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MAIN RESULTS
• First demonstration of the effectiveness of ICCD in shortening sawteeth and thus preventing 

m=3, n=2 neoclassical tearing modes (NTMs) in the presence of a strong fast-ion component 
and at βpol well above marginal stability, i.e. at values at which NTMs are routinely triggered 
under identical conditions without a sawtooth-destabilising agent

• The scenario effectively simulates the conditions expected in a fusion reactor such as ITER, 
where the fast-ion population will primarily be comprised of alpha particles generated by fusion 
reactions and NTM triggering is expected to occur in the absence of active sawtooth control

MOTIVATION
• NTMs [1] can cause significant loss of confinement in tokamaks ( ITER) [2]
• NTMs are metastable: excited only by finite seed island, but once excited remain unstable
•  Primary strategy to prevent NTMs at low βN (1-1.5) is to contain seed islands [3]
• Especially deleterious seed islands are associated with crashes of long sawteeth [2], which can 

occur owing to internal kink stabilisation effect from fast ions

BACKGROUND
• Counter-current propagating ICRF waves near the inversion radius are known to destabilise the 

internal kink (i.e. shorten sawteeth) [4-5] and are effective even in the presence of fast ions [6]
• This had not been demonstrated yet in a reactor-relevant regime with NBI heating and βpol well 

above marginal stability for NTMs

STRATEGY
• Two-colour ICRF: core ICRF with co-current propagating wave phasing ( inward pinch) to

maximise fast-ion population [8], counter-current propagating wave phasing near inversion 
radius to destabilise sawteeth [9]

• Hydrogen minority fundamental ICRF: central resonance = 42.2 MHz (+90o phasing); off-axis 
(HFS) resonance = 46.2 MHz (-90o phasing); BT~2.8 T, Ip~2.2 MA, q95~4.1, ne~2.4x1019 m-3, 
H concentration 3-5%

PRINCIPLES OF ICCD
• Complex combination of effects: Fisch (asymmetric resistivity) mechanism (Fig. 2), finite-orbit 

trapped-ion current (Fig. 3) plus current from radial fast-ion drifts
• The first two effects can be locally strong and comparable to one another [7]

Figure 1. Schematic representation of 
one of the four ICRF antennae on JET. 
Each antenna has four current-carrying 
straps; the phasings of the currents in 
the straps determine the parallel wave-
number spectrum, i.e., the wave direc-
tionality (counter-current propagation in 
the example shown, denoted as -90o 
phasing)

Figure 2. Current density 
profile driven by ICRF on the 
HFS through the FIsch 
mechanism (co-current 
propagating waves in this 
example)

Figure 3. Current density pro-
file driven by ICRF through 
trapped suprathermal ions 
owing to finite orbit width 
effects (direction is 
independent of antenna 
phasing)

DEMONSTRATION OF NTM PREVENTION
• With well-tuned 3 MW off-axis ICCD, the sawtooth period is kept consistently shorter than 200 

ms at βN=1.25-1.35, with 3 MW core fast-ion heating (Fig. 4, left)

• Control cases: -90o ICCD replaced by dipole ICRF (same power, no net toroidal wave 
propagation: Fig. 4, middle); ICCD removed altogether (Fig. 4, right): sawtooth period > 500 ms, 
and NTMs are triggered

Figure 4. Discharges with off-axis counter-current propagating ICRF (left), off-axis dipole ICRF 
(middle), no off-axis heating (right)

SENSITIVITY TO ICCD TUNING
• Reliable NTM prevention requires tuning the 

ICCD frequency with a precision of 0.5% or 
better (Fig. 6)

• Increase in sawtooth period when resonance 
moves towards centre excludes that sawtooth 
shortening is due to fast-ion expulsion from
-90o ICRF

• The optimum ICCD frequency will vary with 
plasma conditions, βN, sawtooth period itself 

•  feedback control would be desirable in a 
fusion reactor

Figure 6. Comparison of three discharges differing by a variation of the toroidal magnetic field of 
less than 1%: the optimum for sawtooth stabilisation is the blue curve (BT=2.83 T); the green curve 
corresponds to BT=2.85 T and the red curve to BT=2.81 T. (In (b) the solid curves represent the 
inversion radius, the dashed curves the resonance radius.)

Figure 7. BT sweep. The optimum sawtooth sta-
bilisation field in static conditions corresponds to 
the value reached here at 13 s, i.e. 2.85 T

• BT sweeps can help in determining optimum tuning
• However, in a dynamic situation the effect can be extremely subtle since the relative positions of 

the resonance and of the inversion radius can vary as plasma conditions drift (Fig. 7)
• Optimum value drifts with βN as expected from Shafranov shift (Fig. 8)

Figure 8. BT sweep with no NBI heating. The op-
timum sawtooth stabilisation field in static condi-
tions corresponds to the value reached here at 
12 s, i.e. 2.83 T

Figure 5. One-shot demonstration. The removal of 
the off-axis ICCD component at 54.2 s causes the 
sawtooth period to increase immediately

MODELLING
• Transport modelling underway with a sawtooth crash model 

[10] using current drive density generated by SELFO Fokker-
Planck Monte Carlo code [7]

• Previous analysis consistent with observed sensitivity to 
ICCD location: if this moves inside critical radius, ICCD con-
tribution becomes stabilising (Fig. 9)

Figure 9. Modelling of shear vs. critical shear and unstable 
region, and of sawtooth period vs. ICCD deposition location

CONCLUSIONS
• Reliable prevention of NTMs by sawtooth period contain-

ment with off-axis ICCD was demonstrated for the first time
• The method is extremely sensitive to the ICCD frequency 

tuning and suggests the need for feedback control of the fre-
quency
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