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Abstract

The obvious recent advances in areas such as video compression and network
architectures allow for the deployment of novel video distribution applications.
These have the potential to provide ubiquitous media access to end users. In
recent years, applications based on audio and video streaming have turned out to
be immensely popular and the Internet has become the most widely used vector
for media content distribution, due to its high availability and connectivity.
However, the nature of the Internet infrastructure is not adapted to the specific
characteristics of multimedia traffic, which presents a certain tolerance to losses,
but strict delay and high bandwidth requirements.

In this thesis, our goal is to improve the efficiency of media delivery over
the existing network architecture. In order to do so we consider the deliv-
ery of scalable video in three main delivery scenarios, namely one-to-one client
server architectures, one-to-many broadcasting architectures, and many-to-one
distributed streaming architectures.

First, we propose a distributed media-friendly rate allocation algorithm for
the delivery of both finely and coarsely scalable video streams. Unlike existing
solutions, our algorithm explicitly takes the characteristics of media streams
into consideration. As a result, it provides rate allocations that better fit the
heterogeneous characteristics of media streams. We outline an implementation
that is robust to random feedback delays and that permits a scalable deploy-
ment of the algorithm. The rate allocation that is computed by our algorithm
achieves network stability and high bandwidth utilization. It moreover allows
to maximize the average received quality for all streams that are delivered in
the network. While considering the transmission of coarsely layered streams,
we derive conditions on the encoding rates of the video layers. These conditions
depend on the allowed end-to-end delay and on the rate allocation algorithm
that controls the sending rates. They allow us to take full advantage of the
allocated transmission rates.

Second, we investigate the problem of jointly addressing the needs of mul-
tiple receivers that consume different versions of a layered media stream in a
broadcasting scenario. We provide optimal scheduling algorithms that jointly
optimize the playback delay and the buffer occupancy at all of these receivers
when the used channel is known. Furthermore we analyze low complexity heuris-
tics based optimization techniques, which provide close to optimal results when
only limited channel knowledge is available.

Finally, we explore the possibility to exploit the inherent network diversity
that is provided by the Internet infrastructure. In particular, we consider media
delivery schemes where multiple senders are available for the transmission of a
scalable video stream to a single client. Such an architecture is referred to as

v
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a distributed streaming architecture. It has the benefit of aggregating multiple
unreliable channels into a single more robust channel with high availability.
Through the use of Fountain codes, we are able to transform the distributed
streaming problem into a rate allocation problem of lower complexity. The
solution to this problem is shown to depend not only on the average packet loss
rate, but also on the average length of packet loss bursts that are observed on
each of the available channels. The coding scheme that we suggest enables our
system to adapt the streamed content to the network characteristics, as well as
to the needs of the receiving client.

Keywords: video streaming, distributed streaming, packet scheduling, rate
allocation, congestion control.



Résumé

La disponibilité de réseaux de données, ainsi que les progrès indéniables en
matière de compression vidéo, donnent lieu à de nouvelles architectures sup-
portant des applications vidéo. Ces architectures ont le potentiel de rendre ac-
cessible des fichiers de médias en tout lieu. Au cours des dernières années, des
applications basées sur les transmissions audio et vidéo ont connu un succès im-
mense et le réseau internet est devenu le vecteur de choix pour les transmissions
multimédiales. Cependant, l’infrastructure du réseau internet est mal adaptée
aux besoins du traffic généré par des applications multimédiales. Celui-ci peut
tolérer un certain degré de pertes, mais il présente des contraintes strictes en
termes de délais et de bande passante.

Dans cette thèse, notre but est de présenter de nouveaux résultats qui per-
mettent d’améliorer les systèmes de transmissions multimédiales en utilisant
l’infrastructure du réseau disponible.

Nous allons adresser trois scénarios importants dans cette optique. Il s’agit
des transmissions un-à-un, des transmissions un-à-plusieurs, ainsi que des systèmes
de transmission distribués plusieurs-à-un.

Nous proposons un algorithme distribué d’allocation de bande passante.
Contrairement à des solutions existantes, les allocations calculées par notre al-
gorithme sont aptes à la transmission de vidéos scalables à différents degrés
et permettent une maximization de la qualité vidéo moyenne reçue à travers le
réseau entier. Il s’ensuit que ces allocations nous permettent de respecter les be-
soins hétérogènes des vidéos transmises. L’implémentation que nous proposons
est robuste aux délais aléatoires qui peuvent se manifester dans le réseau, et
permet de déployer l’algorithme à grande échelle. En analysant la transmis-
sion de vidéos scalables par couches, nous présentons des conditions sur le débit
d’encodage des couches vidéos. Celles-ci dépendent à la fois du délai bout-à-
bout que la vidéo peut subir et de l’algorithme d’allocation de bande passante
utilisé pour contrôler la transmission. En respectant ces conditions, un avantage
maximal peut être tiré des allocations de bande passante que nous proposons.

Ensuite, nous adressons des scénarios de type broadcast, dans lesquels chaque
récepteur décode un sous-ensemble différent des couches vidéo transmises. Nous
présentons des résultats optimaux en ce qui concerne la minimisation de la
mémoire nécessaire au décodage pour chacun des récepteurs, ainsi qu’une op-
timisation jointe des délais qui s’imposent afin d’assurer un décodage continu
quand le canal utilisé est connu.

Finalement, nous présentons une architecture distribuée pour transmettre
des vidéos de plusieurs sources à un seul récepteur. Nous utilisons des codes
sans rendement de type fontaine, ce qui nous permet de transformer ce problème
distribué difficile en un problème d’allocation de bande passante à complexité
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réduite. La solution de ce problème dépend à la fois du taux de perte moyen de
chacun des canaux utilisés, et de la longueur moyenne de pertes séquentielles
observées. Le codage que nous proposons facilite l’adaptation des transmissions
aux conditions du réseau, et permet en même temps de satisfaire les besoins du
client en termes de scalabilité.

Mots-clés: transmission vidéo, transmission de vidéo distribuée, allocation
de bande passante, contrôle de congestion.
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Chapter 1

Introduction

1.1 Motivation

The advances of technology in the areas of video compression and today’s net-
works permit the deployment of novel video distribution applications. These
have the potential to provide the end users with ubiquitous access to media
streams, such as audio and video content. In recent years such applications
have turned out to be immensely popular. In this thesis we will focus on ar-
chitectures that allow for video streaming over IP networks, and provide new
results in order to improve their efficiency.

An overview picture of today’s multimedia communication infrastructure is
given in Figure 1.1. Media content is in general encoded or stored in servers that
connect to the networking infrastructure through reliable high speed channels.
The clients that connect to media streams tend to become more and more
heterogeneous and can have a wide variety of access modes to the network.
Indeed typical devices that are used today for the consumption of media streams
can range from mobile phones with low processing power and small display sizes,
up to high performance workstations that drive High Definition displays.

The IP networking infrastructure that connects the senders to the clients
provides essentially a best effort service, hence it does in general not give any
hard guarantees to the media streaming services in terms of either delay, avail-
able bandwidth, or even channel availability. However, there are in general
multiple possible paths between any two points that can connect through the
network. Also, there are often several servers available to provide the same data
to a potential client, by using different channels. These features are generally
referred to as network diversity.

The area of multimedia communications inherently lies at the crossing of
both the signal processing and networking communities, hence efficient solutions
to problems in multimedia communications ask for a thorough understanding of
both the available networking architectures and the characteristics of encoded
video signals.

In order to make sure that a high Quality of Service (QoS) can be provided
to the end users, it is essential to efficiently use the available network resources
and to carefully adapt the video content to both the network state and the needs
of the various clients.

1
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Heterogeneous content:

Live vs stored

Delay sensitive vs Quality sensitive

Best effort IP Network:

No bandwidth guarantees

No delay guarantees

Heterogeneous clients:

Large vs small display size

High vs low processing power 

Wired vs wireless network access

Figure 1.1: A multimedia communication infrastructure and its components.

1.2 Problem statement and contributions

The Internet is nowadays widely used for media content distribution, due to
its high availability and connectivity. It is important to realize that the basic
underlying network infrastructure of the Internet has been built up through the
past decades, essentially for the transfer of data files and to provide basic services
such as e-mail. The kind of traffic that is inherently supported is sensitive to
losses, but not to delays. The traffic that is generated by media applications
today is characterized by some degree of redundancy, which makes it robust to
a certain degree of losses, by high transmission rates and generally by low delay
tolerance. Although these characteristics are radically different from the initial
design goals of the Internet, the underlying infrastructure that is used for media
delivery is today essentially the same as that used 20 years ago for simple data
transfers. In that sense, the networking infrastructure can be considered to be
inherently media-unfriendly.

In this thesis, our goal is to improve the efficiency of media delivery over the
existing networking architecture. In order to so, we have chosen to investigate
three main directions.

The data transport protocols that are used for media transmissions in most of
today’s architectures, such as the Congestion Avoidance Protocol implemented
in TCP [1], or TCP-friendly rate control (TFRC) [2], are inherently media-
unfriendly. The goal of these algorithms is to fairly allocate the available net-
work resources to each of the contending data flows. This is achieved without



1.2. Problem statement and contributions 3

considering temporal variations in the rate. However, as media streams need
to be delivered at a relatively steady rate in order to achieve a good Quality
of Service at the receivers, these inherent rate variations severely deteriorate
the received media signals. Moreover, each media stream can make potentially
different use of the allocated rate: while a stream encoded at a low resolution
can be transmitted at the highest decodable quality using a relatively small
channel rate, this is for example not true for High Definition motion-rich video
content. Hence a TCP-fair and equal channel resource allocation between such
heterogeneous streams is clearly not optimal.

We investigate the feasibility of media-friendly rate allocation algo-
rithms. The distributed algorithm we propose and implement takes the speci-
ficities of media traffic explicitly into account in order to efficiently allocate the
available network bandwidth. This approach results in a system that maximizes
the average quality of all the delivered streams in the network, while keeping
the latter stable.

In order to adapt the streamed content to the display or decoding capabilities
of heterogeneous clients, multiple versions or scalability layers of the same video
information need to be made available for streaming. We provide important
conditions on the encoding rates of these layers, which need to be considered in
order to take full advantage of the smooth rate allocation that is provided by
our solution.

In broadcasting scenarios, heterogeneous clients that consume different ver-
sions or layers of the same stream have in general different constraints in terms
of processing power or buffering capacity. That is why we investigate schedul-
ing algorithms that are run at the broadcaster and that jointly consider delay
and buffering minimization for multiple receivers of a scalable video stream.

Finally, we explore the possibility to exploit the inherent network diversity
that is provided by the Internet infrastructure. In particular, we consider me-
dia delivery schemes where multiple senders are available for the transmission
of a video stream to a single client. Such an architecture is referred to as a
distributed streaming architecture. The solution we propose is based on
the use of rateless codes and avoids coordination between the different senders.
It has the benefit of aggregating multiple unreliable channels into a single more
robust channel. Through the coding scheme we propose, we are able to make
efficient use of such an aggregate channel at a low complexity cost. At the same
time, the number of video layers that are delivered can be selected to fit the
needs of the client.

The main contributions we provide in this thesis can be stated as follows:

• Based on a theoretical framework that has been initially introduced by
Frank Kelly [3], we propose a fully media friendly rate and congestion
control algorithm, which runs as a distributed algorithm. In contrast to
previous efforts in the research community, our algorithm is robust to
heterogeneous and random delays that may be experienced in practical
network settings. It is completely scalable and robust while it is imple-
mentable using a light-weight application layer protocol. Through the
use of utility functions that provide a realistic description of the scalable
video streams, we are able to deliver appropriately adapted versions of the
delivered streams to clients with different display or decoding capabilities.

• We consider the delivery of coarsely scalable video streams using the afore-
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mentioned media-friendly rate allocation algorithm. To this aim we derive
conditions on the actual encoding rates of video layers. These conditions
depend on the characteristics of the network and on the used rate and con-
gestion control algorithm. Most of the advanced video encoding standards
that are available today provide some ways to encode video into several
scalability layers. Hence our results are of high practical importance as
they specify at which rates these layers should be encoded in order to take
full advantage of the allocated network resources.

• Heterogeneous clients, whose difference is marked by different display sizes
or processing and storage capabilities for example, ask for different scal-
ability layers of a video stream to be delivered. On the one hand, we
provide an optimal scheduling algorithm for broadcast scenarios, which
jointly minimizes the buffering needs in a heterogeneous client population
when the channel is known. On the other hand, we outline a practical
scheme that adapts the computed schedule to potential variations in the
channel bandwidth, while still providing close to optimal performance.
We give optimal results on joint playback delay minimization for a set of
heterogeneous clients that consume various levels of layered video streams.
Moreover we outline efficient computing techniques that allow to compute
results that are close to optimal when only limited knowledge about the
channel is available.

• We provide a low-complexity solution to the difficult problem of dis-
tributed streaming. Contrarily to traditional approaches, which use dis-
tributed scheduling algorithms running across all participating senders in
order to optimally convey video information to a streaming client, we pro-
pose to completely decouple senders. This is achieved by encoding the
video information on each server using rateless codes. Using this fam-
ily of codes, we are able to adapt on the fly to potential channel losses.
While our scheme avoids us to keep the senders in synchrony, the coding
scheme we propose further enables us to adapt the number of layers that
are transmitted to both the network availability and the client’s needs.

1.3 Thesis Outline

The outline of this thesis is as follows.

In Chapter 2 we will provide an overview of related work in the areas we are
considering throughout this thesis.

A distributed media-friendly rate allocation algorithm is presented in Chap-
ter 3. While we use finely scalable video streams to introduce our rate allocation
algorithm, we later analyze under which conditions on the encoded layer rates
our algorithm can be used to efficiently deliver coarse layered video streams.
This is addressed in Chapter 4.

We consider a broadcasting scenario in which a layered scalable video stream
is delivered to a population of heterogeneous clients in Chapter 5. Optimal
results on playback delay optimization and joint receiver buffer minimization
at all the clients are proposed, as well as practical sub-optimal algorithms that
provide good results at a lowered complexity cost.
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A framework for low-complexity robust distributed streaming from multiple
sources to a single client is presented in Chapter 6.

Finally, we conclude and give and outlook on future work in Chapter 7.
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Chapter 2

State of the Art

2.1 Background

The availability of high speed computing devices and the expansion of broad-
band links for Internet access foster a growing demand for multimedia com-
munication services such as video on demand, video conferencing or live video
streaming. Examples of this growing demand can be witnessed by the popular-
ity of online services such as YouTube, Joost or Apple iTunes Movie Rental for
example.

The main problem that needs to be addressed in order to provide ubiquitous
access to media streams at a high Quality of Service (QoS) lies in adapting the
data rates of the encoded media streams to the channel rates that are available
for their transportation, or vice-versa. The network infrastructure that is used
today for media delivery provides essentially best effort service, yields highly
unpredictable available channel rates, and results in random packet delays and
losses. On the other hand, a video stream that is decodable at a high QoS can
be characterized by a relatively constant average data rate which can exhibit
significant burstiness on shorter timescales. Moreover, as a video that is played
out continuously imposes strict timing constraints on the received data, packets
that arrive too late are essentially useless.

In this chapter we will give an overview of relevant work with respect to the
problems that are addressed in the remainder of this thesis. We will have a look
at efforts that consider to exploit the characteristics of current network archi-
tectures in order to increase the perceived QoS of transmitted media streams.
Then we will present prior work that aims at adapting the available channel
rates to the characteristics of the media streams that are to be transported.
This is typically done by changing the way data is transmitted at the Transport
layer. Next we will provide references on video encoding techniques, before we
conclude the chapter with prior work on media packet scheduling algorithms
that aim at adapting the transmitted rate to the available channel rate under
QoS constraints.

7
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2.2 Networking perspective

One of the main observations regarding channels that connect different end
points in today’s IP networks lies in the fact that the service they provide is best
effort. The network does not provide guarantees on the timeliness of received
packets, on the rate at which packets are delivered, and even on whether packets
are received at all.

2.2.1 Leveraging network diversity

Packets that are transmitted to a single client from different starting points
(servers) located at different locations in the network, are very likely to experi-
ence uncorrelated channel effects, as the used channels tend to be independent.
Hence the idea of leveraging this network diversity by aggregating multiple
unreliable channels into a single more reliable one has been proposed in the
framework of distributed video streaming. Early work in this area is proposed
in [4, 5] where the authors propose distributed scheduling algorithms, and in
[6], in which a distributed delivery scheme based on distributed Forward Error
Coding (FEC) is proposed. These efforts have notably shown that the quality
of received media streams can be significantly enhanced when transmitting from
several servers to a client compared to traditional server-client models.

Recently, highly scalable data distribution paradigms such as Peer-to-Peer
(P2P) overlays have emerged. Although they are mainly used for file sharing
and distribution [7] purposes, as in the BitTorrent [8] system for example, these
paradigms have sparked a renewed interest in distributed streaming [9]. Several
P2P streaming architectures have been proposed. For example, the work in [10]
outlines a dynamic peer selection scheme that allows to select an appropriate
set of peers for transmission. In [11], a bandwidth adaptation protocol that
increases the transmission robustness in P2P streaming scenarios is discussed.
The problem of where to replicate the available video streams in a P2P network
in order to ensure high content availability is addressed in [12], while the authors
in [13] focus on quality adaptive delivery of media streams in such architectures.
A comprehensive overview of outstanding issues in this area is provided in [14].

Other distributed architectures comprise for example hybrid client-server
and P2P models such as cooperative networking [15]. While the main stream-
ing task is attributed to a single server, clients that have received the media
stream earlier on are able to help alleviate the server load by participating in
the distribution process. This is particularly useful in the case of severe conges-
tions on the server-client link.

In the case of active networks [16], passive routers that merely forward in-
coming packets to the next hop are replaced by nodes that can implement several
more advanced tasks. Following this paradigm, network diversity can for exam-
ple be leveraged at an even finer scale. Each active node in the network can be
enabled to select a specific next hop for each forwarded media packet according
to its relative importance in the decoding process. This way each packet can
travel on the path that maximizes the probability for it to reach its destination
and to contribute best to the perceived QoS at the end point. An overview
on the benefits of using path diversity for video delivery is given in [17]. An
efficient implementation of such a transmission scheme that uses Multiple De-
scription Coding (MDC) has been proposed in [18], while the authors in [19]
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analyze under which conditions it is optimal for a path diversity scheme to use
MDC encoded versus layered encoded media.

The distributed streaming framework we propose in Chapter 6 has the ben-
efit of being less complex than the previous efforts that consider distributed
scheduling. Along the lines of [6], we use error correcting codes to alleviate the
scheduling problem. In contrast to prior work, we use rateless codes and apply
them independently to each of the video layers in the transmitted stream. This
approach results in a distributed framework that has the advantage of being
able to adapt the transmitted media stream on the fly and without transcoding
to potential channel losses. At the same time, the scalability layers that are
transmitted are adapted to the needs of the receiving client.

2.2.2 Rate and Congestion Control

Rates that are available for data transmission by a given application and that
provide stable network usage are typically computed by Rate and Congestion
Control algorithms (RCC). These are in general agnostic of the rate or delay
constraints that an application may impose. We will give an overview of recent
research efforts that try to remedy to this situation by implementing media-
friendliness at the level of the RCC algorithm that is used.

Each sender-receiver pair in a network can be characterized by a data flow
that it generates. This data flow has a certain data rate and it uses a subset
of network resources (typically routers) with heterogeneous capacities, in order
to reach its destination. The routing of each packet that constitutes the data
flow is done per packet and per hop in a completely distributed way [20], which
implies that the network routers may be driven to operate at their maximum
workload capacity. If a router reaches this maximum capacity, i.e., it receives
more packets than it can possibly forward, then it discards the surplus of pack-
ets and forwards only a subset of the packets that it has received. This situation
can only be alleviated if the sources that transmit through this particular router
adapt their sending rates accordingly. This is only possible if the sources know
the actual state of the network resource. The algorithm that adjusts the rate
of an application data flow and that, at the same time, tries to resolve such
network congestions is called the Rate and Congestion Control algorithm. It
controls the rate of a flow based on previously taken decisions and on the state
of the network, which has to be fed back to the source. As the routing is per-
formed on a per-hop basis and in general routers drop packets without notifying
their respective senders, the feedback is generally generated at the end point of
the flow, which notices that it did not receive all packets that were expected.
This scenario is called RCC with end-to-end feedback. If routers are active
elements in the network [16], they can also generate the feedback themselves
and send it immediately to the sources that are concerned. Thus we define
an RCC Algorithm [21] as a distributed algorithm that takes local rate control
decisions based on network feedback and a history of previously taken controls,
such that the state of the network globally converges to a stable state which is
characterized by high network resource usage and bounded per flow losses.

Virtually all Internet connections are regulated by the TCP [1] algorithm
which is implemented at the Transport layer. It operates using end-to-end feed-
back and manages to share available network bandwidth in a fair way between
the flows that compete for them. It makes sure that reliable, lossless communi-
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cation is achieved between a sender and a client, at the expense of possibly large
delays. Due to the additive increase - multiplicative decrease (AIMD) nature of
the algorithm and its retransmission policy, it bears however some serious draw-
backs in media streaming scenarios. Indeed, whenever a congestion is detected,
the available rate is halved resulting in a saw-tooth like rate profile. After a
random backoff time, the rate is gradually increased until another congestion
is detected. Packets that have been lost in a congestion are retransmitted at a
later time instant, implying potential delivery delays. As TCP has been shown
to perform poorly in high-speed networks, new algorithms such as XCP [22, 23]
have been proposed. They rely mainly on Early Congestion Notifications (ECN)
[24] generated at the congested routers. These congestion signals are more pre-
cise than end-to-end measurements and can be sent to the senders that caused
the congestions earlier. As TCP, these algorithms fail to allocate rates that can
be mapped to the rate needs of media streams.

The media communications community has thus focused on implementing
RCC algorithms that provide steadier allocated rates than TCP, sacrificing
retransmissions of lost packets by gaining in lower delays of the transmitted
streams. These algorithms regulate UDP packet flows and are generally de-
signed to compete in a TCP-friendly way along TCP regulated flows for the
available network resources. In TFRC [2], this is for example achieved by allo-
cating rates that provide the same average bandwidth as an equivalent TCP flow
would use, while providing a smoother rate profile. Although this is an interest-
ing property for media streaming applications, the RCC algorithm still fails in
capturing the intrinsic properties of the media streams. TFRC for JPEG2000
video streaming is for example considered in [25] and highlights this problem.
The authors truncate the frames in such a way as to match the smooth rate
allocated by TFRC. However, TFRC crucially fails to allocate rates that would
inherently allow for constant quality video transmission.

A new direction in the design of RCC Algorithms has been started by the
seminal paper on the concept of Network Utility Maximization by Frank Kelly
[3]. Kelly shows that a stable network state that can provide various definitions
of fairness among contending flows, can be reached through the use of a simple
distributed algorithm. To this end, each flow can be characterized by a function
that defines its Utility at each transmitted rate. The stable state resource allo-
cation, which is reached through a smooth rate profile, maximizes the aggregate
Utility for all flows.

Research in this field has essentially dealt with practical implications for
generic data transmissions in end-to-end feedback settings [26, 27] and sta-
bility or fairness considerations of the resulting algorithms [28, 29, 30]. But
Kelly-controlled systems relying on active network components have also been
investigated, for example in the JetMax algorithm outlined in [31].

As the properties of Kelly-controlled flows are closer to the requirements of
media streams than those of flows generated by previously proposed RCC algo-
rithms, there has been some recent work on rendering this class of algorithms
media-friendly. This can be achieved by relating Kelly’s concept of Utility
specifically to the rate needs of the media streams. In [32, 33, 34] for example,
the authors consider the transmission of Fine Granularity Scalable (FGS) video
streams. It should be noted that in the proposed systems, correct round-trip
time measurements are generally needed in order to make sure that the net-
work remains stable. Having access to exact timing information from the lower
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layers in the networking stack asks for added complexity by using cross-layer
approaches.

The algorithm we propose in Chapter 3 specifically eliminates the need for
exact timing information and is proven to be stable. We show notably that the
algorithm can be implemented in a scalable way using a light-weight applica-
tion layer protocol. Moreover, we show in Chapter 4 that the proposed RCC
algorithm can also be used to transmit coarse layered scalable video. This case
has not been addressed in previous work.

2.3 Video Encoding Techniques

In this section we provide a brief overview of video encoding standards, while
highlighting the capabilities of the media streams they produce in terms of
rate adaptation. Most research efforts in the video encoding community have
traditionally been targeting efficient data compression.

The recent standards, such as MPEG-4 Part 10 or H.264 AVC [35, 36] all
follow the same general compression scheme: first, temporal correlation between
neighboring frames is exploited by a prediction loop, then the residual informa-
tion is decomposed using a transform such as DCT or wavelets. The resulting
coefficients are finally quantized and compressed. In general, the prediction loop
is reset after a rather small number of frames. This results in a bitstream that
exhibits a bursty rate: the first frame in the prediction loop, called key frame,
is encoded as a single still picture yielding a relatively high rate. The following
frames are then encoded at a much lower rate as the prediction loop exploits the
correlation between them and the last encoded key frame. Scalability features
have been introduced into the modern encoders. These permit applications to
adapt the video rate of the stream that is to be delivered to the available chan-
nel rate without re-encoding or transcoding the video information. In general,
the more flexibility a scalable encoding provides, the worse is its compression
performance.

We will consider three classes of scalable encodings. The first one being
Multiple Description Encoding (MDC), which consists in generating a number
of low quality representations of a video stream, that can be combined at will
to improve the decoded quality. A simple method of generating such represen-
tations is provided in [37].

The second, and most widely used class of scalable encodings, is that of
hierarchically encoded scalable streams. Video information is encoded into a
hierarchical set of layers. Adding a layer can result in higher resolution, higher
framerate or higher quality for example. The latest incarnation of layered encod-
ing is given by the scalable video coding (SVC) extension to the H.264 standard
[38]. The application of SVC encodings to wireless communication scenarios,
where channel conditions are prone to change rapidly, has been advocated in
[39]. As an alternative to layered streams, the SVC standard also includes the
possibility to encode a stream into multiple versions, providing different scala-
bility features for each version, and to enable an application to switch from one
version to another at predefined points in the bitstream [40]. Much finer rate
adaptation capabilities are provided by Fine Granularity Scalability (FGS) en-
coders. They are able to generate bitstreams that can be truncated at any byte
level. In this case, an application can obviously match the available channel
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rate exactly by truncating the FGS stream to the needed level. An overview of
FGS encoding is provided in [41].

2.4 Adaptive Streaming

In this section we outline adaptive streaming techniques, which can in general
be deployed either at the sender, or in a network node, such as a proxy server
for example. A sender would adapt the rate of an encoded video stream to
the available channel rate that the RCC has decided, while a proxy would for
example adapt the stream to its outgoing rate.

In order to cope with the characteristic short timescale burstiness of the
encoded streams, rate shaping and smoothing techniques have been proposed in
[42, 43] for node-to-node scenarios. Similar ideas are presented in [44, 45, 46]. A
deterministic Network Calculus framework that can be used to characterize data
flows, service policies and network elements such as shapers and smoothers is
introduced in [47]. It has been applied to obtain optimal multimedia smoothing
and to characterize the minimum playout delay of a single layer stream in [48, 49]
and [50], where the authors propose a joint source rate selection and smoothing
technique for optimized transmission of media streams.

On a larger timescale, there is a need to adapt the video stream that is
transmitted to the available channel rate. Doing so permits to take advantage
of a high available rate and transmit the video stream at a higher quality, or to
gracefully degrade the transmitted quality when the available rate should drop.
The work in [51] provides an interesting early work that exploits the availability
of video layers by transmitting them over different multicast groups. Depending
on the available rate, a client can then subscribe to a subset of multicast groups
in order to receive the corresponding subset of layers. A similar idea has been
published in [52]. Transmission policies for layered scalable streams are further
discussed in [53], while [54] discusses layered coarse grain adaptivity in the
context of TCP friendly rate control. A study of perceived quality variations
when adding or dropping layers of a hierarchically encoded stream is presented
in [55, 56, 57].

As a result of the scalable encoding process, not all video packets that are
available for transmission are equally important in the decoding process. By
taking these relative weights of each packet into account, the senders can select
to transmit an optimal set of packets, given the imposed bandwidth constraints.
Transmission policies that optimize the quality of MPEG-4 FGS video streams
in the case of lossy transmission channels and error concealment capabilities at
the receiver are extensively studied by the authors of both [58] and [59].

In the Rate-Distortion (RaDiO) scheduling framework [60, 61], video streams
are adapted by selecting a subset of packets based on rate constraints, delay
constraints and the relative importance of each packet to the overall received
quality. Optimal packet scheduling in the case of Multiple Description Coding
is discussed in [62].

None of the cited papers addresses the problem of adaptively scheduling a
layered stream in a broadcast scenario, where each of the receivers can decode
a different subset of the available layers. In Chapter 5 we provide optimal
transmission strategies for these scenarios, which have the benefit of jointly
minimizing both the playback delays and the buffering capacities at each of the
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receivers.
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Chapter 3

Media-Friendly Distributed

Rate Allocation

3.1 Motivation

In this chapter we address the problem of distributed congestion control in net-
works where several video streaming sessions share joint bottleneck channels.
The proposed algorithm takes into account the specificities of the video streams,
as well as the requirements of the heterogeneous streaming clients, in order to
determine the actual benefit of additional channel resources, or equivalently the
utility of rate increments. The utility-based congestion control framework ini-
tially proposed by Kelly [63, 3] is extended to cope with heterogeneous delays
in the network as well as with the specific requirements of video streams. We
describe an original implementation of such a distributed congestion control
algorithm for scalable video streams, using the common RTP/UDP/IP proto-
col stack, where receiver feedback triggers the adaptation of the streaming rate
at each server independently. Finally, we provide extensive simulation results
that demonstrate the performance of the proposed solution, which successfully
distributes the network resources among the different sessions in order to max-
imize the average video quality. The proposed scheme is also shown to cohabit
fairly with TCP, which is certainly an important advantage in today’s network
architectures.

The predominance of FTP or HTTP traffic and the scalability of the Internet
rely largely on the success of the transport protocol that controls the vast major-
ity of the Internet connections, the Transport Control Protocol (TCP) [1]. One
of the design goals of the TCP algorithm is to fairly distribute the bandwidth
resources among the different concurrent flows. TCP provides a very efficient
and distributed congestion control solution for low-bandwidth data streams, or
elastic flows that do not present strict delay constraints.

While these types of data have formed the bulk of the Internet traffic, the
Internet is evolving into a transport medium for the distribution of data such as
audio and video streams due to the emergence of attractive multimedia appli-
cations. Multimedia streaming applications impose different requirements than
those underlying FTP or HTTP traffic. On the one hand, the media streams
have to be delivered at a rather high and sustained rate in order to deliver an
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Network
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Figure 3.1: System view. The goal is to deliver the best possible media quality
to the set of clients, while keeping the network in a stable state in dynamic
scenarios.

acceptable Quality of Service (QoS) to the media client. On the other hand,
an encoded media stream generally carries significant redundancy and therefore
presents some inherent tolerance to packet loss. The experience of the end user
is mostly driven by the delay and the fluctuations of quality in media stream-
ing applications. Unsurprisingly, TCP does not perform very well in regulating
the rate of media streams since it has not been planned for controlling such
data flows. In particular, the typical sawtooth behavior in the controlled trans-
mission rate profiles and the delays experienced by some packets due to the
retransmission and exponential back-off policies are not ideal for media stream-
ing. In addition, the importance of the media packets is quite heterogeneous
between the different media streams, and even within a given media stream.
TCP typically cannot consider these properties and rather targets a fair band-
width distribution, which does not guarantee optimized average performance in
multimedia communications.

In this chapter we will explore an alternative rate- and congestion control
algorithm for a bandwidth resources allocation that is adapted to the character-
istics of media streams. Instead of compensating the drawbacks of TCP through
rather complex scheduling and retransmission schemes, we consider an orthogo-
nal approach and propose a media-friendly control algorithm, which adapts the
rate in the network to the needs of the media streams. Our work is based on
a class of congestion control algorithms that have been first proposed by Kelly
[63, 3]. Their general objective is to maximize the aggregate utilities that the
end users retrieve from their network usage. Given this objective, a candidate
algorithm should drive the system close to its optimal state, in which the net-
work utilization is high and where each client receives a rate that is useful for the
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media streaming application. The algorithm has also to be run in a distributed
way in order to guarantee the scalability of the system. The family of congestion
control algorithms described in [63, 3] has the benefit of i) potentially allocating
smooth rate profiles without abrupt transitions along time and ii) distinguishing
each flow based on a utility criterion. This criterion can typically capture the
benefit of an increment of bandwidth for a given media streaming client. In the
framework of this chapter, it depends on the proper characteristics of a media
stream and on the particular requirements of the application.

We consider scenarios described by the framework illustrated in Figure 3.1.
The media sources are captured and encoded in various points at the edges of
an overlay network. Clients with heterogeneous needs in terms of frame rate
or display resolution capabilities for example can connect to any media source
from anywhere in the network. Such a scenario could typically represent a video-
surveillance system with both high-end decoding stations and low power mobile
clients. The objective of the distributed congestion control algorithm presented
in this chapter is to jointly achieve network stability and optimized average
quality for all decoding clients. In addition, the algorithm has to dynamically
adapt to changes in the topology in order to accommodate new clients, or rather
to efficiently use increased bandwidth resources.

We extend the class of Kelly-controlled algorithms to practical systems with
heterogeneous feedback delays, where we show that the algorithms remain sta-
ble. Then we compute utility curves for scalable video streams, which permit
to define several levels of quality by changing the spatial, temporal or SNR
resolutions. We design a client feedback mechanism in order to infer the net-
work state. Finally, we implement the distributed congestion control scheme for
various streaming scenarios, where H.264/SVC streams are transmitted using
RTP/UDP/IP protocols. We provide extensive simulation results that demon-
strate the convergence of the distributed congestion control algorithm, even in
dynamic environments. The results also show that the bandwidth is properly
distributed among the clients such that the average quality is optimized. Finally,
the proposed algorithm is shown to cohabit fairly with TCP flows.

The remainder of this chapter is organized as follows. In Section 3.2 we
provide some background on Kelly’s theoretical framework. We extend it in
Section 3.3 with an important stability proof. In Section 3.4 we outline the
proposed distributed congestion control algorithm and show how we can in-
corporate media-friendliness through a judicious choice of Utility functions. In
Section 3.5 we describe the careful and fully scalable implementation of the pro-
posed algorithm that can significantly boost the performance of the congestion
control in practical scenarios. In Section 3.6 we validate our findings through
extensive NS-2 simulations. Finally we conclude with Section 3.7.

3.2 Background

In this section, we provide some background and references on Kelly’s Network
Utility Maximization (NUM) problem that has been first stated in [3]. We give a
brief overview on distributed algorithms that solve the aforementioned problem.
Finally, we discuss the fairness between flows resulting from the rate allocations
computed in the NUM framework, and give a brief overview of existing stability
results.
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3.2.1 Network Utility Maximization

Let si(t) be the sending rate assigned to flow i at time t. Further, assume that
we assign to each flow i a utility function. This function describes by a utility
value Ui(si(t)) the usefulness of the streaming rate si(t) for an application that
is served by flow i [27]. We suppose that the utility functions are continuous
functions of the rate and that they are concave. Let I be the set of all flows
in a given network, characterized in turn by a set of network links l with their
respective capacity constraints.

The original NUM problem consists in finding for every time t a set of rates
si(t) that maximizes the sum of utilities for all flows,

∑

i∈I Ui(si(t)), while
satisfying the rate constraints on each link in the network. The direct solution
of this optimization problem is difficult to find for large networks, and it further
assumes that a central entity controls the rate of each flow. Instead, Kelly has
proposed in [3] to solve a relaxed version of the original problem, by adjusting
the rate of the flows in order to satisfy the following differential equations at
any time t:

d

dt
si(t) = κisi(t) (U ′i(si(t)) − pi(t)) . (3.1)

The term si(t) ·U ′i(si(t)) is referred to as the willingness to pay for the resource
(i.e., the available bandwidth) and pi(t) is a pricing function, updated by the
network, which indicates the price of the offered resource. In practice, pi(t) is
often a congestion indication function that is fed back to the controller from
either the network or the end user and κi is a constant gain factor.

Note that this system of differential equations drives each rate si(t) into a
steady state in which there is an equilibrium between the willingness to pay, and
the flow’s contribution to the resource’s price. The former depends on the used
utility function Ui(si(t)) through its gradient, while the latter depends on the
current network state, which is expressed by the congestion indication function
pi(t). It is worth noting that Equation (3.1) can be straightforwardly discretized
and turned into a rate update equation that leads to a practical implementation
of a distributed control algorithm for solving the original NUM problem. To
date, this has yielded the most promising implementations of control algorithms,
even if there are other ways of solving the original NUM problem in a distributed
way [29].

3.2.2 Fairness

The control algorithms based on Kelly’s framework provide a fair distribution of
the network resources among the different competing flows in the network. The
fairness characteristic might however be defined in several different ways. In
particular, the fairness could be linked to the distribution of the network band-
width, or rather to the distribution of network resources that balance utilities
among flows. We refer to [64, 28] for a detailed study on the fairness in Kelly’s
framework. For the sake of completeness we provide a short summary here:

• If the controller relies on end-to-end feedback measures only, the control
algorithm provides proportional fairness, meaning that flows congesting
multiple routers are allocated less bandwidth in the stable state than flows
congesting less routers.
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• If the controller has access to the congestion levels of each router, which
is however not a realistic scenario in today’s Internet, the controller can
adjust the rate for each flow according to the most congested router, thus
providing max-min fairness [65].

• If additionally each flow is characterized by a potentially different util-
ity function, the resulting rate allocations are weighted by the respective
utility values in the stable state.

The practical system that we propose in this chapter relies on end-to-end
measures and uses different utility functions for each flow. Hence, the control
algorithm based on Kelly’s framework provides in this case a utility-proportional
fairness with the streaming rates allocated to the different flows.

3.2.3 Stability results

An important characteristic of any distributed control algorithm lies in the
stability of the system. Both stability and convergence have been extensively
studied for systems based on the differential equations given in (3.1) (see for
example [3, 26, 21, 24] and references therein). However, the ideal system de-
scribed above has only marginal practical relevance since it assumes that net-
work or client feedbacks are immediately available at each source in order to
update the rate of the corresponding flow. In practical systems, each flow i has a
fixed starting point (the sender) as well as a fixed end point (the receiver) in the
network. However, the route that connects the two may change in time, which
therefore affects the round-trip delay between sender and receiver. Moreover,
the congestion level of each router that is traversed by the flow is dynamically
changing. The delay experienced by feedback information is not only hetero-
geneous across flows in the network, but it has also a random distribution for
each flow. When the system experiences some delays in the feedback loops, the
differential equations of relation (3.1) read as:

d

dt
si(t) = κi

(

si(t)U
′
i(si(t)) − si(t − DR

i )pi(t − DB
i )
)

, (3.2)

In this case, DR
i is the round-trip delay and DB

i is the delay on the back-trip
from the point in the network that created the feedback to the sender. Note
that the congestion indication function pi(t−DB

i ) is synthesized DB
i time units

earlier, and that it relates to the rate allocated by the controller DR
i time units

earlier. In the last years, a substantial amount of research has been devoted to
providing stability results for controllers with delayed feedbacks. For example
the authors in [26] provide results for the case of equal round-trip delays for
each flow. More recently, authors in [66] have studied the stability of systems
with arbitrary but constant round-trip delays. Further stability results are
provided in [67, 68, 69, 70, 71, 65] and references therein. In each of these
works, the scenario corresponds to particular applications: either each flow uses
the same utility function, or the delays are different for the various flows but
constant in time, or the parameters of the rate update equation are dynamically
adjusted with respect to the experienced delay. The latter implies that a precise
measurement of the experienced round-trip delay is available at the controller,
so that oscillations can be avoided in the system. The application considered
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in this chapter however does not correspond to any of these scenarios, and we
therefore extend the stability proof to a more generic case in the next section.

3.3 Stability with random feedback delays

The application we are targeting specifically calls for stability results for the
scenario in which general concave utility functions (i.e. they are different for
each media stream) are used, and in which the round-trip delays are arbitrary.
In [72], the author provides an elegant stability proof for the case where general
utility functions are used, and where the round-trip delays in the network are
arbitrary across flows, but constant in time. The author conjectures that the
system remains stable if the round-trip delays take on arbitrary values. In what
follows we borrow the framework from [72] and we extend the stability result
to the case where generic, concave utility functions are used and where the
feedback is arbitrarily delayed for each flow.

We consider a network made up of L links, indexed by l. We call ∆l,i the
Round-Trip delay experienced by data transmitted from source i to traverse link
l and get back to the source. Hence the experienced Round-Trip delay DR

i for
user i, takes on values in the set {∆1,i, . . . , ∆L,i}, depending on the receiver of
flow i. Further we denote by ∆l the maximum Round-Trip delay for data to get
sent from any source, traverse link l and get back to the source: ∆l = supi{∆l,i}.
Let D be an upper bound on all experienced Round-Trip delays in the network:
D = supi{DR

i }. Clearly, the following relation holds:

D ≥ ∆l, 0 ≤ l ≤ L. (3.3)

The following Lemma is proven in [72] and is reproduced here as it is of crucial
importance in the reasoning that follows.

Lemma 1. Let A and B be two matrices, the entries of which, indexed by
couples (n, m), all satisfy

|An,m| ≤ Bn,m (3.4)

and hence, the Bn,m are real, nonnegative. Then, the spectral radius, i.e., the
largest positive eigenvalue of A, is smaller or equal to that of B.

The main result of [72] states that the system of delayed differential equations
(3.2) is asymptotically stable if κi > 0, Ui(·) is a concave function for each i,
and if all the Round-Trip delays in the network coincide with a single scalar:
DR

i = D, ∀i. Specifically, the author presents a linearization of the differential
system (3.2) in the form of a delay-differential system of the retarded type:

ẏi(t) = −
∑

l

∑

s

M
(l)
is ys

(

t − ∆←−
l,i

− ∆−→
l,s

)

. (3.5)

Where M (l) is a square matrix that depends on the load of router l, the Utility
function that is used and the gain factor κi. ∆−→

l,i
is the delay from sender i to

router l and ∆←−
l,i

is the delay on the corresponding back-trip. Furthermore, yi(t)

is defined as:

yi(t) =
si(t) − si√

κisi

. (3.6)
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It is a function of the difference between the actual sending rate si(t) of sender
i, and the steady-state sending rate that will be achieved at the equilibrium,
denoted as si. A sufficient condition for this system to be stable is that the
spectral radius of matrix N , given as

N = D
∑

0≤l≤L

M (l) (3.7)

is smaller than 1. This is shown to be the case for any scalar D, if the matrix
M =

∑

M (l), which does not depend on the Round-Trip delays, is positive
definite. This condition is in turn verified if κi > 0 and the utility functions
Ui(·) are concave. We now extend this stability result to arbitrary feedback
delays.

Theorem 1. Assume that the Round-Trip delays DR
i take on arbitrary values

bounded by the scalar D. Then the system given in Eq. (3.2) is asymptotically
stable under the assumptions that κi > 0 and the Utility functions Ui(·) are
concave for all i.

Proof. Following the same reasoning as in [72], a sufficient condition for this
to be true is that the corresponding delay-differential system describing the
linearization of the control system around the equilibrium is asymptotically
stable. This in turn is the case if the spectral radius of matrix N ′ is smaller
than 1, with

N ′ =
∑

0≤l≤L

∆lM
(l), (3.8)

and M the same as in the previous development. Let us introduce the following
matrix:

N = D
∑

0≤l≤L

M (l). (3.9)

From Eq. (3.7) we know that the spectral radius of N is less than 1. Using Eq.
(3.3) we can further bound the elements of matrix N ′ as follows:

N ′ ≤
∑

0≤l≤L

DM (l) (3.10)

As the spectral radius of the right-hand side of (3.10) is smaller than 1, the
proof of this theorem is concluded by the application of Lemma 1.

Although the system is stable for arbitrarily large but bounded feedback
delays, the convergence rate is in general slower for increasing D. This stems
from the fact that the information about the network state takes longer to be
integrated in the control loop. This result of stability is important for the design
of the congestion control algorithm proposed in the next section. It is moreover
most relevant to any practical system as in practice the Round-Trip delays that
are observed are always bounded.

3.4 Distributed Rate Allocation Algorithm

We now propose a distributed rate allocation algorithm for video sequences,
based on the utility maximization framework described above. We first present
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a discretized version of the system of differential equations given in the relation
(3.2), which leads to a discrete-time rate update equation. Then we propose
utility functions that are adapted to practical scenarios for video streaming.

3.4.1 Rate update equation

The distributed control algorithm can only act at discrete time instants in prac-
tice. An approach based on finite differences can be used to obtain a discrete-
time version of Eq. (3.2), as suggested in [26]. This results in the following
update equation:

si(t) = si(t − 1) + κi

(

si(t − 1)U ′i(si(t − 1)) − si(t − DR
i )pi(t − DB

i )
)

. (3.11)

The congestion indication function (pricing function) for flow i can be computed
based on the received rate ri(t−DB

i ) measured at the client at time t−DB
i . In

this case, it reads

pi(t − DB
i ) =

si(t − DR
i ) − ri(t − DB

i )

si(t − DR
i )

. (3.12)

Note that there is a temporal shift between the time at which the reference
sending rate, the actual sending rate, and the received rate are computed due
to delays in the system. This may delay the convergence of the system. Using
Eq. (3.11), the sender updates the rate si(t) using the last taken control si(t−1)
as reference rate and a delayed feedback term. This feedback represents pricing
information about the control taken DR

i time units earlier. For example, if
there is no congestion, the received rate is equal to the sending rate at time
t − DR

i . In that case the update equation will lead to a pure increase of the
rate. In the event of a congestion, only part of the sending rate is received so
ri(t −DB

i ) < si(t − DR
i ). Hence the price of the resource for flow i is increased

and the rate will be re-adjusted downwards accordingly.
In order to cope with delays and improve the stability of the system, we can

rather use si(t − DR
i ) as the reference rate for the update equation [68, 73], so

that the temporal drift between reference rate and pricing function is virtually
cancelled. However, differently from [73] we do not intend to use a constant
willingness to pay throughout the network, as the rate allocation should reflect
the relative utilities of the various streams. Hence, in order to eliminate the
temporal drift between the term of Eq. (3.11) that increases the reference rate
and the feedback term that penalizes the reference rate, we need to evaluate the
Utility function at the rate given by si(t − DR

i ) as well. Finally, the proposed
controller uses the following discrete-time rate update equation for each flow i:

si(t) = si(t − DR
i ) + κisi(t − DR

i )
[

U ′
(

si(t − DR
i )
)

− pi(t − DB
i )
]

. (3.13)

3.4.2 Role of Utility Functions

In the analysis about the stability of the distributed rate allocation algorithm,
the only assumption on the continuous utility functions relies in their concavity.
This leaves quite some flexibility in the choice of these functions, such that they
can be chosen to correspond to the characteristics of the target application.
In particular, the choice of distinct utility functions for each stream directly
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influences the rate allocation among all streams congesting a bottleneck in the
stable state. From a networking point of view, it can be inferred from the rate
update equation (3.13) that the average experienced loss rate pi(·) is equal to
the gradient value of the utility function, evaluated at the rate operation point
that is reached in the stable state. The controller then maximizes the system’s
aggregate utility by iteratively allocating more rate to streams that have a larger
benefit at the current rate operation point.

As the normalized congestion signal pi(·) takes on values in the interval
[0, 1], the utility gradient values of any stream in the system are normalized by
a system-wide constant. This constant corresponds to the largest gradient value
any used utility function throughout the system can take on. It is important
to note that the normalization constant should not be stream-dependent in
order to avoid distortions between the relative utility curves assigned to different
streams. The maximum gradient value in the system also drives the maximum
observed stable-state loss rate per stream throughout the system. Hence, by
correctly scaling all the gradients, we can bound the maximum loss rate π to
the maximum value that can be tolerated by the target application. As π has an
effect on the gradient normalization, it also needs to be a global, system-wide
constant. This is required in order to avoid distortions between the relative
utility curves describing the different streams. Hence π does not allow to tune
the loss rates experienced by a particular stream as a function of the specific
video signal it transports, but rather represents an upper bound on the worst
case loss that should be experienced by any stream. Hence, we can finally
rewrite the Eq. (3.13) as:

si(t) = si(t − DR
i ) + κisi(t − DR

i )
[

π · U ′
(

si(t − DR
i )
)

− pi(t − DB
i )
]

. (3.14)

3.4.3 Video Utility

We describe now in more detail the choice of utility functions for video streaming
applications. An obvious choice is to relate the utility of a media stream to the
rate-distortion characteristics of the encoded sequence. In that case the above
control algorithm iteratively allocates the rates among streams proportionally
to their contribution to the average video quality computed on all the streams.

We focus in the rest of this chapter on video encoders that provide the
possibility to generate traffic that can be tuned to achieve any rate within a
bounded rate interval. Such encoders include for example Motion-JPEG2000,
in which each frame is progressively intra-coded: the rate of each frame can
thus be adapted by selectively dropping wavelet coefficients, while increasing
the distortion gracefully. Another example is given by the progressive refine-
ment (PR) slices that were proposed as part of the scalable video coding (SVC)
amendment to the H.264/MPEG-4 AVC standard. Using SVC, a video can be
decoded at the full encoding rate, yielding the highest possible decoded quality
in terms of SNR, framerate and resolution. Aside from this, one has the option
to decode a number of sub-streams that have been specifically included while
encoding. Each of the sub-streams represents a version of the video that is de-
graded in either SNR, frame rate or spatial resolution, or any combination of
these. Typically it comes down to the targeted application or to the capabilities
of the decoding client to decide which sub-stream is most useful. Finally, each
of these sub-streams can be encoded using progressive refinement slices, pro-
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Figure 3.2: Utility curves can reflect the rate-distortion characteristics. Here
we show the rate-distortion curves of several H.264-SVC(FGS) encoded test
sequences (SOCCER, CREW, ICE).

viding fine granularity scalability (FGS). These slices can be cut at any point
in order to finely tune the rate within a substream, while gracefully increasing
the distortion. Both of the aforementioned encoding choices rely on fine grained
rate adaptation that results in SNR scalability. Hence they are able to gen-
erate the kind of traffic we aim for: any rate within a bounded rate interval
can be achieved. As this results in SNR scalability, the resulting rate-distortion
curves over that interval are concave and can be used as utility functions for
the respective streams.

Examples of the utility functions used in this chapter are illustrated in Figure
3.2 for a number of test sequences at different framerates and resolutions. They
have been computed on video sequences encoded using the H.264 SVC extension
and using PR slices. The sequences have first been segmented into Groups of
Pictures (GOPs) of equal size, and each GOP has been encoded independently
into PR slices. The utility functions for the complete sequence have finally
been extracted by decoding each GOP at a number of fixed rate points, and by
averaging the resulting Y-PSNR value at each rate point for all the GOPs of
the sequence. Note that we do not rely on an analytical model to specify the
utility curves for each stream contrarily to [34, 74], but we rather use the exact
rate-distortion information.

Finally, it should be noted that our framework is very generic and that any
concave and continuous function is valid as utility function. In particular, pri-
ority or service classes can also be incorporated in the utility functions. For
example, we can design utility functions for 2 classes of streaming clients de-
coding the same sequence. The rate for receivers in the lower Priority Class
is adapted using the rate-distortion function. The receivers in the higher Pri-
ority Class use a different utility function, whose gradient corresponds to an
up-scaled version of the rate-distortion curve at any rate point. Clients in the
higher Priority Class hence see the quality of their video streams be adapted
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Figure 3.3: Utility curves can also reflect traffic prioritization. Here Priority
Class 0 uses the (scaled) R/D information for the ICE sequence, whereas users
in Priority Class 1 use a utility function that has a gradient five times as large
at each rate point.

faster and reach a higher level. Such utility functions are illustrated in Figure
3.3, where the utility gradient is multiplied by five for the high priority class.

3.5 Implementation

We propose now a practical implementation of the control system described
above. We have shown that the distributed control algorithm is stable, even with
heterogenous feedback delays, which are likely to happen in real scenarios. We
outline a scalable implementation of the proposed framework, and we explain
in detail the design choices for the rate update equation and the distributed
control in a video streaming system.

3.5.1 Design issues

From the above development, it is clear that the rate update equation (3.14) has
ideally to be applied as often as possible in order to emulate a continuous time
control system. This requires the availability of accurate feedback at each mo-
ment in time and at each end-point in the network. At the same time, it implies
that the sending rate can be adapted at any time instant. However, when we
are dealing with real video streams, it is clear that we cannot adapt the video
rate at any arbitrary time instant. For example, dropping random parts of the
bitstream results in large and uncontrolled losses of quality due to the inherent
decoding dependencies between video elements. Scalable video coding provides
an interesting solution for flexible adaptation of the bitstream. For example,
encoding formats such as H.264-SVC(FGS) form independently decodable com-
pressed units such as Groups of Pictures (GOP), which are typically groups of
16 or 32 frames. They further offer the possibility to extract a substream of
a given rate from any independently decodable entity of the stream. The rate
control has therefore to be performed on GOPs, and the rate update equation
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Figure 3.4: Schematic view of our sender implementation.

(3.14) of the control system should be synchronized with GOP boundaries. It
is applied after each transmitted GOP, and defines the rate of the substream to
be extracted from the next GOP.

The decision of the control algorithm relies on the feedback received from the
clients, about the state of the streaming session. In addition, it uses the result of
the decisions taken in previous iteration of the algorithm, as seen in the update
equation (3.14). The controller has to know the sending rate that was computed
(t − DR

i ) time units earlier, where DR
i is the arbitrary experienced Round-Trip

delay. Maintaining the history of earlier decisions for each flow at each sender
does however not provide a viable solution as it does not scale. In addition, it
relies on very accurate Round-Trip Time measurements in order to avoid any
drift between the sending rate that is actually used in the update equation and
the feedback that is received. The utility function is evaluated on the sending
rate, yielding the willingness to pay for the bandwidth that is offered, while the
congestion signal that is fed back gives the price of the bandwidth resources.
Any temporal drift between the computation of these values slows down the
convergence of the distributed algorithm. A scalable system has therefore to
avoid any temporal drifts, by gathering together the congestion signal, and the
sending rate it corresponds to. In the next section, we propose a light-weight
application layer protocol that respects the above constraints using the time-
stamp information included in the transported video streams.

3.5.2 Proposed control system

We propose now an implementation of the distributed control system at the
application layer, for streaming scalable video over the classical RTP/UDP/IP
protocol stack. For the sake of clarity we will drop the index i that specifies a
particular flow and sender/receiver pair in what follows. We describe now in
details the behavior of a client and sender pair, and all the concurrent streaming
sessions in the system adopt the same strategy.

A schematic view of the sender implementation is first given in Figure 3.4.
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Upon reception of a feedback message, the rate controller given by Equation
(3.14) updates the targeted sending rate to s(t), which depends on the media
stream that is being transmitted through the chosen utility function. The next
GOP of the scalable bitstream is then optimally truncated so that its rate
matches the target rate. The resulting substream is then packetized according
to the video frames and Network Abstraction Layer (NAL) units and injected
into the network. The exact size of the extracted GOP, denoted by gs(t), is
added to the header of all the packets in the GOP. Note that the sender knows
the framerate f [Hz] of the stream as well as the length k of the GOP in frames,
since those are usually negociated by the sender and the receiver. The sending
rate is therefore simply given by

s(t) =
gs(t)

k
f . (3.15)

The client behavior is then represented in Figure 3.5. It receives the packet
stream and detects potential packet losses. It further reassembles the media
bitstream and sends the reconstructed decodable parts of the bitstream to the
decoder. At the same time, the receiver counts the number of bits gr(t) that
are received for the current GOP. After the current GOP has been completely
received, the receiver sends a feedback to the sender, where it includes the
received size gr(t) as well as the GOP size gs(t−DF ) ≥ gr(t) that is read from
packet headers. When the feedback eventually reaches the sender, it accurately
reconstructs the control decision taken DR = DF +DB time units earlier. Even
if the Round-Trip time DR is arbitrary, the sender can replicate the past control
decision and compute the previous sending rate as

s(t − DR) =
gs(t − DR)

k
f . (3.16)
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Figure 3.6: Guard interval illustration. Left: When no guard interval is used,
the available feedback is only considered in the control loop at a later stage. For
example, the rate for GOP 3 is dependent on the rate and feedback of GOP 1.
Right: By using a guard interval, the feedback can be integrated more rapidly
in the control decisions.

Similarly it reconstructs the rate that is actually received by the client as:

r(t − DB) =
gr(t − DB)

k
f . (3.17)

The sender has thus access to all the information necessary to evaluate the
congestion signal as given in Equation (3.12). Note that it uses the reference
sending rate s(t − DR) without relying on a stored history of controls nor on
exact Round-Trip delay measurements. All the information is rather extracted
from the received feedback packets, and the media stream characteristics that
are known at the sender. Furthermore, the information that is transmitted in the
feedback packet can be accurately synthesized at each client even when media
packets are lost, since all the packet headers contain the GOP size information
gs(t). It is therefore sufficient to receive one media packet of the GOP for the
client to generate an accurate feedback signal that stabilizes the control system.

Even if such a system is scalable and robust, it does not perform optimally
yet due to network latency. Consider for example the scenario depicted in Figure
3.6(a). The feedback is only sent after a GOP n is completely received. Hence,
it is available at the sender at the earliest one Round-Trip time after the last
packet of the GOP has been transmitted. At the time the controller has to
decide on the sending rate for the next GOP n + 1, it does not have access to
any feedback yet. It can thus only decide to keep on transmitting at the same
sending rate. Even though an accurate feedback becomes available during the
transmission of the GOP n+1, it can not be incorporated in the control system
due to the structure of the video streams. Therefore, it only affects the sending
rate of the GOP n + 2, which introduces a latency that is almost equal to the
duration of one GOP.

In order to avoid such a latency that slows down the convergence of the
control system to a steady-state solution, we propose to slightly increase the
actual transmission rate. The data of a GOP with rate s(t) is thus transmitted

at a rate s(t) + s(t)·RTT

1−RTT
. Here RTT is an estimate or an upper bound of the

Round Trip Time experienced by the stream. We express RTT in seconds and
suppose without loss of generality that it is always less than 1. This imple-
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Figure 3.7: Simple simulation topology.

mentation therefore creates a guard-interval between the transmission of two
adjacent GOPs n and n + 1, so that the feedback information about the GOP
n is likely to be received on time for controlling the sending rate of the GOP
n+1. Figure 3.6(b) sketches the improved control sequence. The small increase
in the transmission rate permits to increase the sending rate of the streaming
session faster compared to the case illustrated in Figure 3.6(a).

3.6 Simulation results

3.6.1 Setup

We illustrate now the behavior of the distributed rate allocation algorithm with
simulation results in different streaming scenarios. We consider the general net-
work topology depicted in Figure 3.7, where eight different sender-receiver pairs
connect to a network through high-speed links but share a common bottleneck
link. Each sender-receiver pair runs its own rate-control loop independently of
the other pairs. It relies only on end-to-end feedbacks and the Utility informa-
tion relative to the video sequence that is streamed. In particular, each sender
and receiver knows neither the capacity of the bottleneck link, nor the number
and nature of the other streams that are using the same bottleneck link. Finally,
we also consider a constant bit rate (CBR) source-sink that also uses the same
bottleneck link without any adaptive rate control.

The sequences transmitted by the senders are encoded using the H.264 SVC
reference software (JSVM). In the encoding, we constrain each GOP of a given
stream to span the same range of encoding rates. Unless otherwise stated, the
Utility functions are given by the Rate-Distortion information extracted from
the encoded sequences, as depicted in Figure 3.2. The distribution of the test
video sequences between the different sender-receiver pairs is given in Table 3.1
for the scenarios considered in our simulations.

The proposed rate allocation algorithm is implemented in the application
layer of the NS-2 simulator platform, and controls the rate of the underlying
UDP transport protocol. The sender runs the control algorithm using the rate
update equation (3.14) based on the utility functions of the transmitted stream,
and the feedback it gathers from the receiver. Unless otherwise stated, the
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Figure 3.8: Resulting sending rates/controls for scenario 1.

maximum loss rate factor π is set to 0.05 and the gain factor κ equals 1. The
sender then extracts a SVC substream at the target sending rate with help of
the tools available in the JSVM software distribution and sends the appropriate
packets to the receiver. Upon reception of each packet, the receiver checks for
losses and eventually reconstructs a received packet trace for each GOP. It forms
a feedback packet based on the information it has received. The video sequence
is finally decoded with the packets that have been correctly transmitted.

Due to the lack of a proper error concealment implementation in the H.264
SVC reference code, we chose to implement an active node in the bottleneck
router, following the general idea from [75]. If the router has to drop packets
due to a congestion, it will first drop those packets that are of least importance
to the decoded stream, and which are discardable. For this to work we added
the layer index and a discardability flag, retrieved from the bitstream syntax,
to each packet header. It is important to note that this approach does no
change anything to the rate-update control loop. It results merely in a shift
of the observed PSNR values to more realistic values, which are in accordance
with those that would be observed in end-systems that use proper concealment
techniques.

3.6.2 Adaptation to changing bottleneck capacity

We analyze the effect of a changing bottleneck capacity, or equivalently the effect
of varying background traffic in Scenario 1. We set the bottleneck bandwidth

S1,2 → R1,2 CREW, 4CIF @ 30Hz
S3,4 → R3,4 SOCCER, CIF @ 30Hz
S5 → R5 SOCCER, QCIF @ 15Hz

S6,7 → R6,7 ICE, CIF @ 30Hz
S8 → R8 ICE, CIF @ 30Hz (Priority 1)

Table 3.1: Distribution of the test video sequences among the sender-receiver
pairs.
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Figure 3.9: Results for scenario 1. Top: Y-PSNR of each frame the SOCCER
CIF@30Hz sequence transmitted by sender S3. Bottom: Quality loss for each
frame of the sequence, as received by client R3.

to 8 Mbps and let senders S1, S2, S3 and S4 start transmitting simultaneously
their respective video streams at time t = 0. After 60 seconds, we add a 1 Mbps
CBR background traffic stream in the same bottleneck channel, which translates
into a sudden bottleneck capacity reduction for the four sender-receiver pairs.
The background traffic is switched off again after one further minute.

The resulting sending rates are shown in Figure 3.8 where they illustrate
some key properties of the proposed algorithm. Clearly, the algorithm con-
verges quickly to a stable state at the beginning of the transmission, as well
as around the changes in background traffic. The stable state corresponds to a
maximization of the utilities of the different streams. Even though each stream
is regulated independently of all the other ones, the same sequences converge
to the same rate in the stable state. Once the CBR traffic joins the bottleneck,
the streams react quickly to the new situation and settle in a new stable state
almost immediately. Note that this behavior is very different from the sawtooth
behavior seen in TCP for example. As the CREW sequences carried by S1 and
S2 have a lower utility gradient than the SOCCER sequences transmitted by
S3 and S4, the rates of the latter are hardly affected by the drop in bottleneck
capacity. In other words, as the background traffic lowers the bottleneck band-
width, the distributed control system allocates less rate to the CREW streams,
as this results only in a minor overall quality degradation. A rate reduction for
the SOCCER streams would result in a larger quality drop. Once the back-
ground traffic is switched off, the four streams return rapidly to their original
stable rates. The average quality of the streams sent by the senders are reported
in Table 3.2 in terms of Y-PSNR, along with the respective quality reduction
due to packet loss during the transmission.

Finally, we show the temporal evolution of the quality for one of the test
streams in Figure 3.9. We report the Y-PSNR quality for each frame of the
stream transmitted by S3. We also compute the quality loss at the receiver
by substracting the Y-PSNR of each received frame from the Y-PSNR of the
corresponding frame transmitted by the sender. Unsurprisingly, there is no loss
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when there is spare bandwidth available on the bottleneck link, i.e. during the
first 10 seconds and after the CBR source switches off. There is however more
packet loss due to congestion when the background traffic is active (i.e., in the
timespan from 60 to 120 seconds). However, the steep gradient of the SOCCER
Utility function prevents the rate from dropping. We note that loss cannot be
completely avoided even in the steady state, as all the streams simultaneously
compete for bandwidth shares until saturation of the bottleneck bandwidth is
reached. The small quality degradation resulting from these losses could be
further reduced by the use of error resiliency tools at the decoder or through
forward error protection.

3.6.3 Adaptation to new streams
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Figure 3.10: Resulting sending rates/controls for scenario 2.

In Scenario 2 we analyze the allocation of bandwidth resources when streams
join and leave the bottleneck channel. We set the bottleneck bandwidth to 2
Mbps, and the sources S6 and S7 both start transmitting at time t = 0. After
60 seconds, the sender S5 starts streaming during one minute, and then leaves
the bottleneck again. The sending rates for this dynamic join/leave scenario are
depicted in Figure 3.10.

It can again be seen that the system converges rapidly to a stable state,
where the two equivalent streams get an equal share of the bottleneck capac-
ity. Once the third source initiates its streaming session, the sending rates of
the ICE sequences are gracefully brought down in order to adapt to the new
situation. The new stream that contains the SOCCER QCIF sequence has a
steep utility function and is therefore aggressive in getting shares of the bottle-
neck bandwidth. The quality of the transmitted streams and the corresponding
quality drops due to packet loss are given in Table 3.2.

In order to illustrate the benefit offered by a slight increase in the transmis-
sion rate, we have run the same simulation where the senders however do not
implement the guard interval presented in the previous section (see Figure 3.6).
The corresponding sending rates are given in Figure 3.11. It can be seen that
in this case the algorithm has a slower convergence to the steady state due to
the delay introduced by late feedbacks. This penalizes the average quality by
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about 1 dB per stream with respect to the same simulation scenario where the
guard interval is used.
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Figure 3.11: Resulting sending rates/controls for scenario 2 when the guard
interval scheme is not used.

3.6.4 Adaptation to priority classes

As stated earlier, the concept of Utility function is very general and extends
beyond the common characterization of video streams by their rate-distortion
characteristics. To illustrate this, we consider in Scenario 3 a situation similar
to the previous one, but where the 2 streams from S6 and S8 correspond to
the same video content with different priority classes. They are characterized
by the 2 Utility curves depicted in Figure 3.3, which could for example model
two clients with differential treatment. The resulting sending rates for this
simulation run are shown in Figure 3.12. They illustrate that the choice of
Utility function directly drives the performance of the streaming application,
which clearly favors the high priority client. We report again in Table 3.2 the
average quality of the transmitted streams, along with the quality drops due to
packet loss. We see that the high priority stream benefits from a 2dB quality
gain compared to the low priority stream with the same video content.

Finally, we have run the same scenario several times using different values of
π in the rate update Equation (3.14). Remember that this factor scales all the
Utility gradients in the system and should thus bound the loss rate experienced
by any stream in the stable state. The result of this simulation is given in Figure
3.13 where we show the experienced loss (which is equal to the congestion signal
p(t)), as seen by receiver R8 for the three cases where π equals 0.03, 0.05 and 0.1
respectively. As expected the packet loss rate is bounded by π in each of these
cases. The parameter π is therefore an essential tool in order to adapt the rate
allocation algorithm to a given decoder. A decoder can be characterized by a
loss rate that it can cope with while decoding a stream, mostly through the use
of error-concealment techniques. By matching π to the maximum tolerable loss
rate at the decoder, we therefore ensure that the received stream is decodable
when the system is in the stable state.
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Figure 3.12: Resulting sending rates/controls for Scenario 3. Both S6 and S8

transmit the same ICE sequence, but using different Utility curves.
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3.6.5 Adaptation to TCP traffic

We finally illustrate the behavior of the rate allocation algorithm when the
bottleneck channel is shared with flows controlled by TCP. We have considered
a scenario similar to Scenario 1, but we replace the 4th stream in the system
by an FTP data flow, which is regulated by TCP (Tahoe implementation).
The results of this experiment are shown in Figure 3.14, which presents the
received rates at each of the clients. The goodput of the TCP flow is shown as
stream 4. Interestingly, these results show that our proposed congestion control
protocol can coexist with TCP on the same bottleneck channel. Compared to
the Scenario 1, the sending rates of the media streams converge slower and
show slightly larger oscillations around their stable state values. This is due
to the rapid changes in available bandwidth, which is mostly driven by the
TCP flow. However, one can observe that the rates are still smooth and that
the CREW and SOCCER streams are still handled appropriately, according to
their respective Utility functions.

While this simulation does not represent any formal proof of proper dis-
tribution of resources between TCP flows, and the streams controlled by the
algorithm proposed in this chapter, it still shows that our algorithm does not
starve TCP flows of the network resources. This corresponds to the results
presented in [30], which state that the long term behavior of TCP Tahoe is
equivalent to the one of a controller that maximizes a Utility function of the
form U(s) = arctan(s). As this is a concave utility function, we should thus
expect TCP Tahoe streams to be able to compete with streams regulated by
any other concave Utility functions in a stable system.

Finally, we shall note that our algorithm is not TCP-friendly in the sense
that the allocated rates yield an average per-flow bandwidth that is not equiv-
alent to the one allocated by a TCP connection. TCP is in general more ag-
gressive and tends to fairly share the average rate of each session, without
considering the characteristics of each stream. Our algorithm targets a different
objective, which is the effective allocation of the resources in order to maximize
the average utility, or equivalently to make the best use of bandwidth resources
in terms of application requirements.
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3.7 Conclusions

We have presented a distributed rate allocation algorithm that targets the op-
timal distribution of bandwidth resources for improving the average quality of
service of media streaming applications. We have first extended the frame-
work of Network Utility Maximization with an important stability proof, which
states that the algorithm is stable under general concave Utility functions and
randomly delayed feedback. This result is particularly interesting for the imple-
mentation of rate allocation algorithms in real scenarios. We have then proposed
an effective and scalable implementation of the distributed control algorithm
with a light-weight application-layer protocol. We have further proposed a few
practical utility functions for streaming video sequences. Finally, we have an-
alyzed the behavior of the proposed solution with extensive NS-2 simulations,
where we have considered H.264 SVC-FGS encoded sequences as an illustration.
We have shown that the bandwidth allocation actually respects the constraints
imposed by the utility functions, and that the system converges quite rapidly
to a stable state after changes in the network. The proposed algorithm there-
fore provides an interesting solution for rate allocation in distributed streaming
systems.

The proposed framework could be extended to the usage of step-like Utility
functions rather than continuous concave functions. Although such functions
would be able to model the characteristics of layered video streams that do not
have the FGS property, they would also imply to recast the NUM problem as an
integer optimization problem. This topic being beyond the scope of the present
text, we will in the following Chapter propose to use smoothing and scheduling
techniques in order to map the traffic generated by such layered video streams
to the RCC controls that are decided by our rate update equation.
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Scenario 1 Mean Y-PSNR at sender Mean loss at receiver

S1 → R1 33.30 dB 0.65 dB
S2 → R2 33.28 dB 0.75 dB
S3 → R3 36.62 dB 0.52 dB
S4 → R4 36.56 dB 0.49 dB

Scenario 2

S5 → R5 36.12 dB 0.05 dB
S6 → R6 41.06 dB 0.82 dB
S7 → R7 41.24 dB 0.80 dB

Scenario 3

S5 → R5 34.01 dB 0.11 dB
S6 → R6 39.99 dB 0.53 dB
S8 → R8 41.92 dB 0.91 dB

Table 3.2: PSNR quality for the different streaming scenarios [dB].
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Chapter 4

Smoothing of Layered

Video

4.1 Background

In Chapter 3 we have shown that a media-friendly Rate and Congestion Control
(RCC) Algorithm can be implemented straightforwardly using the framework
of Network Utility Maximization [3]. A key condition for such a system to be
efficient is the capacity to match the sending rates of each source in the network
to their respectively available channel bandwidth, or equivalently, to the rate
control taken by the RCC Algorithm. We have been able to provide this feature
in the framework of Chapter 3 through the use of video encodings that have
the Fine Granularity Scalability (FGS) property: such streams can be adapted
to match any bitrate, hence the source rate of the transmitted stream can be
adapted to the available channel rate. In that case, the source rate equals the
sending rate of the sending server.

In this Chapter we will consider the more practical case that consists in
streaming a hierarchically layered video stream that does not have the FGS
property. Hence the video can only be adapted by adding or removing a com-
plete video layer to or from the stream. This coarse granularity scalability
feature is today the only scalability feature that has been adopted into any
encoding standard, hence its practical importance. It should be noted that dur-
ing the standardization procedures of both the MPEG-4 standard [41], and the
scalable video coding extension (SVC) to the H.264 AVC standard [38], FGS
scalability methods have been proposed. These features have however in both
cases failed to be adopted into the final version of the standard, due to the bad
coding efficiency of FGS schemes: in order to have the FGS property, a stream
needs to carry a lot of redundancy, which prohibits efficient compression.

From Chapter 3 it should be clear that the actual sending rate of a source
directly influences the rate that will be allocated to it by the RCC Algorithm
in future controls. This dependence is in general not taken into account in
the design of media streaming systems. Most of the time the assumption that
the channel bandwidth varies independently of the sending rates prevails in the
media communication community. Such a situation would allow a source to
adapt its source rate by adding/dropping video layers, once it observes that a

39
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corresponding channel bandwidth is available. We argue in this Chapter that
sending rate and channel rate are not independent, and that a sender needs
to carefully adapt both its source and sending rates in order to contend for
available transmission resources. Indeed, if a source sends at a lower rate than
that decided by the RCC Algorithm, other sources in the network will tend to
contend for the share of bandwidth that has been left unused by this behavior.
It is thus crucial to implement a sending rate that is as close as possible to the
channel rate decided by the RCC Algorithm, in order to correctly implement
the sequence of controls that is proven to drive the system into a stable state.
Senders that transmit at higher rates tend to create congestions and behave
unfairly, while senders that transmit at lower rates are unable to probe for
potentially available increased transmission resources.

While the use of FGS video streams allows to handle this problem inher-
ently, the situation is different when it comes to streaming hierarchically layered
streams that do not have the FGS property. Only a discrete set of video source
rates is available for transmission, given by v =

∑l
i=1 λi, for 1 ≤ l ≤ L. Here

each operand λi of the sum corresponds to the rate of one of the L available
layers, which are all given by the set L:

L =
{

λ1, . . . , λL
}

. (4.1)

In order to efficiently use the available network resources and to keep the system
stable, the RCC Algorithm may however decide to use a transmission rate that
can not be matched by any of the L available source rates. In this Chapter we
analyze how we can temporarily generate these intermediate sending rates from
a buffer of available video data by using smoothing techniques [42, 48, 49, 50].
This will enable us to have some flexibility in adapting the source rates to
the channel rates. Following this approach, we will derive conditions on both
the encoding rates in L and the incurred prefetch delays. These conditions will
depend on the characteristics of the underlying RCC Algorithm, which computes
the available transmission rates.

The remainder of this chapter is organized as follows: in Section 4.2 we
provide some details on Rate and Congestion Control as well as smoothing
techniques, which will be useful in our developments. Our contribution, which
enables us to adapt the source rate of layered video streams to available channel
rates, is detailed in Section 4.3. In Section 4.4 we address practical scheduling
issues that arise using our solution, and propose a practical algorithm which
efficiently addresses all of these considerations. In Section 4.5 we apply our
findings to the media-friendly rate and congestion control algorithm presented
in Chapter 3. Finally we provide extensive simulations stemming from our NS-2
implementation of the proposed system in Section 4.6.

4.2 Preliminaries

4.2.1 Rate and Congestion Control

In the setup of Chapter 3, we were always able to match the rate that was
decided by the RCC Algorithm exactly with a source rate s(t), through the use
of FGS video streams. As will be seen in what follows, this is no longer the case
when we consider video streams that do not have the FGS property. That is
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why we need to differentiate the sending rate s(t) explicitly from the rate that
is computed by the RCC Algorithm. In the remainder of this chapter we will
denote the available rate at which an application can transmit (i.e., the available
channel rate computed by the RCC Algorithm) by c(t).

We provide a brief high-level description on the principles of Rate- and Con-
gestion Control Algorithms (RCC). In general, the channel rate that is available
for use by any networked application is computed by an RCC algorithm. This
rate is periodically recomputed and the resulting sequence of rates forms a con-
trol sequence that drives the network into a stable state. RCC algorithms can
be implemented in lower layers of the network stack, as it is the case in TCP
for example [1], which runs on the transport layer, or in the application layer
itself, such as for example in TCP-frienldy Rate Control (TFRC) [2]. These
are distributed algorithms that take local decisions in order to converge to a
globally stable network state. In TCP, a stable state is characterized by a fair
sharing of the available network resources among all competing flows. Based
on previous local decisions and feedback on the current network state, the RCC
at each sender decides iteratively at which rate it should transmit data to its
client. If each sender in the network applies their local sequence of controls
(i.e., sending rates) that are generated in this way, the distributed algorithm
will converge to a stable network state, which is characterized by high resource
utilization and bounded per-flow losses.

If senders do not comply to the controls taken by their RCC instance, there
is no guarantee for the network to reach a stable state. Hence non-complying
sources tend to drive the network into an unstable state in the worst case and
to bad resource utilization in the best case.

In traditional data transfers over the Internet, the above observations are of
minor relevance: data is transferred without delay constraints and the Transport
Layer takes care of both implementing the RCC and adjusting the sending rate
accordingly. In media-streaming applications however, the RCC is preferentially
implemented in the Application layer. This stems from the fact that on the one
hand the application needs to have some control on the rate that is allocated.
On the other hand, the application needs to know the rate decided by the RCC
in order to adapt the bitstream that is to be transmitted accordingly due to
timing constraints. Hence the sending rate needs to be matched to the channel
rate at the Application layer. The source rate needs to be carefully selected or
smoothed if the sequence of achieved sending rates should conform to the rate
control decisions.

4.2.2 Scheduling using prefetching

A key component in any rate adaptation mechanism is the scheduler. It builds
a transmission schedule by deciding which packet is to be transmitted at which
time during the transmission process. This decision typically depends on pre-
viously taken decisions, as well as on information about the currently available
channel bitrate. In streaming scenarios involving layered video, the scheduler
decides when to transmit which layer of which frame.

While streaming video, there are timing constraints that need to be satisfied
at any time t. Let k denote the index of the frame with the most stringent timing
constraint. If frame k, and any frame leading up to k, has not been scheduled
for transmission by time t, it will not reach the decoder by the time its decoding
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Figure 4.1: Illustration of the playback delay and prefetch delay concepts for a
set of L layers.

timestamp expires. In that case, the client will experience a buffer underflow.
Let D denote the constant playback delay at the receiver. For the sake of
simplicity, we express delays in a number of frames throughout this chapter,
i.e., if D = 1, then its duration is equal to the inverse of the stream’s framerate.
This assumption generally holds if the video is encoded using forward-prediction,
i.e. the structure in a Group of Pictures (GOP) is (IPPP . . .). A receiver will
wait until it has received D frames before it starts decoding, or playing out, the
video stream it receives. Hence D corresponds to a buffer on the receiver side,
which is used to compensate for sudden bandwidth outages for example [76].
Let then Dp denote the prefetch delay. It corresponds to a buffer at the sender
side, in which the latter stores Dp frames that are available for transmission, but
whose transmission deadline has not yet expired. The data in this buffer can be
exploited to temporarily increase the sending rate above the actual source rate.
This results in a partial transfer of the buffer to the receiver end. Obviously,
the dimensioning of Dp is important for any smoothing algorithm. Note that
the total delay experienced between encoding and decoding is the summation of
these two delay components, in addition to a transmission delay that we suppose
to be negligible.

Figure 4.1 illustrates these concepts for L layers of a stream. Consider for
example that only layer 1 is selected for transmission. If the scheduler decides
not to prefetch data, it will transmit each frame once its timing constraint
becomes the most stringent. After the transmission of each frame, k will thus
be incremented by 1. This will generate an outgoing sending rate of mean λ1

bps. If a higher rate λ1 < c(t) <
(

λ1 + λ2
)

is decided by the RCC, the scheduler
can fill the rate surplus c(t)−λ1 by transmitting data from the next Dp layer-1
frames that it holds in the prefetch buffer.

In the following section, we will analyze more thoroughly which are the
conditions on the layer rates and on the prefetch delay that need to be satisfied
in order to adapt the source rates to the available channel rates.
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4.3 Adaptation to congestion control constraints

In general, the rate profiles that are allocated by a Rate and Congestion Control
algorithm can be partitioned into two disjoint sets of periods. Periods of stable
state are characterized by a steady, relatively constant and smooth rate. In
contrast, during periods of convergence, the RCC takes controls that allow the
system to go from one stable state to the next. This happens whenever the
availability of the network resources changes, due to different flows joining or
leaving the network, or to topology changes for example.

If we can make sure that during both of these characteristic periods we will
be able to generate the sending rates that match the controls dictated by the
RCC, we can make sure that the network remains stable. A stable network state
is characterized by an efficient utilization of the network resources and bounded
per flow losses.

4.3.1 Stable state periods

We suppose, without loss of generality, that the stable state rate c which is
reached by the RCC is a random variable that can take on values in a rate range
given by [cmin, cmax], and which is characterized by a probability distribution
pc(x) defined on the same range. Using a set of layers (4.1), we can however
only transmit at L rates for a sustained period of time, corresponding to the L
achievable source rates. If the RCC Algorithm converges to a rate c that can
not be matched by any of the source rates, v =

∑l
i=1 λi, for 1 ≤ l ≤ L, the

sender should select to transmit at the source rate that is closest to, but smaller
than c.

These observations lead us to formulate the following problem: what is the
number of layers L, and which are the layer rates λl, 1 ≤ l ≤ L that should
be encoded in order to minimize the error made when sending at a rate c̃ =
∑l∗

i=1 λi ≤ c, instead of the steady rate c? Here l∗ denotes the index of the
highest layer that can be transmitted given the steady rate c.

This problem can be readily recast into a quantization problem: which is
the optimal quantizer that minimizes the mean squared error (MSE) between
the input c and the quantized value c̃? Without any specific assumptions on
the actual network topology and dynamics, the distribution of c can safely
be regarded as being uniform on [cmin, cmax]. The optimal quantizer, which
minimizes this MSE for a uniform source, is a uniform quantizer with constant
quantization step size ∆λ, given by [77]:

∆λ =
cmax − cmin

L
. (4.2)

If the input c lies in the bin [i∆λ, (i + 1)∆λ[, 1 ≤ i ≤ L− 1, then the quantizer
output reads as c̃ = i∆λ. The MSE between the input c and its quantized
version is given as:

MSE(c, c̃) =
∆λ2

12
. (4.3)

After combining Equations (4.2) and (4.3), and setting the rate of each layer l
to:

λl = ∆λ = λ for 1 ≤ l ≤  L, (4.4)
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it becomes apparant that the more layers of equally small rate are available, the
smaller the error between the steady rates computed by the RCC Algorithm and
the achievable sending rates will be. We refer to Figure 4.2 for an illustration
of this quantizer.

c

λ λ λ

λ 2λ 3λ Lλ

c cmin max

Figure 4.2: The optimal quantizer for a uniform source is a uniform quantizer.

To achieve the optimum performance of the RCC Algorithm, we should
thus resort to encoding all video streams into FGS-like bitstreams, as we did in
Chapter 3. However, as mentioned in Section 4.1, FGS encoding schemes that
are available today present bad coding efficiencies and are not standardized,
which makes them bad solution candidates in practice. That is why we will
study in the next section how we can partially overcome the drawback that is
represented by thicker layers.

4.3.2 Convergence periods

The duration of a convergence period depends in general on the RCC algorithm,
and is called the convergence time. It is a random variable that we denote by
δ and which has a probability distribution pδ(x). This probability distribution
can in general not be expressed analytically, but it can be inferred from statistics
[78, 79]. From above, we know that in the case of transmitting a layered stream,
the steady states that are achieved correspond in practice to the rates that can
be achieved using the layers that are available. In a convergence period, the RCC
will take controls c(t) that typically do not correspond to any of these rates,
but which need to be taken to move the transmission rate from one steady state
to the next. Moreover, the controls taken during the convergence periods may
exceed the rate of the new steady state by an overshoot rate of ǫRCC bps for
a limited amount of time. Figure 4.3 sketches the evolution of the available
channel rate c(t) from an initial state in which layer 1 of average rate λ1 can
be transmitted, to a new stable state which allows for two layers of combined
rate

(

λ1 + λ2
)

to be delivered. In this example δ = (t2 − t1). Obviously we can
straightforwardly transmit layer 1 up to time t1, and both layers 1 and 2 starting
from time t2. However, in order to drive the channel up to rate c(t2), we need to
send additional data in between the time instants t1 and t2, as indicated by the
grey-shaded area. Failing to do so will leave the sending rate at λ1. This in turn
will not allow the sender to contend for the available transmission resources. As
a result of which, these resources would get allocated to other contending flows.
The additional available sending rate, as given by the grey-shaded area in Figure
4.3, can be filled by either one of the three following approaches:

• sending dummy data in order to probe the channel. Although this solution
is always feasible it will have a negative impact on the goodput of the
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Figure 4.3: Illustration of the rate profile during a convergence phase.

application, meaning that network resources are used without yielding
any application-level utility gain.

• sending redundant stream data such as Forward Error Correction (FEC).
This is also feasible, but it reverts to the same situation as above if all
data are in fact received.

• sending a part of the bitstream ahead of time. Using this scheme, all data
that is transmitted will result eventually in an application-level utility
gain, and it thus enhances the goodput of the application.

We opt for the latter solution, which consists in prefetching part of the video
bitstream into a buffer at the client, whose decoder will only consume this part
at a later time. This buffer undergoes thus a filling phase during the convergence
time δ. As the stream we are considering is hierarchically encoded, layer 1 must
be available at the decoder anyway in order for the corresponding layer 2 data
to be decodable. Hence by prefetching layer 1 data ahead of time, the benefits
are threefold:

• we can achieve the sending rate imposed by the RCC algorithm and in-
crease the network stability,

• we make the decoding process more robust as layer 2 will be transmitted
only when layer 1 is already available,

• we maximize the goodput of the streaming application by avoiding to send
dummy or redundant data.

This general idea is similar to work that is presented in [54], with the exception
that the authors therein do not consider a bounded prefetch delay. They imply
that the client has unlimited buffering capacity and that the effective delay ex-
perienced by the client can grow arbitrarily large, which may represent practical
limitations.
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4.3.3 Computing the number of layers and their respec-

tive rates

We will use the concept of smoothing that we have outlined earlier in Section
4.2.2. Typically the exact shape of c(t) in between t1 and t2 in Figure 4.3 is not
known analytically, hence we apply the following integral upper bound on the
possible traces of c(t):

∫ t2

t1

(

c(τ) − λ1
)

dτ ≤
(

λ2 + ǫRCC

)

δ. (4.5)

Conceptually this means that if, during the timespan δ we have
(

λ2 + ǫRCC

)

δ
bits available to be transmitted in addition to the λ1δ bits needed for layer 1
itself, then we can generate all sending traces c(t) during the timespan δ that
are bounded by Equation (4.5). This includes the traces generated by the RCC
in order to converge to the next stable state.

The prefetch delay gives us a bound on the time horizon, and hence on the
amount of data, which we can use to prefetch video data. Once the streaming
session has started, the scheduler is not able to send data at any given time
instant t that is further than Dp frames, respectively time units, into the future.
From Figure 4.1 it can easily be seen that the maximum amount of data that
is available for prefetching is given by λ1Dp. If this amount of data allows the
sender to increase the transmission rate to

(

λ1 + λ2
)

during the timespan δ,
then layer 2 can be transmitted later on. Otherwise the sender continues to
transmit only layer 1. Combining all of the above we get:

λ2 ≤ λ1 Dp

δ
− ǫRCC . (4.6)

This is a condition on the layer thickness of layer 2, which depends on the allowed
prefetch delay Dp as well as on the used RCC algorithm. Indeed, the latter can
be characterized by its convergence time δ and the potential overshoot during
convergence periods, ǫRCC . We can generalize this result straightforwardly to
higher layers by recursion, i.e., for layer (i + 1) we have:

λi+1 ≤ λi Dp

δ
− ǫRCC . (4.7)

Using relation (4.7) with equality, i.e.,:

λi+1 = λi Dp

δ
− ǫRCC , (4.8)

we can thus iteratively compute the minimum number of layers that are needed
in order to make sure that we can converge from one stable state to the next,
as well as their specific rates λl, once the statistical properties of the RCC
Algorithm are known. If the channel rate can take on values in [cmin, cmax], we
set λ1 = cmin and apply Equation (4.8) iteratively until at the nth iteration we
have λn > cmax. The minimum number of layers that need to be encoded is
thus given by L = n − 1 and their respective average source rates are given by

L =
{

λl
}L

l=1
.

Note that if the probability distribution of δ is known, either analytically
or as an approximation through statistics, we can dimension the above layers
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by setting δ large enough so that is covers a high percentage of pδ(x). Indeed,
if P (x < δ) goes to 1, which represents a conservative approach, encoding the
layers as outlined in this section will make sure that we can generate the sending
rates dictated by the RCC algorithm with high probability.

Finally, we can also solve the inverse problem, which consists in finding the
minimum prefetch delay Dp, given a set of layers L and a RCC Algorithm that
is characterized by its convergence time δ and its potential overshoot rate ǫRCC .
From above we immediately get:

Dp = δ ·
(

sup

{

λ2 + ǫRCC

λ1
,
λ3 + ǫRCC

λ2
, . . . ,

λL + ǫRCC

λL−1

})

. (4.9)

It is important to note that, although multiple finer layers tend to increase
the overall stability of the RCC Algorithm and allow for smaller prefetch delays,
they also typically exhibit a worse compression efficiency as compared to coarser
layers. This will be illustrated in Section 4.6 where we present our simulation
results. Moreover the complexity of scheduling algorithms is typically increased
when more layers are available for transmission.

4.4 Practical scheduling aspects

In this section we will discuss some important practical aspects of the smoothing
approach that we have outlined in Section 4.3. Let us consider once more the
simple scenario that we have used earlier in order to outline some practical
issues that may arise. We suppose that we have reached a steady state at rate
λ1 and that the RCC algorithm converges to a new steady state at rate (λ1+λ2).
From the previous section, we know that if the layers are encoded so as to satisfy
relation (4.7), then we can generate with high probability the sending rates that
match the control decisions taken in the convergence period. For the sake of
clarity, we will set the playback delay D to 0 in what follows, without loss of
generality. Note that the importance of D and its optimal computation will be
analyzed in the following chapter of this thesis [76].

4.4.1 Repeatable prefetching

It is important to notice that, in the worst case, if we succeeded to attain the
transmission rate (λ1 + λ2), we have exhausted the complete prefetch delay Dp

for layer 1. In that case, the prefetch buffer for layer 1 has been completely
filled during the timespan δ, corresponding to a filling phase. By prefetching at
most Dp frames, we have thus been able to ramp up the transmission rate to
(λ1 + λ2), and from there on we can transmit both layers if the network status
does not change for some time. Clearly, if the same operation is to be repeated
at a later time, each filling phase needs to be followed as soon as possible by
a corresponding draining phase, which liberates the previously filled prefetch
buffer.

If after the filling phase of layer 1, the rate (λ1 + λ2) has been reached and
should be sustained, the draining phase of the prefetch buffer for layer 1 data
needs to be accompanied by another filling phase of layer 2 data. During this
phase, as much data as is drained from the prefetch buffer of layer 1 will have



48 Chapter 4. Smoothing of Layered Video

to be prefetched into the buffer of layer 2 – keeping the overall prefetch buffer
for both layers 1 and 2 at a constant filling level.

So, once the transmission rate of (λ1 + λ2) is reached, the scheduler should
in a first step make sure that for both layers all frames up to k are scheduled.
Then it should preferentially select frames from the higher layer(s) in order to
fill the rate surplus.

Another case that needs to be considered in this light is the settling into a
stable state that corresponds to a rate that can not be achieved by a source rate
constructed from the set given in Eq. (4.1). Suppose that the highest layer that
can be transmitted at a given time is given by the index l∗, and that the RCC
Algorithm converges to a steady state c, λl∗ < c < λl∗+1. Using the mechanism
outlined above, the scheduler will try to achieve any rate decided by the RCC
Algorithm by exploiting the prefetch buffers for each of the layers up to l∗. The
above loop will end up by first exploiting all of the available prefetch buffers.
At this point, the actual transmission rate has not increased to the point where
a further layer could be transmitted, but has settled at c. The scheduler will
be unable to sustain the channel rate decided by the RCC Algorithm. It needs
to drop its actual sending rate and settle into a steady rate that equals to the
average video source rate that is closest to the channel rate, as discussed in
Section 4.3.1. The actual sending rate for the l∗ selected layers will read as:

s(t) = v =
l∗
∑

l=1

λl. (4.10)

However, as all the prefetch buffers are completely filled, the scheduler would no
longer be able to increase its sending rate at any later time instant. Therefore
the scheduler needs to settle into a steady state which is slightly smaller than
that in Equation (4.10), in order to allow for a draining phase of the prefetch
buffers, hence:

s(t) =

l∗
∑

l=1

λl − ǫλ (4.11)

Note that as soon as an amount of data equal to λ∗Dp has been drained from the
aggregate prefetch buffer consisting of the prefetch buffers for layers 1 up to l∗,
the scheduler can try to follow the decisions of the RCC Algorithm once more.
According to Equation (4.7), this free prefetch buffer will allow the sending rate
to be potentially ramped up to the average video rate given by

v =

l∗+1
∑

l=1

λl, (4.12)

which allows the next layer to be transmitted. In what follows we call this condi-
tion the draining condition for the prefetch buffer of layer l∗. In absence of other
changes on the used channel, this condition will be satisfied (λ∗Dp) / (λ∗ − ǫλ)
time units after the rate was set to (4.11). This timespan corresponds to the
time it takes to drain the previously filled prefetch buffer in the worst case
where it was completely filled. In practical scenarios, the factor ǫλ should be
kept small, so that the sending rate is still close to the steady source rate of
the transmitted layers. While this means that the prefetch buffer takes a longer
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Figure 4.4: Overview of a typical sender architecture including RCC module
and adaptive scheduler.

time to be completely drained, it also makes sure that the sender does not allow
a large rate ǫλ to be available for contention by other flows in the network.

The considerations that we have outlined in this section do not apply if Dp

is very large as the prefetching process will always be repeatable.

4.4.2 Implementation

Figure 4.4 gives a generic view of a sender architecture. Based on channel
feedback and previously taken rate controls, the RCC algorithm decides to send
data at rate c(t) during the next control interval of length ∆c. Given this new
control, and knowing the set of available rates L, the sender computes the index
l∗ of the highest layer that can be sustained using the sending rate c(t). This is
computed as:

l∗ = max
1≤l≤L

s.t.

l
∑

i=1

λi ≤ c(t). (4.13)

This index is provided as input to the scheduler, along with l∗prev, which is the
index of the highest layer that was selected in the previous control interval. The
scheduler also knows the frame index k which indicates up to which frame all
of the selected layers need to be scheduled by the end of the current control
interval, in order to meet all timing constraints. For control interval j, k reads
as:

k = j · ∆c · f, (4.14)
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Figure 4.5: Workflow of the adaptive scheduler that implements our algorithm.

where f denotes the stream’s framerate in frames per second. Finally, the con-
trol decision c(t) is communicated to the scheduler in the shape of an available
bit budget b for the schedule that is to be computed.

Figure 4.5 provides a more detailed view of the scheduler’s inner life. Here,
bs denotes the number of bits that has already been added to the schedule. Note
that we allow bs > b, as we choose to add only complete frames of each layer to
the transmission schedule. The scheduler keeps a state variable that indicates
whether it needs to wait for the prefetch buffers to be emptied or whether it
can try to ramp up the rate as dictated by the RCC algorithm. This variable
is denoted as steady in Figure 4.5 and it is initialized to false for all streams
that start transmission. This flag allows the scheduler to verify the draining
condition that was discussed in the previous Section. The work flow of the
scheduler is quite straightforward:
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• In Step 1, all the frames up to k are added to the schedule, for all of the
selected layers from layer 1 to layer l∗.

• In Step 2, we allocate the surplus of available rate by prefetching data
from higher layers first. As mentioned earlier, this makes sure that the
prefetching operation used to increase the rate is repeatable throughout
streaming session.

• There is an intermediate Step 1.5 which is performed if the number of
layers chosen for transmission in the current control interval is smaller
than the number of layers l∗prev that has been selected in the previous
control interval. In that case, the scheduler checks if it can still allocate
frames for previously sent layers, up to the frame indexed by k. Note that
this might be possible if a prefetch buffer has been built up for layer l∗prev

earlier on. In case this step fails, it is rolled back.

• If at the end of Step 2, the bit budget has not been exhausted, then the
computed rate c(t) cannot be matched with a sending rate. This happens
if the RCC computes a stable state for which there is no matching source
rate, or if the prefetching fails due to an unexpectedly long convergence
time of the RCC. In that case, the sender settles into a steady state and
sets its transmission rate to (4.11). The complete scheduling loop is rolled
back and run again with an adjusted bit budget (i.e., an adjusted rate c(t))
that accounts only for the layers that have been selected for transmission
and further allows for the prefetch buffers to be drained if necessary.

The scheduler stores the highest selected layer as ls = l∗ and will adjust
the sending rate down to the same rate (4.11) during the subsequent con-
trol intervals, until the draining condition is fulfilled. If that is the case,
the scheduler is again able to ramp up the sending rate high enough to
potentially deliver an additional higher layer.

4.5 Application to Media-Friendly Rate Alloca-

tion

So far we have presented the results of this chapter in a generic form. By
choosing δ and ǫRCC appropriately, the rates in the layer set L can be computed
to match a wide variety of Rate and Congestion Control Algorithms.

In our simulations, we will however focus our attention on applying the
findings from the current chapter to the Media Friendly Rate and Congestion
Control Algorithm that we presented and validated in Chapter 3. This algorithm
provides the capability to inherently distinguish the transported streams and
their rate needs, while allocating smooth rate profiles that allow for high and
steady quality video delivery. One of the main assumptions in Chapter 3 has
been that any rate that can be computed by the RCC Algorithm can be exactly
matched with a corresponding video rate. This has been the case for FGS-like
video encodings. Such encodings generate a class of traffic that can take on
any rate within a finite rate interval. If a video sender is however constrained
to sending a discrete subset of complete layers for each frame, the traffic it
generates no longer has that property and can typically only take on L distinct
sending rates, corresponding to the L available video source rates.
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Figure 4.6: Utility function for the SOCCER sequence (CIF @ 30Hz), encoded
into 5 SNR layers using H.264 SVC.

We will show in the remainder of this Chapter that by setting the encoding
parameters and the prefetch bounds as indicated by our results, the scheduler
will be able to generate the sending rates needed to drive the system into a
stable state, by adapting the source rates through the use of smoothing.

4.5.1 Video Utility for layered streams

We have encoded the SOCCER (CIF, 30Hz) and CREW (4CIF, 30Hz) test
sequences into a set of layers that provide SNR scalability using the H.264 SVC
reference codec. Decoding additional layers will thus decrease the distortion in
the received signal. We have considered 3 encodings in particular:

• SOCCER (coarse) encodes the SOCCER CIF@30Hz sequence into 5 lay-
ers. Each layer having an average bitrate of 400kbps. See Figure 4.6 for
an illustration of its rate/distortion performance.

• SOCCER (fine) encodes the same sequence into 8 layers. The base layer
having an average bitrate of 400kbps, while all of the enhancement layers
provide an average rate of 200kbps, see Figure 4.7.

• CREW encodes the CREW 4CIF@30Hz sequence into 8 layers. The base
layer having an average bitrate of 1Mbps, while all of the enhancement
layers provide an average rate of 300kbps, see Figure 4.8.

In order to generate concave and continuous Utility functions for these streams,
we interpolate the utility values in between the layer boundaries by linear seg-
ments. According to our scheduling algorithm, if a layer l∗ is being transmitted,
higher rates are generated by prefetching information from l∗ until l∗ + 1 can
be delivered. We hence motivate our choice of Utility functions by the fact that
due to the hierarchical relationship between layers l∗ and l∗ + 1, the Utility of
layer l∗ increases linearly with the amount of prefetched layer l∗ data.
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Figure 4.7: Utility function for the SOCCER sequence (CIF @ 30Hz) , encoded
into 8 SNR layers using H.264 SVC.
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Figure 4.8: Utility function for the CREW sequence (4CIF @ 30Hz) , encoded
into 8 SNR layers using H.264 SVC.
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As discussed in Section 4.4, the RCC Algorithm may converge to a rate allo-
cation which can not be achieved by all of the flows in the etwork.Whenever this
happens, the corresponding flows will send at the highest rate they can achieve,
which is smaller than the rate decided by the RCC Algorithm. It is important
to note that whenever this happens, the resulting rate allocation will be sub-
optimal. The aggregate Network Utility will thus not be necessarily maximized,
and consequently the fairness property that we have shown in Chapter 3 may
not always be enforced.

We will illustrate using our simulations that these situations can be avoided
by using more layers of smaller rate, validating the results of Section 4.3, or by
allowing large prefetch delays. The latter allows more flexibility in the sending
rates, at the expense of a larger used buffer at the receiving end of the stream
and an inevitable increase in end-to-end delay.

4.5.2 Convergence time

One interesting feature of our RCC Algorithm is that due to the smooth rate
profiles it generates, the overshoot rate ǫRCC is in practice negligible. This
leaves the convergence time δ to be computed. Our findings indicate that for
our RCC Algorithm, δ will depend heavily on the scenarios that are considered
and mostly on the Utility functions that are used. According to our results in
Chapter 3, the system will converge slower when the Utility functions that are
used have a slope that is less steep. This indicates that the convergence time
depends on the nature of the traffic that is being transmitted. As this situation
makes it hard to estimate a meaningful pdf pδ(c), we have resorted to computing
the maximum expected value of δ for each of the considered simulation scenarios.
In order to do so, we have run each scenario first using the appropriate Utility
functions, but by sending traffic that is always able to match the computed
channel rates, as in the FGS scenario from Chapter 3. We have then measured
the durations it has taken for the RCC to bridge the rate gap between two
layers. The maximum of these values is then selected as the convergence time
δ for the considered scenario. The such learned value provides a good starting
point in order to validate our findings. Although this learning phase is not
achievable in practice, a conservative estimate on the convergence time can
always be extracted from experiments.

4.6 Simulations

4.6.1 Setup

We have extended the NS-2 implementation of our media friendly rate and
congestion control algorithm to include the scheduler depicted in Figure 4.5.
The average loss rate in the stable state π is set to 5% for all simulations and κ
equals 1. Once more, we use the network topology that is shown in Figure 3.7.
Each sender delivers a given video stream to its client, as given in Table 4.1.

There is one important difference to our new scheduler. When in Chap-
ter 3 the sender would send exactly one finely adapted GOP worth of video
data during each control interval, this is now no longer true. During each con-
trol interval, the sender will try to match the current rate control by possibly



4.6. Simulations 55

prefetching data from frames whose decoding deadline will only expire later.
Hence, we no longer add the size of the transmitted GOP to each packet, but
rather the number of bytes bs that have been scheduled on aggregate during the
current control interval. The receiving client will count the number of bytes it
receives from the batch of data that was sent, and transmit the resulting byte
count together with bs as feedback to the sender. As the sender knows the
(constant) duration of each control interval, using this feedback it will be able
to recover the previously taken rate control. Moreover it will be able to evaluate
the congestion signal, which is all the input that is needed in order to evalu-
ate the controller’s rate update equation. For all of the following simulation
runs, we have set the factor ǫλ in Equation (4.11) to 5% of the selected source
rate. This means that once a sender needs to fall back to transmitting at the

video source rate v =
∑l∗

l=1 λl, because it fails to achieve the steady state rate
computed by the RCC Algorithm, the actual transmission rate is computed as:

s(t) = 0.95 ·
l∗
∑

l=1

λl. (4.15)

As outlined in Section 4.4.1, this allows the potentially full prefetch buffers to
be drained, while keeping the sending rate close to the selected source rate.

4.6.2 Sub-optimal behavior and fairness

In the first set of simulations we consider some very simple topologies in or-
der to illustrate some key characteristics that stem directly from our findings.
Throughout this set of simulations, we have set Dp = 90 frames, unless other-
wise stated. This is in line with equation (4.9). Indeed the convergence time
we expect for these simulations was computed to be 3 seconds (90 frames), and
the maximum ratio between the rates of 2 subsequent layers is 1.

In Scenario 1, we use the sender-receiver pairs 1 and 2, which transmit the
coarse layered version of the SOCCER test sequence. We set the bottleneck
capacity to 3.5Mbps. The resulting sending rates and the received rates are
plotted in Figures 4.9 and 4.10 respectively. In addition we plot the number
of transmitted layers for each sent frame in Figure 4.11. As expected, the two
streams end up sharing the available network resources adequately, and each
flow gets an equal average rate which allows for the transmission of all layers
up to layer 4 once the steady state is reached.

In the next simulation run, which we describe by Scenario 2, we consider the
setup to be exactly the same as in Scenario 1, but this time we set the bottleneck
capacity to 3.7Mbps. The resulting sending rates are plotted in Figure 4.12 and
the number of delivered layers for each of the streams is shown in Figure 4.13.

S1,2 → R1,2 SOCCER, CIF @ 30Hz (coarse)
S3,4 → R3,4 SOCCER, CIF @ 30Hz (fine)
S5,6 → R5,6 CREW, 4CIF @ 30Hz

Table 4.1: Distribution of the test video sequences among the sender-receiver
pairs.
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Figure 4.9: Allocated transmission rates for Scenario 1.

0.0

0.5

1.0

1.5

2.0

2.5

0 50 100 150
time [s]

re
ce

iv
ed

 r
a
te

 [
M

b
p

s]

r  (t) - SOCCER CIF @ 30Hz (coarse)

r  (t) - SOCCER CIF @ 30Hz (coarse)
1

2

Figure 4.10: Received rates for Scenario 1.
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Figure 4.11: Transmitted layers for senders 1 (top) and 2 (bottom) in Scenario
1.

Obviously, the small change in bottleneck bandwidth has an important effect
on the steady state distribution. Even though both streams are characterized
by the same Utility function, not all of the competing streams can transmit
at the rates that would allow for a fair and adequate sharing of the network
resource. Hence the RCC algorithm ends up by allocating more rate to stream
1 than to stream 2, in an effort to maximize the resource utilization. This result
illustrates our discussion in Section 4.5: if the rates that are available from the
set of video layers L do not match all of the possible steady state rates, and if the
prefetch delay is not large enough to smooth the available source rates, then the
sender will have to converge to a suboptimal state in which the Utility-weighted
fairness property can no longer be enforced all the time.

In Scenario 3 we consider once more the setup from Scenario 2, but we remove
any bound on the prefetch delay Dp: the scheduler can prefetch any data from
the future if this is needed to fill the rate dictated by the RCC Algorithm.
This allows each of the senders to allocate much smoother rate profiles, thus
enhancing the stability from a networking perspective, as shown in Figure 4.15.
However, as illustrated in the number of layers that are delivered for each frame
and each of the two streams, see Figure 4.15, this does not address the fairness
issue that we have mentioned. The only way to alleviate this situation is to
consider finer layers in order to be able to match the steady state rate that is
achieved.

We illustrate this situation in Scenario 4, where the bottleneck capacity is
again set to 3.7Mbps, but this time we let the sender-receiver pairs 3 and 4,
transmitting the fine layered version of the SOCCER sequence, share the bot-
tleneck. The resulting transmission rates are shown in Figure 4.16 and indicate
that using finer layers, we can indeed increase the stability of the algorithm.
Moreover, as depicted in Figure 4.17, both streams end up being treated in a
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Figure 4.12: Allocated transmission rates for Scenario 2.
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Figure 4.13: Transmitted layers for senders 1 (top) and 2 (bottom) in Scenario
2.
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Figure 4.14: Allocated transmission rates for Scenario 3.
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Figure 4.15: Transmitted layers for senders 1 (top) and 2 (bottom) in Scenario
3.
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Figure 4.16: Allocated transmission rates for Scenario 4.

similar way and fairly share the resource, as the optimal rate controls can now
be matched by a corresponding video rate.

The mean Y-PSNR of the transmitted streams and the mean loss in Y-PSNR
due to congestion losses are given for reference in Table 4.2. As laid out in
Chapter 3, the proposed rate and congestion control algorithm is characterized
by steady state losses which are tightly bounded by the factor π = 5%. Moreover
we have implemented an active node at the bottleneck router which discards first
the packets of least importance whenever it has reached its forwarding capacity.

4.6.3 Adaptation to network dynamics

In the second set of simulations, we provide results on the performance of our
proposed system in a more dynamic network setting. We consider a bottleneck
capacity of 6Mbps and set the prefetch bound first to Dp = 130, which allows
to satisfy relation (4.9). The bottleneck is shared by 4 sender-receiver pairs:
senders 3 and 4 transmit the fine layered version of the SOCCER test sequence,
while senders 5 and 6 transmit the CREW sequence. The simulation run lasts
for 120 seconds. During 30 seconds, and starting 50 seconds into the simulation,
we inject some constant bitrate (CBR) background traffic into the bottleneck,
thus reducing its forwarding capacity for the media streams. The CBR rate is
set to 1Mbps. We refer to this simulation run as Scenario 5.

Figure 4.18 shows the resulting sending rates for all of the 4 streams. Most
importantly, it can be noticed that our system is still able to distinguish the
2 types of traffic on the bottleneck through the use of their Utility functions.
It allocates the rates accordingly in an effort to maximize the overall Network
Utility. Moreover the rates converge quickly to a new stable state once the
bottleneck capacity drops, and recover to the initial steady state as soon as the
background traffic is switched off.

The number of transmitted layers for each frame is plotted in Figure 4.19 for
senders 3 and 4, and in Figure 4.20 for senders 5 and 6 respectively. On average
the similar streams get the same number of layers throughout the simulation
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Figure 4.17: Transmitted layers for senders 3 (top) and 4 (bottom) in Scenario
4.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

0 20 40 60 80 100 120

time [s]

se
n

d
in

g
 r

a
te

 [
M

b
p

s]

s  (t) - SOCCER CIF @ 30Hz (fine)3

s  (t) - SOCCER CIF @ 30Hz (fine)4

s  (t) - CREW 4CIF @ 30Hz5

s  (t) - CREW 4CIF @ 30Hz6

Figure 4.18: Allocated transmission rates for Scenario 5.
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Figure 4.19: Transmitted layers for senders 3 (top) and 4 (bottom) in Scenario
5.

run, which is confirmed by the resulting Y-PSNR values listed in Table 4.2.

In Figure 4.21 we illustrate the filling level of the prefetching buffers for
the 3 layers that are delivered by sender 6. This shows how higher layers are
preferentially used for prefetching in an effort to keep the prefetching process
repeatable. It can also be seen that around the 100th second of the simulation
run, no data for layer 3 is sent, but as the corresponding information has been
prefetched earlier, all of layer 3 is still transmitted for all of the frames after the
bottleneck capacity is restored.

Finally, in Scenario 6, we consider the same topology as in Scenario 5, but
we illustrate the behavior of the system if the layer rates and the chosen prefetch
delay do not comply to the condition given in Equation (4.9). This is achieved
by setting a smaller prefetch delay Dp = 100 for senders 5 and 6, which are
streaming the CREW sequence. The resulting sending rates for each of the 4
streams are depicted in Figure 4.22. Both senders 5 and 6 start to transmit at
relatively high sending rates. Once the background traffic sets in, it becomes
apparent that the senders do not have enough data in their prefetch buffers in
order reach the previously achieved stable state. This results from the fact that
Dp is too small, or conversely that given Dp, the rate of the encoded layers is
too large. Once the background traffic is switched off, senders 3 and 4 are able
to contend for the available bottleneck bandwidth and transmit the complete
set of available layers. Meanwhile, senders 5 and 6 are stuck at transmitting
layer 1. Although the bottleneck is not fully used, they alternate filling and
draining phases of their prefetch buffers, but are never able to reach a sending
rate that would allow for the transmission of further layers.

The number of transmitted layers for each frame is plotted in Figure 4.23 for
senders 3 and 4, and in Figure 4.24 for senders 5 and 6 respectively. On average
the similar streams get the same number of layers throughout the simulation
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Figure 4.20: Transmitted layers for senders 5 (top) and 6 (bottom) in Scenario
5.
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Figure 4.21: Evolution of the prefetching buffer of sender 6 in Scenario 5.



64 Chapter 4. Smoothing of Layered Video

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

0 20 40 60 80 100 120

time [s]

se
n

d
in

g
 r

a
te

 [
M

b
p

s]

s  (t) - SOCCER CIF @ 30Hz (fine)3

s  (t) - SOCCER CIF @ 30Hz (fine)4

s  (t) - CREW 4CIF @ 30Hz5

s  (t) - CREW 4CIF @ 30Hz6

Figure 4.22: Allocated transmission rates for Scenario 6.

run, which is again confirmed by the resulting Y-PSNR values listed in Table
4.2. It can be noticed that the average losses measured at the receivers are
somewhat lower as compared to the previous Scenario. This is due to the fact
that during the last part of the simulation the bottleneck is not fully used, and
hence there are no congestion losses during the corresponding period.

4.7 Conclusions

In this Chapter we have considered the problem of adapting the source rates
that are generated by layered video streams, to the available channel rates. By
proposing to use smoothing in order to achieve this adaptation, we have derived
bounds on both the encoding rates of the video layers and the prefetch delay
that can be used for smoothing. These conditions depend on parameters that
reflect the behavior of the underlying Rate and Congestion Control Algorithm.
We have discussed practical scheduling aspects related to the transmission of
these video layers. Furthermore, we have given a practical implementation of a
scheduler that meets all of our design criteria.

Finally, we have illustrated that using layers that are properly encoded to
the precomputed rates, it is possible to extend the media friendly rate allocation
algorithm from Chapter 3 to the case of layered streams. The hurdle that needs
to be taken in order to make this possible lies in the fact that a layered video
stream does in general not generate traffic that can achieve any rate within a
given interval. We address this problem by allocating the available sending rates
in a meaningful way on the one hand, and by correctly scheduling that available
data on the other hand. Our results indicate that in general, having multiple
layers of smaller average bitrate is highly beneficial in terms of both network
stability and incurring delay. Although the coding performance of the video
sequences is degraded when more layers of smaller average rate are encoded,
there is an important trade-off to be made in terms of network stability and
delay.
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Figure 4.23: Transmitted layers for senders 3 (top) and 4 (bottom) in Scenario
6.
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Figure 4.24: Transmitted layers for senders 5 (top) and 6 (bottom) in Scenario
6.
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Scenario 1 Mean Y-PSNR at sender Mean loss at receiver

S1 → R1 38.08 dB 0.96 dB
S2 → R2 37.85 dB 0.98 dB

Scenario 2

S1 → R1 39.44 dB 1.02 dB
S2 → R2 39.00 dB 0.97 dB

Scenario 3

S1 → R1 39.15 dB 0.96 dB
S2 → R2 38.89 dB 1.10 dB

Scenario 4

S3 → R3 38.79 dB 0.90 dB
S4 → R4 38.74 dB 0.82 dB

Scenario 5

S3 → R3 37.59 dB 1.15 dB
S4 → R4 37.72 dB 1.18 dB
S5 → R5 35.12 dB 0.40 dB
S6 → R6 35.11 dB 0.51 dB

Scenario 6

S3 → R3 38.18 dB 0.21 dB
S4 → R4 38.21 dB 0.19 dB
S5 → R5 34.72 dB 0.19 dB
S6 → R6 34.74 dB 0.18 dB

Table 4.2: PSNR quality for the different streaming scenarios [dB].



Chapter 5

Playback Delay and Buffer

Optimization

5.1 Background

Due to the rapid evolutions in consumer electronics, the possibility to adapt to
client preferences or to customize services becomes predominant in multimedia
applications. We consider in this chapter the problem of the simultaneous de-
livery of a scalable media stream to heterogeneous clients that present different
computing capabilities, different access bandwidths, or different user require-
ments. Each one of these clients selects to receive an appropriate subset of
scalability layers, providing the needed and decodable stream. A typical exam-
ple of such a system is given in Figure 5.1, where a streaming server connects
to heterogeneous clients directly or through a streaming proxy and broadcasts
a stored scalable media stream. Scalable video streaming systems have gener-
ally to respect a bottleneck channel bandwidth, which prevents the immediate
delivery of the media data to all the clients. This limitation may be imposed by
channel or disk bandwidth constraints, admission control or pre-determined traf-
fic specifications (e.g., TSPEC in the 802.1e wireless standard). Client buffering
capabilities may help to smooth the discrepancies between the video source rate
and the available bandwidth with a sustained quality, at the price however of
an increased playback delay at the client. It becomes therefore important to
derive efficient packet scheduling strategies such that smooth playback can be
ensured at each client and that the overall quality of service is maximized.

Several works have studied the problem of efficient packet scheduling in dif-
ferent streaming scenarios. The problem of minimizing the playback delay and
buffering needs for a single receiver and non-scalable streams under guaranteed
rate constraints has been previously addressed in [44, 43, 45]. The problem
has been nicely formalized in more general terms in [49] and [48]. In [53] the
authors discuss optimal streaming of layered video under random bandwidth
models, when the buffer is not constrained at the decoder. The error conceal-
ment at the decoder is further considered in [58] where the scheduling decisions
are based on a Markov Decision Process to cope with unpredictable bandwidth
variations. The authors of [60] address a similar scenario, where the number of
layers that are transmitted are computed from local decisions based on expected

67
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Figure 5.1: Example of a scalable video streaming system.

run-time estimation. None of the above work however considers the problem of
multiple clients that participate together in the streaming session.

A scheduling algorithm that minimizes the buffer occupancy of a single client
that receives a single stream has been proposed in [42]. Our work extends this
algorithm to provide jointly minimal buffer occupancy at heterogeneous clients
that decode different subsets of the same layered stream. Optimal multiplexing
for continuous media streaming is discussed in [80]. However the authors focus
on bandwidth efficiency and do not discuss the delay nor the buffer occupancy
experienced by a client. Layered video streaming has been studied in relation
with multicast delivery schemes in [51, 52], without addressing the specific prob-
lem of heterogeneous receivers with delay and buffer constraints. None of the
cited papers addresses the problem of multiplexing a layered video stream onto
a broadcast channel by targeting on one hand a set of minimal playback delays
for heterogeneous clients, and on the other hand the minimum buffer occupancy
at each one of these clients.

In this chapter, we propose to optimize the selection of the playback delays
for the different clients in order to have a fair distribution of the delay penalty
induced by the broadcast-like media transmission. We show that the minimal
playback delays cannot be jointly achieved for all the clients, and we derive low
cost optimization algorithms for computing playback delay sets under different
client prioritization policies. Once the playback delays are given, we prove that
minimum buffer occupancy can be simultaneously attained for all the clients.
There is moreover a unique sending trace that attains the optimal solution in
this case, and we propose an algorithm that implements the optimal transmis-
sion of the packets from the different layers. When both optimization problems
are solved sequentially, the system can design a mechanism that jointly opti-
mizes both delays and buffers. To the best of our knowledge, this work is a first
effort to address the playback delay optimization problem, together with the
buffer minimization problem for broadcast to heterogeneous clients. Finally,
we show how the optimal scheduling solution can be modified with a simple
adaptive rate control algorithm when the knowledge about the channel band-
width is limited. This solution provides an interesting alternative to conservative
scheduling schemes in some practical scenarios with unpredictable bandwidth,
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while it offers an improved average quality but minor and controllable quality
variations.

The chapter is organized as follows: we provide an overview of the system
under consideration and discuss media scheduling properties in Section 5.2. We
present the delay optimization solutions in Section 5.3, and we analyze the buffer
minimization problem in Section 5.4. Section 5.5 introduces an adaptive rate
control algorithm to cope with unexpected bandwidth variations and discusses
its performance in practical scenarios.

5.2 Scalable Video Broadcast

5.2.1 System Overview
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Figure 5.2: Formal view of the system.

We present an overview of the system under consideration in this chapter.
A formal representation of the system is given in Figure 5.2. A streaming server
sends a scalable media stream to a population of receivers through a common
bottleneck channel. This bottleneck represents for example a shared channel or
network segment with limited bandwidth, or the disk bandwidth limitations in
a video-on-demand server. The bottleneck channel is given by its bitrate c(t),
which indicates how many bits the channel is able to transmit at any time t,
and possibly by a maximum network latency ∆.

Generally, the server’s knowledge about the channel availability is extracted
from client or network feedback. In this chapter we will assume perfect channel
knowledge at the server, which leads to an upper bound on achievable per-
formance for any predictive scheme, where the server estimates the available
channel. In particular, this assumption is verified for constant bit rate channels
or when the bandwidth is controlled by deterministic guarantees (e.g., TSPEC
in the recent 802.11e wireless protocol). Moreover, as discussed in Chapter 4,
while delivering a layered video stream, a sender has often to settle for a sending
rate which equals to the average rate of a subset of the available layers. In the
rest of this chapter, the channel rate c(t) is the rate available for the broadcast
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application, and we do not limit the study to any particular congestion control
or rate allocation strategy.

The scalable video stream is built on several hierarchical layers. Each of the
L layers is completely determined by its source or playout trace λl(t), 1 ≤ l ≤ L,
which indicates the size of the layer l at time t. When a hierarchy exists between
video layers, the decoding of layer l is made contingent on the correct decoding
of all inferior layers, from 1 up to l−1. Batches of clients simultaneously access
the same video sequence, possibly with different scalability levels. The receivers
are grouped together into L sets, based on the number of video layers or the
resolution that they have requested. We denote as Rl, (1 ≤ l ≤ L) the set of
clients that receive all layers up to the lth layer.

After the first bit is sent by the server, each receiver in Rl buffers the video
data for a playback delay Dl. The video bits are stored in the receiving buffer,
whose content at any time is further denoted as Bl(t). After the initial playback
delay, the receiver decodes and plays continuously a video whose resolution
corresponds to the series of additive layers it has requested. The playback delay
can be different for each group of receivers Rl. However, the set of playback
delays D = {Dl}L

l=1 should be chosen such that non-disruptive playback of
the sequence can be achieved for any set of receivers Rl, i.e., such that no
buffer underflow occurs at any receiver 1. At the same time, the choice of
the playback delay impacts the quality-of-service perceived by the end-user.
It therefore requires an efficient packet scheduling strategy in order to reach
a proper trade-off between user experience and resilience to underflows and
bandwidth limitations. Before addressing the problems of the selection of the
playback delay and packet scheduling, we describe below the problem of packet
scheduling in media streaming applications that generally impose strict timing
constraints.

5.2.2 Media Scheduling Formalism

We now describe in more details the packet scheduling characteristics in media
streaming applications. When the channel is constrained, the streaming server
has generally to implement effective scheduling algorithms, in order to ensure
timely delivery of media packets and to avoid buffer underflow at receivers. The
packet transmission strategy is chosen in order to meet criteria such as desired
distortion or delay [61, 59], or maximum utilization of the available channel
bitrate. The packet scheduler outputs a stream at a sending rate s(t) ≤ c(t), ∀t
that indicates the number of bits fed into the channel at any time instant t.

We denote the cumulative source (video), sending and channel rate functions
with capital letters (V, S, C), where a cumulative rate function is defined as the
total number of bits that have been counted since time t = 0. For example,
C(t) =

∫ t

0 c(u)du is the number of bits the channel can transmit up to time t.
Note that the cumulative rate functions are all wide-sense increasing in t. We
further define vD(t) as the number of video bits consumed by the decoder that
starts playing the video stream after a playback delay D. It reads as:

vD(t) =

{

0 , 0 ≤ t < D
v(t − D) , t ≥ D

1In the remaining of the chapter, we use Rl to design a set of receivers that subscribe to
the resolution level l or one of the receivers in this set, interchangeably.
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VD(t) = V (t − D) is the corresponding cumulative function.

t
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S

Figure 5.3: Left: Playback delay and buffer underflow prevention. Right:
Schedulable play-out trace and a corresponding sending rate trace.

The scheduler has to ensure that the client does not experience any buffer
starvation, when the video decoding starts after a playback delay that has been
selected a priori. Figure 5.3 illustrates the importance of the playback delay
for smooth video decoding in a scenario with a single client. If the client starts
playback at the reception of the first bit, a buffer underflow occurs at time tc.
Starting playback at the client after D time units makes sure that the buffer
underflow does not occur. We say that a source trace v(t) is schedulable over a
channel with available bandwidth c(t), with a playback delay D, if the following
schedulability condition holds for all t:

VD(t) ≤ C(t − ∆) (5.1)

In the case where the channel trace C(t) is completely known and its usage is
not further constrained, if the condition (5.1) is met, this implies that the server
can find a scheduling solution or equivalently a sending trace s(t) such that each
of the following conditions are satisfied for all t:

VD(t) ≤ S(t − ∆) (5.2)

s(t) ≤ c(t). (5.3)

The first inequality makes sure that the server transmits a number of bits
that is sufficient for decoding the video stream at all time instants t, with a
playback delay D and a maximum network latency ∆. As a constant value of
∆ implies a simple time shift in each of the above inequalities, we will consider
that ∆ = 0 for the sake of clarity and without loss of generality in the remainder
of this chapter. The second condition simply imposes that the number of bits
transmitted by the server at any time instant is not larger than the channel rate.
Note that the latter condition implies S(t) ≤ C(t), ∀t, but that the reverse is
not true. If the playback delay D is chosen such that the above conditions hold,
a scheduling solution can be found. Each valid scheduling strategy generates
a sending rate s(t) that satisfies Eqs. (5.2) and (5.3) for all t. Finally, the
buffer occupancy of a media client that receives a data rate S(t) and plays out
a sending trace VD(t) is given by:

B(t) = S(t) − VD(t), ∀t. (5.4)
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The above equation shows that the buffer occupancy is dependent on the
choice of the playback delay, so that the joint minimization of both components
becomes non-trivial. We first present a method to optimize the choice of the
playback delays in scalable streaming systems. Then we show how to define a
scheduling strategy that minimizes also the buffer occupancy.

5.3 Playback Delay optimization

5.3.1 Preliminaries

In this section, we discuss the choice of the playback delays for the different sets
of clients Rl that simultaneously receive the scalable stream. Small playback de-
lays usually lead to a better quality of service, and we will present algorithms for
optimizing the choice of playback delays, under different metrics. We first give
a preliminary analysis of the playback delay, and define the minimal playback
delay for a client Rl that decodes l layers of the scalable video stream.

We introduce here some general results inspired from [47]. Suppose that we
have two increasing non-zero functions F (t) and G(t) such that limt→∞ F (t) ≥
limt→∞G(t). We define the (maximum) horizontal distance between F (t) and
G(t) as follows:

h(G, F ) = sup
t

(

F−1 (G(t)) − t
)

, (5.5)

where F−1(t) = min {t : F (t) ≥ x} is a pseudo-inverse of F (t). The following
relations hold:

h(G, F ) = 0 ⇔ F (t) ≥ G(t), ∀t and (5.6)

∃τ s.t. F (τ) = G(τ) (5.7)

h(G, F ) < 0 ⇔ F (t) > G(t), ∀t (5.8)

h(G, F ) > 0 ⇔ ∃τ s.t. F (τ) < G(τ). (5.9)

When F (t) and G(t) respectively represent the channel trace and the source
trace, the horizontal distance between F and G represents the minimal playback
delay that is necessary for a smooth decoding of the source stream. In other
words, it represents the minimal shift that as to be applied on G, such that the
schedulability condition is verified. Formally, we have the following property.

Property 1. If h(G, F ) > 0 and G′(t) = G(t − h(G, F )), then h(G′, F ) = 0.
In other words, h(G, F ) is the minimum shift we need to apply on G(t), so that
F (t) ≥ G′(t), ∀t.

With multiple traces, we have also:

Property 2. Let F (t), G(t) and G′(t) be non-decreasing functions such that
G′(t) > G(t), ∀t. Then: h(G′, F ) > h(G, F ). Indeed by the definition of h(·)
and F−1(·), and because F (t) is non-decreasing, the result follows immediately,
as F−1 (G′(t)) > F−1 (G(t)), ∀t. Similarly, if G′(t) < G(t), ∀t then h(G′, F ) <
h(G, F ).

We can therefore define the minimal playback delay Dl
min for smooth play-

back at the receiver Rl. It is given by



5.3. Playback Delay optimization 73

Dl
min = h

(

V l(t), C(t)
)

, (5.10)

where V l(t) =
∑l

k=1 Λk(t) is the cumulative rate of the stream at resolution

l. From Property 2, we know that Dl
min ≤ Dl+1

min, ∀1 ≤ l ≤ L − 1, since the
rate traces are positive valued functions, and V l+1(t) ≥ V l(t), ∀t. If the layer
l is decoded after a minimal playback delay Dl

min, the only valid scheduling
solutions are strategies where the playback delay for layers k < l is not any larger
than Dl

min. It is actually not possible to reduce the minimal playback delay for
the client Rl, even by changing the scheduling of the lower layer streams.

Let us define ~δ = [δ1, .., δl], with δ1 ≥ δ2 ≥ . . . ≥ δl ≥ 0. We have the
following Lemma, which shows that the minimal playback delay required for a
smooth decoding of the resolution level l cannot be smaller than Dl

min, even if
the lower layers are decoded with a smaller delay.

Lemma 2. Consider a set of L non-decreasing functions {H l(t)}L
l=1 and a

non-decreasing function F (t), defined ∀t. We have, ∀l, 1 ≥ l ≥ L:

h
(

Gl, F
)

≤ h
(

Gl
~δ
, F
)

,

where Gl(t) =
∑l

k=1 Hk(t) and Gl
~δ
(t) =

∑l
k=1 Hk(t + δk).

Proof. As the functions {Gl(t)}L
l=1 are non-decreasing, we have, ∀l and ∀δl ≥ 0:

H l(t) ≤ H l (t + δl). Thus, ∀l,

Gl(t) ≤ Gl
~δ
(t) ,∀t.

From Property 2, it follows that h
(

Gl, F
)

≤ h
(

Gl
~δ
, F
)

.

From the above results we conclude that any playback delay smaller than
Dl

min results in a buffer underflow at the receiver Rl, while any larger playback
delay allows for decoding without experiencing a buffer underflow. This permits
to derive a simple bisection search algorithm for computing the minimal delay
Dl

min, similar to Algorithm 1.

Algorithm 1 Dmin = getDmin (C(t), V (t))

1: Dlow ⇐ 0
2: Dhigh ⇐some large value
3: while (Dhigh − Dlow) > 1 do

4: Dtest ⇐
⌊

Dlow+Dhigh

2

⌋

5: if V (t − Dtest) ≤ C(t), ∀t then
6: Dhigh ⇐ Dtest

7: else
8: Dlow ⇐ Dtest

9: end if
10: end while
11: Dmin = Dtest

It is important to note here that achieving the minimum playback delay for
a given layer l does not necessarily guarantee that a minimum playback delay
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is also achieved for any other layer. In general, if the transmission strategy
is chosen in order to minimize the delay at layer l, without considering any
other layer k, with k < l, the clients that only subscribe to the lower layers are
penalized by a playback delay that might be larger than necessary. If however
the scheduler decides to minimize the playback delay for layer k, it generally
increases the playback delay for clients that receive any additional layer l, with
l > k. The choice of the playback delay results therefore from a typical trade-
off between the delays imposed to the different layers, since the delays cannot
be minimized simultaneously for all the layers. When the playback penalty is
increased for the lower layers, it typically saves channel bits that can be used
for decreasing the playback delay penalty for higher layers. In the next section,
we formulate an optimization problem for the choice of the playback delays for
different policies.

5.3.2 Problem Formulation

Consider a channel given by its cumulative rate trace C(t), and a set L con-
taining L hierarchically coded layers given by their cumulative source rate
traces {V l}L

l=1. The channel connects a streaming server to L sets of receivers
{Rl}L

l=1, that simultaneously subscribe to layers up to l. Let D = {Dl}L
l=1, with

D1 ≤ D2 ≤ . . . ≤ DL ≤ Dmax denote the set of playback delays imposed to the
different sets of clients. The joint minimization of the playback delays for all
heterogeneous receivers is generally not achievable in broadcast-like scenarios,
as discussed above. We therefore formulate the following optimization problem,
which targets a fair selection of the playback delays. Let Dl

min represents the
minimal playback delay that can be offered to the client Rl, when other clients
are not considered. A fair distribution of the playback delay among the differ-

ent clients can be achieved by controlling the penalties
−→
∆ = [∆1, ..∆L], with

∆l = Dl−Dl
min, 1 ≤ l ≤ L, in addition to minimizing the playback delays. The

playback delays can therefore by chosen as

Dopt = arg min
D

ϕ
(

{Dl}, {∆l}
)

(5.11)

under the condition that V l
D(t) ≤ C(t) ∀l, 1 ≤ l ≤ L, i.e., all the traces

are schedulable from Eq. (5.1). The function ϕ is a generic cost function that
combines the average playback delay and the delay penalty imposed to each
layer due to the broadcast-like distribution. Finding the best set of playback
delays Dopt is actually a combinatorial optimization problem, and its solution
generally implies a full search algorithm. We show in the next sections how the
search space can be reduced for solving the generic optimization problem of Eq.
(5.11). We also present efficient solutions to the problems of fair or weighted
distribution of the delay penalty ∆l between the different layers.

5.3.3 Reduced search space

In order to solve the joint delay optimization problem, we propose to limit the
search space of possible delay values. We know already from the above discussion
that the minimal playback delay for clients that decode the stream up to layer
l, is Dl

min. It corresponds to the lowest achievable delay, when clients Rk with
k 6= l are not considered in the delay computation. Generally, the playback
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delay for layer l is larger than Dl
min when the scheduler also tries to reduce the

delay for the lower layers 1 ≤ k ≤ l. In order to reduce the search space, we are
looking for a reasonable upper-limit on the search interval. From Lemma 2, the
worst case policy for clients Rl consists in minimizing iteratively the delays for
all the clients Rk with 1 ≤ k ≤ l. We describe below the greedy delay allocation
policy, and we denote the resulting delay Dl

greedy.

The greedy delay allocation first minimizes the playback delay of the first
layer, which is thus decoded after D1

greedy = D1
min. It then iteratively allo-

cates the smallest possible delay to the different layers, given the greedy delay
allocation for the lower layers. Formally, we denote the available channel band-
width for transmitting the layer l as Cl(t) = C(t) −

∑l−1
k=1 Λk(t − Dk

greedy).

Therefore, the minimal playback delay for layer l becomes h(Cl, Λl) under the
greedy allocation policy. This scenario results in an upper bound DL

greedy on
the playback delay for the highest layer L, when all playback delays are cho-
sen in a greedy manner. In particular, delays that are larger than DL

greedy also

provide valid scheduling solutions. However, increasing the playback delay DL

does not reduce the playback delay of the lower layers, and rather contributes
to increasing the standard deviation of the penalties given in Eq. (5.11). The
delays obtained by the greedy allocation can therefore be safely considered as
the upper-limits of the search intervals. The greedy layered scheduling strategy
is shown in Algorithm 2.

Algorithm 2
({

Dl
greedy

})

= GreedyD
(

C(t), {Λl(t)}
)

1: C1(t) ⇐ C(t)
2: for l = 1 to L do
3: Dl

greedy ⇐ getDmin
(

Cl(t), Λl(t)
)

4: Cl+1(t) ⇐ Cl(t) − Λl(t − Dl
greedy)

5: end for

As the greedy delay allocation provides the worst case solution for minimiz-
ing the delay for all the receivers, we can limit the search domain for computing
the best set of playback delays to the interval [Dl

min, Dl
greedy ], ∀l. In addition,

due to the hierarchical nature of the scalable video stream, we know the de-
lay can only take non-decreasing values when the number of layers increases
(i.e., Dk ≤ Dl when k ≤ l). We can therefore limit the number of poten-
tial solutions that need to be tested for optimality by the search algorithm,
by setting the condition that DL ∈ [DL

min, DL
greedy ]. Then, for each possible

value of DL, we constrain the search algorithm to test values of DL−1 such that
DL−1 ∈ [DL−1

min , DL]. The search proceeds iteratively and only test values of
delay Dl, such that Dl ∈ [Dl

min, Dl+1], for l = L..1. Using this simple method,
the set of playback delays that minimizes Eq. (5.11) can be identified with high
probability for most cost functions ϕ that tends to minimize the average play-
back delay. The search space of feasible solutions is however drastically reduced
compared to a full search algorithm.
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5.3.4 Fair penalty distribution

In order to have a fair policy among the different clients Rl, we can distribute

the playback delays such that the variance of the penalties
−→
∆ = [∆1, ..∆L] is

minimized. The playback delays can thus be chosen such that

Dopt = arg min
D

[

V ar
(

∆1, . . . , ∆l
)]

, (5.12)

under the condition that V l
D(t) ≤ C(t) ∀l, 1 ≤ l ≤ L, i.e., all the traces are

schedulable from Eq. (5.1).

We propose a low complexity algorithm for computing the optimal playback
delay set Dopt in the sense of Eq. (5.12). We can observe that the minimal
value of the cost function is reached when all the penalties are equivalent, i.e.,
∆k = ∆l, ∀k, l. Any set of delays D =

{

Dl|Dl = Dl
min + K

}

, ∀l minimizes
the cost of Eq. (5.12) by setting the variance between the delay penalties to
zero. In other words the source traces of all layers need to be delayed by K
units relative to their respective minimal playback delay Dl

min. Given the set
of minimum playback delays Dmin, we can construct an aggregate source rate
trace V L

Dmin
(t), defined as:

V L
Dmin

(t) =
L
∑

l=1

Λl
(

t − Dl
min

)

. (5.13)

If the trace V L
Dmin

(t) is schedulable, it represents an ideal solution where all
layers can be decoded jointly with minimal delay. If it is not the case, the
playback delay can be increased in the same manner for all layers, so that the
trace becomes schedulable. It corresponds to shifting the aggregate source trace
by the smallest delay K, such that V L

Dmin
(t−K) ≤ C(t), ∀t. In other words, we

can compute K as

K = h
(

V L
Dmin

, C
)

, (5.14)

and that can be achieved by running the Algorithm 1. Hence the complexity
involved in finding the solution is that of the bisection search algorithm used in
Algorithm 1, i.e., O(log(trace length)). The solution is obviously equivalent to
the optimal solution of the algorithm in the previous section, when it lies in the
reduced search space.

We illustrate the solution with fair distribution of the delay penalties in
Figure 5.4. We have encoded a composite video sequence in QCIF format at
30 frames per second, using the MoMuSys MPEG-4 FGS [41] reference codec.
The channel is a piecewise CBR channel that provides a mean rate of 128kbps
at the beginning, then improves to 256kbps and finally to 384kbps. Using the
fair playback delay distribution proposed above, the playout can begin after a
playback delay equivalent to 137 frames at receivers of set R1. The playback
delays for layer 2 and 3 are of 199 and 730 frames respectively. The relative
playback delay penalty per client set, compared to their respective Dl

min value,
is equivalent to 135 frames for all clients. Note that the gain in delay for clients
in sets R1 and R2 is enormous when compared to a strategy that would have
the same delay D3

min = 595 frames for all clients (dotted line).
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Figure 5.4: The channel can support 3 layers of the encoded stream. The dashed
curve shows the aggregate playout curve of the 3 layers with fair values of the
playback delays Df . The aggregate playout curve of the 3 layers using playback
delay D3

min is shown for reference (dotted line).

5.3.5 Unequal delay penalties

Some applications may necessitate to devise a scheduling strategy with unequal
delay penalties, where some clients are considered as prioritized compared to
others. This can be achieved by minimizing the variance of the weighted delay
penalties. In this case, the delay distribution has to be chosen according to the
following optimization problem:

Dopt = arg min
D

[

V ar
(

w1∆1, . . . , wL∆L
)]

, (5.15)

under the condition that V l
D(t) ≤ C(t) ∀l, 1 ≤ l ≤ L, i.e., all the traces are

schedulable from Eq. (5.1). The weights −→w = [w1, ..wL] represent positive
weights that permit to control the distribution of the penalties among the L
layers. A relatively high value of the weight wl typically constrains the delay
Dl to be close to the minimal delay Dl

min.

Depending on the weight distribution, it might be difficult to find the optimal
solution to the problem of Eq. (5.15) without using an exhaustive search over the
(reduced) space of possible delay values. We however propose a low complexity
algorithm that finds the optimal playback delay set Dopt. It is based on the a
priori information about the structure of the optimal solution that sets the cost
function in Eq. (5.15) to 0. It can be reached only when

∆l =
wk

wl
∆k, (5.16)
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∀k, l, 1 ≤ k ≤ L, 1 ≤ l ≤ L. This imposes that the delay penalty takes the
form ∆l = K/wl, ∀l, where K is a constant. Therefore, solving the optimization
problem of Eq. (5.15) is equivalent to finding the smallest value of K such that
the aggregate trace V L

D (t) is schedulable. In other words, one has to find the
smallest K that verifies

L
∑

l=1

Λl

(

t − Dl
min − K

wl

)

≤ C(t), ∀t. (5.17)

The search algorithm, given in Algorithm 3, simply increases K gradually,
until the aggregate trace is schedulable. At each iteration, it updates the play-
back delays, constructs the aggregate source trace, and checks the schedulability
condition. If the resulting trace is schedulable, the algorithm stops. Otherwise,
the value of K is augmented by δ, and the process is repeated until the resulting
trace is schedulable.

Note that the algorithm may find a sub-optimal solution to the problem of
Eq. (5.15) due to granularity of the delay increments. However, the complexity
is drastically reduced compared to a full search algorithm. If all the weights are
equal, we obviously get back to the fair model of the previous section. However,
we have seen that in the fair case we only need to test O(log(trace length))
possibilities, where each test can be performed in polynomial time. Algorithm
3 always performs O(trace length) such tests.

Algorithm 3 Dh =
(

C(t), {Λl(t)}, w, δ
)

1: Dl
h ⇐ Dl

min, 1 ≤ l ≤ L.
2: Construct the trace using delays Dl

min:

3: V L
Dh

(t) ⇐
L
∑

l=1

Λl
(

t − Dl
min

)

4: while V L
Dh

(t) � C(t), ∀t do
5: increase the delays according to the assigned weights:
6: for l = 1 to L do
7: Dl

h ⇐ Dl
h + δ

wl

8: end for
9: bound delays such that there are non-decreasing:

10: for l = L − 1 downto 1 do
11: Dl

h ⇐
(

min(Dl
h, Dl+1

h

)

12: end for
13: construct new trace:

14: V L
Dh

(t) ⇐
L
∑

l=1

Λl
(

t − Dl
h

)

15: end while
16: for l = 1 to L do
17: Playback delays are integers (in frame units)
18: Dl

h ⇐ ⌈Dl
h⌉

19: end for

We validate the proposed algorithm on a composite sequence, encoded using
the MoMuSys MPEG-4 FGS reference codec [81]. We run 100 tests where the
channel is a piecewise CBR channel with rates chosen randomly in {128kbps,
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256kbps, 384kbps}, and random lengths for each constant rate segment. We set
the weights to w = {1, 100, 1}, which means that the playback delay for layer
2 in the optimal playback delay set should be kept as close as possible to its
minimum playback delay. In our results, the optimal playback delay for layer 2
is indeed always within at most 2 frames of D2

min, thus validating our weighted
metric function, as expressed in Eq. (5.15). In all the cases, the cost function
is minimal. Note that this might not be always the case for the algorithm
with reduced search space proposed in Section 5.3.3, since the bounds of the
delay interval might not allow to find the optimal solution in the sense of Eq.
(5.15) that does not include an explicit minimization of the average playback
delay. Finally, the average number of potential solutions tested by the proposed
algorithm was 1.59·103 for the aforementioned experiment, compared to 1.82·107

for the generic full search algorithm in Section 5.3.3. The considerations on the
structure of the optimal solution space thus permits a dramatic reduction of the
computation time.

5.4 Minimum receiver buffer

5.4.1 β-optimal sending rate

Once playback delays are given, the server still has the flexibility to choose
the packet scheduling policy under the constraints given by the channel. The
packet scheduling policy typically influences the dynamic behavior of the re-
ceiver buffer. In particular, we are interested in defining the sending rate at the
server, which minimizes the buffer occupancy at all times t at the receiver in
a given streaming scenario represented by (C(t), V (t), D). At the same time,
the sending rate shall ensure that the receiver buffer does not experience any
starvation in order to guarantee a smooth video playback. This sending rate is
called β-optimal and we denote it as Sβ(t).

If condition of Equation (5.1) is verified, there exists a family of sending
rates S such that each S(t) ∈ S satisfies both Equations (5.2) and (5.3). In
these cases, the video can be played back at the receiver after D time units
without experiencing any buffer underflow. The β-optimal sending rate is the
scheduling solution that minimizes the buffer occupancy at the receiver. It can
be written as:

Sβ(t) = arg min
S(t)∈S

(B(t)) with B(t) = S(t) − VD(t), ∀t, (5.18)

which means that, for any sending rate S(t) ∈ S \ Sβ(t), we have:

Sβ(t) ≤ S(t), ∀t (5.19)

The problem of finding Sβ(t) has been addressed before under slightly dif-
ferent assumptions using min-plus algebra. We provide a brief overview of this
earlier work here for the sake of completeness. Using the formalism from [49]
in the case where the channel availability can be reflected by an arrival curve
σ(·), one can specify Sβ(t) as being the smallest sending rate that satisfies the
following conditions:

• S(t) is a causal flow, i.e., S(t) = 0 for t ≤ 0.
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• the flow S(t) is constrained by an arrival curve σ(·) that reflects the chan-
nel availability constraints. This means that for all t ≥ 0 and for all
k ∈ [0, t], S(t) − S(k) ≤ σ(t − k). There is no further constraint imposed
by the network.

When the server can prefetch data from any future frame at any time, and
when the playback delay is chosen such that there is no buffer underflow at the
receiver, there exists a minimal solution to the above set of constraints. It is
given by:

Sβ(t) = (V ⊘ σ)(t − D) (5.20)

Here ⊘ denotes the Min-Plus deconvolution of two wide-sense increasing func-
tions f and g, defined as:

(f ⊘ g)(t) = sup
u:u≥0

{f(t + u) − g(u)} (5.21)

The interested reader is referred to [48] for more details on the network calculus
formalism that is used for proving the existence of the minimal sending trace.

In the rest of this Chapter, we will however not consider any service-curve
type constraints on the available channel bandwidth. We rather suppose that
the complete channel trace c(t) is known for all times t. We propose an algo-
rithm that offers an intuitive and tractable solution for computing the β-optimal
sending rate for non-scalable streams. This algorithm is a generalization of the
algorithm presented in [44]. We then show that a jointly β-optimal sending trace
exists also in the case of scalable streams, and we propose a method to compute
the sending rate that minimizes the buffer occupancy for a set of heterogeneous
receivers.

5.4.2 Single layer streams

We provide an intuitive algorithm for computing the β-optimal sending rate for
single layer streams. Let us consider first a limiting case where the channel has
to be fully used to transmit the complete bitstream, i.e., C(D+T ) = VD(D+T ).
In this case illustrated in Figure 5.5 (left), the set of schedulable sending traces
only contains one solution. Any sending rate for which there exists some t where
S(t) < C(t) implies that S(D +T ) < VD(D +T ), where T is the duration of the
video sequence. This violates the condition of Eq. (5.2). Hence the only valid
sending rate function is also the solution that minimizes the buffer occupancy
for all times t. It is given by Sβ(t) = C(t).

In the general case where C(T + D) > VD(T + D), several sending traces
represent valid scheduling solutions that satisfy the condition of Eq. (5.1), as
illustrated in Figure 5.5 (right). In order to compute the β-optimal sending
rate, we make the following observations. First, Sβ(t) obviously shall fulfill
the conditions of Eqs (5.2) and (5.3) that define the schedulable solutions. In
order to minimize the buffer occupancy B(t), ∀t, Sβ(t) also needs to follow
VD(t) as closely as possible. This is equivalent to keeping the sending rate
as small as possible, but still to send enough data to avoid buffer starvation
under the constraints imposed by the channel bandwidth. Finally, we know
from the limiting case presented above that, whenever there exists a time τ
such that VD(τ) = C(τ), the β-optimal sending rate needs to be equal to C(t)
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Figure 5.5: Left: Limiting case with Sβ(t) = C(t). Right: The set of sending
traces S(t) that verifies Eqs. (5.2) and (5.3) generally contains multiple candi-
dates.

up to τ . Therefore, it becomes clear that B(t) can be minimized for all times
t if and only if data is sent at the latest possible instant in time such that all
data still arrive on time for decoding. We can thus eliminate the early sending
opportunities offered by the transmission channel, and reduce the channel to the
sending opportunities that are necessary to transmit all the data before their
decoding timestamps.

The β-optimal sending rate can now be computed by the Variable Rate
Smoothing (VRS) algorithm given in Algorithm 4. The algorithm operates
in the cumulative domain, starting at time t = 0. It first sets the sending
trace to be equal to the channel trace C(t), ∀t. Then, it iteratively checks for
t = 0 . . . T + D whether there is equality at any future time instant t′ between
the sending trace and the delayed video trace VD(t). In this case, the situation
is similar to the limiting case presented above, and the sending rate has to
be equivalent to the channel rate up to the time instant t′ = t. However, if
the sending trace is strictly larger than the delayed video trace for all time
instants t′ > t, the sending trace at all time instants t′ > t is reduced by the
difference between the sending trace and the delayed video trace at time t. This
operation basically consists in eliminating the early transmission opportunities,
which would result in wasting buffer resources. It is equivalent to translating
the sending trace curve down by Sβ(t) − VD(t) for all t′ > t. Note that the
complexity of Algorithm 4 is O(T + D), where the worst case is achieved if
v(t − D) < c(t), ∀t.

An illustration of the VRS algorithm is presented in Figure 5.6, where the
channel trace C(t) is linear and the delayed source trace VD(t) is piecewise
linear. At time t = 0, Sβ(t) and VD(t) do not touch. This will remain the same
up to t1. This means that up to t1, the derivative of VD(t) is certainly never
larger than that of Sβ , or equivalently that the instantaneous sending rate is
not smaller than the delayed source rate. The algorithm sets the sending trace
to VD(t) up to time t1. The sending trace computed at time t = t1 touches
the source curve at time t2new. This means that, in the interval [t1, t2new], the
derivative of VD(t) is at times larger than the derivative of the sending trace
of Sβ(t). In other words we have reduced the situation in this interval to the
limiting case and we have to use all the channel bits in order to transmit the
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Algorithm 4 Sβ = V RS (C(t), VD(t)))

Require: VD(t) ≤ C(t), ∀t
1: Sβ(t) ⇐ C(t), for all t. The sending trace is computed as a reduced channel

trace.
2: t ⇐ 0
3: while t ≤ T + D do
4: if ∄t′ ≥ t s.t. Sβ(t′) = VD(t′) then
5: Reduce the channel down by Sβ(t) − VD(t)) bits.
6: for all τ in [t, T + D] do
7: Sβ(τ) ⇐ Sβ(τ) − Sβ(t) + VD(t)
8: end for
9: t ⇐ t + 1

10: else
11: The curves touch, no reduction at this step.
12: tnew ⇐ supτ>t {τ |Sβ(τ) = VD(τ)}
13: t ⇐ tnew

14: end if
15: end while
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Figure 5.6: Illustration of the VRS Algorithm. In order to minimize the buffer
occupancy, the sending trace is reduced to the delayed source trace when the
channel rate is superior to the source rate.

needed data. The algorithm does not reduce the sending trace for t in [t1, t2new].
After t = t2new, the sending trace can again be reduced to the delayed source
trace.

Once the optimal sending trace has been computed, the buffer optimal
scheduling strategy simply consists in sending data in the increasing order of
their decoding deadline while respecting the constraints given by the sending
trace. If one does not respect this order, some packets are sent in advance,
which can only contribute to the increase of the buffer occupancy. Equivalently,
the optimal scheduling of the packets can also be achieved by scheduling pack-
ets as late as possible [42], without pre-computing the buffer optimal sending
trace. This last opportunity scheduling policy basically consists in reversing
time, starting from t = T + D to t = 0. Then it schedules at each time in-
stant t as many of the packets with the largest decoding deadlines in vD(t) as
the channel c(t) permits it. This solution jointly computes the buffer optimal
scheduling, and the optimal sending trace. It is however based on reversing the
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Figure 5.7: β-optimal scheduling outperforms any generic scheduling algorithm
with respect to receiver buffer occupancy.

time axis after t = T + D, which might present limitations in some practical
systems.

Finally, Figure 5.7 illustrates the β-optimal sending rate: the used video
trace is formed of 2 GOPs of the MPEG-4 encoded Foreman sequence. The
channel is a constant bit rate (CBR) channel. The left column depicts the video
source rate v(t), channel rate c(t) and the illustrated sending rate. The mid-
dle column shows the same traces in the cumulative domain, and the right
column shows the buffer occupancy as a function of time: B(t) = S(t) −
VD(t). The top row shows one valid but sub-optimal sending trace. Note
that supt (S(t) − VD(t)) = 21264 > 11468 bits (see top-right). The bottom
row shows the β-optimal scheduling policy, where the sending rate follows the
source rate whenever possible. Whenever vD(t) > c(t), data is sent at the lat-
est possible opportunity, thus minimizing the buffer occupancy for all t. The
maximum amount of buffering needed is 11468 bits (see bottom-right).

5.4.3 Scalable streams

In this section, we consider the case of scalable streams and we show that there
exists a scheduling strategy that jointly minimizes the buffer occupancy Bl(t)
for each receiver group Rl and at all times t. Then we propose a scheduling
algorithm that offers a practical solution to build the sending trace Sβ(t) that
is jointly β-optimal for multiple receivers.

We consider that a set of source traces L =
{

Λl(t)
}L

l=1
, representing L addi-

tive hierarchically encoded layers are sent simultaneously to multiple receivers
Rl, 1 ≤ l ≤ L through a joint bottleneck channel given by the cumulative rate

C(t). We further consider a set of non-decreasing playback delays D =
{

Dl
}L

l=1

that are used by the different receiver groups. Each receiver in the group Rl

starts consuming the media layers 1 to l of the hierarchically encoded stream
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after an initial playback delay Dl. The aggregate source trace that has to be
sent over the channel in order to ensure a smooth playback by all decoders is
constructed as:

V l
D(t) =

l
∑

i=1

Λi
Di(t), (5.22)

where Λi
Di(t) is the cumulative function of λi

Di(t), the source trace of layer i,
delayed by Di. We assume here that D is chosen such that the full stream is
schedulable, i.e. that V l

D(t) ≤ C(t), ∀t, ∀l. It is important to note here that
the cumulative rate given by Eq. (5.22) is in fact larger than the rate used by
the decoder. When a receiver in Rl starts playing the stream at time Dl, all
the source traces up to l are drained simultaneously from the receiver buffer.
Thus the playout trace at a receiver in Rl, which represents the number of bits
consumed up to time t, is given as:

V l
Dl(t) =

l
∑

i=1

Λi
Dl(t). (5.23)

These different traces are illustrated in Figure 5.8. Note that we have:

Sl(t) ≥ V l
D(t) ≥ V l

Dl(t), ∀t, (5.24)

where the first inequality is due to the schedulability condition, and the second
inequality results from the construction of the playout trace, with Di ≤ Di+1.
There are in general several valid sending traces Sl(t) for scheduling the layers 1
to l under a given set of delay and source trace constraints. We denote this set
of valid traces as Sl = {Sl(t)}. We are interested in finding the trace Sl

β(t) ∈ Sl

that minimizes the buffer occupancy at all the receivers Rl for all times t. It
corresponds to the sending trace that minimizes Bl(t) = Sl(t)− V l

D(t), ∀t. The
cumulative sending trace is built on l additive layers, and we denote the sending
trace of layer l as Y l(t), with

∑l
k=1 Y k(t) = Sl(t). Similarly, we denote the

β-optimal sending trace of layer l as Y l
β(t).

From the previous section, we know that if we only consider one resolution
level l, Sl

β(t) exists. It can be computed by Algorithm 4 for every resolution
level l. In a scenario where clients might subscribe only to a subpart of this
aggregated stream for a resolution level k < l, such a scheduling would however
be suboptimal in terms of buffer occupancy for the low resolution clients. In
other words, if the sending rate is generated from the stream at resolution l
without explicitly considering the lower layers, we can a priori not provide any
guarantee on the buffer occupancy at receivers Rk, k < l that consume only
the lower layers. We are rather interested in finding the sending trace that
minimizes the buffer occupancy at all times t for all receivers simultaneously,
if such a solution exists. We prove below an important proposition that says
that a joint β-optimal scheduling for multiple receivers actually exists, and that
the solution Sl

β(t) ∈ Sl can actually be constructed on the β-optimal traces for
layers k < l.

Proposition 1. If V L
D (t) ≤ C(t), ∀t, then there exists a scheduling policy that

is jointly β-optimal for all receivers Rl, 1 ≤ l ≤ L that respectively consume the
layers 1 to l after an initial playback delay Dl.
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Figure 5.8: Illustration of the aggregate source trace V l
D(t) and the play-out

trace at receiver Rl, denoted as V l
Dl(t), along with one of the possible sending

traces Sl(t) .

Proof. Given C(t) and V l
D(t), we know that Sl

β(t) exists, for any l taken in-

dividually. We want to show that there exists a valid sending trace Y l
β(t) for

scheduling layer l, when streams at resolution l and l − 1 both minimize the
buffer occupancy for the respective client sets. Such a trace can be written as:

Y l
β(t) = Sl

β(t) − Sl−1
β (t). (5.25)

It is a valid sending trace for layer l iff

Λl
Dl(t) ≤ Y l

β(t) ≤ C(t) − Sl−1
β (t), ∀t. (5.26)

In other words, the sending trace for layer l has to be large enough to ensure a
smooth playback after a delay Dl. At the same time, it has to be small enough
to respect the channel constraints, once the sending trace Sl−1

β (t) has been

allocated already. As Sl
β(t) is schedulable by hypothesis, we have Sl

β(t) ≤ C(t).

We can therefore write Sl
β(t) − Sl−1

β (t) ≤ C(t) − Sl−1
β (t) Combined with Eq.

(5.25 ), it leads to proving the second part of Eq. (5.26).
The schedulability of Sl

β(t) also induces that the data of layer l are present
on time at the decoder. In other words, there exists a set of sending traces
Sl−1(t) for the data of layers 1 to l − 1 such that

Λl
Dl(t) ≤ Sl

β(t) − Sl−1(t), ∀t.

In particular, since by definition Sl−1
β (t) ≤ Sl−1(t), we have

Λl
Dl(t) ≤ Sl

β(t) − Sl−1
β (t), ∀t,

or equivalently
Λl

Dl(t) ≤ Y l
β(t),

which proves the first part of Eq. (5.26).
Therefore, there exists a valid sending trace that minimizes jointly the buffer

occupancy for receivers sets Rl−1 and Rl. By recursion, we can construct the
β-optimal solutions as Sl

β(t) =
∑l

k=1 Y k
β (t).
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Moreover, we prove by contradiction that Y l
β(t) is the minimal valid sending

trace for layer l on a channel of bandwidth C(t) − Sl−1
β (t), when the playback

delay is set to Dl.
Assume that there exists a trace Yl(t) such that Yl(t) < Y l

β(t) at some time

t. In this case, we have Sl(t) = Sl−1
β (t) + Y l(t) ≤ Sl

β(t), which contradicts the

assumption on the optimality of Sl
β(t). Y l

β(t) is therefore the minimal sending
trace for layer l.

Based on Proposition 1, we can build an iterative algorithm to build the
joint β-optimal sending rate for any layer l by greedily building the β-optimal
sending rate one layer at a time, starting at the lowest one. In particular, we
have

Sl
β(t) =

l
∑

i=1

Y i
β(t), l > 1 (5.27)

and Y 1
β (t) = S1

β(t). The sending rate can be computed for each layer iteratively
starting from layer 1 by the VRS algorithm. It computes the sending trace that
corresponds to Λl

Dl , the bits of layer l that are decoded after a playback delay
Dl. The bandwidth constraints are updated iteratively, as the bandwidth used
by the lower layers is removed from the channel capacity. Therefore, we have

Cl(t) = Cl−1(t) − Y l−1
β (t), ∀1 < l ≤ L, (5.28)

where Cl(t) corresponds to the part of the channel that is available to sched-
ule bits from layer l, and C1 = C(t). Once the optimal sending traces Y i

β(t)
have been computed for each layer l, the packet scheduler proceeds by sending
the data of each layer in the increasing order of the decoding deadlines, while
respecting the different sending traces. For each layer, the scheduler proceeds
similarly to the scheduler for single layer streams.

Note that another strategy could be proposed to reach the buffer optimal
sending traces. It consists in reverting the time axis, starting from t = T + Dl

to t = 0. Then the packets of each layer are sent at the latest moment for
correct decoding, while respecting the channel bandwidth c(t). As the layer 1
is decoded with the smallest playback delay, it is scheduled first. Other layers
are scheduled iteratively under the constraints given by the remaining channel
bandwidth cl(t). Similarly to the case of single layer streams, this solution
guarantees the lowest buffer occupancy at the decoder, without the explicit
computation of the optimal sending traces. From Proposition 1, it also leads to
the jointly optimal policy for all the resolution levels, or all the clients Rl.

We illustrate the performance of this iterative algorithm in Figure 5.9: Figure
5.9-left shows a constant bitrate channel and the playout rates of 2 GOPs of the
MPEG-4 FGS encoded Formeman sequence, at receiver R1 (layer 1 only) and
R2 (layers 1 and 2). Playout begins at all the receivers after D=20 frames. In
Figure 5.9-middle, the same scenario is shown in the cumulative domain. Only
the aggregate playout trace at R2 (i.e. Λ1(t−D) + Λ2(t−D)) is shown in blue.
The green curve shows the β-optimal sending rate for the aggregate playout
curve and the considered channel, as given by the VRS Algorithm. It is thus
the β-optimal sending rate for receivers in the set R2. Figure 5.9-right : on the
one hand, the solid and dashed blue curves show the sending rates for layer 1
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Figure 5.9: Validation of the β-optimal scheduling scheduling algorithm. Left:
the traces of two layers and a CBR channel in the temporal domain, playout
starts after 20 frames. Middle: The channel trace and the aggregate playout
trace for both layers in the cumulative domain. The green curve shows the
sending trace that minimizes the buffer occupancy at R2, as given by the VRS
algorithm. Right: We achieve the β-optimal sending trace for layer 1, without
sacrificing the β-optimality of the aggregate sending trace for both layers 1 and
2.

data and layer 2 data respectively, in the case where the β-optimal sending trace
is computed from the aggregate playout trace at R2. On the other hand, the
dashed red curve shows the β-optimal sending rate for R1, S1

β(t), obtained from
a β-optimal scheduling of layer 1 over the channel C(t). It can be noticed that
data for layer 1 is only transmitted shortly before the playout deadline, thus
reducing the buffer occupancy at R1. In this scenario, the solid red curve shows
the sending rate of layer 2 over the remaining bitrate C(t)−S1

β(t). Note that in
both cases, all data that is sent meets their deadline, and in both cases, the two
respective sending rates add up to Sβ(t) (green curve), which is the β-optimal
sending rate for R2.

In the same scenario, Figure 5.10 finally shows the evolution of the buffer
occupancy at receivers R1 (left) and R2 (right) if joint β-optimal scheduling is
used (top) and if β-optimal scheduling is computed only on the 2 layers stream
(bottom). The minimum buffer occupancy at R2 is achieved in both cases,
however the minimum buffer occupancy at R1 is only achieved in the first case
(top-left). The joint β-optimality is achieved through the fact that receivers
that subscribe to higher layers buffer less data from lower layers in the first
case, and more data from higher layers. However, the buffer contains the same
total amount of data in both scheduling choices.

Finally, it is important to note that joint playback delay and buffer optimiza-
tion can be achieved with the algorithms proposed in the Sections 5.3 and 5.4.
The delay optimization does not put assumptions on the actual sending traces,
it only considers schedulability conditions. Similarly, when playback delays are
selected, the buffer optimization simply consists in finding the smallest sending
trace among the set of valid traces. Both problems can be solved sequentially,
and the resulting solution jointly optimizes the playback delay, and the buffer
occupancy.



88 Chapter 5. Playback Delay and Buffer Optimization

layer 1 data

layer 1 data
layer 2 data

layer 2 data
all data

all data

0            20            40            60            80

0            20            40              60          80 0             20            40            60           80

time in frames (30fps)

b
et

a
-o

p
ti

m
a

l 
fo

r 
R

2
jo

in
tl

y
 b

et
a

-o
p

ti
m

a
l 

fo
r

  
  

  
  

  
R

1
 a

n
d

 R
2

Buffer Occupancy at R1 Buffer Occupancy at R2

  
  

  
  

  
1

0
  

  
  

  
 2

0
  

  
  

  
3

0
  

  
  

  
4

0
  

 

time in frames (30fps)

[k
b

it
]

  
  

  
  

  
 1

0
  

  
  

  
 2

0
  

  
  

 3
0

  
  

  
 4

0
  

 

[k
b

it
]

  
  

  
  

  
1

0
  

  
  

 2
0

  
  

  
  

3
0

  
  

  
  

4
0

  
 

[k
b

it
]

  
  

  
  

  
1

0
  

  
  

  
 2

0
  

  
  

  
3

0
  

  
  

 4
0

  
 

[k
b

it
]

0             20            40            60           80

Figure 5.10: Buffer evolution in β-optimal scheduling scenarios.

5.5 Channel-adaptive streaming

5.5.1 Source rate adaptation

In the previous sections, we have provided an analysis of the playback delay and
buffer occupancy, as well as joint optimization strategies. These solutions rely on
the assumption of perfect knowledge about the bottleneck channel bandwidth.
They provide upper-bounds on the performance of common practical systems,
where the complete channel trace is usually not known at the server. When
the actual channel bandwidth does not exactly correspond to the trace that
is used for packet scheduling, the server may not be able to send all packets
according to their computed schedules. It has therefore to take actions such as
reduction in the source rate, to adapt to temporary bandwidth reduction. Rate
adaptation can be performed efficiently on scalable streams by dropping packets
from the higher layers. If such mechanisms are used carefully, the quality of
service is not significantly affected. Another solution is to devise a conservative
scheduling approach that considers lower-bounds on the channel bandwidth.
The authors in [46] for example compute the playback delay for a single stream
over a stochastic channel by deriving a channel trace that lower bounds all
possible realizations of the channel. Rate adaptation generally reaches a higher
average quality than conservative scheduling methods, at the price of possibly
higher quality variations for the clients that subscribe to the highest resolution
streams.

We assume that the server knows some channel statistics such as the average
bottleneck bandwidth c̄. The playback delays and the sending traces are initially
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Figure 5.11: Rate adaptation algorithm
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computed based on a constant bit rate channel of rate c̄. This results in a
complete schedule that determines which packet (and which layer) has to be sent
at each time instant t, in an ideal scenario. During the broadcasting session, the
server monitors the state of the channel, and the sending rate can be adapted
in case the available bandwidth becomes insufficient to be able to respect the
original packet schedule.

We propose below a sample system based on a simple rate adaptation al-
gorithm, and we show that rate adaptation still permits to keep the buffer
occupancy close to minimum, and that playback delays close to the ideal values
can be achieved, at the price of only minor and controlled PSNR degradations.

5.5.2 System description

We have tested the rate adaptation scheme on a sample system. The scalable
video stream is segmented such that data from different frames and different
video layers are fed into different RTP packets. The video stream is sent si-
multaneously to 3 clients R1, R2 and R3 that decode layers up to 1, 2 and 3
respectively. The average channel rate has been set to 32 kbytes/sec, and we use
a NISTNet [82] network emulator to limit the bandwidth on the server-client
broadcast link according to a given random bandwidth trace, which is unknown
at the server.

The server sends the stored layered stream according to the scheduling strat-
egy computed with a CBR channel of c̄ = 32 kBps and a given set of target
playback delays D. At each discrete time t the server transmits RTP packets
according to the ideal scheduling plan, when it is possible. At the same time,
the server updates the channel rate estimate as well as the scheduling look-
ahead after each second. The approximate channel rate is computed from the
round-trip time estimated that are sent in the client RTCP receiver reports, as
c̃ = packet length∗2

RTT
, where packet length is the average length of packets that

have been sent during the previous slot. The scheduling look-ahead represents
the difference between the actual scheduling, and the scheduling that has been
pre-computed with an ideal channel. In other words, it measures the advance
that the scheduler has taken compared to the pre-computed schedules.

Based on these parameters, the rate adaptation algorithm presented in Fig-
ure 5.11 adapts the sending rate according to a AIMD (additive increase multi-
plicative decrease) policy. This policy has been selected for illustrative reasons
and for the ease of its implementation. Importantly, it is in no way proven to be
optimal, and more elaborate schemes will certainly provide more robust channel
estimations. The additive step size is dependent on whether the current rate is
above or below the targeted average rate, and we have empirically chosen the
following factors, which have yielded good responsiveness of the algorithm in
our simulations:

• a1 = 1, if c̃ > c̄

• a2 = 2, if c̃ ≤ c̄ .

The choice of having a lower increment if the estimated rate is above average,
leads the server to taking advantage carefully of the available rate, while trying
to avoid over-estimation. The order of packets is maintained even if the rate has
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to be adapted. The sending rate is thus augmented by advancing faster on the
pre-defined schedule, and resulting in a positive scheduling look-ahead value.

When the sending rate has to be reduced, we use a multiplicative decrease
policy with a factor m = 0.96, which has been selected empirically. However, if a
decrease occurs when the rate is above the average rate, the rate is immediately
clipped to the average rate. The choice of these parameters is based on empirical
data and depends on the channel statistics. If the transmission is ahead of
schedule, the look-ahead is used to absorb the temporary rate decay and the
sending rate is simply reduced, while the order of the packets is maintained. If
however, the transmission is running behind the original schedule, packets of
the highest layer are not transmitted and simply dropped.

5.5.3 Experimental results

The performance of the above sample system is now analyzed through exper-
iments. We have encoded a composite video sequence (foreman, container,
harbour) in QCIF format at 30 frames per second, using the MoMuSys MPEG-
4 FGS reference codec. The size of one Group of Pictures (GOP) is of 32
frames. In order to have multiple SNR scalability layers, we have split the
FGS enhancement layer along bitplane boundaries, thus coefficients from the
same bitplane go into the same SNR layer. The set of target delays was set to
D = {D1 = D2 = 98, D3 = 381}. The server computes the schedule assuming
a CBR channel of 37.5kbps. This corresponds to the effective average rate of
the channel that is used for transmissions, although the latter does not provide
a constant rate. Based on the feedback it receives, the server then adjusts the
schedule accordingly the rate fluctuations that are observed around the average
rate.

Figure 5.12 shows the number of layers that are transmitted by the rate-
adaptive server, as well as the evolution of the scheduling look-ahead as com-
pared to the pre-computed schedule. We see that at time instant t = 23 sec,
the channel estimate is low and the scheduling look-ahead is not sufficient to
continue sending all layers. So the server stops transmitting layer 3 in order to
avoid further congestion until both the channel rate and the scheduling look-
ahead increase again. In the illustrated simulation run, this failure is largely due
to the bad estimation of the channel at times 0 to 10, where a larger look-ahead
could have been built up. Finally Figure 5.13 shows the decodable received
source trace at client R3 that subscribes to the complete stream, and starts
decoding after D3 = 391. It can be seen that approximately 3 seconds worth of
layer 3 data are missing. This corresponds to the amount of layer 3 data that
was not transmitted due to the server’s rate adaptation. Dropping the highest
layer temporarily from the broadcast leads to a decrease of less than 0.5dB in
average PSNR compared to the complete reception of layer 3. However, if a
conservative scheduling approach is chosen in such a scenario, the layer 3 is
not transmitted at all. The average quality is therefore higher with the rate
adaptation solution, at the price of quality variations.

We analyze in Figure 5.14 the influence of the rate adaptation on the play-
back delays that are necessary to ensure smooth decoding at the receivers. The
target playback delays that are pre-computed in an ideal streaming scenario
are D = {D1 = D2 = 98, D3 = 381}. These delays are obviously conservative,
since they can be achieved only when the channel rate corresponds exactly to



92 Chapter 5. Playback Delay and Buffer Optimization

0 5 10 15 20 25 30 35 40

−20

0

20

40

60

80

100

0 5 10 15 20 25 30 35 40

2

3

time [s]

lo
o
k

 a
h

ea
d

 [
fr

a
m

es
]

la
y
er

transmitted layer

scheduling look-ahead

Figure 5.12: Scheduling look-ahead compared to the pre-computed schedule
(solid line) and number of transmitted layers (dashed line) according to the
rate adaptation algorithm.

0 200 400 600 800 1000 1200
0

0.5

1

1.5

2

2.5
x 104

time in frames (30 fps)

b
y

te
s

Reconstructed trace at R 3

Playback delay

D   = 391 frames3

Figure 5.13: Playback trace at R3, which expects to decode the complete stream
(3 layers).



5.5. Channel-adaptive streaming 93

40

60

80

100

L
a
y
er

 1
%

 o
n

 t
im

e

40

60

80

100

L
a
y
er

 2

0 10 20 30 40 50 60
40

60

80

100  

additional delay in frames (30 fps)

L
a
y
er

 3

adaptive rate

constant average

%
 o

n
 t

im
e

%
 o

n
 t

im
e

adaptive rate

constant average

adaptive rate

constant average

0 10 20 30 40 50 60

0 10 20 30 40 50 60
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the previsions. In order to illustrate the influence of the rate adaptation, we
represent the number of packets that arrive on time, as a function of an addi-
tional delay K used for decoding the streams (i.e., the actual playback delays
are D + K). The solid and dashed lines respectively represent the behavior of
the rate adaptive scheme, and of an algorithm that does not try to adapt to the
actual bandwidth and simply transmits packets according to the pre-computed
schedule. It can be seen that the rate adaptive server clearly achieves better
performances by keeping the necessary playback delays close to the targeted
ones. If an additional delay of only 10 frames is used at the decoder, all layers
can be decoded without buffer underflow. Rate adaptation therefore permits
to efficiently control the quality of the transmission and to respect the timing
constraints of the streaming application. A small conservative margin on the
playback delays is sufficient to guarantee a smooth playback.

Finally, we analyze the buffer occupancy at the three receivers. Figure 5.15
illustrates the buffer fullness for playback delays of D and D+10. In the second
case, which ensures a smooth playback delay, we have computed the maximum
difference between the actual buffer occupancy and the optimal buffer occupancy
in the ideal scenario with a CBR channel rate of 37.5kbps. We can see that the
difference with the ideal scenario is always lower than 21kbytes, which is a
negligible penalty.

5.5.4 Discussion

The experimental results show that even a simple rate adaption algorithm based
on partial channel knowledge can yield results that are close to optimal in terms
of both targeted playback delays and buffer occupancy, at the expense of some
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Figure 5.15: Receiver buffer occupancy for R1 (left), R2 (middle) and R3 (right)
when using the rate adaptive streaming algorithm.

D1 D2 D3 max(B3)

non-adaptive 329 329 619 759.55kB
adaptive 108 108 391 430kB

optimal(CBR) 98 98 381 409.5kB

Table 5.1: Performance comparison between an adaptive and non-adaptive
scheduling scheme.

minor and controllable PSNR degradations.
In order to highlight this tradeoff we compare the performance of the pro-

posed channel-adaptive scheduling scheme to a baseline system in Table 5.1.
In the baseline system, the server computes the same optimal schedule as our
system, by assuming a CBR channel of 37.5kbps. The channel that is used in
the experiment fluctuates randomly but its average rate is equal to 37.5kbps.
The baseline system does not adapt its transmission schedule while streaming:
if the effective channel rate is above average, the server can not exploit it. On
the other hand, if the channel rate is below average, the transmitted data will
be delayed. We show the playback delays at receivers D1, D2 and D3 that need
to be respected at clients R1, R2 and R3 respectively, in order to ensure smooth
playback. We further indicate the maximum buffer capacity that is needed at
client R3 in both the adaptive and non-adaptive scheduling scheme. As a ref-
erence we indicate the optimal playback delays and minimal buffer occupancy
that would be achieved if the channel would be CBR with a constant rate of
37.5kbps.

It is worthwhile to be noted that our experimental setup behaves like an
overly nice network, as any injection of data at a higher rate than the actual
channel rate results in a pure delay at the receiver. That is why in the non-
adaptive setup, all data is eventually received at each one of the clilents, hence
there is no PSNR degradation as compared to the optimal scenario. There are no
losses due to buffer overflows (congestions) in the network. If such losses happen,
we expect that the rate adaptive system is less affected than the non-adaptive
server, since it makes effort to avoid congestions by changing the sending rate
according to the available bandwidth.

In the adaptive scheme, part of layer 3 is not transmitted due to a detected
temporary bandwidth shortage. This results in an average PSNR degradation
of 0.39dB at the receiver R3. From Table 5.1 it can be seen that this minor
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quality degradation allows for an overall Quality of Service that is close to that
of the supposed optimal system. An additional delay of only 10 frames (0.33
seconds) allows for smooth playback at each one of the receivers, compared to
238 frames (7.92 seconds) in the non-adaptive scheme. Furthermore, the buffer
requirement is nearly twice as large in the non-adaptive scheme, when compared
to the proposed channel-adaptive system.

Finally, it can be noted that the additional playback delay that is needed to
compensate the discrepancies between estimated rate and actual channel rate
can be negotiated between the server and the clients at the beginning of the
streaming session. They represent a trade-off between resiliency to channel
variations and the waiting time before decoding that is usually kept minimal.

5.6 Conclusions

This chapter has described the problem of scalable media scheduling in broad-
cast scenarios. In particular, we have shown the playback delay can generally
not be jointly minimized for all the receivers. It typically represents the price to
pay for applications where different users simultaneously subscribe to different
quality levels of the same stream. We have presented a reduced complexity so-
lution for optimizing the delay in a set of receivers. When the optimal strategy
consists in minimizing the variance of the delay penalties, we have proposed
low complexity algorithms that compute the optimal delay set. When delays
are fixed, we have shown that there is a unique scheduling solution that mini-
mizes the buffer occupancy at all the receivers simultaneously. If both problems
are solved sequentially, one can achieve jointly an optimal delay selection and
a minimal buffer occupancy. Finally, we have proposed a rate adaptation al-
gorithm, which deals with unpredictable channel bandwidth variations. This
simple scheme permits to achieve close to optimal results, even when the knowl-
edge about the channel status is limited. It provides a viable alternative to
conservative packet scheduling in practical streaming scenarios.
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Chapter 6

Distributed Streaming

using Rateless Codes

6.1 Background

While we have considered media-friendly rate allocation in one-to-one streaming
scenarios in Chapters 3 and 4, in Chapter 5, we have proposed adaptive schedul-
ing algorithms for layered media streams in one-to-many delivery schemes. In
the current chapter, we will consider a distributed streaming architecture in
which multiple senders are available to stream scalable video content to a single
client.

Today’s networking infrastructure presents the property of diversity. When-
ever the content that a client intends to consume is available at multiple servers
in the network, it can be beneficial to use all or some of these available sources
for content delivery. Each single channel that connects a particular source to
the client may be driven by either a media-unfriendly, or media-friendly rate
and congestion control algorithm. But due to the network dynamics, the load
on any of these channels is prone to reach levels that are high enough to provoke
temporary outages. By exploiting the network diversity, the delivery mechanism
can be made more robust. The aggregation of the channels that connect each
available source to the client, provides a more robust transmission resource.
This aggregate channel eliminates the single point of failure that is represented
by a single transmission channel.

Related work in the area of distributed streaming [18] has shown that the us-
age of multiple streaming servers in different network locations provides better
robustness in case one of the channels becomes congested. As the data pack-
ets most likely take different paths from their respective source to the client,
the overall network load can be balanced, and the most reliable paths can be
exploited more efficiently. Similarly, sources in modern peer-to-peer (P2P) sys-
tems may not be able or willing to commit to send the full video bitstream to a
single client down-stream, especially if the rate of the stream is high. In such a
scenario, aggregation from multiple peers is the only way to effectively deliver
the requested stream at the desired quality. Note that in the remainder of this
chapter we will use both terms servers and peers interchangeably.

Due to the varying nature of each of the available channels, the coordination
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of the available senders is critical for the success of such a delivery scheme. In
classical server-client architectures, the scheduler needs to decide which video
packet of which frame to transmit at a given time, based on both the channel
state and the relative importance of each video packet. When multiple senders
are considered, each of the schedulers needs to incorporate the decisions of all
the other available senders into its own scheduling process. In an effort to use the
network resources efficiently, servers need to carefully coordinate their packet
scheduling strategies [13], and avoid wasting bandwidth by duplicate packets.
This renders the deployment of optimal schedulers very complex. In order to
alleviate this problem it has been proposed to partition the content beforehand
among available sources [83], so that no duplicate packet can be delivered to
the client.

In this chapter, we will use a different approach by considering rateless codes,
or Fountain codes, in order to completely avoid the problem of coordinating the
different transmission schedules at each server. We show that using rateless
codes, it is feasible to efficiently stream layered media from multiple sources to
a client with no need of coordination among the sending servers. At the same
time, we make sure that each packet that is sent by any of the servers is not
redundant for the client that receives it. This is in spirit similar to [84]. We
however consider more realistic channel models that typically exhibit correlated
loss patterns in the form of error bursts, as it is the case in most transmission
scenarios. Indeed, whenever channel losses are a result of a network congestion,
bursts of consecutive packets are typically discarded by the congested router.

Furthermore, we assign a cost to the transmission of each packet, which is
charged to the client of the media stream. This packet cost will depend on the
used channel.

Given this setup, we propose optimized sending schemes for a set of servers
delivering a given media stream, and devise a heuristic-based algorithm that can
provide close to optimum performance in realistic streaming scenarios. The pro-
posed framework is generic and provides a low complexity distributed streaming
solution. Building on the universal channel code properties of rateless codes,
the system is able to adapt to channel losses, without adaptively transcoding
the data at each sender, contrarily to [6].

The remainder of this chapter is organized as follows. In Section 6.2 we
outline the considered framework and provide a brief introduction to rateless
codes by the example of Raptor codes. In Section 6.3 we devise an optimization
problem whose solution drives the optimal performance of the considered sys-
tem. In Section 6.4, we finally provide and validate a distributed heuristic-based
algorithm to solve the optimization problem under complexity constraints.

6.2 Framework

6.2.1 Network model

In an effort to make our notation transparent, we give an overview in Table
(6.1). We will use bold-face letters to denote vectors, e.g. a = (a1, . . . , aN ). All
vectors will be of dimension N , which is the number of peers/channels that are
available to serve the client. For the sake of simplicity we will use the term rate
to denote a number of packets per time unit. Hence we suppose packets of fixed
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c1 (t)

...

cN (t)

Figure 6.1: Streaming from multiple sources using Fountain Codes.

size, and rates (in bit/s) that are multiples of the packets size. In practice this
assumption can be met by flexible packetization standards or by zero-padding.

v video target rate
λj rate of layer j
A total allocated rate
an rate allocated on channel n
cn maximum available rate on channel n
γn cost of sending a packet on channel n

pn, qn parameters of the loss process on channel n
πn, αn packet loss rate (PLR) and average burst

length (ABL) of channel n

Table 6.1: Notation.

Figure 6.1 gives an illustration of the framework we are describing in this
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ON OFF

qn

1-pn 1-qn

pn

Figure 6.2: Two-state Markov model for channel n. A packet is correctly deliv-
ered if the chain is in state ON, and lost in state OFF.

section. A client wants to retrieve a layered media stream from the network. To
do so, it has access to a set of N servers/peers, which all hold the layered video
stream that needs to be transmitted. We suppose that the client can connect
to each of the serving peers through a distinct channel. Our model also extends
to partially disjoint paths, where the bandwidth on shared network segments
is adequately distributed between the different packet flows. Each channel is
characterized at each time instant t by a rate cn(t) at which it is able to transmit
data. A pair of parameters (pn, qn) specifies both the packet loss rate πn (PLR)
and the average packet loss burst length αn (ABL) observed when channel n
is used. The cost that is charged to the client when a packet is transmitted
over channel n reads as γn. As observed for example in the simulations for the
media friendly rate allocation scheme proposed in Chapter 3, bursts happen
regularly in the case of dynamic changes in the network topology, mostly due
to temporarily congested routing nodes. The model that we use is able to
catch these bursty loss patterns in a simple way. Note that we assume that the
parameters (πn, αn, γn) do not depend on the transmission rate.

To summarize, we consider that each channel is governed by a Gilbert-Elliot
model, explicited by a two-state Markov chain: in the ON state a packet is de-
livered to the client, whereas in the OFF state the packet is lost, see Figure(6.2).
The transition probability matrix for channel n reads as:

Pn =

[

1 − pn pn

qn 1 − qn

]

(6.1)

and a transition is triggered at each time that a packet is sent over the channel.
Finally, referring to the outlined model, the PLR and ABL for channel n are
given by the stationnary probability of being in the OFF state and by the
average residence time in the OFF state respectively:

πn =
pn

pn + qn

, (6.2)

αn =
1

qn

. (6.3)

6.2.2 Rateless Codes

With rateless codes, such as LT [85] and Raptor [86] codes, one can generate a
potentially unlimited number of symbols from K original symbols. Ideal Raptor
codes have the property of generating unique symbols with high probability, such
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that any (K + ǫ) encoded symbols can be used to decode the original K source
symbols. The notion of Fountain code comes from the analogy of a rateless code
with a water Fountain (the unlimited number of symbols) from which any cup
of volume (K + ǫ) satisfies the needs of the client. It does not matter which
drops (symbols) of water it has obtained. Similarly, it does not matter if the
received symbols from a digital fountain come from the same sender, as long as
different senders have encoded the same input symbols. This property is key
in order to use multiple uncoordinated senders to provide the same stream to a
client. As long as the set of symbols they provide has been generated from the
same input symbols, the encoded symbols will be different at each sender with
high probability. This means that every delivered symbol in the system gives
the same amount of novel information to the client.

In practice each encoded symbol is identified by an Encoding Symbol ID, or
ESI. This ESI is typically transmitted along with the encoded Raptor symbol
itself, and is used to synchronize the state of the Raptor decoder with the state
of the Raptor encoder which has produced the symbol. As ESIs are coded on
2 bytes, the number of symbols that can be generated from a set of source
symbols is limited to the number of available ESIs, thus providing a maximum
of 216 distinct encoded symbols. The symbol size T can range from 1 byte to
several hundred bytes. If a block of K symbols of size T is encoded into a large
number of encoded symbols of size T and if 1000 ≤ K ≤ 8192, then the decoding
overhead ǫ is typically of about 2 symbols. It is worth noting that Raptor codes
induce linear complexity for both encoding and decoding, and therefore also
allow for on-the-fly encoding if needed. For further details on Raptor codes and
their implementation, we refer the interested readers to [86, 87, 88].

6.2.3 Coding scheme for layered media

A rateless code, applied blindly on a media bitstream, would mix the time-
dependencies and the intra-layer dependencies that are present in the original
scalable media stream. This would result in an encoded version of the media
bitstream which can only be downloaded completely before consumption, but
which can no longer be streamed. Indeed only if an amount of encoded symbols
that equals at least the number of all the source symbols for all frames and
layers is received, then the stream can be decoded.

In our proposed coding scheme, our goal is to keep each layer independently
available for delivery. By doing so, a client is able to select which layers it
wants to consume. In an effort to keep the content streamable, we propose to
create one Fountain per layer and per Group of Pictures (GOP), which form
independently decodable parts of the bitstream. By doing so, the client does
not have to wait for all of the bitstream to be received before decoding the
stream, but can start doing so after the reception of the first GOP. Moreover,
the amount of data represented by a GOP is in practice sufficiently large for the
use of Raptor codes to be efficient, as discussed in Section 6.2.2. The proposed
coding scheme is illustrated in Figure 6.3. It allows to keep the hierarchical and
temporal dependencies present in the original bitstream, which are essential for
the scalable delivery of the stream. As long as the client receives K + ǫ distinct
symbols on aggregate from all of the available sources, it will be able to decode
the corresponding video data. Even in the case of practical Raptor codes, there
are several ways to guarantee that each server sends different symbols from
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Figure 6.3: We encode each GOP of each layer into one Digital Fountain.

the same Fountain. For example, the requesting client can provide a different
random seed to each of the sources, determining a subset of ESIs (and thus
encoded symbols), which the server has to transmit. Another option could be
to centrally encode a large number of symbols for each Fountain, and to put
disjoint subsets on different servers that form a Content Distribution Network,
or CDN.

In our framework, each network packet will carry symbols from a single
Fountain, i.e., from a single layer. This is in contrast to the MD-FEC coding
scheme proposed for example in [37]. In MD-FEC schemes, layers are unequally
protected and each network packet carries information related to each one of
the available layers. A similar packetization scheme using Raptor encoded layers
has been proposed in [89]. These schemes inherently tend to over-protect lower
layers of the media stream: even if enough packets have already been received to
permit the decoding of a given layer, each additional packet that is received still
carries parity information for each one of the available layers, hence reducing
the overall goodput of the streaming application. The amount of data that is
delivered for layers that are already decodable, is essentially of no use to the
application. We will provide further details on how the Raptor symbols that
are generated from one layer of a GOP are put into network packets when we
present our simulation setup in Section 6.5.

Given the above considerations it is clear that the performance of the frame-
work we propose will rely on the solution to two distinct problems:

• the rate an assigned to each peer needs to be split in an efficient manner
among the available layers,

• we need to find a rate allocation a among the N available channels that
maximizes the probability of receiving the number of symbols that is re-
quired for correct decoding.

6.2.4 Peer rate distribution

In this section, we show how a server should partition the streaming rate an

it has been allocated, between the different layers of the video stream that is
to be transmitted. Our objective is to keep servers synchronized while we do
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not allow communication among them. Moreover we want to provide a robust
distributed streaming solution that benefits from server diversity.

We suppose that L video layers are available for transmission, and each layer
is characterized by its rate λl, 1 ≤ l ≤ L in symbols per GOP. In order to decode
layer l, a Raptor decoder will need λ̃l = λl + ǫl Raptor symbols, where ǫl is the
decoding overhead. In order to keep the notation clear, we will use a slight abuse
of notation in what follows, by supposing that the rate of each layer includes
the decoding overhead, i.e., λl = λ̃l. In the scenario we consider, a client selects
the number of layers l∗ out of the total L layers that are available. By doing so
it is able to select the version of the video stream that best suits its needs. We
suppose that the client has knowledge of the rates of each layer, λl, 1 ≤ l ≤ L.
In practice this meta information can be conveyed to the client by any server
during a session initialization handshake for example.

The target video rate to v which has to be received by the client is given by:

v =
l∗
∑

l=1

λl. (6.4)

where λl denotes the rate that needs to be received in order to decode layer l.
In order to receive this target rate v from the N available servers, the client
allocates a rate an, 1 ≤ n ≤ N to each server, the sum of which we denote by
A, the aggregate allocated rate. A is clearly also the sum of the rates allocated
to each layer, Al, 1 ≤ l ≤ l∗:

A =

N
∑

n=1

an =

l∗
∑

l=1

Al. (6.5)

In the following section we will focus on how exactly a is computed. However,
as the n channels that are available are lossy, it becomes clear that A includes
the target rate v, plus some amount of redundant Raptor symbols, which are
allocated to cope with the loss processes on the different channels. Out of this
redundant rate (A − v), we call ξl the redundancy that is allocated for layer l.
We have:

A − v =

l∗
∑

l=1

ξl. (6.6)

Moreover, the total rate allocated to layer l can be expressed as:

Al = λl + ξl, 1 ≤ l ≤ l∗. (6.7)

In a distributed peer allocation scheme, each peer should fill its rate an in a
similar way. By splitting the total rate allocated for video data and redundancy
respectively among the allocated peer rates an, we can write:

an = av
n + aξ

n, 1 ≤ n ≤ N. (6.8)

Here av
n and aξ

n denote both the video- and redundant rate that are allocated
by peer n. By taking all of these considerations into account, we can finally
write A as:

A =

N
∑

n=1

(

l∗
∑

l=1

λl

v
av

n +
ξl

A − v
aξ

n

)

, (6.9)
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which indicates that the distribution among layers of the allocated rate an at
each peer n should respect the proportions of the source rates of each layer in
the total video rate, as well as the proportions of the redundant rates for each
layer in the total redundant rate.

6.3 Optimal Server Rate Allocation Problem

Let v be the target video rate that needs to be delivered to the client, including
the Raptor overhead. Further let P (v) be the probability of receiving at least
the target rate. We want to find the rate allocation a∗ = (a∗1, . . . , a

∗
N ) which

achieves the optimal tradeoff between maximizing P (v) and minimizing the
resulting cost, i.e.:

a∗ = arg max
an≤cn,∀n

(

P (v) − θ
a · γT

c · γT

)

, (6.10)

where γT denotes the transpose of the cost vector γ = (γ1, . . . , γN ), and θ is a
Lagrangian factor.

As stated, the problem exhibits combinatorial complexity. It is not trivial
to compute P (v), which is the probability of receiving at least v packets on
aggregate over the N channels, each of which is defined by a Gilbert-Elliot
loss process. We can express this probability in terms of the corresponding
probability density function (pdf):

P (v) = 1 −
v−1
∑

j=0

pA(j), (6.11)

where pA(j) is the probability of correctly receiving at least j out of the A
packets that are transmitted on aggregate over the N independent channels.
This can in turn be computed by the convolution of the N probability density
functions that give, for each channel n, the probability of correctly receiving i
out of the an packets:

pA =

N
⊗

n=1

pan
. (6.12)

Note that, in contrast to the i.i.d. and uniform case [90], there is no analytical
form to express pan

in the case of a bursty loss channel, especially if the number
of packets that are transmitted is relatively small and the pdf is thus poorly
approximated by a Normal density. These probability density functions can
however be computed using the exact but iterative solution proposed by [91],
at the price of increased computational complexity. In the next section, we
however propose a suboptimal rate allocation solution, which achieves close to
optimal performance with a reduced complexity.

6.4 Heuristics based Algorithm

We will now introduce several heuristic choices, which allow for the design of a
low complexity distributed allocation scheme.
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6.4.1 Heuristic Peer Rate Distribution

We choose to introduce the following approximation in the peer rate allocation
that we have introduced in Equation (6.9):

ξl

A − v
=

λl

v
, 1 ≤ l ≤ l∗. (6.13)

This allows to rewrite Equation (6.9) as:

A =

N
∑

n=1

(

l∗
∑

l=1

λl

v
an

)

, (6.14)

which indicates that the distribution among layers of the allocated rate an at
each peer n should be proportional to the relative size of every layer in the target
rate v. Our results indicate that this heuristic choice provides robust delivery of
the l∗ transmitted layers. It is important to note that each peer knows the sizes
of each layer λl. As long as each peer knows both the rate an that has been
allocated to it and the target rate v, it is able to distribute an among the l∗

layers in a completely distributed way. We refer to Figure 6.4 for an illustration.
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Figure 6.4: The total allocated rate is split between layers in a distributed way.

6.4.2 Heuristic Server Rate Allocation

As there is no simple constructive algorithm to find the optimal solution to the
optimal rate allocation problem, we propose a low complexity rate allocation
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algorithm based on heuristics. This algorithm is run at the client, which is
offered a set of N channels to the servers, along with their loss parameters and
maximum transmission rates. The client has to determine the rates that need
to be sent from each of the streaming peers, and communicate the results to the
servers. The allocation problem can be decomposed as follows :

• the client should first classify channels, in order to select which channel is
good, in the sense that using it minimizes the resulting overall cost, while
it maximizes the likelihood of receiving potentially allocated packets.

• it then determines how these channels should be used. It uses in priority
the good channels, and fills them up gradually by updating an, until the
joint likelihood of receiving the allocated packets satisfies

N
∑

n=1

anP (an) ≥ vPT , (6.15)

where PT is the target probability of success, and P (an) is the probability
of receiving the an allocated packets on channel n.

In the remainder of this section, we present two methods for classifying good
channels, and we validate the respective heuristic-based algorithms in different
streaming scenarios. Throughout this section we will assume that θ = 1 for the
sake of clarity.

6.4.3 Baseline

We first consider a baseline algorithm where channels are simply classified ac-
cording to the average loss probability [90], and the transmission cost. In other
words, the channels are sorted according to 1−πn

γn
.

The average burst length is not considered in the baseline scheme, and the
probability of receiving an packets is approximated as :

P (an) = (1 − πn)an . (6.16)

Since the probability P (an) is decreasing with an, a selected channel is fully
used, unless the termination constraint is met earlier. If the network model in
use would assume an i.i.d. uniform loss process instead of correlated losses, this
baseline algorithm would represent a good heuristic choice.

6.4.4 ABL based Algorithm

The second algorithm is based on a more accurate estimate of the probability of
receiving all of the allocated packets over channel n. It considers the burstiness
of the loss process. Indeed, based on the Gilbert-Elliot model, the probability
of receiving all the an packets is given by:

P (an) = (1 − πn)(1 − pn)an−1. (6.17)

It becomes clear in this case that a simple water-filling algorithm that considers
the loss probability πn, but not the average length of bursts of errors, will fail
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Figure 6.5: Two cases that show the importance of the ABL. The plots show
(1−π)(1− p)a−1 on the y-axis, and the number of sent packets c on the x-axis.
Left: the probability of receiving all of the sent packets is consistently higher
for the channel with higher PLR. Right: The probability curves for 2 channels
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in selecting the good channels first. For example, a channel with high PLR can
provide consistently high success probabilities (see Figure 6.5-left) depending
on the respective ABL values. There are even cases where the choice of a
particular channel depends on the number of packets to be sent (see Figure
6.5-right). We propose to take this phenomenon into account in the selection of

the good channels. We first classify the channels according to P (1)
γn

, with P (1) as

given by Equation (6.17), in a similar way as the baseline algorithm. However,
this hierarchy is now allowed to vary with the number of packets assigned to
the channels. Using Equation (6.17) and considering a pair of channels (i, j) we
compute the number of packets zi,j at which the hierarchical order of channels
i and j in the channel ordering changes. The intersection points are computed
as:

(1 − πi)(1 − pi)
zi,j−1

γi

=
(1 − πj)(1 − pj)zi,j−1

γj

(6.18)

zi,j = 1 +
log
(

1−πj

1−πi

)

+ log
(

γi

γj

)

log
(

1−pi

1−pj

) (6.19)

It should be noted that there is at most one such switching point for each
channel pair in the rate interval of relevance [0, max(ci, cj)]. Also, as zi,j = zj,i,

we only need to compute at total of N(N−1)
2 switching points. The rest of

the algorithm is a straightforward generalization of the water-filling method,
with the additional step however that, while filling channel i, we switch the
ongoing filling operation entirely to channel j if we need to allocate more than
zi,j packets. The algorithm proceeds until the stopping criterion of Eq. (6.15)
is satisfied. A pseudo-code version of the algorithm is given in Algorithm 5.
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Algorithm 5 ABL-based algorithm
Require: Compute zij for each channel pair i 6= j.
Require: Set zij = 0 if it falls outside the allowable rate range.
Require: an ⇐ 0, initialize rate allocation.
Require: TERMINATION: Equation (6.15).
Require: flag ⇐ 0, 1 if we switched to the current channel.
1: while TERMINATION == FALSE AND SUM(an) < SUM(cn) do

2: if flag == 0 then

3: s ⇐ arg max1≤n≤N
P (1)
γn

4: end if

5: s switch ⇐ minj zs,j

6: flag ⇐ 0
7: if zs,s switch > 0 then

8: as ⇐ zs,s switch

9: if TERMINATION == FALSE then

10: as ⇐ 0
11: s ⇐ s switch

12: flag ⇐ 1
13: else

14: as ⇐ 0
15: while TERMINATION == FALSE AND as < cs do

16: as ⇐ as + 1
17: end while

18: end if

19: else

20: while TERMINATION == FALSE AND as < cs do

21: as ⇐ as + 1
22: end while

Require: Exclude s from the set of availalble channels.
23: end if

24: end while
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Algo prob cost metric

Baseline (eq) 2.1 · 10−2 n/a n/a
ABL-based (eq) 6.8 · 10−4 n/a n/a
Baseline (rand) 6.5 · 10−4 2.1 · 10−4 0.023

ABL-based (rand) 5.0 · 10−4 4.48 · 10−4 0.041

Table 6.2: Difference between heuristics-based algorithms and optimal rate al-
location [MSE].

6.4.5 Validation

In order to validate both algorithms, we have considered a scenario in which
a client has access to three serving peers, each offering to provide a maximum
rate of cn = 40 packets. The target rate to be received has been set to be
equivalent to v = 30 packets. We have computed the optimal rate allocations
for 500 realizations on the three channels, with respect to Equation (6.10).

In each realization, the PLR for the three channels has been randomly se-
lected in the interval from 1% to 10% with uniform probability. Similarly the
ABL for each realization has been randomly select for each channel in the in-
terval from 2 to 20 with uniform probability. We have also computed the rate
allocation given by both the baseline algorithm and the ABL-based algorithm,
in each network realization. In order to verify whether the optimal channels are
chosen by the algorithms, we constrain the heuristics-based solutions to allocate
a total number of packets that is equal to the total number of packets used un-
der the optimal rate allocation. The distribution of the rate among the different
channels may however differ significantly. The resulting rate allocations have
been used to compute the actual success probability, the induced cost and the
value of the optimization metric according to Equation (6.10). In Table 6.2
we report the average difference (in MSE) for the values of these metrics with
respect to the performance of the optimal rate allocation, over 500 realizations.
We propose two different sets of simulations: i) in the first set (eq), all channel
costs are always equal, ii) in the second set (rand), the costs for each channel are
randomly select between 0.01 and 1 with uniform probability for each realiza-
tion (with θ = 1). Based on these experiments, we conclude that the algorithm
we propose provides a robust channel selection algorithm when the channels are
characterized by both ABL and PLR, and that consideration of the ABL in the
channel selection is quite important. In our simulations, different transmission
costs for the available channels have tended to show a higher impact on the
channel selection than the respective loss processes.

However, in a realistic scenario none of the two algorithms is aware of how
many packets need to be allocated on either of the chosen channels. Both
algorithms gradually fill the chosen channels until the termination condition
given by Equation (6.15) is satisfied. As the baseline algorithm does not take
into account the ABL, it makes a consistent error in estimating the probability
of receiving the allocated packets: hence it does not know when to terminate.
This behavior is illustrated using a simple yet representative example in Figure
6.6. The considered scenario is as follows. There are 3 available peers, each
willing to transmit a maximum of 60 packets. The loss parameters for the 3
channels are (π1 = 5%, α1 = 3), (π2 = 6%, α2 = 8) and (π3 = 7%, α1 = 5)
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Figure 6.6: As opposed to the baseline algorithm, the ABL-based algorithm is
capable of terminating correctly.

respectively. We vary the target probability of success PT in the right-hand
side of Equation (6.15) from 95% down to 75%. It can be observed that the
baseline algorithm always ends up using all the available channels at full rate and
implying maximal cost. The ABL-based algorithm, through its more accurate
estimation of the success probability, is able to tune the amount of packets that
is injected in the network so that the actual success probability induced by the
resulting rate allocation follows the target probability PT .

6.5 Simulation Results

We have encoded the SOCCER test sequence (CIF, 30Hz) using the H.264-SVC
reference codec into a base layer (≃ 300kbps) and one SNR-enhancement layer
(≃ 700kbps). The GOP size is set to 32 frames. Hence the average size in bytes
is equal to 40 000 for a baselayer GOP, while it is 93 334 for an enhancement
layer GOP. Each GOP and layer of the bitstream has then been encoded into a
digital fountain using a Raptor code, where the Raptor symbol size T has been
set to 16 bytes. This corresponds thus to source block sizes K of 2 500 and
5 834 for both layers respectively.

We have chosen the network packet size to a be a multiple of 18, so that
each packet can hold an integer number of Raptor symbols, including the ESIs
for each symbol. Specifically we use packets of size 1440 bytes, containing a
maximum of 80 Raptor symbols each. Given the above considerations, the
average number of such packets that need to be received for both layers in order
to allow for correct decoding with high probability is thus given by:

λ1 =

⌈

2 500

80

⌉

= 32 (6.20)
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Algo Y-PSNR [dB] cost redundancy [%]

Baseline 38.75 141 34.28
ABL-based 38.75 120 14.28

Optimal 38.75 117 9.52

Table 6.3: PSNR, inferred cost and received redundancy for the two proposed
algorithms and the optimal rate allocation.

for the baselayer and

λ2 =

⌈

5 834

80

⌉

= 73 (6.21)

for the enhancement layer.

The client retrieves the stream by aggregating 3 available channels that all
have a capacity of 512 kbps. Clearly, only the base layer could possibly be
transmitted in the absence of channel aggregation, resulting in a maximum
average (Y)-PSNR of 33.03dB.

Two of the available channels have similar loss characteristics given by the
tuple (π1,2 = 3%, α1,2 = 5), whereas the third channel is given by (π3 =
1%, α3 = 6). The cost for sending a packet on either channel is equal to
γ1,2,3 = 1.

Following the above considerations, both layers can be correctly decoded
whenever 105 packets have been received, 32 of which originate from the base
layer fountain, the remaining 73 from the enhancement layer fountain. We have
run both rate allocation algorithms on the above scenario, using v = 105 and
PT = 0.94, and all three senders have split their respective allocated rate among
the 2 layers as given by Equation (6.14).

As both algorithms tend to over-provision the system, it is not surprising
that the client is always able to retrieve the 2 available layers over the 3 channels
with high probability, thus receiving the best available quality. However, as the
baseline algorithm underestimates the reception probability of the allocated
packets, it does not evaluate the termination condition of the greedy algorithm
correctly. It hence allocates all the available resources to the streaming process,
resulting in a waste of bandwidth.

The results are given in Table (6.3) where the optimal allocation given by
Equation (6.10) is provided as a reference. The cost column indicates the num-
ber of packets injected into the network. The redundancy column shows the
percentage of redundant rate that is transmitted for either rate allocation, as
compared to the 105 packets that are necessary for correct decoding. Note that
in this case, the redundancy ratio for the baseline algorithm is only bounded
through the available channel capacity, as the algorithm does not terminate cor-
rectly. These results confirm that, using the ABL-based algorithm, the proposed
heuristics based greedy algorithm is able to provide close to optimal performance
for delivering scalable encoded media streams.

We have simulated the above transmission scenario 100 times using each time
different realizations of each of the 3 used channel processes. Using the proposed
rate allocation, the client was successful in decoding all of the transmitted GOPs
in 97 of the runs.
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6.6 Conclusions

We have presented a low-complexity framework for the delivery of a given lay-
ered media stream from multiple senders to a single receiver, over channels that
present correlated packet loss patterns. As our distributed streaming system
relies on the aggregate reception of a sufficient number of packets for correct
decoding, we have devised an optimization problem whose solution gives the op-
timal rate allocation among channels that maximizes the probability of lossless
decoding. We have provided and validated a heuristics-based algorithm, which
is able to quickly provide a sub-optimal solution to the combinatorial optimiza-
tion problem. Our findings finally indicate that it is important to consider both
the Packet Loss Ratio (PLR) and Average Burst Length (ABL) when address-
ing channel selection and rate allocation problems in multipath routing, or rate
aggregation over bursty channels.



Chapter 7

Conclusions

7.1 Contributions

In this thesis we have addressed several problems in order to improve the delivery
of scalable video streams over the network architecture that is provided by
today’s Internet.

First, we have proposed a distributed and completely scalable media-friendly
rate and congestion control algorithm. By explicitly considering the rate needs
of the media streams during the rate allocation process, our algorithm achieves
rate allocations that are more meaningful for the streaming applications. We
have introduced our rate and congestion control algorithm by considering the
case of delivering video streams that have the FGS property, which show all
the characteristics that are needed to adapt the streams to the allocated rates.
Through extensive simulations we have shown that our algorithm maximizes
the average received quality for all the streams in the network, and is able to
quickly adapt to network dynamics.

We have then considered the practically important case where streams that
do not have the FGS property have to be delivered. This analysis has resulted
in important conditions on the encoding rates of layered scalable video streams.
An in-depth analysis of practical considerations has led us to derive an efficient
scheduling algorithm, which, in conjunction with our rate allocation algorithm,
enables the efficient distribution of layered video streams.

Second, we have considered broadcast scenarios where a layered video stream
is transmitted to a heterogeneous client population. In this population, different
clients potentially consume different layers of the offered stream. We have shown
that minimal buffer occupancy can be jointly achieved at all the receivers and
have further considered the problem of joint playback delay minimization for all
the receivers. We have proposed an optimal scheduling algorithm and a simple
adaptive scheduling scheme which proves that close to optimal performance can
be achieved in practice.

Finally, we have exploited the inherent network diversity that is provided
by the Internet infrastructure for the robust delivery of scalable media streams.
Our framework is based on the use of rateless codes, which allow us to eliminate
the need of coordination between the different servers. Furthermore, our coding
scheme allows to adapt the version of the stream that is delivered to both the

113
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client’s needs and the network availability.

7.2 Future directions

While we did not make strong assumptions on the physical communications
layer, we have not considered the specificities of wireless networks. It should be
interesting to examine under which conditions the rate and congestion control
algorithm that we have proposed can be implemented in wireless scenarios,
where packet losses can no longer be used to explicitly compute congestion
signals.

The possibility to use the media-friendly rate allocation algorithm we have
presented in conjunction with coarse layered video stream marks a first and
important result in this direction. However it can be noted that we rely on a
particular traffic model when the RCC algorithm is designed, as given by FGS
encoded streams for example. We then propose conditions under which traffic
from coarse layered video streams can be adapted to fit the characteristics of
this traffic model. It may be interesting to inherently use a coarsely layered
traffic model in order to derive a media-friendly RCC algorithm. This would
in fact imply to recast the Network Utility Maximization problem as posed by
Kelly [3] as an integer optimization problem, leading potentially to different
results.

Considering the distributed streaming framework presented in Chapter 6,
future directions should include extensions to apply the presented work to Peer-
to-Peer streaming architectures. To that aim, optimal content replication and
caching of received Raptor symbols should be analyzed in dynamic network set-
tings, as well as the possibility to apply Network Coding to the video information
using rateless codes.
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