Single particle orbits in anisotropic fully shaped plasmas

Martin Jucker, Jonathan P. Graves and W. Anthony Cooper
Ecole Polytechnique Fédérale de Lausanne (EPFL), Centre de Recherches en Physique des Plasmas, CH-1015 Lausanne, Switzerland

Overview

Anisotropic equilibria which are important in the context of e.g. ICRF heating are studied and its implications shown by the examples of the average toroidal magnetic drift frequency and the identification of tear drop orbits in the poloidal well of the magnetic field. Shown are the consequences of on- and offaxis heating, with either parallel or perpendicular pressure anisotropy, using newly derived exact canonical equations of motion. In general, due to the diamagnetic effect on the toroidal field, it is found that the perpendicular component of the pressure tensor, and its poloidal variation, determines the role of anisotropic pressure on single particle orbits.

Exact canonical formulation

Implemented new, exact canonical formulation in the single particle orbit code VENUS, including higher order radial magnetic field terms ${ }^{1}$

- The orbits can now exactly be identified with the drift velocity equation satisfying Liouville's theorem ${ }^{2}$

$$
\mathbf{v}_{\mathbf{d}}=\frac{e \rho \sigma\left[\mathbf{B}+\nabla \times\left(\rho_{\|} \sigma \mathbf{B}\right)\right]}{\gamma m_{0}\left(1+\rho_{\|} \mu_{0} \mathbf{K} \cdot \mathbf{B} / B^{2}\right)}
$$

These new terms give a contribution of the order of β.

The figure shows two orbits in a tight aspect ratio Tokamak ($\mathrm{B} 0=5.6 \mathrm{~T}, \mathrm{RO}=1.1 \mathrm{~m}, \mathrm{a}=0.9 \mathrm{~m}, \mathrm{k}=2.5$) with $\beta=2 \%$ and an energy of 500 keV .
$\underset{\substack{\text { conventional } \\ \text { with th i mones }}}{ } \mid$

The newly introduced terms in the Hamiltonian formulation contribute to the orbiti it the orderer ofs β. Sliee the orbitian egorectiting the candititional
terms, red: using exactly canonical equations of motion.
$\mathrm{p}=\mathrm{p}(\mathrm{r}, \theta) \Rightarrow \omega_{D}=\omega_{D}\left(\alpha_{\perp}(\theta)\right)$

- $p_{\perp} \neq p_{\|} \Rightarrow \alpha=-R_{0} q^{2} / B_{0}^{2}\left(p_{\perp}^{\prime}+p_{\|}^{\prime}\right) / 2 \neq \alpha_{\perp}=-R_{0} q^{2} / B_{0}^{2}\left(p_{\perp}^{\prime}\right)$
- Toroidal precession drift frequency depends on α_{\perp}, not α, i.e on p_{\perp}^{\prime}
- ω_{D} depends strongly on bounce angle due to poloidal dependence of α_{\perp}
- Keeping $\bar{\alpha}=\langle\alpha\rangle_{\theta}$ constant, ω_{D} is higher/lower for $p_{\perp} / p_{\|}<1 />1$

Heating location \Rightarrow location of maximum α_{\perp}

- inboard side: $\max \left(\alpha_{\perp}\right)$ towards $\theta_{b}=\pi$, i.e. barely trapped
$p=p(r, \theta) \Rightarrow B=B(r, \theta)$
- poloidal pressure dependence opens the way for new equilibria
\Rightarrow magnetic wells in poloidal direction can be generated or at least deepended

$B 0=4.6 \mathrm{~T}, \mathrm{R}=1.2 \mathrm{~m}, \mathrm{a}=0.9 \mathrm{~m}, \mathrm{k}=2.5, \delta=0,\langle\beta\rangle=0.9 \%$

- Large pressure gradient at $\mathrm{r} / \mathrm{a}=0.4$, for enhanced diamagnetic effect on the toroidal field ${ }^{3,4}$ - $\bar{\alpha} \equiv\left\langle-R_{0} q^{2} / 2 B_{0}^{2}\left(p^{\prime}\right)\right\rangle_{\theta} \approx 1.03$
- Introduced Bi-Maxwellian distribution function into the equilibrium code VMEC ${ }^{5,6}$
\Rightarrow parallel and perpendicular hot pressures can have different values everywhere
\Rightarrow pressure is no longer a flux surface quantity but has poloidal dependence

Off-axis heating

- define hot particle deposition layer at $B=B_{c}$, where $p_{\perp} / p_{\|}$equals the chosen value
- choosing B_{c} gives the spatial location of heating ($B \sim 1 / R$):

$$
-B_{c}<B_{0}: \text { LFS heating (a)) }
$$

$-B_{c}=B_{0}$: central heating (above)

- $B_{c}>B_{0}$: HFS heating (b))
- here, the pressure gradient $\left(\max \left(\alpha_{\perp}\right)\right)$ is located at $r / a=0.4$, whereas $B_{c} \approx B(r / a= \pm 0.7)$
- LFS (a)): more deeply trapped particles \Rightarrow more localised, peaked pressure profile
- HFS (b)): more barely trapped particles \Rightarrow more similar to isotropic case
b)
$P_{1} / P_{I I}=10$
- for all these cases, $\bar{\alpha} \approx 1.03$ HFS

