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* Outline - Sawtooth Stability

e Motivation
— Sawteeth can trigger Neo-Classical Tearing Modes (NTMs)

* Methods for Sawtooth Control

» Sawtooth Conirol Using Neutral Beam Injection
— MAST:. Flow Effects
— JET: Kinetic Effects
— TEXTOR: Flow and Kinetic Effects

* Sawtooth Control Using lon Cyclotron Resonance Heating

— Experiments on JET
— Physics Explanation

e Sawtooth Control in ITER
— ECCD and Negative-ion Neutral Beam Injection
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Motivation — Sawtooth Seeding of NTMs

e Why are sawteeth important?
— Reduce thermal insulation of the core ¢
— Trigger other modes like ELMs or NTMs
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) Methods for Sawtooth Control

e MAST Nevutral Beam Injection
— Flow Effects dominate

e JET Neutral Beam Injection
— Kinefic Effects dominate

e TEXTOR Nevutral Beam Injection
— Flow and Kinetic Effects Compete

e lon Cyclotron Resonance Heating
— Raise Magnetic Shear at g=1
— Reduce Crifical Magnetic Shear
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Sawtooth Control Using NBI

e JET and MAST experiments show sawtooth conirol using NBI
— NBI heating in co-current direction causes an increase in period

— NBI hecmng in counfer—currenf direction causes a decrease in period
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* Modelling sawtooth stability with flow in MAST [

* Kink mode stabilised by strong toroidal rotation
- As sawtooth period, 1, increases, radial location of g = 1 increases

— Marginally stable g = 1 radius expected to correlate with
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{ Methods for Sawtooth Control

e MAST Neutral Beam Injection
— Flow Effects dominate

e JET Neutral Beam Injection
— Kinetic Effects dominate

e TEXTOR Nevutral Beam Injection
— Flow and Kinetic Effects Compete

e lon Cyclotron Resonance Heating
— Raise Magnetic Shear at g=1
— Reduce Crifical Magnetic Shear
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; JET Rotation Profiles

* Toroidal Rotation is an order of magnitude smaller than MAST

— Much slower
rotation speeds
than MAST, only
small effect on
stability of kink
mode

— Strong flow shear
at radial location
of g=1 (compared
to MAST)
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What is the role of trapped and passing particles?

e Sawtooth stabilisation by energetic particles is usually atiributed
to the presence of trapped fast ions [Porcelli, PPCF, 33, 1991]
— In JET, fast beam ions

are mainly passing 0.002 | | | | '
~ Passing ions can be - counter- NBI | Co - NBI ?
stabilising when co-NBl, 0.001L
but destabilising when
counter-NBI.

[Graves, PRL, 92, 2004] ;‘ 0
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y Passing Particle Stabilisation Mechanism

8W has a term dependent upon curvature: AN ~ —j (cf |:|D< P, >)(f D()dr
0
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i Effects of Flow Shear

* Flows change the electric field by adding a factor:

* The flow shear can change 0016
number of particles in | HAGIS
resonance. §W, > 0 when: ' Modelling

(w,)+0Q-(w-Q, )>0
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— At very large flows (AQ > (wy) flow shear dominates the numerator
and denominator of expression for §W, — asymptofic limit xa
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How does W, change with respect to beam power?

 Modelling the effect of energetic particles on the ideal n=1
internal kink mode WITHOUT flow shear in JET:
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How does W, change with respect to beam power?

 Modelling the effect of energetic particles on the ideal n=1
internal kink mode WITH flow shear in JET:
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Minimum in &6W,, is dependent upon details of the distribution
function and the exact rotation shear at g=1
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particle effects
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% Methods for Sawtooth Control

e MAST Neutral Beam Injection
— Flow Effects dominate

e JET Neutral Beam Injection
— Kinefic Effects dominate

 TEXTOR Nevutiral Beam Injection
— Flow and Kinetic Effects Compete

e lon Cyclotron Resonance Heating
— Raise Magnetic Shear at g=1
— Reduce Crifical Magnetic Shear
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" sawtooth Control by NBI in TEXTOR O

e TEXTOR shows dlfferent behqwour of sawteeth with NBI heating
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1 TEXTOR NBI Physics Explanation

 Competition between gyroscopic and fast ion effects

Kinetic Effects ,
Counter-passing fast ions I
destabilise kink mode & T
dominate when flow

tends to upper limit,. ——
Co-nnccina aand trannead

Flow Effects
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1 mode, but rotation is not
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1 Methods for Sawtooth Control

e MAST Neutral Beam Injection
— Flow Effects dominate

e JET Neutral Beam Injection
— Kinefic Effects dominate

e TEXTOR Nevutral Beam Injection
— Flow and Kinetic Effects Compete

* lon Cyclotron Resonance Heating
— Raise Magnetic Shear at g=1
— Reduce Crifical Magnetic Shear
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" sawtooth Control by ICRH in JET

e JET experiments show that ICRH can destabilise long sawteeth
— Sawtooth period increases with on-axis +90° phasing ICRH
— Fast ion deposition near/outside g=1, -90° ICRH destabilises sawteeth
— Sawtooth period v. sensitive to deposition location w.r.t. g=1 location
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3 Modelling Sawtooth Control Using ICRH JET

* Modelling also exhibits dependence upon resonance location
— ICRH inside g=1 gives strong stabilising conftribution to 6W,
— Stabilisafion is reduced as deposition moves outside r;
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3 Physics of Sawtooth Control with ICRH

e Sawtooth is triggered when one of three criteria is met
[Porcelli et al, PPCF, 38, 2163 (1996)]
— Most relevant for plasmas with energetic ions is:
Yo,

W
mT—<c,— and J,>C W W,

Sy y
— This can be written in terms of a critical magnetic shear:
_ OV
S, > max Serit =T ,2)  Serit (C(A)
 Effect of ICRH is two-fold: '

1. Reduce critical shear from the
large critical shear which occurs '
with on-axis fast ions n

o O O O

2. ICCD increases magnetic shear
(This is how ECCD destabilises _
sawteeth too [MUck, PPCF, 2005])

= O N W
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1 ITER Sawtooth Control with Negative-ion NBI

e Sawtooth control even more important in ITER where the alpha
particle population is likely to lead to long period sawteeth

— ECCD (and ICCD) has been proposed as a mechanism to
destabilise sawteeth to a tolerably small period

stab destab stab
- _—_

ALJG 201 =l]

MuUck et al, Plasma Phys Cont Fus, 47, 2005
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1 ITER Sawtooth Control with Negative-ion NBI

e Sawtooth control even more important in ITER where the alpha
particle population is likely to lead to long period sawteeth

— ECCD (and ICCD) has been proposed as a mechanism to

destabilise sawteeth to a tolerably small period

— Can off-axis NNBI co-passing ions be usede
(ITER NNBI has a large passing fraction) [Graves, PPCF, 47, 2005]
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Conclusions

e Sawtooth Control by different methods in different machines has
been explained by a model including flow and kinetic effects

NEUTRAL BEAM INJECTION |  FLUID EFFECTS KINETIC EFFECTS
MAST v
JET v
TEXTOR v v
RESONANCE HEATING INCREASE $, REDUCE S,
ICRH v v
ECCD v

e Achievable Sawtooth Control in ITER
— Off-axis co-NNBI to destabilise internal kink mode
— ECCD to raise magnetic shear at g=1
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