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Outline – Sawtooth Stability

• Sawtooth Control Using Ion Cyclotron Resonance Heating

– Experiments on JET

– Physics Explanation

• Motivation

– Sawteeth can trigger Neo-Classical Tearing Modes (NTMs)

• Methods for Sawtooth Control 

• Sawtooth Control in ITER

– ECCD and Negative-ion Neutral Beam Injection

• Sawtooth Control Using Neutral Beam Injection

– MAST: Flow Effects

– JET: Kinetic Effects

– TEXTOR: Flow and Kinetic Effects
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Motivation – Sawtooth Seeding of NTMs

Sauter et al, PRL, 88, 2002

• Why are sawteeth important? 

– Reduce thermal insulation of the core

– Trigger other modes like ELMs or NTMs

� Short τsaw→ no NTM

� Long τsaw→ NTM seeding
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Methods for Sawtooth Control

• MAST Neutral Beam Injection

– Flow Effects dominate

• JET Neutral Beam Injection

– Kinetic Effects dominate

• TEXTOR Neutral Beam Injection

– Flow and Kinetic Effects Compete

• Ion Cyclotron Resonance Heating

– Raise Magnetic Shear at q=1

– Reduce Critical Magnetic Shear
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Sawtooth Control Using NBI

• JET and MAST experiments show sawtooth control using NBI

– NBI heating in co-current direction causes an increase in period

– NBI heating in counter-current direction causes a decrease in period

MAST #13575

1.56 MW (counter)

Co-NBICounter-NBI

MAST

Chapman et al, 

Nucl Fusion, 46, 2006

MAST #13369

1.61 MW (co)
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Modelling sawtooth stability with flow in MAST

Toroidal velocity at which

q = 1 radius for marginal 

stability is minimised agrees 

with minimum in sawtooth 

period

Experimental data

MISHKA-F modelling

– As sawtooth period, τst, increases, radial location of q = 1 increases

– Marginally stable q = 1 radius expected to correlate with τst

Chapman et al, Nucl Fusion, 46, 2006

• Kink mode stabilised by strong toroidal rotation
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Methods for Sawtooth Control

• MAST Neutral Beam Injection

– Flow Effects dominate

• JET Neutral Beam Injection

– Kinetic Effects dominate

• TEXTOR Neutral Beam Injection

– Flow and Kinetic Effects Compete

• Ion Cyclotron Resonance Heating

– Raise Magnetic Shear at q=1

– Reduce Critical Magnetic Shear
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Co-NBI (Shot 60998, t=66.4s)

JET Rotation Profiles

(Rotation Profiles from Charge Exchange)

– Much slower 
rotation speeds 
than MAST, only 
small effect on 
stability of kink 
mode

– Strong flow shear
at radial location 
of q=1 (compared 
to MAST)

• Toroidal Rotation is an order of magnitude smaller than MAST

q=1
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What is the rôle of trapped and passing particles?

Co – NBICounter - NBI

– In JET, fast beam ions  
are mainly passing

– Passing ions can be 
stabilising when co-NBI, 
but destabilising when 
counter-NBI.                
[Graves, PRL, 92, 2004]

• Sawtooth stabilisation by energetic particles is usually attributed 
to the presence of trapped fast ions [Porcelli, PPCF, 33, 1991]

Higher order terms 

means δWh ≠ 0 for 

balanced beams

δ
W
h

Asymmetry Coefficient = [P(co)-P(ctr)] / P(Total)
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– Drift Kinetic code for 
exploring wave-particle 
interactions

– Calculates change in 
potential energy:

(((( )))) vdxdfBmvWh
33*2

2
1 ξξξξκκκκδδδδµµµµδδδδ ⋅⋅⋅⋅++++==== ∫∫∫∫

• HAGIS code

Pinches, CPC, 111, 1998
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Passing Particle Stabilisation Mechanism

δW has a term dependent upon curvature: (((( ))))(((( ))))∫∫∫∫ ⋅⋅⋅⋅∇∇∇∇⋅⋅⋅⋅−−−−
1

0

~
r

h drPW κκκκξξξξξξξξδδδδ

Co-pass, ‹Ph›’|r1 < 0 → stabilising

Co-pass, ‹Ph›’|r1 > 0 → destabilising

Graves, PRL, 92, 2004

Ctr-pass, ‹Ph›’|r1 < 0 → destabilising

Ctr-pass, ‹Ph›’|r1 > 0 → stabilising
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Effects of Flow Shear

• Flows change the electric field by adding a factor:

q
rB

E
ΩΩΩΩ==== 0 NB: Electric potential depends 

on direction of rotation
• The flow shear can change 
number of particles in 

resonance. δWh > 0 when:

(((( )))) 0
1

>>>>ΩΩΩΩ−−−−−−−−∆Ω∆Ω∆Ω∆Ω++++ rd ωωωωωωωω
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h  →→→→

−−−−∆Ω∆Ω∆Ω∆Ω−−−−
−−−−∆Ω∆Ω∆Ω∆Ω−−−− ↑↑↑↑∆Ω∆Ω∆Ω∆Ω

ωωωωωωωω
ωωωωωωωωδδδδ

– At very large flows (∆Ω > ‹ωd›) flow shear dominates the numerator 
and denominator of expression for δWh → asymptotic limit

Re(δWh)

Im(δWh)

Graves, PPCF, 42, 2000
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How does δWh change with respect to beam power?

• Modelling the effect of energetic particles on the ideal n=1 
internal kink mode WITHOUT flow shear in JET:

δ
W
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How does δWh change with respect to beam power?

• Modelling the effect of energetic particles on the ideal n=1 
internal kink mode WITH flow shear in JET:

δ
W

Chapman et al,    

Phys Plasmas, 2007
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How does it compare to experiment?

Co-NBICounter-NBI

– Minimum in sawtooth period and δWh agrees well (at ~ 4MW)

– Minimum in δWh is dependent upon details of the distribution 
function and the exact rotation shear at q=1

– In JET, asymmetry and minimum is explained by energetic 
particle effects

– In MAST, asymmetry and minimum is explained by flow effects

δ
W

Co-NBICounter-NBI
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Methods for Sawtooth Control

• MAST Neutral Beam Injection

– Flow Effects dominate

• JET Neutral Beam Injection

– Kinetic Effects dominate

• TEXTOR Neutral Beam Injection

– Flow and Kinetic Effects Compete

• Ion Cyclotron Resonance Heating

– Raise Magnetic Shear at q=1

– Reduce Critical Magnetic Shear
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– Sawtooth Period minimised in 
co-NBI direction

– Sawtooth Period reaches a 
maximum in counter-NBI 
direction

Sawtooth Control by NBI in TEXTOR

• TEXTOR shows different behaviour of sawteeth with NBI heating 

Chapman et al, sub 
Nucl Fusion 2007

EC
E

20% co-NBI

100% co-NBI

– Minimum in sawtooth period 
when plasma rotation stops 
(precursor frequency → 0)
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Methods for Sawtooth Control

• MAST Neutral Beam Injection

– Flow Effects dominate

• JET Neutral Beam Injection

– Kinetic Effects dominate

• TEXTOR Neutral Beam Injection

– Flow and Kinetic Effects Compete

• Ion Cyclotron Resonance Heating

– Raise Magnetic Shear at q=1

– Reduce Critical Magnetic Shear

18



I Chapman        Physics of Sawtooth Stabilisation        EPS Warsaw 2007

Sawtooth Control by ICRH in JET

Eriksson et al, Nucl Fusion, 46, 2006

JET 

Te

ρres

PRF

• JET experiments show that ICRH can destabilise long sawteeth 

– Sawtooth period increases with on-axis +90º phasing ICRH

– Fast ion deposition near/outside q=1, -90º ICRH destabilises sawteeth

– Sawtooth period v. sensitive to deposition location w.r.t. q=1 location

58934
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• Modelling also exhibits dependence upon resonance location 

– ICRH inside q=1 gives strong stabilising contribution to δWh

– Stabilisation is reduced as deposition moves outside rq=1

+90 -̊90˚q=1

Graves, Varenna

Lausanne, 2006
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δWh has a term dependent 
upon hot ion pressure gradient:

q=1
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Physics of Sawtooth Control with ICRH

• Sawtooth is triggered when one of three criteria is met 
[Porcelli et al, PPCF, 38, 2163 (1996)]

– Most relevant for plasmas with energetic ions is:

11
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r
c

s
W ρρρρδδδδππππ ρρρρ<<<< and eic ** ωωωωωωωωγγγγ ηηηηηηηη >>>>

– This can be written in terms of a critical magnetic shear:





====
ρ̂ρρρ

δδδδππππcrit

W
s

• Effect of ICRH is two-fold:

1. Reduce critical shear from the 
large critical shear which occurs 
with on-axis fast ions

2. ICCD increases magnetic shear 
(This is how ECCD destabilises 
sawteeth too [Mück, PPCF, 2005])

Graves, Conf. Active Control MHD, 2006

S c

21

(((( ))))




*ωωωωcrits




>>>>1 maxs ))))




,



I Chapman        Physics of Sawtooth Stabilisation        EPS Warsaw 2007

ITER Sawtooth Control with Negative-ion NBI

• Sawtooth control even more important in ITER where the alpha 
particle population is likely to lead to long period sawteeth

– ECCD (and ICCD) has been proposed as a mechanism to 

destabilise sawteeth to a tolerably small period

22
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Mück et al, Plasma Phys Cont Fus, 47, 2005
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ITER Sawtooth Control with Negative-ion NBI

• Sawtooth control even more important in ITER where the alpha 
particle population is likely to lead to long period sawteeth

– ECCD (and ICCD) has been proposed as a mechanism to 

destabilise sawteeth to a tolerably small period

Budny, NF, 42, 2002
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– Can off-axis NNBI co-passing ions be used?

(ITER NNBI has a large passing fraction) [Graves, PPCF, 47, 2005]
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Conclusions

• Sawtooth Control by different methods in different machines has 
been explained by a model including flow and kinetic effects

• Achievable Sawtooth Control in ITER

– Off-axis co-NNBI to destabilise internal kink mode

– ECCD to raise magnetic shear at q=1
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