000124741 001__ 124741
000124741 005__ 20190415234759.0
000124741 037__ $$aBOOK_CHAP
000124741 245__ $$aOn the moduli space of singular Euclidean surfaces
000124741 269__ $$a2007
000124741 260__ $$aZürich$$bEur. Math. Soc., Zürich$$c2007
000124741 336__ $$aBook Chapters
000124741 500__ $$aMSC classes: 30F60 (30F45, 32G15)
000124741 520__ $$aThe goal of this paper is to develop some aspects of the deformation theory of piecewise flat structures on surfaces and use this theory to construct new geometric structures on the moduli space of Riemann surfaces.
000124741 6531_ $$aEuclidean surfaces
000124741 6531_ $$aconical singularities
000124741 6531_ $$aTeichmüller theory
000124741 700__ $$0241796$$aTroyanov, M$$g106581
000124741 773__ $$jVolume 1$$q507-540$$tHandbook of Teichmüller theory.
000124741 8564_ $$uhttp://www.ems-ph.org/books/book.php?proj_nr=55&srch=series%7Cirma$$zURL
000124741 8564_ $$s327006$$uhttps://infoscience.epfl.ch/record/124741/files/Troyanovin%20Handbook%20of%20Teichm%C3%BCller%20theory.%20Vol.%20I%20507--540%20IRMA%20Lect.%20Math.%20Theor.%20Phys.%2011%20Eur.%20Math.%20Soc.%20Z%C3%BCrich%202007.2007.pdf$$zn/a
000124741 909C0 $$0252207$$pGR-TR$$xU10116
000124741 909CO $$ooai:infoscience.tind.io:124741$$pbook$$pSB$$pchapter$$qGLOBAL_SET
000124741 937__ $$aGR-TR-CHAPTER-2008-002
000124741 973__ $$aEPFL$$sPUBLISHED
000124741 980__ $$aCHAPTER