Free boundary three-dimensional anisotropic pressure equilibria

W. A. Cooper,^a S. P. Hirshman,^b J. P. Graves,^a M. Jucker,^a J. Kisslinger,^c P. Merkel,^c H. F. G. Wobig,^c Y. Narushima,^d S. Okamura^d and K. Y. Watanabe^d

^aEcole Polytechnique Fédérale de Lausanne, CRPP,

Association Euratom/Confédération Suisse, Lausanne, Switzerland,

^bFusion Energy Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831,

^cMax Planck Institut für Plasma Physik, Garching, Germany,

and

^dNational Institute for Fusion Science, Oroshi-cho, Toki-shi, Gifu-ken 509-5292, Japan

An anisotropic pressure model for three-dimensional magnetohydrodynamic equilibria with nested magnetic flux surfaces has been implemented in a free boundary version of the VMEC code.¹ The energetic particles are described with a modified Bi-Maxwellian distribution function² that satisfies the constraint $\mathbf{B} \cdot \nabla \mathcal{F}_h = 0$. This model has already been successfully applied under fixed boundary conditions.³ Applications to 2-field period quasiaxisymmetric stellarator reactor system at large $\langle \beta \rangle \sim 5\%$ with large pressure anisotropy and off-axis hot particle deposition have been explored to test the limits of the code. The hot particle pressure distributions reproduce the structures obtained under fixed boundary conditions. For example, for $p_{\perp} > p_{||}$ and high field side hot particle deposition, the p_{\perp}^{h} distribution localises also on the high field side contrary to the $p_{||}^{h}$ structure which concentrates on the low field side. For low field side deposition, both hot particle components appear on the low field side. A radially outward shift of the entire plasma column constitutes the dominant finite $\langle \beta \rangle$ effect while the alterations of the shape of the plasma-vacuum interface, though clearly observable, are less important.

i

¹S. P. Hirshman, W. I. van Rij and P. Merkel, Comput. Phys. Commun. 43 (1986) 143.

²R. O. Dendy, R. J. Hastie, K. G. McClements and T. J. Martin, Phys. Plasmas 2 (1995) 1623.

³W. A. Cooper, J. P. Graves, S. P. Hirshman, T. Yamaguchi, Y. Narushima, S. Okamura, S. Sakakibara, C. Suzuki, K. Y. Watanabe, H. Yamada and K. Yamazaki, Nucl. Fusion **46** (2006) 683.