
Plasma Shape Effects on Geodesic Acoustic
Oscillations

L. Villard∗, P. Angelino∗, A. Bottino†, R. Hatzky∗∗, S. Jolliet∗,
B.F. McMillan∗, O. Sauter∗ and T.M. Tran∗

∗Centre de Recherches en Physique des Plasmas, Association Euratom - Confédération Suisse,
EPFL, 1015 Lausanne, Switzerland

†Max-Planck Gesellschaft Institute for Plasma Physics, D-85748 Garching, Germany
∗∗Computer Center of the IPP and the Max-Planck Gesellschaft, D-85748 Garching, Germany

Abstract. Geodesic acoustic mode (GAM) [1] oscillations in tokamak plasmas are known to be
sensitive to the value of the safety factor q. Through its linear and nonlinear interactions with ITG
turbulence it has recently been shown in direct numerical global simulations [2] that the turbulence
driven heat transport is larger when GAM oscilations of large amplitude are present, resulting in an
anomalous transport scaling with the inverse plasma current. GAM dispersion relations have been
derived for circular, large aspect ratio configurations, and, recently, for helical configurations [3].
Linear simulation results are presented using the global, PIC, finite element codes GYGLES [4]
and ORB5 [5] for the GAM frequency, damping rate and Rosenbluth-Hinton [6] residual zonal flow
for a scan in plasma elongation. It is found that GAM frequency slightly decreases, while GAM
damping rate and residual zonal flows increase with elongation. Nonlinear ITG simulations using
the ORB5 code [5] show that elongation reduces heat transport and that this is related to the plasma
current and not q alone.
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ITG TURBULENCE, ZONAL FLOWS AND GAMS

Ion Temperature Gradient (ITG) driven turbulence is known to interact with axisymmet-
ric E×B flows [7]. These flows can be nonlinearly generated by ITG modes. They in
turn tend to reduce the ITG turbulence level by their shearing action on the elongated
structures of toroidal ITG modes. When the E×B zonal flow shearing rate is compara-
ble to the turbulence decorrelation time the modes are stabilised. The main consequence
is a substantial reduction in the anomalous, turbulence driven radial transport.

Axisymmetric E×B flows exist in two branches, linearly speaking. A zero frequency
branch (zonal flows, ZF) and a finite frequency branch (GAM) [1]. The GAM is damped
by collisionless kinetic effects. The GAM component of the E×B flows is less effective
than the stationary ZF component to supress turbulence [8] On the other hand, the zonal
flows have a completely undamped component [6]: when an initial E×B perturbation
is applied to the system, the residual is given by

vE×B(t → ∞)/vE×B(t = 0) =
(

1+1.6q2/ε
1/2

)−1
. (1)

Hence the general idea: in order to reduce the turbulence level, and possibly the anoma-
lous transport, situations in which GAMs are damped and residual steady zonal flows



are high should be favourable. GAM properties depend on the safety factor value q. Its
frequency and damping rate are
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γGAM/ωGAM ≈ exp

(
−q2−1/2

)
. (2)

The effect of q has been observed in nonlinear simulations: the stationary or oscillatory
nature of axisymmetric flows depends critically on the q value [9]. Recently, direct
numerical simulations (in the absence of input power) have shown that the ITG turbulent
heat flux scales inversely proportional to the total plasma current, and that the ratio
of oscillatory (GAM) to quasi-steady (ZF) amplitudes scales in the same way [2],
suggesting that this type of physics is responsible for the scaling.

Little is known [3] about the effect of plasma cross-section shaping on the GAM, ZF
and ITG behaviour. This paper presents a study of the effect of plasma elongation on the
linear GAM spectrum and nonlinear ITG turbulence.

MODEL

In order to ensure a correct calculation of zonal flow damping [6] the gyrokinetic de-
scription is used. Here we assume gyrokinetic ions and an adiabatic electron response
on magnetic surfaces. The model is global and no geometrical approximation is made
(besides the numerical discretization). The magnetic configuration consists in toroidal
axisymmetric, low β , ideal MHD equilibria computed with the CHEASE code [10]. The
global, nonlinear, gyrokinetic ORB5 code [5] is used. The perturbed potential is repre-
sented with 3D cubic B-spline finite elements. The perturbed ion distribution function is
discretized with marker particles (PIC, δ f method). Numerical statistical noise coming
from the PIC representation is reduced with the “optimized loading” scheme [11] and
through field-aligned Fourier filtering of unphysical, small parallel wavelength compo-
nents that break the gyrokinetic ordering. The equilibrium distribution function f0 is a
canonical Maxwellian, i.e. a true equilibrium in the gyrokinetic sense: d f0/dt|0 = 0, in
other words it is constant along unperturbed characteristics. This choise was devised in
order to avoid spurious GAM excitation [12]. More details can also be found in [13].
The ORB5 code can be run in linear mode and compared to the GYGLES code [4].

LINEAR GAM BEHAVIOUR WITH ELONGATION

We start the investigations by prescribing an initial density perturbation and comput-
ing the linear response of the system. We define a sequence of equilibria of varying
elongation from κ = 1.0 to κ = 2.5, keeping the aspect ratio R/a = 6, the safety factor
on axis q0 = 1.23, and using the same toroidal current density profile prescription as a
function of the radial coordinate s =

√
ψ/ψa, where ψ is the poloidal magnetic flux.

This profile results in a monotonic q profile. The edge q value changes with elongation
from qa = 3.1 for κ = 1.0 to qa = 6.26 for κ = 2.5, while the value of q at mid radius
changes only slightly, from q(0.5) = 1.43 for κ = 1.0 to q(0.5) = 1.46 for κ = 2.5. The
normalised plasma current, IN = I[MA]/a[m]B[T], is nearly proportional to κ , varying
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FIGURE 1. Frequency (left), damping rate (middle) and undamped zonal flow residual (right) versus
plasma elongation computed from the linear response to an initial axisymmetric density perturbation.
Only the (m = 0,n = 0) Fourier component of the perturbed density has been kept in these simulations.

FIGURE 2. Contour plots of vE×B versus time (horizontal axis) and radius (vertical axis), for an initial
given density perturbation. Left: κ = 1.0, with m = 0,n = 0 only kept. Right: κ = 1.5, with poloidal
sidebands included m ∈ [−4,+4]. The stronger damping of GAM oscillations for the elongated case is
clearly visible.
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FIGURE 3. Frequency (left) and damping (right) of GAMs versus minor radius coordinate s for circular
(κ = 1.0) and elongated (κ = 1.5) cases. The square with the vertical bar indicates the frequency of
oscillations observed in nonlinear simulations.



FIGURE 4. Averaged heat diffusivity in gyro-Bohm units versus time for κ = 1.0 and κ = 1.5.

from IN = 0.284 for κ = 1.0 to IN = 0.757 for κ = 2.5. Nearly force-free equilibria are
used, so that Shafranov shift effects are negligible.

The frequency, damping rate and residual undamped zonal flow are obtained from a fit
of

∫ 1
0 φ00(s, t)ds signals. The results are plotted in Figure 1. The real frequency decreases

with elongation; note that the analytical result for the GAM frequency, obtained for
circular, large aspect ratio [1], would be ω = 2 in the units of Figure 1 (left). Most
interestingly, the damping rate increases roughly proportionally to the elongation. The
ZF residual shows a slight increase with κ .

In order to analyze the GAM behaviour in more detail, we focus on two cases: circular
(κ = 1.0) and moderately elongated (κ = 1.5). Simulations including the poloidal
sidebands m ∈ [−4,+4] are performed in order to study geometrical coupling effects.
We also examine the radial (s) dependence of GAM oscillations and try to distiguish q
profile effects from elongation effects. Figure 2 shows time and radial contours of the
E×B velocity for the circular case (left) and the elongated case (right). In the circular
plasma, the lower damping and slightly lower frequency at large s, where q is larger,
is visible. This is in agreement with analytical expressions Eqs.(2,??). The elongated
case has a much larger GAM damping rate. These results are summarized in Figure 3,
in which the frequency observed in nonlinear simulations is indicated by the square,
indicating that these correspond to the excitation of GAMs.

NONLINEAR GLOBAL SIMULATIONS

Using the same equilibria as in the previous Section, we now turn to the investigation
of the nonlinear ITG - ZF - GAM behaviour. The parameters are chosen similar to
the CYCLONE base case [14], with the exception of the use of ideal MHD equilibria
with R/a = 6, κ = 1.0 and κ = 1.5. The ORB5 code is used [5] with the following
numerical parameters. The grid resolution is Ns ×Nθ ×Nϕ = 128× 320× 256. The



FIGURE 5. Contours of the E×B velocity versus radius and time, for the circular (left) and elongated
(right) cases. The GAM oscillations are much more pronounced, and the quasi-steady ZF component
much less, for the circular case than for the elongated case.

0 2 4 6 8 10

x 10
4

0

10

20

30

40

50

60

t [Ω
i
−1]

si
gn

al
 / 

no
is

e

κ=1.0
N

p
=48mio 

κ=1.5
N

p
=96mio

optimized loading

FIGURE 6. Signal to noise ratio for the nonlinear simulations shown in Figures 4-5.

number of marker particles is Np = 48− 96× 106. A field-aligned Fourier filter with
∆m = 5 is applied; this has been checked to be in agreement with gyrokinetic ordering.
The number of modes is thus NsN(m,n)∈ filter = 180000, and the number of particles per
mode is 266− 532, which has proven to be sufficient for numerical noise suppression
and large enough to yield close to converged results [15]. In addition, optimisations of
marker particle loading [11] are performed.

The time evolution of the averaged heat diffusivity normalized to the gyro-Bohm
diffusivity χgB = ρ2

s cs/a is represented in Figure 4, for both the circular and elongated
cases. The large reduction (a factor of about 3) in radial heat transport for the κ = 1.5
case can be attributed, as least in part, to a reduction in the linear drive. The initial
temperature profiles are identical as function of ψ , which means that the averaged spatial
gradient is lower for the elongated case, while being identical on the equatorial plane.
The stronger drive of the circular case manifests itself in the presence of bursts in the



heat flux, which are practically absent in the elongated plasma. Part of the reduction in
heat transport may be attributable to a difference in zonal flows and GAM behaviour.
Figure 5 shows coutours of the E×B velocity versus radius and time. The quasi-steady
part of the E×B flow is stronger for the elongated case, while GAM oscillations are
much more apparent for the circular case. Qualitatively, the nonlinear results are thus
consistent with the findings of the linear GAM behaviour: elongation increases GAM
damping rate. Finally, Figure 6 shows the numerical statistical signal to noise ratio

∑(m,n)∈ filter
∣∣δn(m,n)

∣∣2
/Nmn

∑(m′,n′)/∈ filter
∣∣δn(m′,n′)

∣∣2
/Nm′n′

. (3)

The main conclusion of the paper is thus that elongation is favourable for energy
confinement time. This is due to both a reduction in linear ITG drive and an incresae
in GAM damping. These results are consistent with a scaling of confinement time
increasing with normalized plasma current. This also shows that the safety factor q alone
is not the only important parameter: indeed, the elongated equilibrium studied here has
even a higher qa than the circular one, which would yield, if q value effects were alone
responsible, a larger heat flux than the circular case. More work is necessary in order to
better distinguish the relative roles of linear ITG dirve and GAM behaviour in order to
possibly identify an intrisic effect of plasma elongation.
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