.46 towards 1.63.

Previous measurements done on high-quality single crystals of BaVS3, character-

ized by RRR ∼ 60, showed that close to pcr, the exponent takes up the canonical NFL
value n ≈ 1.50 [47]. The discrepancy between those results and the ones presented
here may be attributed to the extreme sensitivity of n to the applied pressure. This

brings us to another particularity of BaVS3. As pressure is increased from pcr, there

is a clear tuning of the exponent from n ≈ 1.5 at 2.0GPa to n ≈ 2 for p ∼ 3GPa,
when the system is far in the metallic phase.
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Figure 36: Left: The pressure dependence of the exponent n and of the relative change of

residual resistivity, ∆ρ0 = ρ0(p)−ρ0(pcr), for three pieces of the same starting sample, treated
by different doses of electron irradiation. Right: The pressure dependence of n (top) and ∆ρ0
(bottom) for three pieces of the same sample, heated at different temperatures and hence

with varying sulphur off-stoichiometry.

Figure 36 shows how this transition from a NFL towards a FL regime is affected by

the presence of impurities. We remark that although the presence of defects lowers the

exponent n, their presence modifies neither the pressure dependence of the exponent,

nor that of the parameter ρ0. In a simple picture, the presence of disorder pins the

CDW fluctuations and thus enhances their impact on the scattering of the conduction

electrons. This results in a stronger anomalous scattering and consequently in a

decrease of the power law exponent n.

4.6.2 Influence of the magnetic field

The NFL behavior in heavy-fermion systems in the vicinity of a quantum critical point is

strongly influenced by the magnetic field. The interpretation is that the field quenches
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the spin fluctuations, which drives the system away from the quantum critical point

and in this way restores the Fermi liquid behavior. If a similar mechanism occurs in

BaVS3, this should be evident in the field dependence of the exponent n.
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Figure 37: The magnetic field dependence of the resistivity exponent n, for a high-quality

sample in the field orientation perpendicular to the c-axis (left) and parallel to the c-axis

(right).

The parameters which describe the power law dependence of the ground state

resistivity, ρ0, A and n, show a certain degree of dependence on the magnetic field.

Figure 37 shows how ρ0 and n change in function of the magnetic field, for two different

orientations: B ⊥ c and B ‖ c . At low pressures, p ∼ pcr, the exponent n remains
significantly below the Fermi liquid value of n = 2.0, for both field orientations. Field

oriented along chain axis increases n by a small amount, ∼ 0.1. To the contrary,
the same magnitude of magnetic field applied perpendicular to chains reduces n by

∼ 0.2, pushing the system even deeper into the non-Fermi liquid state. When p > pcr,
the field augments n towards the Fermi liquid value, independently of its orientation.

Expectedly, the other parameter ρ0 mimics the low-temperature field dependence of

the resistivity, in all of the above considered cases.
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4.7 Conclusions

As we have discussed previously, the magnetoresistivity is very likely dominated by

the interaction of dz2 and eg electrons. Magnetic field may cause canting of the spins

in the eg sector, which through the correlation effects influences the scattering of

the dz2 electrons. Spin canting may account for a non-monotonous field dependence

of the magnetoresistivity at p ∼ 2.8GPa. However, the fact that the magnetic field
apparently does not restore the Fermi-liquid behavior means that the mechanism which

is responsible for NFL is not significantly influenced by magnetic fields up to 12T when

p ∼ pcr. On the contrary, when the pressure is high enough, the field seems to increase
the exponent n towards its Fermi liquid value.

Arguably, the most important observation here is that the NFL behavior, when

p & pcr, is robust to magnetic field. This confirms that the anomalous scattering
leading to a NFL resistivity exponent comes from the dz2 electrons. The ordering

of the eg spins does not seem to influence the existence of the charge fluctuations

significantly.

4.7 Conclusions

In this chapter we have addressed several interesting and important aspects of the

physics of BaVS3, encompassing the interplay of magnetism and the metal-insulator

transition, the influence of disorder on the phase transitions, and the stability of the

NFL behavior with respect to magnetic field and impurities.

The resistivity anisotropy was determined throughout the phase diagram. At room

temperature anisotropy decreases under pressure, inferring that pressure delocalizes

eg electrons more than the dz2 electrons. A large peak in the σc/σab develops at

higher pressures. The origin of this sudden decrease of conductivity in the ab plane is

currently not understood, but may be related to the proximity of the metal-insulator

and the magnetic transition.

The collapse of the transition in the region 1.7GPa < p < pcr was addressed by

magnetoresistivity and thermoelectric power measurements. We have found that the

phase transition is doubled. Magnetic field suppresses TMI, but also shifts it to lower

temperatures. The temperature and magnetic field dependence of thermoelectric

power has been studied in detail. We have shown that the magnetic fluctuations are

present up to T = 100K in the high-pressure phase. Our results also suggest that

the phonon drag term probably also contains a magnon contribution. The part of the

thermopower is suppressed in the NFL phase and recovered at pressures considerably

above pcr.

By introducing interstitials and vacancies by knock-on collisions, the metal-insulator

transition is progressively smeared out and shifted to lower temperatures. Under high

pressure, the TMI line in the phase diagram is pushed towards lower values of pressure.
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4.7 Conclusions

The collapse of the TMI is much less pronounced in samples with impurities than in

the pristine compound. Whereas in clean BaVS3 the collapse comes from the internal

magnetic field of eg electrons which spoils the nesting of the dz2 band, in the samples

with disorder the ferromagnetism of eg electrons is weakened and ceases to produce

a sharp drop in the TMI.

In the final part we have addressed the influence of disorder and magnetic field on

the NFL phase and onto its pressure-tuning towards canonic FL behavior. Our finding

is that, in contrast to the previous theories for NFL behavior in the vicinity of an

antiferromagnetic quantum critical phase, the resistivity exponent n decreases as the

amount of disorder is enhanced. Similarly, at variance with heavy fermion compounds,

the magnetic field is found not to influence the NFL behavior.
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5 The effect of chemical pressure in BaVS3:

model compound BaVSe3

I have had my results for a long time

but I do not yet know how to arrive at them.

(Gauss)

5.1 Introduction

BaVSe3 is a sister-compound of BaVS3, in which sulphur atoms are replaced by iso-

valent but somewhat bigger selenium atoms. It was first synthesized in 1979, in order

to ascertain the influence of the ligand on the electronic and magnetic properties of

BaVS3 [70]. The main interest in studying the selenide compound is to address a point

which is of particular interest in understanding the physics of BaVS3: the magnetic

groundstate of the compound throughout the whole pressure range.

The room temperature structure of the selenide is same as that of the sulphide.

However, due to the size difference between sulphur and selenium, the interchain

orbital overlaps are larger in BaVSe3, making it very similar to the high-pressure phase

of the sulphide compound. Slightly above room temperature, BaVSe3 crystalizes in the

hexagonal P63/mmc lattice. Vanadium chains, directed along c-axis, form a triangular

lattice in the ab plane. Each vanadium atom is surrounded by a trigonally distorted

octahedron of chalcogen atoms. The unit cell contains two vanadium sites along the

chain. Barium atoms lay between the chains in twelve coordinated sites. Due to the

difference in the chalcogen sizes, the unit cell in BaVSe3 is slightly larger than in the

sulfide. The V-V distance along the c-direction is 2.93 Å, and perpendicular to the

chains 7.0 Å. For comparison, these values are 2.8 Å and 6.75 Å in the sulfide. A

structural transition from hexagonal to orthorhombic unit cell was reported to take

place between 290-310K [70].

Because of the enhanced interchain orbital overlaps, in contrast to the antifer-

romagnetic insulating groundstate of BaVS3, the selenide was found to be metallic

in the whole temperature range [71], just like BaVS3 at 2.7GPa. Furthermore, it

undergoes a ferromagnetic transition at Tc ≈ 43K. The ferromagnetic groundstate
of BaVSe3 places it next to the sulphur-deficient compound, BaVS3−δ, with similar
values of the saturated moments, µeff ≈ 0.3µB in both cases [71]. However, an im-
portant difference is that in BaVSe3 there is one magnetic vanadium site, whereas in

the sulphur-deficient BaVS3−δ there are two such sites. In addition, the resistivity in
BaVS3−δ is semiconducting, unlike the metallic resistivity in the selenium compound.
This points to the fact that the electronic state of the selenide is rather itinerant, while

the sulphur-deficient system is more ionic in nature. The ferromagnetic groundstate of
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5.2 Ambient pressure properties

BaVSe3 corroborates with the idea that this system corresponds to the high-pressure

metallic phase of BaVS3.

Although a synthesis of single crystals was reported in the in the original work

of Kelber et al. [70], the properties of single crystal BaVSe3 have not been studied

so far. All the transport and magnetic measurements were performed on ceramic

samples. The ferromagnetic transition could be clearly observed in such samples at

ambient pressure. However, due to the existence of grains, the absolute value of the

resistivity was unreliable. Besides, it was impossible to analyze the low-temperature

functional dependence of the resistivity, which is important for comparison with the

high-pressure power-law dependence of the resistivity in the metallic phase of BaVS3
and the transition from non-Fermi liquid to Fermi liquid behavior which we discussed

in the previous chapter. Furthermore, it is important to investigate the behavior

of BaVSe3 under pressure. When pressure is applied to ceramic samples, the main

effect is the grain compression. This leads to unreliable pressure dependence of the

resistivity, and it also turns that from transport measurements done on such samples

under pressure it is difficult to extract precise pressure dependence of the ferromagnetic

transition temperature, Tc .

This chapter contains a comprehensive study of magnetic and transport properties

of high-quality single crystals of BaVSe3, characterized by residual resistivity ratio

(RRR = ρ(300K)/ρ0) of typically 50. To compare our results with the theoretical

predictions, we discuss the generalized gradient approximation calculation of the band

structure in BaVSe3. The main result is that in many of its properties BaVSe3 bears

a strong resemblance to the high-pressure phase of BaVS3. However, the physics

of BaVSe3 does not seem to exhaust in comparisons to BaVS3. Instead, some other

findings - such as pressure and magnetic field enhancement of the power-law exponent

n - challenge our understanding of the supposed “high-pressure limit” of BaVS3.

5.2 Ambient pressure properties

5.2.1 Transport coefficients

The temperature dependence of the transport coefficients, resistivity and thermoelec-

tric power, was determined at ambient pressure from 1.5K to 650K on a high-quality

single crystal of BaVSe3. The resistivity is shown in the left panel of Figure 38. In the

previously studied ceramic samples, the room temperature value of the resistivity was

approximately three times larger than the present value, ρceramics ∼ 1.8mΩcm. The
ceramic samples had a residual resistivity ratio of ∼ 3, whereas for our single crystal
RRR ≈ 50.
The overall shape of the resistivity curve greatly resembles the high pressure resis-
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Figure 38: Temperature dependence of resistivity is shown in the left panel. The arrows mark

the temperature of the ferromagnetic phase transition, Tc , which can be better distinguished

from the inset showing the derivative of the resistivity. The right panel demonstrates the clear

T 2 dependence of resistivity below 15K.

tivity in BaVS3. At 300K, the value of resistivity is 0.57mΩcm, which compares

very well to the high-pressure value of resistivity in BaVS3, ρ(300K, 2.8GPa) =

0.55mΩcm. The low-temperature part is particularly interesting with respect to

BaVS3. We have seen that above pcr ≈ 2.0GPa the low-temperature resistivity of
BaVS3 may be described by a power-law temperature dependence:

ρ = ρ0 + AT
n (50)

with n ≈ 1.5 in the very beginning of the metallic phase, and n → 2 when the system
is tuned far from pcr. In BaVSe3, the ambient-pressure temperature dependence of

resistivity below ∼ 15K may be described by a power law. The values of the parameters
extracted from such a fit are the following: ρ0 = 12.9µΩcm, A = 1.16 · 10−4mΩcm,
and n = 2.00 ± 0.01. Indeed, a clear T 2 dependence may be seen in the right panel
of Figure 38.

In the resistivity we can not discern any signatures of a structural transition from

hexagonal to orthorhombic symmetry which supposedly occurs around 300K [70].

Instead, our data show that above 200K the resistivity is linear, indicating that the

dominant mechanism in the high temperature range is scattering on phonons. An

abrupt change in the slope of the resistivity appears below 42K, where ferromagnetic

ordering takes place. Below 200K and down to Tc , the resistivity drops with a more

pronounced slope, which seems to be correlated with the change of the symmetry seen

by the magnetic moments [72]. We shall address this point in more detail later on.
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5.2 Ambient pressure properties

Figure 39 shows the temperature dependence of thermoelectric power in BaVSe3.

Again, the shape of the curve is qualitatively very similar to the high-pressure phase of

BaVS3. The high-temperature part of the curve (100K < T < 500K) is linear, just

as it is characteristic of metals. To obtain an approximate value of the Fermi energy

EF, we may apply the formula describing the thermopower of a free electron gas with

an energy-independent scattering rate:

S = −π
2k2BT

2|e|EF (51)

This gives EF ≈ 0.52 eV. However, instead of extrapolating into zero for T = 0 as
the above Mott formula would predict, the thermopower of BaVSe3 has a significant

offset 11.2µV/K. The origin of this temperature-independent contribution may be

polaronic, like it was suggested in the case of BaVS3, or it might be more general, which

is not addressed in the literature. Apart from the high-temperature linear behavior,

thermopower displays a wide hump centered around 100K, and a low-temperature

maximum at ∼ 20K. The corresponding low-temperature maximum in BaVS3 has
been attributed to phonon drag. However, as we have shown in the previous chapter,

the low-temperature contribution observed in BaVS3 under high pressure has a strong

magnetic field dependence. It is therefore very likely to include a magnon contribution.
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Figure 39: The ambient pressure temperature dependence of the thermoelectric power of

BaVSe3 is shown for up to 600K. The arrow marks Tc , the temperature at which the ferro-

magnetic ordering occurs.

Besides the qualitative similarity of the sulphide and the selenide resistivity curves,

the fact that their thermopower is also very similar firmly establishes BaVSe3 as a
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5.2 Ambient pressure properties

high-pressure counterpart of BaVS3. The high-temperature part of the high-pressure

phase of BaVS3 is presently experimentally inaccessible, since the pressure cell which

is normally employed cannot be heated above 350K. Measuring BaVSe3 also indicates

what sort of temperature dependence of the transport coefficients are expected up to

650K in the sulfide compound under ∼ 3GPa.

5.2.2 Magnetization and susceptibility

The measurements of the magnetic properties of BaVSe3 was performed in collabo-

ration with the Institute of Physics in Zagreb. Due to very small masses of individual

samples, magnetic susceptibility was measured on a collection of a hundred single

crystals of BaVSe3, using the Faraday method.
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Figure 40: The temperature dependence of the magnetic susceptibility of BaVSe3 (left scale),

and of its inverse (right scale).

Figure 40 shows the temperature dependence of magnetic susceptibility in the

paramagnetic regime from 43K to 330K. The reverse susceptibility, 1/χ, is also

displayed. We note that neither in this property can a structural transition be dis-

cerned in the vicinity of 300K. Paramagnetic susceptibility obeys Curie-Weiss law,

χ = C/(T −Θ), practically in the entire temperature range. The fit to Curie-Weiss
plot, 1/χ = T/C − Θ/C gives the following values for Curie constant C and Curie-
Weiss temperature Θ: C = 0.244 emuK/mol, Θ = +44K. Positive Θ signifies

ferromagnetic interaction of spins which results in ferromagnetic ordering below 43K.

Effective magnetic moment obtained from Curie constant in the paramagnetic regime

is µeff = 1.397µB. Effective magnetic moment reported in [71] is slightly larger,

1.42µB. The reason for this discrepancy is that the authors subtracted the tempera-

ture independent diamagnetism, χdia = −1.5 · 104 emu/mol, thus increasing the value
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Figure 41: Left: Temperature dependence of M/H at several different fields below Tc . Also

shown is paramagnetic susceptibility above Tc . Right: Field dependence of magnetization M

at several different temperatures below Tc .

of susceptibility. To fully incorporate the temperature independent part of susceptibil-

ity, the Van Vleck paramagnetic susceptibility should also be subtracted. The value of

this contribution is usually ≈ 10−4 emu/mol, so diamagnetic and paramagnetic tem-
perature independent susceptibilities nearly cancel. This is why here Curie-Weiss fit

was done on measured susceptibility without subtracting any temperature independent

parts. The effective moment is somewhat higher than the ambient pressure value in

the paramagnetic phase of BaVS3, µeff = 1.2µB. The g-factor obtained from the

Curie constant is g = 1.61.

Below 43K magnetization increases rapidly with decreasing temperature. The left

panel of Figure 41 shows temperature dependence of M/H measured in several dif-

ferent fields ranging from 0.02T to 0.12T. The right panel of Figure 41 shows field

dependence of magnetization at several different temperatures below Tc . Magnetiza-

tion displays saturating behavior after very rapid increase in low fields (H < 0.1T).

Similar field dependence was also observed in reference [71]. As can be seen from the

left panel of Figure 41, M/H at certain temperature is larger for smaller fields, which

is the effect of the rapidly saturating behavior of the magnetization shown in the right

panel. This is the reason why M/H we measured in small fields is almost two orders

of magnitude larger than the one shown in [71] - the authors of that previous study

applied a field of 1T compared to 0.12T in our case. Also shown in Figure 41 is the

paramagnetic susceptibility of BaVSe3 in the temperature range 43 < T < 60K.

The properties of the ferromagnetic phase below Tc were also investigated by
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5.3 Band structure calculations

means of torque magnetometry and the measurement of susceptibility anisotropy [72].

Here we will briefly mention some of the most important findings. The angular de-

pendence of torque in the magnetic field discloses that the system is a ferromagnet

with uniaxial polarization. The absolute value of the torque determined at 4.2K is

about twenty times higher when the magnetic field is directed parallel to the c-axis

then in an orthogonal configuration. In the case of a uniaxial ferromagnet, this implies

that the large component of the magnetic moment is oriented along the c-axis, which

contrasts the theoretical predictions based on group theory and symmetry arguments,

claiming that the large component is in the ab plane [73]. The torque measurement

also allowed the effective moment to be determined, giving µeff = 0.65± 0.2µB. The
large error is due to the fact that the single crystal used has a tiny mass of 7± 2µg.
The correlation between the magnetic susceptibility and the torque in the param-

agnetic phase implies that below 200K the magnetic moments see a changing sym-

metry. Interestingly, this is exactly the temperature below which the resistivity starts

decreasing with a larger slope. Finally, the susceptibility anisotropy confirms that a

rotation of magnetic axes starts happening below 200K. This quantity, defined by

∆χ = χab−χc , is very close to zero at high temperatures, but starts increasing below
270K and reaches a local maximum at 75K, only to change trend and exhibit a sharp

drop below. The temperature where it changes sign and becomes negative is 62K,

and this corresponds to a reorientation of the magnetic axes in such a way that the

c-axis becomes the most paramagnetic direction at low temperatures. The behavior

of the susceptibility anisotropy suggests that there is possibly a continuous structural

transition, or that the selenium cages may be deforming around the vanadium atoms.

We remark that the above observations of the change of the magnetic symmetry

may be relevant to our understanding of the magnetic fluctuations observed in BaVS3
under high pressures, by means of thermopower measurements in a magnetic field.

Upon applying a magnetic field we could detect a significant contribution persisting

up to 100K in the thermopower, while nothing could be perceived in the resistivity. We

deduced that such a term must be attributed to the eg electrons, since they are less

significant in the overall conductivity but in contrast have an important contribution

to the thermoelectricity. The finding that the magnetic axes start rotating in BaVSe3
below 200K gives additional reasons to believe our interpretation of the magneto-

thermopower in BaVS3 is correct.

5.3 Band structure calculations

In order to compare the experimental results obtained for the BaVSe3 single crys-

tals with the theoretical predictions, the density functional theory (DFT) based band

structure calculations were performed in collaboration with Institute of Computational
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5.3 Band structure calculations

Condensed Matter Physics (IRRMA) at EPFL. Since the DFT is a ground state theory

it is reasonable to compare only those experimental results which were acquired at low

temperatures. The electronic structure of BaVS3 has proven to be quite complex, in

that it needs to describe a multiorbital system in which a number of electronic phases

occur. It turned out to be of crucial importance to include the effects of strong correla-

tion and the coexistence of itinerant and localized electrons [74, 44]. On the contrary,

the electronic structure of BaVSe3 does not seem to require the consideration of the

effects of strong correlations.
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Figure 42: The band structure is shown for the spin majority channel (top) and the spin

minority channel (bottom), with the density of states for the corresponding k-space mesh.

All the band calculations were done using DFT. Spin-dependent generalized gradi-

ent approximation (GGA), in the PBE functional form, and scalar-relativistic ultrasoft

pseudopotentials are employed as implemented in the Quantum Espresso computer

package [75, 76]. Electron wave functions and augmented densities are expanded in

plane waves with cutoff energies of 35 and 400Ry respectively. Starting atomic con-

figuration is taken from experiment and full atomic relaxation is performed in order

to find an equilibrium structure. Murnaghan equation of state is used for calculating

the equilibrium lattice constant. Pressures are determined by the stress tensors that
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5.3 Band structure calculations

are calculated by scaling the unit cell with factors of 0.97, 0.94, 0.90. Validity of this

approach was tested with Parrinello-Rahman variable-cell molecular dynamics [77] at

the constant pressure for the last case. The cell remained hexagonal and the c/a ratio

was constant during the simulation.

Calculations of the lattice constant gave remarkably good agreement with experi-

mental results. Calculated values for a = 7.01 Å and c = 5.87 Å in the hexagonal space

group differ only by 0.15% from those reported in the experiments: a = 6.9990(11) Å,

c = 5.8621(13) Å [70, 78]. This extraordinary agreement is partly due to the fact

that experiments were done at room temperature so the lattice constants are bigger

than the zero temperature ones. No reports on experiments done at lower tempera-

tures or values for coefficients of thermal expansion are, to our knowledge, available

in literature. The error of 0.15% allows us to claim that our results overestimate the

zero temperature lattice constants not more than 1-2% which is a standard feature

of GGA calculations.
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Figure 43: The energy dependence of the spin majority density of states (DOS) is shown at

different pressures, for both spin channels.

Theoretical results for the electronic ground state are in agreement with experi-

ment. As shown in Figure 42, the system is correctly predicted to be metallic and

ferromagnetic. Vanadium d-orbitals split in an octahedral field to doubly degenerate
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5.4 High pressure transport properties

eg and triply degenerate t2g multiplets. Putting the octahedra into the BaVSe3 lattice

leads to further symmetry reduction and additional splitting of t2g triplet to A1g singlet

and Eg doublet. The A1g orbitals are able to interact along the chains forming nearly

quasi one-dimensional band whose bandwidth is mainly determined by the dispersion

along c axis. The eg and Eg orbitals interact with selenium 2p states, but the latter

orbitals interact much weaker resulting in nearly dispersionless bands just below the

Fermi surface (lower triangle ΓKMΓ in the Brillouin zone). This feature is reflected

in the density of states (DOS) by a sharp peak located below the Fermi energy. In

the spin minority channel, Eg bands are shifted above Fermi surface due to exchange

interaction leading to nonzero magnetic moment of 1.72µB per unit cell, localized

around vanadium atoms. This gives a moment of 0.86µB per vanadium atom, which

is a reasonable value in comparison with the experimental result, 0.65± 0.2µB.
Method which was used gave no dramatic changes upon applying pressure. As

expected the states overlap more and the spectra broaden. In Figure 43, two groups

of bands are shown as well as how they change with applying the pressure. The first

group, located at the energies between −10 and −15 eV below the Fermi energy,
consists of Ba 5p and Se 4s orbitals. Their interaction is enhanced and the DOS

broadens with the pressure. This is clearly seen for the 5.3GPa pressure. The same

thing happens with the second group located around the Fermi energy that is formed

of V 3d and Se 4p states. The whole spectrum broadens and the intensity of the sharp

peak, below the fermi energy, goes down with increasing the pressure. Again, the effect

is strong only in the lowest part of Figure 43, for the pressure of 5.3GPa. No significant

charge transfer could be observed between the vanadium and selenium orbitals in one

spin channel. On the other hand, there is a small charge transfer between spin majority

and spin minority electrons which leads to the decrease in the magnetic moment from

1.72µB per unit cell at ambient pressure to 1.61µB at p = 5.3GPa.

5.4 High pressure transport properties

Throughout the previous chapter we have seen that BaVS3 exhibits remarkable sen-

sitivity to pressure. In order to look at what happens beyond the high-pressure phase

of BaVS3, it is interesting to apply hydrostatic pressure to BaVSe3.

Figure 44 displays the temperature dependence of resistivity of BaVSe3 under high

pressures, up to 2.8GPa. The value of resistivity monotonously decreases as pressure

is applied, and by 2.8GPa its room temperature value has dropped by more than 20%.

The conductivity of metals normally enhances under pressure, due to the effects of

enhanced bandwidth, and/or because the relaxation time τ becomes longer. The RRR

value increases from 50 at ambient pressure to 55 under 2.8GPa, which implies that

the relative change in ρ0 is larger than in ρ(300K). Like in BaVS3, such behavior
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Figure 44: The temperature dependence of resistivity under various pressures.

of ρ0 hints that this quantity may contain other contributions apart from impurity

scattering. Additionally, under pressure the change of slope at Tc gradually becomes

less pronounced.

From the resistivity measurements, one may extract the pressure dependence of

the temperature of the ferromagnetic ordering, Tc , which is shown in the bottom

panel of Figure 44. There seems to be a very weak increase in Tc , indicating that the

pressure strengthens the ferromagnetic interaction between the localized moments,

which is probably due to the reduction in the intrachain spacing. The increase of

Tc in BaVSe3 is at variance with the behavior of the low-pressure insulating phase

of BaVS3, where a feeble decrease in TX up to ∼ 0.5GPa was observed. However,
both the decrease of TX and the increase of Tc are unified in the phase diagram

of strontium-substituted BaVS3 [79]. As x increases from 0 to 0.07, the antiferro-

magnetic transition in Ba1−xSrVS3 is slowly suppressed. At xcr = 0.07, the unit cell
suddenly shrinks and the antiferromagnetic ground state gives way to ferromagnetism

through a quantum phase transition. When the doping x grows from xcr until the

solubility limit x ≈ 0.18, the temperature of the ferromagnetic transition shows a
weak increase.

Surprisingly, pressure also influences the resistivity coefficient n, which describes

the power-law behavior of the resistivity below ∼ 15K according to Equation 50.
Upon the application of pressure the exponent n is enhanced beyond its Fermi liquid
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Figure 45: The pressure dependence of the temperature of magnetic ordering, Tc (left scale),

and of the resistivity exponent n (right scale).

value n = 2. For one part, this suggests that the phase diagram of BaVSe3 may be

more complex than just a continuation of the high-pressure side of the phase diagram

of BaVS3. As we shall discuss later, a possible interpretation of the increase of n

is that for some reason the pressure reduces the temperature range where electron-

electron scattering dominates, and makes some other scattering mechanism, probably

phononic, show up through the exponent n.

At low temperatures, electron-phonon scattering gives quasiparticle relaxation rates

going as T 3. This term in the resistivity is suppressed because the scattering is mainly

restricted to small angles, which results in Bloch’s T 5 dependence of the electron-

phonon contribution to resistivity. However, in 1935 Mott suggested a somewhat

naive sd model in which there are two types of valence electrons: nearly free s elec-

trons and tightly bound d electrons. He assumed that the transport arises from the

motion of the s electrons and that the current is primarily limited by their scattering

into d states. In his model, large angle scattering was allowed at fairly low tem-

peratures, leading to a possible T 3 dependence of the resistivity for electron-phonon

scattering. It has to be said that the sd model is probably too simplified to be applica-

ble to real systems. One additional reason for unclarity regarding the low-temperature

exponent is the phonon-drag effect which can further suppress resistivity by pulling

the phonon distribution off equilibrium [80].

The thermoelectric power under pressure is shown in Figure 46. The slope of the

linear part appears not to be significantly influenced by pressure. This means, according
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Figure 46: Temperature dependence of thermoelectric power under various pressures. The

inset shows the offset S0, as discussed in the text.

to Equation 51, that the value of EF remains unchanged. Therefore, the pressure

does not influence the bandwidth. Combining this result with the observed resistivity

decrease, we may conclude that the primary effect of the pressure is enhancing the

relaxation time τ . Such a conclusion is coherent with the fact that thermopower

is independent of τ in the first approximation, where the energy dependence of the

relaxation time is neglected.

On the contrary, the temperature-independent offset is increased under pressure

by more than 3µV/K, as shown in the inset of Figure 46. We define S0 for a given

pressure, like in BaVS3, as the offset of the linear part of thermopower with respect

to the highest pressure thermopower:

S0(p, T ) = S(2.3GPa, T )− S(p, T )
where 150K < T < 300K. In BaVS3, S0 changes by 14µV/K under 2.7GPa. In

BaVSe3 the change of S0 is smaller, but the trend is continued. As we discussed in the

previous chapter, the existence of such an offset in thermoelectric power is nontrivial

to understand. One possibility is that its origin is polaronic. As the pressure improves

the metallicity of the system, the polaronic contribution should diminish and S0 should

eventually converge to a pressure-independent value.

The wide hump which appears around 100K in the thermopower at ambient pres-
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5.5 Magnetotransport

sure shifts to slightly higher temperatures when pressure is applied. This suggests that

the feature may be of phononic origin. The temperature increase would in that case

come from the pressure-induced stiffening of the relevant vibrational modes. Finally,

the low-temperature feature, ascribed to phonon drag, becomes more pronounced

under pressure but the temperature of the maximum value shows no pressure depen-

dence.

5.5 Magnetotransport

Due to its ferromagnetic ground state, the transport properties of BaVSe3 are expected

to be fairly sensitive to an external magnetic field. Figure 47 shows a comparison

between the resistivity measured in zero field and the one measured in magnetic field

B = 12T oriented parallel to the crystal c-axis. Indeed, there is a large response of

the carrier scattering to the applied field. The slope change at Tc , associated with

the magnetic transition, is completely wiped out in the magnetic field. To quantify

magnetoresistance, we employ the usual definition:

∆ρ

ρ
=
ρ(B)− ρ0T
ρ0T

(52)

where ρ0T is the zero-field resistivity. The temperature dependence of ∆ρ/ρ is shown in

the inset of Figure 47. At high temperatures, above ∼ 120K, the magnetoresistance
vanishes. The negative ∆ρ/ρ is attributed to the ordering of magnetic moments by

the external field. Magnetic field suppresses spin fluctuations and in this way decreases

scattering of the conduction electrons on the magnetic moments. The minimum value

of around −13% occurs precisely at Tc . Below 10K the magnetoresistance starts to
increase steeply. Although it is negative in the whole temperature range displayed, it

extrapolates to positive values below 5K.

The presence of the magnetic field enhances the power-law exponent n, similarly

to the application of pressure. From the zero-field value of n = 2.00 ± 0.01, the
exponent reaches a value of n = 2.16 ± 0.01 in the field of 12T. In order to verify
that this effect is not an artifact, one needs to demonstrate it more thoroughly and

this will be done shortly.

Similar behavior is observed when pressure is applied and if the direction of the

magnetic field is changed. Figure 48 shows the temperature dependence of mag-

netoresistance under two different high pressures, 1.9GPa and 2.8GPa, in a field

orientation such that B is perpendicular to the c-axis. The high-temperature behavior

of ∆ρ/ρ at 1.9GPa (left panel) is similar to the ambient pressure dependence from

Figure 47. However, the peak at Tc is somewhat less pronounced. This seems to be

correlated with the weakening of the signature of the ferromagnetic transition in re-

sistivity. In the low temperature part, magnetoresistance changes the sign at ∼ 12K
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Figure 47: Ambient pressure resistivity at 0T and 12T. The magnetic field is directed along

the VSe3 chains, B ‖ c-axis. Inset shows the relative magnetoresistance, ∆ρ/ρ, as defined in
the text.
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Figure 48: High pressure temperature dependence of magnetoresistance, at 1.9GPa and

2.8GPa. The magnetic field orientation is B ⊥ c-axis.

for the field B = 12T. Under 2.8GPa, the maximum value of magnetoresistance

approaches 20% for the maximal magnetic field applied (Figure 48, right panel).

In an ordinary paramagnetic metal, the magnetoresistance is negative in the tem-

perature region where the external field can align magnetic moments and thus reduce

the scattering of the conduction electrons off these moments. At low temperatures,
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Figure 49: The field dependence of magnetoresistance at 2.3GPa, at several temperatures.

The field is perpendicular to VSe3 chains, B ⊥ c-axis.

the magnetic moments in BaVSe3 are more aligned and fluctuate less, which is why the

field has little additional effect on their ordering. Hence, a positive magnetoresistance

takes over, characteristic of normal metals.

We have seen that in BaVS3 the field dependence of the resistivity is a non-

monotonous function. To establish whether such behavior extends to BaVSe3, we

have determined the field dependence of the magnetoresistance at several fixed tem-

peratures, for p = 2.3GPa and B perpendicular to c-axis. Figure 49 displays the

results. The magnetoresistance changes character between 8K and 15K, in agree-

ment with the data discussed above: at high temperatures it is negative, whereas

for low temperatures it becomes positive. Notably, at 4.5K a small local maximum

appears at B ∼ 3T, after which magnetoresistance decreases slightly, and then in-
creases linearly above B ∼ 5T. A feature of similar shape in magnetoresistance may
still be seen at 25K, but for T = 44K there is no trace of a local maximum, only a

monotonous decrease in the whole field range. Similar distinction between the low and

high-temperature behavior of magnetoresistance was also observed in BaVS3 at pres-

sures above ∼ 2.1GPa. The temperature where the character of magnetoresistivity
changes was also found to be rather close, delimited by 8 and 15K. However, the local

maximum at low temperatures in BaVS3 is much more pronounced. In BaVS3, we

have argued that the non-monotonous field dependence of the resistivity comes from

the canting of the eg spins and their strong interaction with the dz2 electrons. This

explanation may also be applied to BaVSe3, providing another point of comparison

between the selenide and the sulfide.
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Finally, Figure 50 illustrates the pressure and magnetic field dependence of co-

efficients n and ρ0 which describe the low temperature behavior of resistivity. The

top panel clearly shows that n increases when pressure or magnetic field is applied.

Moreover, ρ0 is enhanced in the presence of a magnetic field, approximately following

ρ0 ∝ B2. On the other hand, the residual resistivity is monotonously diminished under
pressure. The pressure and field dependence of ρ0 are shown in the bottom panel of

Figure 50. In a normal metal, ρ0 bears no great importance, as it is merely a measure

of the impurity concentration. However, in BaVS3 and BaVSe3 its origin is certainly

not so simple. The pressure dependence of ρ0 in BaVS3 is anomalous: a sharp decrease

of ρ0 occurs simultaneously with the tuning of the power-law coefficient n towards the

Fermi liquid value. This has been explained by the fact that, close to the pressure

where the insulating phase is suppressed, both n and ρ0 issue from the scattering of
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conduction electrons on the remaining charge density wave islands. When pressure is

increased, one approaches the n = 2 value of BaVSe3. Present data show that the

extreme high-pressure part of the phase diagram is more complex than anticipated.

When an external magnetic field is present, in k-space it separates the Fermi

spheres of the spin majority and spin minority channel by µB. The field can change

the configuration of the eg electrons. The matrix element describing the transition

from one spin orientation to the other is proportional to B2. Since the conduction

electrons from the dz2 sector scatter on the eg electrons, when eg electrons are canted

or their distribution among minority and majority channels is changed, this affects the

scattering. Although it is difficult to predict in which way this should influence the

resistivity exponent, we may speculate that the magnetic field truncates the temper-

ature range in which the electron-electron scattering is a dominant mechanism. The

fact that the transition probability between the two spin orientations is proportional

to B2 may be related to the similar field dependence of ρ0. A comparable narrowing

of the T 2 window may happen under pressure. The phonon distribution is modified

as the vibrational modes stiffen, and this may lead to an alternation of the resistivity

exponent n. On the other hand, the pressure may enhance the Fermi velocity, and

this leads to a decrease in ρ0.

5.6 Conclusions

There is a great similarity between the high-pressure BaVS3 and the ambient pressure

BaVSe3. When sulphur is replaced by selenium, the overlaps between the chains

are enhanced, producing as an effect the chemical pressure. The aftermath is that

there exists a set of physical properties which behave in a very similar manner. This

is particularly clear in the case of the transport coefficients. The ambient-pressure

temperature dependence of the resistivity in BaVSe3 has the same qualitative shape

as the resistivity in the sulphide for p > pcr, and the same holds for the thermoelectric

power. What is more, the low-temperature resistivity in the selenide is described by

the canonical Fermi liquid exponent, n = 2.

Experimenting on BaVSe3 allows an insight into the high-pressure phase of BaVS3,

warranting the use of many techniques which are normally inaccessible other than at

ambient pressure. The measurements on BaVSe3 have, besides confirming what we

already know about BaVS3, also given some useful hints for understanding the mag-

netic ground state of the sulphide compound. The magnetic susceptibility infers that

below 43K BaVSe3 is ferromagnetic. The ferromagnetic metallicity of the sister-

selenide suggests that the high-pressure ground state of BaVS3 is also likely to be

ferromagnetic. However, the magnetic ground state of high-pressure BaVS3 is not

yet accessible. Moreover, from the high-temperature behavior of the resistivity and
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thermoelectric power of BaVSe3, we are enticed to believe that the high-temperature

phase of BaVS3 is also a bad metal characterized by simple linear temperature depen-

dencies of the resistivity and thermoelectric power.

In view of the band calculations, it seems that it is not crucial to take into account

the strong correlations in order to reproduce the main experimental observations: that

BaVSe3 is a ferromagnetic system of itinerant electrons. Band structure calculations

give a fairly correct estimate of the magnetic moment in the ferromagnetic phase.

In addition, they predict that the bandwidths are not significantly influenced by our

experimentally attainable pressures.

The correlation between the magnetic torque and the susceptibility allowed to see

that the symmetry seen by the magnetic ions is changing below 200K. Simultaneously,

the resistivity departs from the linear temperature dependence and starts decreasing

more steeply below 200K. Moreover, the temperature dependence of the susceptibility

anisotropy implies that below 62K the system becomes most paramagnetic along the

c-axis, suggesting that a rotation of the magnetic axes takes place at this temperature.

Consequently, there may be a structural transition happening at low temperatures, or

alternatively a deformation of the ligand cage. Again, this finding may also prove to

be relevant for the high-pressure BaVS3. The resistivity above pcr has a very similar

shape there, in that it also exhibits a change of slope around 200K and a precipitous

decrease below.

Lastly, some of our observations induced us to believe that there is more complex-

ity to the phenomena occurring in BaVSe3 than just what seems to be its “BaVS3
heritage”. One of the initial motives in the study of BaVSe3 was a possibility of sta-

bilizing a non-Fermi liquid state by pressure, just as it happens in the case of MnSi.

The latter compound is a weakly magnetic d-electron compound. Its ambient pressure

ground state is characterized by a helical ferromagnetic polarization appearing below

29.5K and a Fermi liquid ground state with a canonical T 2 dependence of the resistiv-

ity [67]. The ferromagnetic transition is suppressed for pressures beyond 1.5GPa, and

the non-Fermi liquid phase suddenly sets in as the power law exponent jumps to 3/2.

The curiosity of the NFL phase lies in the total lack of sensitivity to the fine-tuning

of the underlying interaction. This is reflected in the stability of the T 3/2 dependence

of the resistivity over a wide pressure range, up to at least 5GPa, and infers that

the NFL phase is not related to a quantum critical point. In BaVSe3, we have not

observed such a sudden drop in n. Instead, the power-law exponent n shows a decided

increase not only under pressure but also in the magnetic field. The residual resistiv-

ity ρ0 is dependent on pressure and field. Presently, we attribute these unexpected

dependencies to the strong interaction between the eg and the dz2 electrons.

91





6 Charge ordering in β-SrxV6O15: the role of pressure

and disorder

The White Rabbit put on his spectacles.

’Where shall I begin, please your Majesty,’ he asked.

’Begin at the beginning,’ the King said, very gravely,

’and go on till you come to the end: then stop.’

(Lewis Carroll, “Alice in Wonderland”)

6.1 Introduction

Vanadium atoms surrounded by oxygen polyhedra build a multitude of different low-

dimensional structures, which exhibit an impressive variety of electronic and magnetic

phenomena. The family of quasi-one dimensional β-vanadium bronzes, AV6O15 (where

A is an alkali or rare-earth cation), presents a rich playground to study the dynamics

of charge order and the role of disorder. In addition, due to the low dimensional

structure, the properties of these compounds are very sensitive to pressure.

Figure 51: The crystal structure of the stoichiometric β-SrV6O15 compound. The V2O5
skeleton consists of chains formed by VO6 and VO5 polyhedra, running along the b-axis. The

three crystallographically different Vanadium sites, V1, V2 and V3, are indicated by green, red

and blue (online). The grey balls represent the intercalated strontium atoms.

One of the most intriguing properties of the vanadium bronzes is the appearance

of a metal-insulator or a semiconductor-insulator transition. It seems to appear gener-

ically for both monovalent (A = Na,Ag,Li) and divalent (A = Sr,Ca) cations [81].

Despite many experimental and theoretical efforts, the nature of the phase transition

93



6.1 Introduction

is still under debate [82, 83, 84, 85]. This instability was first attributed to a charge

ordering of vanadium atoms into V4+ and V5+ states [82], but later that scenario was

questioned and it was suggested that the phase transition is due to the establishment

of a long range ordered modulation of charge density (CDW) [86, 87].

The mechanism of the transition is crucial for understanding the high-pressure

behavior of these compounds. Under pressure, the phase diagram is additionally en-

riched in the systems with monovalent cations as the superconductivity enters the

stage.However, no superconductivity appears in divalent cation compounds [88, 83].

For example, the most prominent member of β-vanadium bronzes, NaV6O15, under-

goes a metal-insulator transition at ambient pressure, and becomes superconducting

under 6GPa [88]. To understand the interactions which lead to the presence of high-

pressure superconductivity in A+ vanadium bronzes and absence thereof in the A2+

compounds, it is important to learn what is the driving force behind the ambient-

pressure phase transition and the what is the nature of the low-pressure insulating

state.

The highly anisotropic electronic structure and quasi one-dimensional behavior of

β-AxV6O15 compounds stem from their crystallographic properties. The crystal struc-

ture is monoclinic with a twofold crystallographic b-axis, as shown in Figure 51. There

are three different sites for vanadium atoms: V1, V2 and V3. V1 and V3 form zigzag

chains made of edge-sharing VO6 octahedra and VO5 pyramids, respectively. V2 sites

form two-leg ladders, whose rungs consist of corner-sharing VO6 octahedra. Various

monovalent (A+) or divalent (A2+) cations can be intercalated in the channels formed

by the V2O5 framework. They occupy one of the two different sites in the unit cell

and donate their valence electrons to the vanadium d-bands. In the one-dimensional

β-phase the two cation sites are so close that only one of them can be occupied at a

time. A stoichiometric β-system is the one with the maximum possible intercalated

cations, x = 1. In such a compound exactly half of the places in the channels are

filled and the cations form a zigzag chain, which leads to the doubling of the lattice

periodicity along the b-axis.

The crystal structure of the β-AxV6O15 is dominated by the two zigzag chains

formed by V1 and V3 atoms and the V2-V2 ladders. However, the tight binding

calculations [85] show that the electronic structure of the β-AxV6O15 is based on

two kinds of weakly interacting two-leg ladders: V1-V3 and V2-V2. To learn about

the dominant interactions in AxV6O15 compounds, it is important to understand the

nature of the low-pressure insulating ground state. It seemed fairly established that

this is a charge ordered state between V4+ and V5+ sites [82, 83]. However, some

of the recent experimental data have hung a question mark over the charge order

in β-AV6O15. The neutron diffraction experiments on NaV6O15 indicated that the

ambient pressure ground state cannot be understood in terms of a simple V4+/V5+

site separation, and may be better explained by a charge density wave [86]. Moreover,
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there seems to be evidence of a coherent charge transport in NaV6O15, pointing again

to a CDW instability as a possible ground state [87].

The phase transition in AxV6O15 is extremely sensitive to any off-stoichiometry in

the cation content. It is very quickly destroyed even by a small deviation from x = 1.

It is therefore important to understand the role of doping and disorder in AxV6O15
compounds. If x < 1, the electron doping of the vanadium d-bands is decreased.

This may imply moving away from the commensurability. Moreover, since for x < 1

there is less then one cation per unit cell, the cation sublattice can no longer undergo

a zigzag arrangement and it remains disordered. The cation disorder seems to have a

decisive role, probably because the aperiodic potential produced by the donor atoms

introduces disorder into the electronic subsystem [89].

In this chapter, we present a detailed study of the temperature, pressure and sto-

ichiometry dependence of the transport coefficients in β-SrxV6O15 compounds. We

focus on three main issues: (1) the nature of the phase transition in the x = 1 system

and how it develops under pressure; (2) the occurrence of resistive switching; (3) the

role of cation disorder in the electric transport. By applying pressure we can change

the order of the transition, as is clearly seen in both resistivity and thermopower.

The temperature dependence of the transport coefficients sheds light on the possible

mechanisms of conductivity. Our results seem to agree better with a charge ordered

ground state than with a CDW scenario. The influence of pressure probably hap-

pens primarily through the nearest neighbor Coulomb interaction, V , which makes the

phase transition evolve from second order to a first order kind. The studies on off-

stoichiometric compounds look into the effect of disorder on the transport coefficients.

As the system moves away from stoichiometry, in the thermopower we see a signature

of conduction by hopping, implying that the charge transport happens through a set

of localized states.

6.2 Stoichiometric system:

Ambient pressure transport properties

The temperature dependencies of resistivity and thermopower of SrV6O15 at ambi-

ent pressure are shown in Figure 52. The room temperature value of the resistivity

(10mΩcm) indicates that the system is either a semiconductor, or a bad metal. How-

ever, even up to 650K there is no trace of a metallic temperature dependence of

resistivity. On the contrary, the resistivity can be reasonably well described by acti-

vated behavior from room temperature down to the transition to an insulating phase

at Tc ≈ 155K:
ρ(T ) = ρ0 e

∆ρ
kBT (53)
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This equation, fitted to the temperature range between 165K and 300K, yields a

gap ∆ρ ≈ 420K, as it is shown in the upper inset of Figure 52. However, the analo-
gous sodium-intercalated compound NaV6O15 shows metallic resistivity down to the

transition, with a similar room temperature value of resistivity, ρ ≈ 10mΩcm [82].
From the resistivity measurement alone, it is not clear whether the non-metallic be-

havior is an inherent property and SrV6O15 is an intrinsic semiconductor, or whether

the non-metallicity arises from the imperfections in the crystal structure. A slight

off-stoichiometry causes disorder in the strontium sublattice, which may induce a gap

along the chains. Another possibility would be that a non-metallic conductivity is

caused by strong one-dimensional (1D) fluctuations, as it is the case for example in

the CDW system (TaS4)2I [90].

However, neither of the two latter assumptions is able to explain the observed

temperature dependence of the thermopower. In the case of a gap produced by ionic

disorder, the thermopower would be small and weakly temperature-dependent. We

would expect something similar to happen in the case of 1D fluctuations. Quite on

the contrary, the thermopower of SrV6O15 shows a clear 1/T behavior in the whole

T > Tc range, up to high temperatures (T > 650K). We can analyze the data using

the expression for the thermopower of semiconductors [91]:

S(T ) = −kB|e|
(
ln
mh
me
+
b − 1
b + 1

∆ρ
kBT

)
(54)

Here b is the ratio of electronic to hole mobility, µe/µh, and me and mh are electron

and hole effective masses. The room temperature value of TEP is small and negative,

S ≈ −7µV/K. The thermopower crosses zero for T ∼ 280K. The thermopower gap
is given by a fraction of the resistivity gap:

∆S =
b − 1
b + 1

∆ρ (55)

At high temperatures the thermopower extrapolates to about −90µV/K, which leads
to the effective masses ratio of me/mh ≈ 2.8. The extracted value of the gap is ∆S ≈
315K, from which we may calculate the ratio of the mobilities: 1/b = µh/µe ≈ 7.
A clear delineation between the high and low temperature phase is given by the

semiconductor–insulator transition at 155K. Since no hysteresis is observed in the

resistivity, the phase transition seems to be of second order. On the contrary, the

X-ray measurements seem to indicate that the transition is of the first order [92],

with a rather elevated change of volume at the transition. In the thermopower, the

transition corresponds to a clearly defined change of slope at the Tc which marks the

beginning of a fluctuation regime. The faster increase in thermopower just below the

transition could be due to the fact that the carriers couple to the phonons which

appear below the phase transition [93, 94]. The peak is followed by a strong downturn
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Figure 52: Resistivity (top) and thermoelectric power (bottom) under ambient pressure. The

top inset shows the fit of the resistivity data, in the temperature range above the phase

transition, to the activated model (left axis) and to the small polaron model (right axis). The

bottom inset shows the high temperature (T > 155K) 1/T dependence of the thermopower.

of thermopower at lower temperatures. This implies that the system is brought from

hole-like to electron-like conduction.

The above results, particularly the temperature dependence of the thermopower,

show that it is not very likely that the phase transition is followed by an establishment of

a CDW. As a further check of the CDW hypothesis, we have performed measurements

of field-dependent resistivity, both by a dc method and by applying short current pulses

through the sample. We found no strong increase in conductivity, that is, no signs
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of coherent transport up to electric fields as high as 150V/cm and in a range of

temperatures from 300K down to 65K. We did, however, observe an appearance of

switching between states of different resistivities, below 130K, which will be discussed

at a later point.

6.3 Tuning the phase transition in SrV6O15 with pressure

The temperature and pressure dependence of the transport coefficients is shown in

Figure 53. As we apply pressure, the value of ρ at room temperature linearly decreases,

and dρ/dT , which is negative at ambient pressure, increases. The system is therefore

progressively approaching a metallic state. Under pressure, the Tc rapidly shifts to the

lower temperatures, which is shown in Figure 54.

Intriguingly, the pressure brings about a very clear separation between two distinct

regimes of the phase transition. While the sharp transition in the resistivity below

p ≈ 0.7GPa is devoid of any hysteretic behavior, we observed hysteresis curves for
p > 1.0GPa. An example of such a hysteresis is shown in the inset of Figure 53,

depicting a blowup of the resistivity curve for 1.22GPa. The second order phase

transition, which takes place at p < 0.6GPa, is replaced by a first order transition for

p > 1.0GPa. In the intermediate range, the transition seems to resemble a crossover.

This can be seen from the broad and low profile of the logarithmic derivative of the

resistivity, which is displayed in the Figure 53.

The change in the character of the transition, which is quite evident from the log-

arithmic derivative of resistivity, is consistently followed by a change in the character

of the thermopower. In the low pressure phase, where the transition in resistivity is

very sharp, the thermopower shows a sudden drop to negative values below the Tc.

A large difference between the high and low temperature resistivity gaps is another

characteristic of the low pressure phase. Moving onto slightly higher pressures, in the

intermediate pressure region, at 0.7 and 0.8GPa, the transition in the resistivity is

considerably widened. For those pressures, in the Seebeck coefficient we observe a

markedly different behavior: immediately after the transition it decreases and reaches

a local minimum, followed by an upturn and a steep increase. There is no change

of the dominant carrier sign, as the thermopower is positive in the whole low tem-

perature range. The position of the local minimum approximately corresponds to the

temperature of the transition concluded from the resistivity. The thermopower keeps

this new form under higher pressures, but as the pressure is increased, the height of

the peak grows. The position of the local minimum shifts to lower temperatures,

following the phase transition. In the resistivity, above ∼ 1GPa we clearly observe a
hysteresis at the transition. Additionally, several fine features appear in the resistivity

in the same pressure region, such as a wide hump at about 120K and a small peak at
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Figure 53: Temperature dependence of the resistivity (upper panel), the logarithmic derivative

of resistivity (middle panel), and the thermoelectric power (lower panel) is shown under various

pressures. The logarithmic derivative of resistivity clearly indicates an evolution from second

to first order phase transition. The top inset displays the hysteresis in the resistivity for

p = 1.22GPa. The arrows indicate the direction of increasing pressure.
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Figure 54: The temperature of the phase transition, as determined from the resistivity (closed

circles), and the thermopower (open circles) shows remarkable sensitivity to the applied pres-

sure. In the high pressure phase we determine the Tc from the thermopower as the temperature

of the local minimum. The error bars are smaller than the size of symbols, unless indicated

otherwise. The dashed line is a guide for the eyes.

a temperature just above the phase transition. However, these features seem to be

slightly sample-dependent so we shall not discuss them further. Pressures higher than

1.2GPa make the transition more difficult to follow by measuring resistivity, since it

seems to depend significantly on the excitation current. Therefore we position the

Tc somewhat arbitrarily at the temperature of the break in the resistivity curve. A

more consistent estimate of the Tc is given by the temperature of the upturn in the

thermopower.

The behavior of the high and low temperature activation energies under pressure,

shown in Figure 55, goes hand in hand with the enhanced metallicity of the system

under pressure. The resistivity data were fitted by an activated model described by

the Equation 53. We note that, while in the low pressure phase there is a significant

difference between the high and low temperature gaps, this difference is comparatively

small at higher pressures, p > 0.6GPa. This infers that, whereas at low pressures gap

widens significantly below the phase transition, at higher pressures the principal differ-

ence between the high and low temperature phases should be in the carrier mobility or

the number of the carriers. The pressure-dependent comparison between activation

energy for the resistivity and the characteristic gap from the thermopower measure-
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Figure 55: The energy gaps extracted from the resistivity of SrV6O15 under different pressures,

fitted to an activated behavior. Whereas the difference between the high and low temperature

gaps is large at low pressures, above 0.6GPa the two values of the gap are very close.
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Figure 56: The pressure dependence of the high temperature energy gaps, extracted from the

resistivity (∆ρ), fitted to an activated behavior, and thermoelectric power (∆S), fitted to Eq.

54. The ∆S is smaller than ∆ρ because the presence of both electrons and holes leads to their

partial compensation in the thermopower.

ments, shown in Figure 56, gives evidence against the small polaronic model. As the

pressure increases, the difference between the two characteristic energies diminishes.
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To summarize, all of the observed changes in the character of the phase transi-

tion confirm that the two well-separated regimes exist. Pressure induces a passage

from a second to a first order phase transition. In a CDW picture, such a pressure

dependence may be traced back to the changes in the commensurability. One may

imagine that the wave vector of the instability is tuned by pressure. Starting from

a commensurate value, corresponding to a sharp transition, the wave vector would

in such scenario change so that the commensurability is spoiled, which leads to the

intermediate pressure phase with a weak peak in the resistivity derivative. Further

application of pressure improves the nesting in such a way that it again enhances the

commensurability, resulting in a sharper transition. In the charge order scenario, the

main effect of pressure would be tuning the nearest-neighbor interactions between the

chains. As a consequence, the charge distribution is modified continuously.

We note that similar results for resistivity under pressure were recently obtained

by Yamauchi et al [95]. Based on their measurements of resistivity and susceptibility

under pressure, the authors suggested a complex phase diagram for β-SrV6O15, which

will be discussed later on.

6.4 Resistive switching

The physical properties of both a charge ordered and a CDW phase may a priori de-

pend on the magnitude of the applied electric field. Charge ordering may lead to

a coexistence of different phases, which generically causes a sensitivity of physical

properties to external perturbations, such as electric or magnetic field [96, 97]. Simi-

larly, a CDW may show electric field-dependent conductivity, and a high enough field

may eventually depin the CDW modulation from the underlying lattice [90, 21]. This

should then lead to a coherent charge transport and a strong and sudden decrease in

the resistivity. In case of a strong commensurability pinning of the CDW to the lattice,

such an effect would be considerably more difficult to observe. Subsequently, the two

possible ground states, charge order and CDW, are expected to respond differently to

the excitation current. The field-dependent conductivity measurements which were

performed on NaV6O15 [87] showed behavior which the authors interpreted as being

characteristic of CDW systems. The conductivity exhibited nonlinearity at a very low

field of 0.06mV/cm, and the value of the threshold field, above which the conductivity

strongly increases, was determined to be 30mV/cm. Both of the values are several

orders of magnitude smaller than the corresponding quantities in the classical CDW

compounds [21].

To verify if similar nonlinearities in conduction occur in SrV6O15, we have per-

formed a series of I-V scans in a broad temperature range. Since this compound

shows remarkable sensitivity to applied pressure, we have introduced the pressure as
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6.4 Resistive switching

an additional parameter. The measurement was performed by changing the current

excitation and recording the voltage across the sample, applying both increasing and

decreasing current. For the high electric field measurements, current was applied in

short pulses in order to eliminate the effect of Joule heating.
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Figure 57: The dependence of the induced voltage on the excitation current shown for an

increasing current (red) and a decreasing current (blue), at 85K. The pressure is ∼ 0.1GPa.
The inset shows the corresponding differential resistivity, dV/dI, with respect to the electrical

field. It was calculated from linear fits in the continuous parts. In both the main panel and the

inset, the voltages/electric fields where switching takes place are marked by vertical dotted

lines.

As we have seen above, the phase transition strongly depends on the pressure.

The Tc quickly shifts to lower temperatures, and the nature of the transition changes

from second to first order. Such a decrease of the Tc would, in a CDW picture, be

the consequence of a pressure-induced change in the commensurability or the nesting

conditions. Therefore it would be expected that the pressure could strongly influence

the threshold field. Indeed, at the highest pressure applied in this study, the resistivity

shows a remarkable sensitivity to the applied measuring current when the temperature

drops below 40K. Accordingly, the highest pressure curve in the Figure 53 cannot give

a good definition of the Tc. In fact, a sharp transition from a lower to a higher resistivity

may take place in a 20K wide temperature range, depending on the excitation current

applied.

At the lowest applied pressure, 0.1GPa, no nonlinearity in the conduction is ob-

served above the temperature of the phase transition (Tc ≈ 155K), even up to electri-
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Figure 58: The dependence of the induced voltage on the excitation current shown for an

increasing current (top panel) and a decreasing current (bottom panel), under 0.1GPa. The

curves were taken at a series of different temperatures, in steps of 5K (unless indicated

otherwise). Vertical broken lines mark the electric fields Ec1 and Ec2, which delimit the high

and low resistivity phases, as described in the text. The inset shows a histogram of the electric

fields which mark the abrupt jumps in the E-j curves. Fields Ec1 and Ec2 correspond to the

two distinct peaks.

cal fields as high as 150V/cm (not shown). This is in contrast with the measurements

performed on NaV6O15, where the nonlinear response to the electric field seems to

persist in the metallic phase [87]. However, in the insulating phase, below 130K, at

a rather low electrical field of 91mV/cm, we could consistently observe the switching

in resistivity. As the temperature is further decreased, the switching behavior persists,

and the corresponding jump in the resistivity increases.

104



6.4 Resistive switching

10-4

10-2

100

102

10-4 10-2 100 102
10-5

10-3

10-1

101

10-4 10-3 10-2 10-1 100101

102

103

45K

50K

25K20K17K

p=1.6 GPa

15K

40K
25K

45K

20K17K15K

E
 (V

/c
m

)

j(A/cm2)

E
 (V

/c
m

)

 

 

 15K
 16K
 17K

(
cm

)

j(A/cm2)

Figure 59: The dependence of the induced electric field on the density of excitation current

is shown for an increasing current (upper panel) and a decreasing current (lower panel). The

curves were taken at a series of temperatures, in steps of 5K (unless indicated otherwise).

The applied pressure was 1.6GPa. Vertical broken lines denote the values of electric field at

which the switching takes place. The inset of the lower panel shows how the resistivity varies

with current density in the low temperature phase.

A typical I-V curve displaying most of the features of the resistive switching in

SrV6O15 is shown in Figure 57. It corresponds to the resistivity profile at 85K, which

pertains to the insulating state - approximately 70K below the phase transition. The

two curves, representing the increasing and decreasing current, form a closed hysteretic

loop with a feature of double threshold biases. As it is shown in the inset of Figure 57,

this behavior is equivalent to a switching between a low-resistive and a high-resistive
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6.4 Resistive switching

state, passing through a meta-stable state of an intermediate resistivity. Two clear

breaks in both I-V curves happen at fixed voltages Vc1 ≈ 3mV and Vc2 ≈ 30mV,
which, taking into account the sample geometry, give two critical values for the field

across the sample: Ec1 ≈ 91mV/cm and Ec2 ≈ 910mV/cm. The meaning of the
fields Ec1 and Ec2 is the following. Ec1 represents the highest electrical field which

can be applied to the sample and still keep it in the low-resistivity state. Analogously,

Ec2 is the lowest field which, when applied to the sample, is sufficient to keep it in the

high-resistivity state.

There is an order of magnitude difference between the differential resistances

dV/dI of the low- and high-resistive states. The current density as small as ∼
0.01µA/cm2 is sufficient to cause switching between these two states. We note that,

in the low pressure range, in all the regions where the I-V curve is continuous, the

conductivity is ohmic. Even at low temperatures, all of the observed excursions from

linear behavior at electrical fields up to ∼ 150V/cm are caused exclusively by Joule
heating due to the current flow. This was verified by applying short current pulses, in

which case the I-V curves were linear. Hence, we observed no depinning of the charge

distribution, in contrast to the reported coherent transport in NaV6O15 [87].
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Figure 60: The appearance of switching behavior in relation to the temperature of the phase

transition. The inset shows the temperature dependence of the factor RS (defined in the text)

at different pressures.
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Since the pressure has a large impact on the physics of SrV6O15, it is interesting

to see whether it also influences the switching behavior. Figures 58 and 59 show

the dependence of the electric field in the sample on the excitation current density,

for various temperatures and under two different pressures, 0.1GPa and 1.6GPa. A

common feature across the board is that the fields Ec1 and Ec2 seem to not to depend

either on temperature or on pressure. This would be very unlikely to happen in case of

a CDW instability, where one would expect a significant pressure dependence of the

threshold field.

In Figure 58, the temperature evolution of switching is shown for the low pressure

phase. As the system is cooled, the switching first appears at 130K, when the phase

transition has already taken place and the system is in the insulating phase. From

130K down to 100K the resistivity changes abruptly only at the field Ec1. Below

100K, another threshold field develops at Ec2. The low-resistivity state seems to

exhibit a nonlinearity in the conduction, in the temperature range from 90 to 110K.

Under high pressure, as shown in Figure 59, the switching takes place for an order

of magnitude larger current densities, 0.1µA/cm2. At variance with the low pressure

conduction, the differential resistivity is markedly nonlinear even in the continuous

parts, which can be seen from the inset in Figure 59. The nonlinearity is particularly

evident at low temperatures, and may be interpreted as an indication that the high-

pressure insulating phase differs from the low-pressure one. Such deformations of

charge modulation caused by an electric field are also observed in some of the CDW

systems, and are attributed to the stretching of the localized charge modulation [98].

A switching behavior, similar to what is shown in Figures 58 and 59, is observed in

the intermediate pressure range, at 0.6 and 1.2GPa (not shown). At those pressures,

the E−j curves resemble the 0.1GPa ones. Namely, the continuous parts of the curves
are linear, unlike those taken at 1.6GPa, which show pronounced excursion from such

simple behavior (Figure 59). Some general trends of the resistive switching in SrV6O15
are displayed in Figure 60. As the applied pressure increases, the highest temperature

where the switching occurs, approaches the temperature of the phase transition, Tc.

Interestingly, under 1.6GPa the switching happens already above the phase transition,

which makes the resistivity curves strongly dependent on the excitation current used

for the measurement. It is possible that this may be a reason for the smearing out of

the phase transition at pressures higher than those we reached in the present study

[99].

The magnitude of the resistance switching may be quantified by introducing the

following factor [97]:

RS =
RHR − RLR
Raverage

= 2
RHR − RLR
RHR + RLR

, (56)

where RHR and RLR are the high and low resistance values, between the two of which
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6.4 Resistive switching

the switching takes place. The temperature dependence of RS is shown in the inset

of of Figure 60, for several pressures. The maximum value of RS is ∼ 1.8 and it is
reached in the insulating phase. Such a behavior is at odds with what is observed in

manganites [97], where the maximum in RS occurs in a region where the resistivity is

minimal and metallic. RS seems to have a wider maximum in the low pressure phase,

p . 0.6GPa, than under the highest pressure of 1.6GPa. However, the maximal value
of RS does not appear to depend significantly on pressure.

A simple picture, generally compatible with charge disproportionation, emerges

naturally from the above experimental observations. We may suppose that the con-

duction channel is inhomogeneous and consists of parts characterized by low and high

resistivities. A local electric field may perturb the coexistence of phases of different

electronic densities and change the relative volume of these fractions. Indeed, resistive

switching was recently reported in such a system: a prototypical ternary oxide SrTiO3
[100]. There, the authors demonstrate that the switching behavior is an intrinsic

feature of single crystals of SrTiO3 and that it is related to the naturally occurring

dislocations. They show that oxygen transport along filaments based on dislocations

causes bistable resistive switching.

To gain further insight into the possible mechanisms of switching in SrV6O15, one

should consider the electronic structure of the compound. The electronic system of

SrV6O15 has a tendency to disproportionation [101], which may originate from the

highly polarizable V2O5 skeleton in which the vanadium atoms have three different

oxygen surroundings. As a consequence, the d-electrons may have a tendency to

form some sort of a Wigner crystal already in the high-temperature phase. However,

a realistic x = 1 compound can never be perfectly stoichiometric. We can assume that

there is a small surplus of strontium atoms, whose valence electrons stay localized in

their vicinity. These electrons may have a role in the conduction, and in order to

conduct electricity, they have to be thermally activated. On the whole, the system

behaves like a lightly doped semiconductor. When the charge ordering phase transition

takes place [83, 95], these extra electrons are still available for conduction. However,

if one applies a sufficiently high electric field, the charge ordered structure will stretch

to accommodate the extra electrons. When they are localized, the resistivity of the

system suddenly increases. Such an effect is reversible, since decreasing the electric

field releases the excess electrons and brings the system back into the more conducting

state. Accordingly, there are two well-defined electric fields where the resistance

switching happens.

Another possibility would be that the external electric field may actually cause

the strontium atoms to move within the lattice. Again, the existence of a slight off-

stoichiometry is the key ingredient to understand the switching. In such a scenario, the

minimum of free energy of an excess strontium atom in zero electric field corresponds

to one position, but in a sufficiently high field another local minimum is accessible to
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the system. Therefore, the position of an excess strontium atom would depend on

the external electric field: for a sufficiently high electric field, the excess strontium

atoms jump to a new position. Presumably, the two strontium positions have different

charges. When an atom jumps from out of the zero-field position, the doping of the

conduction bands of the system is modified. This in turn leads to a sudden change in

the conductivity. The scenario describes a phase transition of the first order in electric

field. Both of the above simple pictures are compatible with the observed pressure

independence of the switching fields, Ec1 and Ec2, because the pressure cannot modify

the strontium off-stoichiometry.

Figure 61: Pressure-temperature p − T phase diagram of β-SrV6O15, proposed by Yamauchi
et al [95]. CDO signifies “charge disorder”, and CO stands for various kinds of charge order.

The filled and open symbols are deduced from the anomalies in the susceptibility and resistivity

measurements, respectively. X-ray oscillation photographs were taken at several points in

pressure and temperature. They are represented by large symbols: stars, crosses and hexagons.

The three kinds of symbols stand for three different observed superperiodicities along the

b-axis. The most important information conveyed by this tentative phase diagram is that

whereas the low-pressure phase shows a 1/6b∗ superstructure, in the intermediate phase the
superstructure is given by 1/10b∗ and is no longer commensurate with the lattice deformation.
Even further in pressure, no superstructure is observed, other than the 1/2b∗ caused by the
strontium zigzag ordering which persists through the whole phase diagram.

Additional point to consider is the occurrence of a field-dependent resistivity at low
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temperatures under 1.6GPa, even in the absence of switching. The present results

may be interpreted in view of the recent work by Yamauchi et al. [95], resumed in a

tentative phase diagram shown in Figure 61. Their findings from the X-ray oscillation

photographs suggest that there is a fundamental difference between the low and high

pressure ground states. For p . 1.2GPa, they observed 1/2b∗, and 1/6b∗ or 1/10b∗
reflections, with b being the lattice constant along the chain direction. The 1/6b∗

superspots were seen below ∼ 0.4GPa, and above that pressure they were replaced
by the 1/10b∗ superspots. However, above p & 1.2GPa only the 1/2b∗ reflections
were seen. The latter originate from the strontium sublattice ordering, while the low-

pressure 1/6b∗ and 1/10b∗ reflections are attributed to the charge ordering. Therefore,
in their picture the high pressure phase ground state is charge disordered. Our high

pressure E − j curves, taken at 1.6GPa, indicate that the charge distribution at low
temperatures is indeed much less rigid than in the low pressure phase. Such a soft

charge modulation, easily deformed by an electric field, may be caused by the absence

of lattice deformation.

The existence of a lower resistivity state stabilized at low electric fields may have

relevant implications for the reported measurements of magnetic susceptibility [95],

since the latter does not probe the same state as the high-bias resistivity. Additionally,

an interesting question is whether the coexistence of states of different resistivities,

observed in SrV6O15 but not in NaV6O15, could have its share in the absence of the

superconductivity under higher pressures.

The main finding from our I-V studies is that there is a switching from lower to

higher resistivity states which takes place for rather weak excitation currents. The

resistive switching may be described by two limiting values of the electric field in

the sample, which are independent of either pressure or temperature. At lower pres-

sures, the highest temperature where the switching occurs is significantly below the

semiconductor-insulator phase transition. At the highest pressure we applied, the

switching happens also above the phase transition. Our results favor an interpretation

of the transition in terms of charge ordering. Moreover, they suggest the presence of

extra electrons, which are localized in the vicinity of the excess strontium atoms. A

sufficiently high electric field applied to the sample in the insulating phase may stretch

the charge ordered pattern and localize these electrons within it.

6.5 Off-stoichiometry in SrxV6O15: the role of disorder

6.5.1 Ambient pressure transport for x < 1

The principal changes introduced with non-stoichiometry are a decrease in electron-

doping and an increase of the disorder in the strontium sublattice. The latter disorder
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is related to the occupancy of the available cation positions. Namely, the number

of strontium atoms in the x = 1 compound exactly corresponds to the quantity of

occupiable spaces in the tunnels between the vanadium polyhedra. However, when

x < 1, this is not the case. Therefore, in the off-stoichiometric compounds the

strontium atoms no longer form regular zigzag chains, and we can speak of disorder.

On decreasing x , there is a systematic change in the transport properties of

SrxV6O15, which is shown in Figure 62. In the resistivity, the sharp phase transi-

tion, which is characteristic of the x = 1 compound, is immediately suppressed as

x < 1 because it is very sensitive to the order in the cation sublattice. Still, both the

high temperature and the low temperature values of the resistivity for all the doping

levels are of similar magnitude as the ones for the stoichiometric system. This may

suggest that even in the non-stoichiometric compounds a similar transition from a

semiconducting to an insulating phase takes place, but it is completely smeared by the

static cation disorder.

Although no conclusion can be drawn from either the high or the low temperature

values of resistivity as stoichiometry is changed, the energy gaps point to a clear

trend. If we compare the values of the energy gap calculated for the high temperature

resistivity phase, resulting from a fit to the thermally activated behavior, we see that

the gap shows an important increase as doping is decreased. The gap ∆ρ doubles as

x changes from 1 to 0.8. With the further decrease of x , it continues to grow, albeit

less dramatically.

In the thermopower it is fairly straightforward to follow the progression from the

pristine state to disordered states with x < 1. This transport coefficient typically

increases as the carrier density decreases. Logically, the absolute value of the ther-

mopower at room temperature grows as we lower the strontium doping and thus

move away from the stoichiometric system. For the stoichiometries below x = 0.8,

the thermopower becomes negative in the whole temperature range, which corre-

sponds to electrons being the dominant charge carriers. It is interesting to note that

in NaV6O15, which by electron doping corresponds to Sr0.5V6O15, the old transport

measurements by Perlstein and Sienko [102] showed that the thermopower is similarly

negative in the whole accessible temperature range.

Away from the stoichiometry, the thermopower no longer shows the ∝ 1/T behav-
ior, characteristic of the high-temperature behavior of the stoichiometric compound.

Instead, it becomes progressively less temperature dependent as x decreases. Such

behavior stresses the importance of disorder in the electrical transport. The lack of a

strong temperature dependence in the disordered systems can be caused by localized

contributions to the conduction. Entropy terms originating from the hopping of the

carriers at high temperatures may produce an approximately thermally independent

contribution to the thermopower.
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Figure 62: The ambient pressure resistivity and thermoelectric power for various stoichiome-

tries. The inset shows the dependence of the high temperature phase activation energy ∆ρ on

stoichiometry.

At a high enough temperature, kBT ¿ εF, we can consider the possibility of single-
particle hopping motion. For this kind of hopping, the thermopower is determined only

by the carrier concentration c = N/Na, where N is the number of carriers and Na the

number of available sites. If the spin degree of freedom is also taken into account,

the thermopower is given by a generalization of the Heikes formula [37]:

S = −kB|e| lnβ
1− c
c
, (57)

where β counts the number of possible spin states. When we extract the values of c

using the room temperature value of the thermopower and putting β = 2 or 1, we get
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a series of values shown in the Table 1. The nominal carrier concentration is calculated

per vanadium site, using the known doping: c = N/Na = 2x/6. Comparing the values

calculated from the generalized Heikes formula with the formal values of c , we see

that the thermopower overestimates the carrier concentration. If we ignore the spin

degree of freedom (β = 1), the agreement becomes much better, especially for the

x = 0.6 compound. Neglecting the spin degree of freedom may be grounded in case

of a strong on-site Coulomb interaction, U, or if the carriers really are spinless, e.g.

in case of bipolarons. Apart from the Heikes term, which is very likely to be present

in the x = 0.6 compound, there may be an additional term in the thermopower, due

to another weakly thermally dependent mechanism. A possible reason why the Heikes

term overestimates the total thermopower of x = 0.7 and x = 0.8 compounds would

be that the temperatures we are looking at are simply not high enough for the Heikes

formula to be applied.

Table 1: Values of the carrier concentration c calculated from the nominal doping, and from

the thermoelectric power at 300K, using the generalized Heikes formula as described in the

text.

Compound d electrons/V atom c (β = 2) c (β = 1)

Sr0.8V6O15 0.27 0.48 0.32

Sr0.7V6O15 0.23 0.43 0.28

Sr0.6V6O15 0.20 0.34 0.20

6.5.2 Sr0.6V6O15: disorder under pressure

The resistivity of Sr0.6V6O15, for different pressures, is shown in Figure 63. The room

temperature value decreases as pressure is applied, and so does the resistivity gap.

Among all the systems studied here, the Sr0.6V6O15 compound presumably contains

the most disorder in the cation sublattice. Expectedly, if we envisage the thermopower

as entropy per charge carrier, this system shows the largest thermopower. Additionally,

the thermopower shows very little temperature dependence, which means that the

number and the mobility of charge carriers are approximately thermally independent.

We should therefore expect that at least a part of the thermopower can be described

by the generalized Heikes formula, Equation 57.

In that sense it is surprising that the absolute value of the thermopower signif-

icantly decreases with pressure, as shown in Figure 64, instead of being pressure-

independent. If we attribute the thermopower to the pure entropy terms, this decrease

in thermopower would suggest that under pressure either the number of available sites

decreases, or that the carrier concentration increases. Indeed, employing the Heikes
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Figure 63: Electrical resistivity under pressure for x = 0.6 compound. The inset shows

activation energies obtained from a fit to an activated behavior.
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Figure 64: Thermoelectric power for the x = 0.6 compound, under various pressures. While

the weak temperature dependence of the thermopower is not much influenced by pressure, its

absolute value decreases significantly.
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formula with β = 1 we get an increase in the number of carriers per number of avail-

able sites c from 0.20 at ambient pressure to 0.28 at 1.5GPa. Alternatively, we may

suppose that apart from the electronic hopping there is an additional polaronic contri-

bution. We have already seen that it may not be possible to explain the thermopower

of x < 1 compounds only by single-electron hopping. Mott [103] showed that as

polarons approach each other, their polarization clouds start to overlap, which in turn

reduces the energy required for hopping. Therefore, if we suppose that besides the

Heikes term there is another, polaronic contribution to the total thermopower, this

may provide an explanation for the observed pressure-induced decrease of the Seebeck

coefficient.

6.6 Discussion

Although many experiments were performed to investigate the origin of the phase

transition in β-AxV6O15 compounds, it still presents an enigma. Several different

scenarios were proposed to account for the origin of the phase transition: a CDW

instability, charge ordering, and the suggested presence of small polarons means that

a polaron ordering may be an additional possibility [93, 104]. Our results seem to show

a disagreement with the picture in which the phase transition in SrV6O15 is followed

by an establishment of a CDW. For example, the conductivity is gapped already much

above the transition. While this also appears in some compounds that do exhibit a

CDW, and is attributed to strong 1D fluctuations, we observe a clear 1/T dependence

of the thermopower, which is characteristic of semiconductors and at variance with

the existence of such fluctuations. Besides, we found no trace of coherent transport

even in very high electric fields. The absence of any coherent transport may be due

to a commensurate CDW, which would be very strongly pinned. However, it should

be noted that although the nature of the transition is very sensitive to pressure, even

under pressure no depinning was observed.

Hence, it seems more plausible that the phase transition originates from charge

ordering. The filling of the vanadium d-bands is presently unknown, which makes it

difficult to speculate how charge order could take place or what the exact pattern

of the charge disproportionation may be. However, according to the recent NMR

measurements on SrV6O15 [101], electronic charge strongly alternates in the V2-

V2 ladders already in the high temperature phase. This proves that the electronic

system has a tendency towards charge disproportionation, which is probably due to

its highly polarizable V2O5 skeleton. The NMR measurements also show that the

d-electrons are distributed quite uniformly over all the three unit chains. This, in

turn, corroborates the results of the tight binding calculations, which suggest that in

the strontium compound both V1-V3 and V2-V2 ladders are populated by d-electrons

[85]. In addition, from the point of view of the field-dependent conductivity, a charge
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ordered phase would be very difficult to depin by an applied electric field, which is

consistent with what we observe.

When the pressure is applied to SrV6O15, the phase transition continuously be-

comes less pronounced, and under ∼ 0.7GPa it almost smooths out. This can be
followed in the temperature derivative of the resistivity. Finally, above 0.9GPa the

transition suddenly sharpens again, only to abruptly disappear around 1.4GPa. The

change from a low-pressure second order to a medium-pressure first order phase transi-

tion is further supported by the fact that the thermopower indicates an accompanying

change in the band structure: the sign of the dominant carriers below the phase tran-

sition changes upon entering the higher pressure region. In the pressure range above

0.7GPa, we observe an upturn in the thermopower below the phase transition. This

upturn suggests a possibility that there is a competition between two states of dif-

ferent conductivity: the first one, to which the system seems to be heading as the

thermopower drops, and the second one, characterized by a much higher thermopower.

A further indication of such a competition between two different ground states is a

resistivity-switching behavior under applied electric field, which we have also observed.

We found that in β-SrV6O15 an electrical current, and therefore also a static

electric field, can trigger the collapse of a lower resistivity state to a state of high

resistivity. This is observed in a wide temperature and pressure range, for pressure and

temperature independent critical electrical fields. The absence of both a high-field

coherent transport and a pressure dependence of the threshold fields indicates that

the low temperature state of the system cannot be described by a CDW. In a more

plausible picture, the electric field slightly deforms the charge ordered state in order

to localize the electrons coming from the excess strontium atoms. In this way the

resistivity exhibits a sudden increase for a certain value of the electric field. Moreover,

the nonlinearity of the conduction at 1.6GPa indicates that the high pressure ground

state has a charge modulation different from the low-pressure charge order.

The work of Yamauchi et al. [95] fixes the underlying physics in this compound.

These authors have published X-ray oscillation photographs taken on SrV6O15 samples

under several pressures up to ∼ 1.6GPa. They have shown that the strontium zigzag
ordering persists at least up to the highest pressure reached. Therefore, the application

of pressure does not cause disorder in the strontium sublattice. Their results also

demonstrate that the superspots with the modulation vector q = 1/6b∗, which appear
at the phase transition under ambient pressure, exist only up to ∼ 0.5GPa. This
corresponds to the pressure region where we observe an abrupt change in the character

of the thermopower. Therefore, both transport and X-ray measurements point to

the fact that pressure induces a fundamental change in the character of the phase

transition and the ground state of the system. In the case of a CDW instability, one

could suppose that such a tuning of the transition may come from a modulation of

the value of 2kF . However, at pressures above 0.5GPa, Yamauchi et al. observed the
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superspots with q = 1/10b∗, which disappear above ∼ 1.0GPa. Since SrV6O15 is a
1/6-filled compound, such a periodicity is not compatible with a CDW instability, and

clearly suggests a charge ordered phase instead.

To understand why the phase transition evolves under pressure in the way described

here, the existence of a strong nearest neighbor Coulomb interaction, V , may be of

paramount importance. If one takes into account the Coulomb interactions between

the electrons on the vanadium chains, an extended Hubbard model can explain charge

ordering or disproportionation [105, 106]. The magnitude of these interactions is

governed by the ratio V/t where t is the effective intrachain transfer integral. At

specific commensurate fillings, when the nearest neighbor Coulomb interaction exceeds

a critical value, V > Vc, charge disproportionation occurs among sites with alternating

“charge rich” and “charge poor” sites [19]. The overlaps between the chains may be

changed by the application of pressure. In this way we can tune the value of V/t, in

turn modifying the condition for the charge ordering.

Concerning the x < 1 samples, an obvious change introduced by off-stoichiometry

is to decrease the electronic doping of the vanadium ladders. The optical measure-

ments on SrxV6O15 polycrystals [84] and extended Hückel tight binding calculations

[85] suggest that the difference between the x = 1 and the x < 1 systems lies in

the occupation of the V2-V2 ladders. However, our measurements show that the

most prominent effect of strontium off-stoichiometry is to induce the site occupancy

disorder into the strontium sublattice. Disorder brings the system to a conduction

through localized electronic states. This is particularly clearly evidenced in the pro-

gressive absence of temperature dependence in the thermopower as the system moves

from x = 1 to x = 0.6. A localization of the electronic states may also be concluded

from the comparatively high values of the energy gaps, with respect to the pristine

compound. Off-stoichiometry not only decreases the electron doping, but it also leads

to disorder in the strontium sublattice which may in turn reduce the mobility of the

charges.

6.7 Conclusions

In summary, we have measured the resistivity and the thermoelectric power in the

series of compounds SrxV6O15, for x = 1, 0.8, 0.7 and 0.6, under various pressures.

Thermopower turned out to be a particularly sensitive probe for the doping and pressure

dependence of electrical transport in these systems.

In the pristine compound, x = 1, two different regimes of the phase transition

could clearly be separated under pressure. Our results suggest that the semiconductor-

insulator transition is likely to be caused by charge ordering. In addition, we found

that an electrical current can cause the collapse of a lower resistivity state to a state
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of high resistivity.

The off-stoichiometric systems, x < 1, exhibit no phase transition in resistivity. As

x decreases, the charge gap grows and the thermal dependence of the thermopower

steadily diminishes. This indicates that the conduction is mediated by hopping between

localized states produced by disorder. The decrease of thermopower in the x =

0.6 compound under pressure indicates there may be a polaronic contribution to the

conduction.
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7 Fe2OBO3: probing the charge ordering

by high pressure transport

Of two sisters one is always the watcher, one the dancer.

(Louise Glück)

7.1 Introduction

Charge ordered states often occur in strongly correlated systems in order to minimize

the repulsive energy between the electrons at the expense of their kinetic energy.

In an idealized system with a perfectly positive background, the electronic gas of a

low density will form a lattice at sufficiently low temperatures. The common strongly

correlated systems which exhibit charge ordering obviously posses an underlying atomic

lattice instead of a homogeneous positive background. When the electrons are almost

localized on the atomic sites, their mutual repulsions lead to a creation of an electronic

lattice, similar to Wigner crystallization, even for higher electronic densities. However,

a very important difference with respect to a Wigner crystal is that the charge order

must be commensurate with the underlying atomic lattice [9].

The prime example of a charge ordered system is Fe3O4 - magnetite or loadstone.

It is probably one of the oldest known strongly correlated systems. The earliest written

reference to loadstone dates from 4th century BC, and was found in a Chinese book

called “Book of the Devil Valley Master”. By 12th century the Chinese used the

loadstone compass for navigation. Despite being known and used for centuries, even

nowadays magnetite is not well understood. In particular, it is not resolved whether

the charge ordering below the Verwey transition is driven by electrostatic repulsions

between the electrons, or by the strong electron-phonon interaction which strains the

lattice.

Iron oxoborate, Fe2OBO3, was initially interesting due to its close relation to mag-

netite. If the tetrahedral Fe3+ in Fe3O4 is selectively replaced by boron, this gives rise

to a warwickite-structured Fe2OBO3. The first experiments performed on polycrys-

talline samples of iron oxoborate seemed to show that electron-phonon interaction

plays no important role for the charge order. The Fe2+ and Fe3+ ions were found to

be equally distributed over structurally different sites. Later it turned out that this is

not precisely the case, and that on the contrary, it is electron-lattice coupling which

is most responsible for the charge ordering in Fe2OBO3.

However, with the advent of single crystals it has become possible to perform

more reliable experiments on this compound, and two important novel findings oc-

curred. Firstly, it was found that the low-temperature phase of Fe2OBO3 presents

the clearest example of ionic charge order found so far [107]. Whereas in the ma-
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jority of charge ordered systems, the total charge disproportionation is small, on the

order of 0.1 electron per site, a nearly integer iron valence separation into Fe2+ and

Fe3+ sites takes place in Fe2OBO3, which has been confirmed by Mössbauer spec-

troscopy, structural refinement and electronic structure calculations. Secondly, an

unprecedented incommensurate charge ordered phase was identified in the intermedi-

ate temperature range, 280K 6 T 6 340K. The charge-ordered superstructure was
in addition found to be temperature dependent [108].

Figure 65: Crystal structure of Fe2OBO3 in the bc plane. The ribbons consist of chains

running along the a-axis. Green and yellow polyhedra represent structurally different Fe1 and

Fe2 ions respectively.

The understanding of the incommensurate phase evidently requires a knowledge

of the crystal structure of Fe2OBO3, shown in Figure 65. The compound is based

on ribbons built by four edge-sharing infinite chains of FeO6 octahedra, along the

crystallographic a-axis. There are two structurally inequivalent sites for the iron atoms,

distinguishing the inner (Fe1) and the outer (Fe2) chains. The ribbons are linked by

corner sharing and by trigonal planar BO3 groups. Such arrangement of the ribbons

in the bc plane, perpendicular to the chain direction, leads to geometrical frustration

for interactions between chains.

At low temperatures, T < 280K, the electronic system is commensurately charge

ordered, with its basic charge ordered units being chains of alternating valences, Fe2+

and Fe3+, running along the a-axis. Because of the energy degeneracy of various
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configurations (“up” and “down” domains, shown in Figure 66), the total charge order

is established over domains. These are large in the a and b directions, but of small

size along the c-axis. In a slightly higher temperature range, for 280K < T < 340K,

the incommensurate phase takes place. It arises due to easy domain wall creation,

which results most likely from a compromise between the tendency to charge ordering

and the geometrical frustration.

Figure 66: The average charge ordered structure of one ribbon in Fe2OBO3 is a product of

domains with different diagonal order, “up” and “down” High and low iron valences correspond

to dark and bright shading, respectively [107].

In this brief chapter we focus on the influence of pressure on the coexistence of

charge ordered phases, commensurate and incommensurate, in Fe2OBO3, by means

of electrical transport measurements. This work represents a collaboration with Oak

Ridge National Laboratory.

7.2 Ambient pressure transport properties

The resistivity was measured along the chain direction, a-axis. The E-j characteristics

was determined by varying the current through the sample and recording the produced

voltage. The thermoelectric power measurement was limited to the high-temperature

range (above 300K), which is why it was performed only under ambient pressure.

The reason for this temperature limitation is that the high value of resistivity at lower

temperatures makes it very difficult to determine the thermopower.

The Figure 67 shows temperature dependence of the resistivity and thermopower

up to 800K. The resistivity in the high temperature (HT) phase, above ∼ 400K,
shows a very clear activated behavior:

ρ = ρ0 exp
∆

kBT
, (58)
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Figure 67: Top panel: temperature dependence of resistivity at ambient pressure. The inset

shows the activated behavior of the resistivity at high temperatures. Bottom panel: tempera-

ture dependence of thermopower, with a ∼ 1/T dependence shown in the inset. The arrows
mark the incommensurate charge ordering transition.

with a gap ∆HT = 179meV. The thermopower at high temperatures assumes relatively

small values. Above∼ 370K, the thermopower may be described by the semiconductor
formula:

S(T ) ∼ −kB|e| ·
∆S
2kBT

(59)
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7.2 Ambient pressure transport properties

The gap extracted from the thermopower data is very close to the resistivity gap,

∆S = 186meV, which indicates that majority of the carriers are hole-like. The re-

ported orthorhombic-monoclinic phase transition, where incommensurate charge or-

dering takes place, is seen in both transport coefficients as an abrupt increase of the

slope at TCO ≈ 340K.
Below the charge ordering transition, the resistivity exhibits hysteretic behavior

in a wide temperature range, in good agreement with the previously reported results

[108]. We note that our measurements were performed at high bias. On cooling, the

transition to commensurate charge ordered phase occurs at 280K, and on warming up

this temperature is somewhat higher, 308K. The first order nature of the transition,

evidenced by an approximately 30K wide hysteresis in the resistivity, is understood in

terms of the existence of charge order domains in this intermediate range. Extracting

the value of the resistivity gap in the commensurate charge ordered phase from the

resistivity data below ∼ 260K gives ∆LT = 375meV. Although the intermediate,
incommensurate charge ordered phase is too narrow to obtain a reliable value of gap

through the Equation 58, a crude estimate gives that ∆IT ≈ 0.4 eV. The resistivity
of the intermediate phase is higher than in the high temperature, charge disordered

phase, and so is the gap. However, the difference between the two gaps describing

the incommensurate and the commensurate charge ordered phase is relatively small.

Therefore, the main reason that the conductivity decreases as the charge order be-

comes commensurate is the lowering of the number and the mobility of the carriers.

In the incommensurately charge-ordered phase, we observe distinct nonlinearities

in the E-j dependence. As it is shown in the Figure 68, a strong enough current may

induce switching from a low-current low resistivity to a high-current high resistivity

state. For each temperature, a pair of curves represents the electric field in the sample

for increasing and decreasing current. The curves form a closed hysteretic loop with

a feature of double threshold biases. The switching effect was seen in three differ-

ent samples which come from two distinct batches. No switching is observed either

above the incommensurate charge ordering transition, for T & 340K, or when the
charge order is commensurate, below 260K. Therefore, the ability of the electron

system to respond to an electric field by abruptly changing the conductivity is a char-

acteristic property of the intermediate phase. It tells us that the charge order in the

incommensurate phase is soft, unlike the rigid order in the low temperature phase.

To understand the appearance of resistive switching, it is once more important to

recall that the charge order in Fe2OBO3 is established on the level of microdomains.

In the intermediate phase, the charge order is incommensurate with respect to the

underlying lattice. It is likely that the incommensurability appears because the inter-

ribbon Coulomb interactions are frustrated and therefore the domain boundaries can

still be created fairly easily in this temperature range. The thermal fluctuations which

cause the domain walls to rearrange are in part responsible for the conduction. The
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Figure 68: Sets of E-j curves taken under ambient pressure, while cooling the sample (upper

panel) and while warming it up (lower panel). The arrows in the bottom panel mark the

direction of decreasing and increasing current on a representative E-j loop. A break in the E-j

curve signals appearance of current-induced switching.

switching may be linked to the domain wall dynamics in the presence of an external

electric field. If the field facilitates the domain wall creation, the increase in the

number of boundaries may lead to enhanced resistivity.
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7.3 High pressure and charge ordering

7.3 High pressure and charge ordering

If pressure is applied to Fe2OBO3, one may expect that the ribbons are packed closer.

The atomic distances within one ribbon probably vary much less under pressure. Hence

the inter-ribbon coupling increases, whereas the intrachain interactions should not be

modified significantly. Figure 69 shows the temperature dependence of the resistivity

under pressure up to 2.0GPa. The conduction is enhanced in the high and intermediate

temperature region. On the contrary, there seems to be no important change in the

resistivity of the commensurately charge-ordered, low temperature phase. Despite the

limited temperature span of the high temperature phase, we can apply Equation 58

to extract an approximate value of the semiconducting gap. The ambient pressure

value of ∆HT ≈ 420meV shows little pressure dependence, decreasing by less then
10% for p = 2.0GPa. The low-temperature gap is virtually pressure independent,

∆LT ≈ 400meV. Under high pressure we also observe a switching behavior restricted
to the incommensurate phase, which is consistent with our ambient pressure results.
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Figure 69: The temperature dependence of resistivity for different pressures.

The most important effect of applying pressure to Fe2OBO3 is the shrinking of

the temperature window where the incommensurate phase exists. Figure 70 shows

the progression of the charge ordering temperatures under pressure. The temperature

where incommensurate charge ordering is established, TCO, does not depend apprecia-

bly on pressure. However, the temperature of the commensurate ordering increases
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monotonously, at a rate of ∼ 10K/GPa, both for the data collected in the cooling
and in the warming up.

The charge ordered units in the incommensurate phase are chains of alternating

Fe2+ and Fe3+ ions. The fact that TCO is pressure-independent indicates that the

occurrence of the charge order along the Fe chains is a consequence of the on-site

Coulomb interaction U and the Coulomb repulsion between the nearest neighbors

within the same ribbon, because these parameters should have rather weak pressure

dependence. Indeed, the LSDA and LSDA +U calculations performed for Fe2OBO3
showed that the electron-electron correlations in the 3d shell of Fe cations play a

significant role in the physics of the compound [109]. Only when a strong U of 5.5 eV

is included does an insulating charge ordered solution appear. For that case, the

calculated corresponding gap amounts to approximately 0.4 eV, which is in agreement

with our experimental data. Without U, a metallic solution exists without charge

order.
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Figure 70: Pressure dependence of the transition temperatures at which incommensurate and

commensurate charge ordering take place. The lines are guides to the eye.

The strong on-site interaction U favors charge disproportionation, but in order to

account for a long range charge order one must also consider the Coulomb repulsion

between neighboring sites, Vi j [9]. A valid starting point for a theoretical description

is given by the extended Hubbard model [18]:

H =
∑

〈i j〉

∑
σ

(
ti jc

†
iσcjσ + h.c.

)
+

∑

i

Uni↑ni↓ +
∑

〈i j〉
Vi jninj (60)
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Here, 〈i j〉 stands for the pair of lattice sites i and j , σ is the spin, and ti j is the transfer
integral between the sites i and j .

p p0

frustration

Te
m
pe

ra
tu
re

V/t
VC

1
/ tC

1
VC

2
/ tC

2

commensurate
charge order

Figure 71: Phase diagram suggested by the present measurements.

Since at at lower temperatures a different, commensurate charge ordered structure

is observed, besides the intra-ribbon Coulomb interactions one must also consider the

interaction between the ribbons. There is evidence that in the incommensurate phase

these interactions are approximately frustrated, which is the probable cause of the

incommensurability of the charge order. When temperature decreases, a dominant

inter-ribbon interaction appears and the charge order steadily becomes commensurate

with the underlying lattice. The existence of the two charge ordered phases, com-

mensurate and incommensurate, and their distinct pressure dependence implies that

to describe this system the above extended Hubbard Hamiltonian needs to include

minimally two different parameters for inter-site Coulomb interaction. One is needed

to account for the nearest neighbor repulsion within a ribbon, V1, and the other, V2,

to represent an effective inter-ribbon interaction. The pressure dependence of the

ordering temperatures suggests a phase diagram shown in Figure 71 for the charge

order in this compound. To identify V2 and verify our conjecture about its pressure

dependence, one would have to know the structure of Fe2OBO3 under pressure.

The effect of pressure on Fe2OBO3 is small compared to BaVS3 or the organic

compounds [20]. We attribute this to the hardness of the system, resulting in relatively
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weak compressibility.

7.4 Conclusions

Whereas the temperature of the incommensurate charge ordering transition,TCO,

shows very little pressure dependence, the temperature of the commensurate transition

increases with pressure. This indicates that pressure partially suppresses the interme-

diate incommensurate phase. In addition, we observe that resistance of the system

can be switched by electric field in the incommensurately charge ordered phase. Such

an effect is evidence of the mobility of the charge ordered domains in the incommen-

surate phase. Switching is not observed above TCO or in the commensurately ordered

phase. Our results are consistent with a picture in which the high temperature phase

transition is related to the on-site Coulomb repulsion U and the intrachain/intra-ribbon

nearest-neighbor Coulomb repulsion, whereas the commensurate ordering results from

the competition of inter-ribbon interactions.

In conclusion, we have shown that the dynamics of the domain walls, which is

considered responsible for the incommensurate charge ordered phase in Fe2OBO3,

may be tuned through external parameters, like the electric field and pressure. In the

incommensurate charge ordered phase, the resistivity may be controlled through the

applied current, and it exhibits bistable switching. The application of pressure partially

suppresses the incommensurate phase, which indicates that the inter-ribbon coupling

is responsible for the commensurable charge ordering.
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8 Charge transport on a pyrochlore lattice: the case

of KOs2O6

We like detective stories because they ask the same question

posed by philosophy and religion: ”Whodunnit?”

(Umberto Eco, “Six walks in the fictional woods”)

8.1 Introduction

The concept of frustration is usually applied to magnetic systems. If spins are placed

onto the nodes of lattices such as triangular, Kagomé or pyrochlore, the nearest

neighbor interactions cannot all be satisfied at once, and are frustrated. The role of

frustration has been theoretically and experimentally investigated in detail for systems

with localized spins. It was discovered that frustration leads to novel phases of matter,

such as spin ice. On the contrary, little is known about how the properties of an

itinerant system are influenced by a geometrically frustrated underlying lattice. A

possible scheme is that frustration slows down the electrons and thus strengthens the

correlations. In any event, one would expect interesting signatures in the transport

properties of an itinerant system on a frustrated lattice.

Figure 72: Left: Pyrochlore lattice consists of corner-sharing tetrahedra. Right: In KOs2O6,

the osmium atoms (blue) form the pyrochlore lattice and each atom is surrounded by six

oxygen atoms (red). Images are taken from [110].

The unexplored role of frustration in itinerant systems was our initial motivation

in the study of itinerant system on a pyrochlore lattice, KOs2O6. Recent discovery

of superconductivity in this system, with a comparatively high transition temperature

Tc of 9.6K [110, 111] has made this compound even more intriguing. KOs2O6 has

the highest superconducting transition temperature among the pyrochlore-structured

compounds discovered so far, and is therefore of particular interest. On a more general
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ground, this discovery has strengthened the viewpoint that magnetic frustration may

have considerable role in promoting superconductivity, because it is unfavorable for

long-range order possibly competing with the superconductivity [112].

However, KOs2O6 is a multifaceted system where lattice frustration is but one

factor. The spacious cages enclosing potassium atoms (Figure 73) allow these tiny

atoms to rattle about their equilibrium position making large excursions of 1 Å [113].

The rattling mode is a low-lying excitation, persisting down to very low temperatures,

which very likely affects the transport properties. Structural features which enable lo-

calized modes in crystals, as ions move about in anharmonic potentials, exist in some

other classes of compounds, for example filled skutterides and clathrates. The rattling

phenomenon decreases the thermal conductivity and enhances the thermoelectric effi-

ciency, making the latter materials interesting for applications. Such “rattling motion”

of the potassium ions appears to have significant influence on the physical properties

in this material. The electronically identical rubidium and cesium compounds have

lower superconducting transition temperatures, of Tc = 6.3K and 3.3K, respectively

[114, 115]. Simultaneously, the rattling motion of cesium and rubidium atoms is

significantly less pronounced due to the larger cation sizes.

Figure 73: KOs2O6 is built by a network of OsO2 octahedrons, positioned at the nodes of

a pyrochlore lattice. The lattice encloses large cages where potassium atoms move in an

anharmonic potential [116].

KOs2O6 presents a unique situation where both geometrical frustration and rattling

arise, which results in anomalous behavior in many physical properties. As we shall

see throughout this chapter, the transport in KOs2O6 is far from being conventional.

Another remarkable property of KOs2O6 is the large value of the Sommerfeld constant
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8.2 High-pressure resistivity and thermoelectric power

γ of 75− 110mJ/(K2mol), found in the specific heat measurements [117, 118]. The
Sommerfeld coefficient implies that the density of states (DOS) at the Fermi energy

(εF) is an order of magnitude higher then the one predicted by the band structure

calculations [113, 119].

Frustration, the rattling of the potassium ions and the high DOS at εF in a broad

sense relate KOs2O6 to the high temperature superconducting cuprates. There, the

magnetic frustration is related to missing spins introduced by doping, often at the

expense of the non-stoichiometric crystal structure. The strongly anharmonic phonon

modes are also often encountered in the cuprates and are sometimes regarded as

important for superconductivity [120]. Lastly, the band structure calculations and

photoemission measurements suggest a Van Hove enhancement in the DOS in the

vicinity of εF [121, 122]. Similarly to the copper oxide superconductors, the nor-

mal state properties of KOs2O6 may prove to be more intriguing than those of the

superconducting phase.

Application of pressure on KOs2O6 may tune the coupling constants of the electron-

electron and electron-phonon interaction, change the size of the rattling cage, or

broaden the bands. We have measured the high pressure behavior of the transport

coefficients, resistivity ρ(T ) and the thermoelectric power S(T ) on high quality sin-

gle crystals of KOs2O6. Focusing on the anomalous normal state rather than on the

superconducting phase, we also investigated the transport properties on a very fine

pressure scale. Additionally, the ambient pressure transport coefficients are deter-

mined up to high temperatures, reaching 700K. The thermopower data indicates a

behavior unusual for ordinary metals stretching up to at least 700K, which links to

the unconventional resistivity ρ(T ). We argue that this may be understood as a result

of high electronic DOS, confined to a rather narrow energy window around εF. Such

an enhancement in the DOS, which is indicated by the large Sommerfeld coefficient,

is probably related to the rattling mode, as our high pressure results suggest.

8.2 High-pressure resistivity and thermoelectric power

The ambient pressure resistivity and thermopower measured in the temperature range

from 4.2 to 700K are shown in Figure 75. The quality of the crystals is reflected in a

comparatively high residual resistivity ratio (RRR) of 15. Since there is no saturation

in resistivity at low temperatures, under residual resistivity, ρ0, we refer here to the

value of the resistivity right above the superconducting transition. At temperatures

above 200K, ρ(T ) grows, exhibiting neither a strong increase which we would have

in case of scattering on phonons, nor a saturation, which was seen, for instance, in

the pyrochlore superconductor Cd2Re2O7 [123]. A plausible reason for the absence of

saturation immediately above 200K is the fact that the mean free path is still rather
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Figure 74: Samples of KOs2O6 used in this study were synthesized in the group of J. Karpinski

at ETH Zürich. The left photograph shows a sample equipped with four electrical contacts

for the resistivity measurement.

large. Its value was estimated to be of the order of ten lattice constants from the

characteristic value of the Fermi velocity vF and the DOS obtained in band structure

calculation [118, 119].

At low temperatures, there is a strong downward curvature in resistivity below

200K. The non-Fermi liquid behavior of the resistivity is particularly striking. A

clear absence of concave behavior, such as ρ0 + AT
2, is observed in resistivity at low

temperatures, even down to the superconducting transition temperature Tc.

A second phase transition, taking place in the superconducting state at Tp = 7K,

has been found by the specific heat measurements in the shape of a huge peak. The

form of the peak does not change when superconductivity is suppressed below Tp
by the external magnetic field. Such behavior is indicative of a relation between the

transition and the lattice dynamics. Apparently, there may be a connection of this

transition and the structural frustration of the potassium ions occupying the sites of

a diamond lattice. The calculations by Kuneš and Pickett imply that Tp corresponds

to a phase transition of the potassium sublattice to supercell order [124]. They also

suggest that the non-Fermi liquid behavior in the resistivity comes as a consequence

of potassium atoms motion which does not freeze down to the ordering transition at

Tp.

The pressure evolution of the resistivity is shown in Figure 76. At high temperatures

the resistivity is not considerably influenced by the pressure. However, important

changes start to happen in the low temperature part. The low temperature resistivity

at the highest pressure of 2.3GPa increases by 300% (inset of Figure 76), which is
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Figure 75: The wide-range temperature dependencies of resistivity (left) and thermopower

(right) at ambient pressure.

reflected in the drop of RRR from its ambient pressure value of 15 to a modest 3.5.

Such an increase in the residual resistivity ρ0 is anomalous. It asserts that pressure

affects mostly the low energy electronic excitations.

The temperature of the superconducting transition shows a non-monotonous pres-

sure dependence. The initial increase, as shown in Figure 77, is followed by a dimin-

ishing Tc above 1GPa. The superconductivity seems to be entirely suppressed above

pc ≈ 6GPa [125].
The temperature dependence of the thermopower up to 700K is shown in Figure

75. In the whole temperature range the thermopower is negative. The most promi-

nent feature is a strong peak around 60K. As temperature is increased further, the

thermopower drops precipitously. With the application of pressure, the absolute value

of thermopower is reduced, as shown in Figure 78. The largest changes happen around

the maximum, although the position of the maximum does not shift. Again, the high

temperature part of thermopower is much less affected.

There are several reasons to eliminate the interpretation of the maximum in the

thermopower as a consequence of a conventional phonon drag. Even at temperatures

as high as 700K the thermopower does not recover normal metallic behavior, marked

by a linear temperature dependence [94]. The temperature dependence of resistivity

below 60K shows no usual signs of the scattering of electrons on acoustic phonons,
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Figure 76: Left panel: The temperature dependence of resistivity for various pressures. The

lowest curve is the ambient pressure resistivity. Right panel: The pressure dependence of

the relative change of the resistivity with respect to its value at ambient pressure, for various

temperatures.
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Figure 77: The pressure dependence of the superconducting transition temperature.

as it is convex in the whole temperature range. In addition, that part of resistivity

strongly depends on pressure, but in the opposite sense to what is expected if the
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Figure 78: The temperature dependence of thermopower under different pressures.

velocity of the acoustic phonons increases with pressure. Finally, the maximum value

of the thermopower decreases with pressure, contrary to what one would expect if the

coupling to acoustic phonons increased under pressure, as the rise in resistivity may

suggest. The conventional phonon drag being eliminated, the observed thermopower

may be only described as an anomalous electronic contribution. The resistivity and the

thermopower measurements together signal the unconventional transport in KOs2O6.

8.3 Transport in KOs2O6 in a simple DOS model

The transport in KOs2O6 is unconventional. It might come from geometrical frus-

tration, however, there are no clear models to which we could compare the transport

coefficients. Therefore we adopt a more conservative approach, and we attempt at

understanding our transport results within a model of the density of states.

The presented data accentuate the importance of the low energy electron dynamics

in KOs2O6. In what follows we will illustrate that the basic physics of the transport in

the normal state of KOs2O6 may be understood within a simple fermionic model with

a marked DOS enhancement in the narrow window of energies. This enhancement is

indicated by the Sommerfeld coefficient γ of 75 − 110mJ/(K2mol) determined from
the specific heat measurements [117, 118]. The Sommerfeld coefficient appears to

be an order of magnitude higher than suggested by band structure calculations. The
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increase of the specific heat in applied magnetic field in the superconducting state

[118] demonstrates that the effect is electronic. The additional contribution to the

electronic DOS is likely to be important in a narrow energy window of about 1 eV

around the εF, as the band structure may be expected to be basically correct for

the eV-energy scale. The measurement of thermopower suggests that the half-width

of this window is of the order of hundred Kelvin. The rattling of the K ions is the

most suggestive source of the DOS enhancement. The experimental evidence for this

is the increase in γ as we move along the alkali atoms in the isoelectronic AOs2O6
series [126] from large cesium, whose excursions from the equilibrium position are

the smallest, over rubidium, to the tiny potassium atom, which can rattle the most.

On the theoretical side, it has been pointed out in several recent papers that the

electron scattering on a single rattling mode may be similar to the Kondo scattering

on magnetic impurities, separately for each spin channel [127]. Extended to a crystal

where rattlers reoccur periodically in space, an enhancement of the DOS around εF is

to be expected, drawing parallels to the heavy fermion systems.

Figure 79: The scheme of the simple DOS model. The vertical broken line sets the position

of the band filling at T = 0. The values of the DOS in different regions are indicated by gw
and gn; σw and σn are the respective conductivity parameters.

The simplest fermionic model of the electronic spectrum based on the observa-

tions above is schematically introduced in Figure 79. It consists of a narrow window

of the enhanced DOS around εF and a broader spectrum where DOS is of the order

of the one given by the band structure calculations. To calculate the transport coef-

ficients, one needs to evaluate σ(E) = (e2/3) v(E)2 τ(E), the quantity that includes

the characteristic velocity and relaxation time at a given energy. We parameterize

σ(E) for the narrow and broad parts of the energy spectrum by σn and σw, where

σn,w = (e
2/3) v n,w

2 τn,w. The resistivity and thermopower are given by the usual band
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Figure 80: The two panels display the agreement between the ambient pressure resistivity and

thermopower, and their fits by the model depicted in Figure 79.

transport formulae [26]:

σ =

∫
dE g(E)σ(E)

(
−∂f0(E, T )

∂E

)

S = − e
Tσ

∫
dE g(E)σ(E)(E − µ)

(61)

where g(E) stands for the DOS and has values gn and gw , for the narrow enhanced

part and the wings respectively, and f0(E, T ) refers to the Fermi function. The model

is simplistic to the extent that no implicit temperature dependencies of the parameters

are assumed. In such an approach, the only source of the temperature dependence

of the transport quantities comes from the “softening” of the shape of f0 as the

temperature rises. The broadening of the Fermi distribution then implies significant
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shift of the chemical potential as well as the progressive activation of different types

of electronic states in the transport.

Our parametrization of ρ(T ) and S(T ) gives the following values for the ratios:

σw/σn = 2.8, and gn/gw = 20. The half-width of the narrow portion of the DOS is

Wn = 60K. The band filling at zero temperature is slightly below the center of the

narrow portion of DOS, µ0 = −6.6K. The off-center shift is needed to explain the
finite thermopower. At a finite temperature, the chemical potential is calculated from

the requirement that the number of particles stays thermally independent. This set of

parameters, as shown in Figure 80, reproduces the temperature dependence of both

the resistivity and thermopower over a wide temperature range, in good accordance

with experimental data. The value of gn/gw is of the order of what has been calculated

from the specific heat measurements [117, 118]. The temperature of the pronounced

maximum in S(T ) corresponds to the value of Wn.

The considerations of the microscopic sources of the values of gn/gw , σw , and

σn are beyond the scope of our simple modeling. However, even at the present level

we learn much about the nature of the electronic states. Firstly, it is somewhat

surprising that the model does not require any separate temperature dependencies

for the parameters σn and σw. In fact, for the same model to reproduce both S(T )

and ρ(T ) one condition is that this temperature dependence be negligible. A sizeable

temperature dependence of σn and σw parameters would affect directly the ρ(T ),

whereas the additional temperature dependent factors would cancel in the expression

for S(T ). Thus most of the temperature dependence comes exclusively from the

existence of two distinct parts in the electronic spectrum. Second observation is

linked to the strong increase of the resistivity in the low temperature range, which

implies that the rise in temperature renders the charge carriers propagation more

difficult. This is contrary to what would happen if the low energy electronic states

were localized in space and it was the delocalized states that became more populated

as the temperature increased. The model suggests that the mean free path ln, for the

states in the enhanced part of DOS, is greater than the one related to the broad part

of the DOS, lw . This is the consequence of the parameters σn and σw being of similar

order of magnitude, i.e. vn ln ∼ vw lw , and a rather logical assumption that the velocity
in the broad portion of the electronic spectrum is significantly larger than in the narrow

part, vw À vn. Good spatial coherence of the low lying states rules out a bad metal
or a localized transport limit. As the effective single particle states close to εF are

spatially coherent, one may speak of an effective, renormalized electronic dispersion

at low temperature, which is not destroyed by the weak residual interaction. Such

a situation, where the renormalization is strong while the effective electronic band

picture is preserved, is often encountered in in heavy fermion systems [128].

The pressure dependence observed in the experiments may be transferred into

the pressure dependence of the model parameters. The usual wisdom of the pressure-
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Figure 81: Right: The resistivity of KOs2O6 calculated with the ambient pressure set of

parameter (red curve) and with the scattering rate of the narrow band increased by 20%.

Left: Decreasing the density of states in the narrow band by 20% produces a decrease in the

calculated thermopower.

induced expansion of the broad sub-band yields changes of transport coefficients which

contradict the experiment. Instead, modifying the parameters related to the narrow

sub-band gives better agreement. The experiments unambiguously suggest that the

pressure mostly affects the low energy electronic spectrum. The model parameters

related to that part of the spectrum are the low energy DOS, gn, and the scattering

parameter σn. The rattling of potassium atom is supposed to weaken under pressure,

and we may also suppose that the role of frustration strengthens as the lattice is

compressed. These changes should mostly be reflected in the gradual decrease of the

DOS enhancement around the εF. Indeed, as shown in Figure 81, reducing gn by 20%

qualitatively reproduces the observed shifts, both in the resistivity and thermopower,

under the maximum pressure of 2.3GPa. However, in comparison to the model predic-

tions, the experimental data (in particular the resistivity) shows that applying pressure

leaves the high temperature range much less affected than the low pressure range.

We assume that this may be related to the increasing importance of frustration, as

the nodes of the pyrochlore lattice approach under pressure.

Finally, the above model should be able to account for the almost temperature-

independent magnetic susceptibility χ [118]. A dynamically formed enhancement in

the DOS originating from the electron-phonon interaction should generally not show

up in χ. The DOS enhancement near the εF forms separately for spin-up and spin-down

electrons. Hence, it cannot be regarded as a construct that would stiffly move in energy

in opposite directions for spin-down and spin-up electrons when the magnetic field is

applied. The εF is the same for spin-up and spin-down electrons in a spin polarized

system, therefore the DOS enhancement should not move at all. As expected, no

enhancement was observed in the electronic energy as a result of the applied magnetic

field [118].
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8.4 Conclusions

Although it was the high superconducting transition temperature that brought the at-

tention to KOs2O6, the understanding the highly unconventional transport properties

is in our opinion much more relevant for the fundamental physics of this compound.

For example, in a broad temperature range the resistivity does not follow at all the

Bloch-Grüneisen behavior: there is neither the sign of residual resistivity nor of linear

temperature dependence. Instead, the resistivity exhibits convex temperature depen-

dence in a wide temperature range from 700K down to the superconducting transition

at 9K. Furthermore, the thermopower has a nonmetallic temperature dependence

dominated by a large maximum centered at 60K, very much like in the high tempera-

ture cuprate superconductors. Additionally, both transport coefficients show unusual

pressure dependence.

Besides presenting transport data obtained on single crystals of KOs2O6, we sug-

gested a model in which a narrow structure in the density of states governs both the

temperature and the pressure dependencies of resistivity and thermopower. Based

on our model, the pressure behavior of the transport coefficients seems to be mainly

influenced by the decrease in rattling of the potassium ions and possibly an increase

of the effect of frustration. In some sense, this means that transport measurements

can serve as a “spectroscopic method” for elucidating fine structures in the density of

states, inaccessible by conventional spectroscopies.
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9 Conclusion

Individual scientific facts are the leaves and twigs of a great tree.

(John Michael Ziman)

Strongly correlated systems often have rich phase diagrams resulting from a com-

petition between various interactions. If one can tune and stabilize a technologically

interesting ground state (for instance, a zero resistance state) then one can think

about applications, device fabrication, etc. In this work, we have focused on the influ-

ence of factors such as disorder and dimensionality onto the competition of different

electronic phases. The principal method employed in the study was the measurement

of transport coefficients, resistivity and thermoelectric power. Transport measure-

ments are very versatile, posing few restrictions on the sample, and may give detailed

insight into the nature of the conduction processes and the thermodynamics of the

system. The resistivity mostly addresses the electron scattering rate, and the thermo-

electric power may give information on electronic dispersion and the density of states.

We have combined the electronic transport with high pressure - a tool ideally suited

for a study of competing orders in strongly correlated systems. By modifying the

lattice constants, pressure can continuously tune the interactions without introducing

disorder, and influence the ground state quite dramatically.

Several representative d-electron systems were chosen for this study. Quasi-one

dimensional compound BaVS3 is based on the coexistence of two bands at the Fermi

level: a broad one-dimensional dz2 band and a narrow but more isotropic eg band. By

changing the temperature, pressure and the amount of impurities, this compound can

be tuned through a wealth of complex phases, undergoing numerous transitions. In this

work we have mostly concentrated on the high-pressure collapse of the metal-insulator

transition and the role of disorder. We found that the high pressure non-Fermi liquid

state responds to the presence of magnetic field and localized impurities in a different

manner than what has been reported in other non-Fermi liquid compounds [65, 69].

These findings corroborate with a novel non-Fermi liquid scenario which has been

proposed for BaVS3 [47, 48]. Moreover, sulphur deficiency changes the band-filling,

which together with the disorder leads to a charge order of the eg electrons. This

new instability competes with the metal-insulator transition characteristic of the pure

system, and adds more richness to the phase diagram of BaVS3.

In order to get more insight into the nature of the high pressure state of BaVS3,

we explored the properties of its sister compound BaVSe3. When sulphur is replaced

by a larger selenium, the overlaps between the chains are enhanced. This leads to a

more three-dimensional structure. The ground state was found to be metallic and fer-

romagnetic, which was also confirmed by the band calculations. In this view, BaVSe3
represents the high pressure counterpart of BaVS3. However, the selenide compound
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also raises some new issues, such as the tuning of the low-temperature resistivity ex-

ponent by pressure and magnetic field towards values higher than the canonical n = 2.

In the case of another vanadium-based quasi-one dimensional conductor, β-SrxV6O15,

the phase diagram is still poorly understood. When the temperature decreases, a

sharp semiconductor-insulator transition occurs in the in the stoichiometric x = 1

compound. The origin of this phase transition is still a matter of debate, and several

different mechanisms have been proposed: charge ordering, small-polaron ordering,

charge density wave. We have investigated the pressure-dependence of the phase

transition and found evidence that the insulating ground state is charge ordered. The

properties of β-SrV6O15 exhibit great sensitivity to pressure, and a clear separation of

regimes was found both by our transport measurements and by the X-ray scattering

experiments [95]. In the insulating phase we have observed resistive switching: and

abrupt change in the resistivity can be caused by an external electric field. When

x < 1, the system becomes governed by the disorder. There is no phase transition,

and the transport coefficients seem to be dominated by the localized electrons. The

resistive switching was not observed for x < 1.

The appearance of switching phenomena might have substantial technological im-

plications: it is one of the most promising routes in the search for alternative memory

devices. Capacitor-like metal/transition-metal oxide/metal structures are character-

ized by non-volatile and reversible switching, for a wide array of transition-metal oxides

[129]. Although switching was most frequently observed in thin films, this effect also

occurs in bulk systems, like in manganites [97], cuprates [129], or in our charge ordered

compound β-SrV6O15.

In order to check whether the resistive switching in general accompanies charge

ordering, we have studied iron oxoborate, Fe2OBO3. This compound is arguably the

clearest example of ionic charge ordering so far [107]. Apart from the low temperature

commensurate charge order, it features an intermediate phase with incommensurate

charge order [108]. Indeed, we have observed resistive switching. Its appearance is

restricted to the incommensurate charge ordered phase. We interpreted this as a sign

that the charge distribution is soft at intermediate temperatures, but becomes rigid at

low temperatures when the commensurate charge order sets in. By applying pressure,

we could constrict the temperature window of the incommensurate phase. This im-

plies that the Coulomb repulsion, which is enhanced as the structure is compressed, is

responsible for the commensurate charge ordering. The unprecedented intermediate

phase is linked to the easy creation of domain walls, which leads to the incommensu-

rability of the charge order with respect to the underlying atomic lattice. The likely

culprit for the incommensurability is the geometrical frustration of the repulsive inter-

actions between iron chains [108].

The initial idea in the study of KOs2O6 was to investigate the role of geometri-
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cal frustration on the electronic transport. Apart from frustration, another important

feature appears: the “rattling motion” of potassium atoms, which are enclosed in

oversized cages formed by the pyrochlore lattice. This introduces a localized low-

energy mode which drastically influences all the physical properties of KOs2O6. This

pyrochlore-structured superconductor indeed has atypical and very curious transport

properties. The resistivity is highly unconventional and shows no sign of saturation

at low temperatures, before the superconducting state takes over. Moreover, the

anomalous scythe-shaped thermoelectric power resembles the one observed in the

superconducting cuprates. Under pressure, the resistivity shows a large increase re-

stricted to the low temperature range. Since a theory to explain transport properties

in a frustrated system is lacking, we used a simple model to account for the measured

transport properties. In the model, a narrow window of enhanced density of states at

the Fermi level is superimposed on a broad band. Calculations based on such a model

reproduced both the resistivity and thermopower very well, and correctly predicted

the behavior of the system under pressure. In a sense, this means that the transport

measurements served as a spectroscopic tool, probing fine structures of the electronic

density of states.

Throughout this thesis, we have seen that even though we may in some cases

successfully model the resistivity, as we have shown on the example of KOs2O6, the

microscopic theoretical understanding of the bad metallicity is lacking. In that sense,

the presented data may serve as an input for the future theories. The situation for the

other transport coefficient, thermoelectric power, is even more acute. Thermopower

is a simple technique which mainly serves as a tool to identify whether a compound

behaves like a metal or not, or alternatively, if one is interested in thermoelectric

applications, what is the material’s figure of merit. However, we still have a very poor

theoretical understanding of this transport coefficient, even in rather simple systems.

For example, it is not known why the thermopower of platinum has a large offset when

extrapolated from high temperatures to zero - are some there “missing” degrees of

freedom which contribute to it? Clearly, much theoretical work is needed in this area.

Finally, to give an outlook from the experimental point of view, one of the most

interesting issues to be addressed will probably be the very high pressure behavior of

BaVS3. In this system, the ground state can be tuned by pressure from a Peierls phase,

to a non-Fermi liquid phase and then further into a Fermi liquid. Knowing that diverse

interactions are present, as well as charge, spin and orbital degrees of freedom, the

question is whether it is possible to materialize the high-pressure superconductivity.
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