The Physics of Sawtooth Stabilisation

Ian Chapman¹

SD Pinches¹, JP Graves², RJ Akers¹, LC Appel¹, RV Budny³, S Coda², NJ Conway¹, M de Bock⁴, L-G Eriksson⁵, RJ Hastie¹, TC Hender¹, GTA Huysmans⁵, T Johnson⁶, HR Koslowski⁷, A Krämer-Flecken⁷, M Lennholm⁵, Y Liang⁷, S Saarelma¹, SE Sharapov¹, I Voitsekhovitch¹, the MAST and TEXTOR Teams and JET-EFDA Contributors*

- ¹ EURATOM/UKAEA Fusion Association, Culham Science Centre, Oxon, UK
- ² EURATOM/Confédération Suisse, EPFL, 1015 Lausanne, Switzerland
- ³ PPPL, Princeton University, PO Box 451, Princeton, NJ 08543, USA
- ⁴ FOM-Institute for Plasma Physics Rijnhuizen, EURATOM-FOM, PO Box 1207, NL3430 BE Nieuwegein, Netherlands
- ⁵ Association EURATOM/CEA Cadarache, 13108 St Paul Lez-Durance, France
- ⁶ Association EURATOM/VR, KTH, SE-100 44 Stockholm, Sweden
- ⁷ Association EURATOM/FZ Jülich, IPP, D-52425 Jülich, Germany
- * See the Appendix of M.L. Watkins et al., Fusion Energy 2006 (Proc. 21st Int. Conf. Chengdu) IAEA

Outline – Sawtooth Stability

- Motivation
 - Sawteeth can trigger Neo-Classical Tearing Modes (NTMs)
- Methods for Sawtooth Control
- Sawtooth Control Using Neutral Beam Injection
 - MAST: Flow Effects
 - JET: Kinetic Effects
 - TEXTOR: Flow and Kinetic Effects
- Sawtooth Control Using Ion Cyclotron Resonance Heating
 - Experiments on JET
 - Physics Explanation
- Sawtooth Control in ITER
 - ECCD and Negative-ion Neutral Beam Injection

Motivation – Sawtooth Seeding of NTMs

Why are sawteeth important?

- Reduce thermal insulation of the core
- Trigger other modes like ELMs or NTMs
 - \triangleright Short $\tau_{saw} \rightarrow no NTM$

I Chapman

 \triangleright Long $\tau_{saw} \rightarrow NTM$ seeding

Sauter et al, PRL, **88**, 2002

EPS Warsaw 2007

Physics of Sawtooth Stabilisation

Methods for Sawtooth Control

- MAST Neutral Beam Injection
 - Flow Effects dominate
- JET Neutral Beam Injection
 - Kinetic Effects dominate
- TEXTOR Neutral Beam Injection
 - Flow and Kinetic Effects Compete
- Ion Cyclotron Resonance Heating
 - Raise Magnetic Shear at q=1
 - Reduce Critical Magnetic Shear

Sawtooth Control Using NBI

- JET and MAST experiments show sawtooth control using NBI
 - NBI heating in co-current direction causes an increase in period

NBI heating in counter-current direction causes a decrease in period

Modelling sawtooth stability with flow in MAST

Kink mode stabilised by strong toroidal rotation

- As sawtooth period, τ_{st} , increases, radial location of q = 1 increases
- Marginally stable q=1 radius expected to correlate with $\tau_{\rm st}$

Toroidal velocity at which = q = 1 radius for marginal stability is minimised agrees with minimum in sawtooth period

Chapman et al, Nucl Fusion, 46, 2006

Methods for Sawtooth Control

- MAST Neutral Beam Injection
 - Flow Effects dominate
- JET Neutral Beam Injection
 - Kinetic Effects dominate
- TEXTOR Neutral Beam Injection
 - Flow and Kinetic Effects Compete
- Ion Cyclotron Resonance Heating
 - Raise Magnetic Shear at q=1
 - Reduce Critical Magnetic Shear

JET Rotation Profiles

Toroidal Rotation is an order of magnitude smaller than MAST

- Much slower rotation speeds than MAST, only small effect on stability of kink mode
- Strong flow shear at radial location of q=1 (compared to MAST)

(Rotation Profiles from Charge Exchange)

What is the rôle of trapped and passing particles?

- Sawtooth stabilisation by energetic particles is usually attributed to the presence of trapped fast ions [Porcelli, PPCF, 33, 1991]
- In JET, fast beam ions are mainly passing
- Passing ions can be stabilising when co-NBI, but destabilising when counter-NBI. [Graves, PRL, **92**, 2004]
- **HAGIS** code
- Drift Kinetic code for exploring wave-particle interactions
- Calculates change in potential energy:

$$\delta W_h = \frac{1}{2} \int (mv^2 + \mu B) \, \delta f \, \kappa \cdot \xi^* d^3 x \, d^3 v$$

Asymmetry Coefficient = [P(co)-P(ctr)] / P(Total)

Pinches, CPC, 111, 1998

Passing Particle Stabilisation Mechanism

δW has a term dependent upon curvature: $\delta W \sim -\int_{-\infty}^{\infty} (\xi \cdot \nabla \langle P_h \rangle) (\xi \cdot \kappa) dr$

Co-pass, $(P_h)'|_{r_1} < 0 \rightarrow \text{stabilising}$ Co-pass, $\langle P_h \rangle'|_{r_1} > 0 \rightarrow destabilising$

Counter-passing

Ctr-pass, $(P_h)'|_{r_1} < 0 \rightarrow$ destabilising Ctr-pass, $\langle P_h \rangle' |_{r_1} > 0 \rightarrow \text{stabilising}$

Graves, PRL, **92**, 2004

" Effects of Flow Shear

Flows change the electric field by adding a factor:

rR O - NID: Electric notantial depends

• The flow shear can change number of particles in resonance. $\delta W_h > 0$ when:

$$\langle \omega_d \rangle + \Delta \Omega - (\omega - \Omega_{r_1}) > 0$$

- At very large flows ($\Delta\Omega > (\omega_d)$) flow shear dominates the numerator and denominator of expression for $\delta W_h \rightarrow$ asymptotic limit

How does δW_h change with respect to beam power?

• Modelling the effect of energetic particles on the ideal n=1 internal kink mode WITHOUT flow shear in JET:

How does δW_h change with respect to beam power?

 Modelling the effect of energetic particles on the ideal n=1 internal kink mode WITH flow shear in JET:

eriment?

- Minimum in sawtooth period and δW_h agrees well (at ~ 4MW)
- Minimum in δW_h is dependent upon details of the distribution function and the exact rotation shear at q=1
- In JET, asymmetry and minimum is explained by energetic particle effects
- In MAST, asymmetry and minimum is explained by flow effects

Methods for Sawtooth Control

- MAST Neutral Beam Injection
 - Flow Effects dominate
- JET Neutral Beam Injection
 - Kinetic Effects dominate
- TEXTOR Neutral Beam Injection
 - Flow and Kinetic Effects Compete
- Ion Cyclotron Resonance Heating
 - Raise Magnetic Shear at q=1
 - Reduce Critical Magnetic Shear

16 Sawtooth Control by NBI in TEXTOR

TEXTOR shows different behaviour of sawteeth with NBI heating

Sawtooth Period minimised in co-NBI direction

20% co-NB

- Sawtooth Period reaches a maximum in counter-NBI direction
- Minimum in sawtooth period when plasma rotation stops (precursor frequency → 0)

TEXTOR NBI Physics Explanation

Competition between gyroscopic and fast ion effects

Methods for Sawtooth Control

- MAST Neutral Beam Injection
 - Flow Effects dominate
- JET Neutral Beam Injection
 - Kinetic Effects dominate
- TEXTOR Neutral Beam Injection
 - Flow and Kinetic Effects Compete
- Ion Cyclotron Resonance Heating
 - Raise Magnetic Shear at q=1
 - Reduce Critical Magnetic Shear

Sawtooth Control by ICRH in JET

JET experiments show that ICRH can destabilise long sawteeth

- Sawtooth period increases with on-axis +90° phasing ICRH
- Fast ion deposition near/outside q=1, -90° ICRH destabilises sawteeth
- Sawtooth period v. sensitive to deposition location w.r.t. q=1 location

Modelling Sawtooth Control Using ICRH

Modelling also exhibits dependence upon resonance location

- ICRH inside q=1 gives strong stabilising contribution to δW_h
- Stabilisation is reduced as deposition moves outside $r_{q=1}$

Physics of Sawtooth Control with ICRH

- Sawtooth is triggered when one of three criteria is met [Porcelli et al, PPCF, 38, 2163 (1996)]
 - Most relevant for plasmas with energetic ions is:

$$\pi \frac{\delta \hat{W}}{s_1} < c_{\rho} \frac{\rho}{r_1}$$
 and $\gamma_{\eta} > c_{\eta} \sqrt{\omega_{*_i} \omega_{*_e}}$

This can be written in terms of a critical magnetic shear:

$$s_1 > \max \left\{ s_{crit} = \pi \frac{\delta W}{\hat{\rho}}, s_{crit}(\omega_*) \right\}$$

- Effect of ICRH is two-fold:
 - 1. Reduce critical shear from the large critical shear which occurs with on-axis fast ions
 - 2. ICCD increases magnetic shear (This is how ECCD destabilises sawteeth too [Mück, PPCF, 2005])

ITER Sawtooth Control with Negative-ion NBI

- Sawtooth control even more important in ITER where the alpha particle population is likely to lead to long period sawteeth
 - ECCD (and ICCD) has been proposed as a mechanism to destabilise sawteeth to a tolerably small period

Mück et al, Plasma Phys Cont Fus, 47, 2005

1722 ITER Sawtooth Control with Negative-ion NBI

- Sawtooth control even more important in ITER where the alpha particle population is likely to lead to long period sawteeth
 - ECCD (and ICCD) has been proposed as a mechanism to destabilise sawteeth to a tolerably small period
 - Can off-axis NNBI co-passing ions be used?
 (ITER NNBI has a large passing fraction) [Graves, PPCF, 47, 2005]

²³ Conclusions

 Sawtooth Control by different methods in different machines has been explained by a model including flow and kinetic effects

NEUTRAL BEAM INJECTION	FLUID EFFECTS	KINETIC EFFECTS
MAST	✓	
JET		✓
TEXTOR	✓	✓

RESONANCE HEATING	INCREASE S ₁	REDUCE S _{crit}
ICRH	✓	✓
ECCD	✓	

- Achievable Sawtooth Control in ITER
 - Off-axis co-NNBI to destabilise internal kink mode
 - ECCD to raise magnetic shear at q=1

