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Overview
Anisotropic equilibria which are important in the context of e.g. 
ICRF heating are studied and its implications shown by the 
examples of the average toroidal magnetic drift frequency and 
the identification of tear drop orbits in the poloidal well of the 
magnetic field. Shown are the consequences of on- and off-
axis heating, with either parallel or perpendicular pressure 
anisotropy, using newly derived exact canonical equations of 
motion. In general, due to the diamagnetic effect on the toroidal 
field, it is found that the perpendicular component of the 
pressure tensor, and its poloidal variation, determines the role 
of anisotropic pressure on single particle orbits.

P /P = 1
P /P = 1/10⊥
⊥

||
||

Exact canonical formulation   

Non-standard orbits 
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The newly introduced terms in the Hamiltonian formulation contribute 
to the orbit in the order of β. Blue: the orbit neglecting the additional 

terms, red: using exactly canonical equations of motion.

The figure shows two orbits in a tight aspect ratio 
Tokamak (B0=5.6T,R0=1.1m, a=0.9m, κ=2.5) with 
β=2% and an energy of 500keV.

B0 = 4.6T, R = 1.2m, a = 0.9m, κ = 2.5, δ = 0, <β> = 0.9%

P /P = 10⊥ ||

- Implemented new, exact canonical 
formulation in the single particle orbit code 
VENUS, including higher order radial 
magnetic field terms1

- The orbits can now exactly be identified 
with the drift velocity equation satisfying 
Liouville's theorem2

- These new terms give a contribution of the 
order of β.

vd =

eρσ[B+∇×(ρ‖σB)]
γm0(1+ρ‖µ0K·B/B2)
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a) Normalised drift frequency as a function of bounce angle ωD/ω′(θb) b) α⊥(θb)

• p⊥ != p‖ ⇒ α = −R0q2/B2
0(p′⊥ + p′‖)/2 != α⊥ = −R0q2/B2

0(p′⊥)

• Toroidal precession drift frequency depends on α⊥, not α, i.e on p′⊥
• ωD depends strongly on bounce angle due to poloidal dependence of α⊥

• Keeping ᾱ = 〈α〉θ constant, ωD is higher/lower for p⊥/p‖ < 1/ > 1

α⊥

p = p(r,θ) ⇒ ωD = ωD(α⊥(θ))

p = p(r,θ) ⇒ B = B(r,θ)

   poloidal pressure dependence opens the way for new equilibria.
 ⇒ magnetic wells in poloidal direction can be generated or at least deepended

a) p⊥/p‖ = 1; no poloidal dependence of p⊥ b) p⊥/p‖ = 10; strong poloidal dependence of p⊥ c) p⊥/p‖ = 1 vs. p⊥/p‖ = 10: stronger poloidal dependence of B in
anisotropic case

Off-axis heating

ᾱ = const
E = 1keV (∆r ∼ 0)
ω

′ = qE/rR0Ωc
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a) Normalised drift frequency as a function of bounce angle ωD/ω′(θb) b) α⊥(θb)

ᾱ = const
E = 1keV (∆r ∼ 0)
ω

′ = qE/rR0Ωc

Heating location⇒ location of maximum α⊥

• outboard side: max(α⊥) towards θb = 0, i.e. deeply trapped

• inboard side: max(α⊥) towards θb = π, i.e. barely trapped

ᾱ = const
E = 1keV (∆r ∼ 0)
ω

′ = qE/rR0Ωc

P /P = 10⊥ ||
LFS

P /P = 10⊥ ||
HFS

a)

b)

  Introduced Bi-Maxwellian distribution function into the equilibrium code VMEC5,6

 ⇒ parallel and perpendicular hot pressures can have different values everywhere
 ⇒ pressure is no longer a flux surface quantity but has poloidal dependence

  Large pressure gradient at r/a = 0.4, for enhanced diamagnetic effect on the toroidal field3,4  
• ᾱ ≡ 〈−R0q2/2B2

0(p′)〉θ ≈ 1.03

• define hot particle deposition layer at B = Bc,
where p⊥/p‖ equals the chosen value

• choosing Bc gives the spatial location of heating (B ∼ 1/R):

– Bc < B0: LFS heating (a))
– Bc = B0: central heating (above)
– Bc > B0: HFS heating (b))

• here, the pressure gradient (max(α⊥)) is located at r/a = 0.4,
whereas Bc ≈ B(r/a = ±0.7)

• LFS (a)): more deeply trapped particles
⇒ more localised, peaked pressure profile

• HFS (b)): more barely trapped particles
⇒ more similar to isotropic case

• for all these cases, ᾱ ≈ 1.03

a) Tear drop orbits in the magnetic well.
p⊥/p‖ = 10, p⊥/p‖ = 1

b) The same orbits in 3D. One can easily see the difference in ϕ(t)
p⊥/p‖ = 10, p⊥/p‖ = 1

p⊥/p‖ ! 1⇒ p = p(r,θ)

• important toroidal orbit corrections due to anisotropy and off-axis heating
• here, B ↘⇒ v‖ =

√
1 − λB ↗⇒ φ(t) ↗


