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Abstract. ITG and ETG turbulence is investigated with the nonlinear global PIC code ORB5. The
large variety of numerical schemes and simulations domainsused has sometimes lead to important
discrepancies in the transport predictions. In order to discuss these disagreements, emphasis must
be put on ways to check the numerical accuracy, such as energyconservation and numerical noise
measurement. This paper therefore presents benchmarks, new algorithms and a noise diagnostic [1].
After having demonstrated the numerical quality of our simulations, 2 topics are visited: the unclear
role of the parallel nonlinearity [4, 5] and the transport level in ETG turbulence, for which predic-
tions differing by one order of magnitude had been made elsewhere [2, 3].
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INTRODUCTION

Gyrokinetic codes are powerful tools for studying microinstabilities, which are com-
monly held responsible for anomalous transport. Several numerical schemes are em-
ployed. In Eulerian codes, the distribution function is discretized on a 5D grid and is
evolved with finite difference or spectral methods. Semi-Lagrangian codes use the same
discretization, but the temporal evolution is done by tracing back in time the trajectories
ending up at grid points at each time step. In Particle-In-Cell (PIC) codes, the distribution
function is discretized with markers. Besides, microinstabilities can be simulated locally
(along a field-line), globally (in a full torus) or with flux-tube (in a tube surrounding the
field-line). These various types of numerical schemes and geometrical domains can lead
to important discrepancies in the predicted radial transport coefficients. For example,
flux-tube simulations [2] and global PIC simulations [3] give transport coefficients that
differ by 1 order of magnitude for ETG turbulence. Moreover,the role of the parallel
nonlinearity (PNL) is still controversial [4, 5]. In order to understand the origin of these
discrepancies, it is important to benchmark gyrokinetic codes and to provide diagnos-
tics that show the numerical quality of simulations. The numerical noise associated with
the PIC method inevitably leads to the loss of energy conservation in the late nonlin-



ear phase. In the case of ETG simulations, the turbulence dies away at late times due
to discrete particles noise [7], yielding a unphysical transport level. This motivates us to
develop the global nonlinear PIC code ORB5 [6] to obtain low-noise, energy and particle
number conserving simulations: In this paper, we will focuson demonstrating the con-
vergence of our simulations. Several new algorithms will bepresented, which strongly
improve the quality of our simulations, together with a hugedecrease of CPU. Finally,
we will investigate 2 important issues, namely the role of the PNL in ITG turbulence
and the influence of numerical noise on ETG turbulence.

THE GYROKINETIC MODEL

We consider gyrokinetic equations of Hahm [8] with the following gyrokinetic ordering:
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ω and Ωi are characteristic fluctuation and cyclotron frequencies,k‖ and k⊥ are the
parallel and perpendicular components of the wave number with respect to the magnetic
field, φ is the fluctuating electrostatic potential,ρL,i is the Larmor radius,Ln,LT,i,LT,e
andLB are characteristic lengths for density, ion and electron temperature and magnetic
field. The 2 small parameters are such thatεg ∼ ρ∗ and εg
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is the Tokamak minor radius, andεa = a
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is the inverse aspect ratio,R0 being the major

radius. Terms of orderO(ε2
B) are neglected. Equations of motion are:
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2B is the magnetic moment

and〈~E〉 is the gyro-averaged electric field. These equations include the parallel motion,
drifts due to the magnetic field gradient and its curvature, the pressure gradient and the
perturbed electric field. The equation for the parallel velocity contains a mirror term to
account for trapped particles and the so-calledparallel nonlinearity. Since it is a second
order term, many gyrokinetic models ignore it.
To solve the Vlasov equation, aδ f scheme [9] is applied, in other words the distribution
function f is split into an equilibrium partf0 (in our case a Maxwellian) and a perturbed



partδ f :

f (~R,v‖,µ, t) = f0(ε,µ,ϒ)+δ f (~R,v‖,µ, t) (5)
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)
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ε is the kinetic energy of a single particle,ε = 1
2mv2, n0 is the equilibrium density

andvthi the ion thermal speed. 3 different coordinates can be chosenfor ϒ. If ϒ = ψ,
whereψ is the poloidal flux, the resultinglocal Maxwellian can lead to the generation

of spurious zonal flows, as shown in [10], sinced f0
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Maxwellian, i.e.ϒ = ψ0, whereψ0 = ψ + qi
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B v‖ is the toroidal angular momentum.
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only for passing particles due to the Heavyside functionH (x). ψ̂ can be viewed as the
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andκ(υ) =
dln f0(ϒ,v‖,µ)

dϒ . The subscript 1 refers to terms containing the gyro-averaged
electric field. The model is closed with a linearized Poissonequation, which can
be reduced to a quasineutrality condition. Furthermore assuming k⊥ρL,i ≪ 1 (long-
wavelength approximation) and adiabatic electrons on magnetic surfaces, it is written
as:
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Where a term of orderO(ε2
g) has been neglected. The first term of the LHS is the

adiabatic contribution. The so calledzonal flowterm is described with the flux-surface
averaged potential:

φ̄(ψ, t) =

∫
φ(ψ,θ ,ϕ, t)Jψθϕ(ψ,θ)dθdϕ

∫
Jψθϕ(ψ,θ)dθdϕ

(9)

WhereJψθϕ(ψ,θ) is the Jacobian for(ψ,θ ,ϕ). The second term is the polarization
density, and the RHS is the perturbed density whose computation is called thecharge
assignment:

δni =

∫
B∗
‖d~Rdv‖dµdαδ f (~R,v‖,µ, t)δ (~R+~ρL,i −~x) (10)



α is the gyro-angle. The great advantage of Hahm’s equations lies in its associated
conservation laws. The total number of particles is conserved:

dNph
dt = 0, with:
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=

d
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∫
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‖d~Rdv‖dµdα = 0. (11)

If one defines the total kinetic and potential energy of the system:
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Then the total energy is conserved, i.e.
dEkin+E f

dt = 0. The proof can be found in [11].
Such conservation laws provide a useful check of the qualityof the simulation at each
time step. Finally, due to the absence of external sources inour model, the free evolving
temperature and density profiles relax during the nonlinearphase.

NUMERICAL IMPLEMENTATION

δ f is discretized according to the PIC method:
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Nph

N

N
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It is therefore described withN markers, evolving in the 5D phase space and carrying
a weightw. Vlasov equation can be solved with thestandard-δ f scheme by a temporal
integration of Eq. (7), or with thedirect-δ f scheme. The latter uses the conservation of
f in the phase space, so we simply haveδ f = f (t0)− f0

(
~R(t),v‖(t),µ(t0)

)
. Equations

of motion are either solved in cartesian coordinates(r,ϕ,z) or in "pseudo-cartesian" co-
ordinates(ξ = scosθ∗,ϕ,η = ssinθ∗), wheres=

√
ψ/ψedge is the magnetic label and

θ∗ = 1
q(ψ)

∫ θ
0

~B·~∇ϕ
~B·~∇θ ′dθ ′ is the straight-field-line angle. The use of(ξ ,η) avoids the singu-

larity on axis. Poisson equation is solved on a(s,θ ,ϕ) or (s,θ∗,ϕ) grid with 3D cubic
B-spline finite elements [12]. The second option avoids interpolations(r,z) → (s,θ/θ∗)
during the charge assignment and the electric field computation. Depending on the pro-
cessor architecture, the total CPU gain can be as high as 25%.
Numerical noise is produced during the charge assignment, where each marker is rep-
resented by a gyro-ring projected onto a discrete grid. A common way to reduce the
numerical noise is to Fourier-filter the perturbed density:

Fδn(~x, t) = ∑
m,n

fm,n(s)δ̂nm,n(s, t) eimθ∗ einϕ (15)

A first naive choice forfm,n(s) is called thesquarefilter (SF): all modes outside a win-
dow [mmax : mmin]× [nmax : nmin] are suppressed after the charge assignment. However,



this type of filter contains modes that are inconsistent withthe gyrokinetic ordering (1).
Assuming a(m,n) mode is propagating locally ats= s0, ask‖ =

m+nq(s)
q(s)r , the highestk‖

mode contained in the SF will bekmax
‖

∼= 2mmax
q(s0)R0

. Approximatingk⊥ ∼ m
ρ , we get:
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∼= εa

q(s0)
∼= 0.26≫ ρ∗ (16)

with the CYCLONE base case parameters [13]. Obviously, thissimple local estimate
shows that (16) breaks the gyrokinetic ordering (1), independently of the plasma size.
Consequently a SF contains unphysical highk‖ modes, which increases numerical noise.
A better choice is called thefield-alignedfilter (FAF). For eachn in [nmax : nmin], the
modes[−nq(s)−∆m : −nq(s) + ∆m] are retained.∆m can be estimated from an ITG
dispersion relation [14]:
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As a result the FAF is consistent with the gyrokinetic ordering (1), since it keeps the field
aligned structure of ITG modes. The time step of a simulationis closely linked with the
Fourier filter. The general time step criterion writes:

ωδ t = δ ≪ 1 (19)

Where ω is the fastest relevant frequency of the system. For ITG turbulence in a
tokamak, there are mainly 3 frequencies of interest: the transit frequencyωt =

v‖
q(s)r ,

the frequency related to the~E×~B velocity ω~E×~B = k⊥v~E×~B
∼= Mk⊥vthi, whereM is the

Mach number and the Landau damping frequencyω‖ = k‖v‖. Using previous estimates
of k‖ for both kinds of filter, the time step criterion forω‖ becomes:
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∆t f a
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τ
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ηi

(ρ∗)−1 (21)

The (ρ∗)−1 dependence of Eq. (21) clearly shows the beneficial influenceof the FAF
in the parallel direction. However, quantitative estimates of ωt andω~E×~B are needed to
see if the FAF has an influence on the global time step of the simulation. Fig. 1 shows
estimation of the different time steps for modes having the maximumk‖/k⊥ with the
CYCLONE parameters andM = 5 · 10−3, which is the typical value observed in our
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FIGURE 2. Average radial heatflux (left) and relative energy conservation (right) vs time for a square
filter (solid line) and a field-aligned (dotted line) simulation

simulation. The value of∆ts
‖ is extremely small. Since usual time steps are of the order

of 5Ω−1
i , we conclude that the evolution of many modes in the SF will beinaccurate

and will impair the quality of the simulation. On the other hand, in the limit of small-
ρ∗ plasmas, simulation using a FAF could be run, according to our estimate, with a
one order of magnitude higher time step, thus decreasing CPUby the same amount.
In order to confirm our predictions, the FAF has been tested ina simulation with the
following parameters:ρ∗ = 1

40,R0/LT,i = 13,ηi = ∞,εa = 5, (m,n)∈ [±40,±16], ∆m= 5
and∆t = 40Ω−1

i . Convergence tests have been made to ensure that∆m is large enough.
Note that usingθ∗ instead ofθ as poloidal angle narrows the poloidal spectrum of all
toroidal modes. Fig. 2 shows the temporal evolution of the volume-averaged radial heat
flux Q, defined by:

Q =
N

∑
p=1

wp
1
2

mv2
p
〈~E〉×~B

B∗
‖B

·
~∇ψ
|~∇ψ|

∣∣∣∣∣
~Rp,v‖,p,µp

(22)

The square filter simulation is totally unphysical. The system does not relax to a quasi-
steady state. On the contrary, numerical noise totally kills the simulation. In the field-
aligned case, the system relaxes to a quasi-steady state. The relative energy conservation
is improved by one order of magnitude with the same number of markers. To get similar
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results with a SF, many more markers and a smaller time step would be required. The
degradation of the SF simulation can be seen on Fig. 3. The growth of then 6= 0 modes at
late times is due to highk‖ modes, and is not observed for the field-aligned case. Finally,
the late-time structure of the electric potential along thes = 0.5 field line is shown
on Fig. 4. ITG modes tend to align with the field lines, but thisfeature is apparently
destroyed with the SF: the perturbation is a superposition of high-k‖ modes.
The notion of convergence is an important issue in nonlineargyrokinetic simulations.

Believable physical results require convergence in terms of grid resolution and time
step, but a PIC simulation needs to be converged with respectto the number of markers
as well. The left plot of Fig. 5 shows a scan for the number of markers. The overshoot
is shifted in time as the number of markers is increased, and it becomes hard to say if
the convergence is reached or not. This is because the initial level of the perturbation is
inversely proportional to the number of markers: the initial weights are defined by:

wp(t0) = A0 f0(~R(t0),v‖(t0),µ(t0))ΩpRp (23)
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whereA0 is the initial amplitude of the perturbation,Ωp is the volume of phase space
occupied by the markerp and Rp ∈ [−1 : 1] is a random number. Eq. (23) will be
denoted as therandominitialization. An alternative to Eq. 23 is obtained by defining
initial weights by:

wp(t0) = A0 f0
(
~R(t0),v‖(t0),µ(t0)

)
Ωpcos(m0θ∗(t0)−n0ϕ(t0))

LT,i(s0)

LT,i(s(t0))
(24)

Where m0 and n0 are integers. Eq. (24) will be denoted as themode initialization.
The right plot of Fig. 5 shows the radial heat flux of a simulation with the mode
initialization for N = 64· 106 andN = 128· 106. Both curves are almost similar. We
can therefore say that our simulation is converged. This is because the initial level of
the perturbation obtained with the mode initialization does not depend on the number
of markers anymore. Eq. (24) is useful to determine the convergence of a simulation
with the number of markers. However, the mode initialization is not really physical, as
one mode strongly dominates in the linear phase. This can lead to a different bursty
transient phase. A more realistic method would be to initialize several modes instead of
one. Nevertheless, the convergence inN does not depend on the initial conditions.

THE ROLE OF THE ‖ NONLINEARITY

The role of the PNL is still unclear. PIC simulations in cylinder [15] and tokamak [4]
geometry showed that this term has an effect on the zonal flow structure. On the other
hand, other authors found that this term has no influence and transport for small-ρ∗

plasmas [5]. CYCLONE simulations were performed withρ∗ = 1/175 andρ∗ = 1/35,
with and without the PNL. On Fig. 6, one sees that if the PNL is not retained, energy
conservation is totally lost, even for smallρ∗-plasmas. Still on Fig. 6, the temporal
evolution ofχi/χGB againstR0/LT,i is plotted, where:

χi ≡− Q

ni
~∇Ti

, χGB =
ρ2

L,ivth,i

Ln
(25)

Both profiles are averaged overs0±0.05. Globally, the evolution ofχi/χGB andR0/LT,i
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FIGURE 7. Temporal evolution of∇φ̄ (s) for CYCLONE simulations with (left) and without (right)
PNL.

follows the Dimits fit, and there is no visible effect of the PNL on transport. Our
simulations also show that the absence of the PNL does not induce any relevant global
effect. On Fig. 7, the temporal evolution of∇φ̄ (ψ, t) is shown for cases with and without
the PNL. Qualitatively, both structures are quite similar.The only noticeable difference
is a higher level near the edge, for the case without the PNL. In conclusion, we can say
from our simulation that the PNL has no relevant effect on both the structure of zonal
flows and the radial transport for CYCLONE parameters.

ETG SIMULATIONS

Lately, there has been a growing interest in ETG turbulence,which, according to flux-
tube simulations [2] could be experimentally relevant. On the other hand, global PIC
ETG simulations [3] found a negligible transport level. To explain this large discrep-
ancy, mainly two possible mechanisms have been invoked: a nonlinear toroidal cou-
pling, which is not retained by flux-tube codes [3] and statistical noise induced by the
PIC method [7]. Therefore, a quantification of numerical noise is desirable. The latter
is created during the charge assignment, a process equivalent to a Monte-Carlo integra-
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tion [16]. According to [1], we have:

δni = δni,signal+δni,noise, δni,noise=
Nm

N
〈w2〉G (26)

WhereNm is the number of Fourier modes in the simulation,N is the number of markers,
〈w2〉 = 1/N∑N

i=1w2
i and G is a factor which depends on the projection algorithm.

Eq. (26) tells us how to decrease numerical noise: by increasing the number of markers,
by reducing the number of Fourier modes in the simulation, byusing sampling methods
such as optimized loading [11] to reduce the statistical variance of the weights or to
improve the projection algorithm, for example with higher order splines. In practice,
δni,noise is obtained by adding the contribution of filtered modes before the filtering
process. To check the validity of Eq. (26), CYCLONE ETG simulations withρ∗

e = 1/80
have been performed. In the left plot of Fig. 8, the value ofδni,noise/〈w2〉 is displayed.
We see that the noise is clearly proportional toNm/N, demonstrating Eq. 26. The right
plot of Fig. 8 shows that numerical noise does not depend on the number of markers per
cell, but on the number of markers per mode. In order to quantify the radial transport
for ETG turbulence, simulations have been performed with a more realisticρ∗

e = 1
450.

The noise to signal ratio does not exceed 15%. Fig. 9 shows thetemporal evolution of
χe/χe,GB vs R0/LT,e. Due to profile relaxation, the expected value forχe/χe,GB can be
estimated by a linear fit from the values obtained when the relaxation is small, i.e. at the
end of the simulation. The fit indicates thatχe/χe,GB

∼= 14, which is in agreement with
flux-tube simulations. To make more quantitative predictions and to recover the flux-
tube limit, a smaller value ofρ∗

e is required, which is impossible with the computational
power at our disposal.

CONCLUSIONS

Discrepancies obtained with the different existing gyrokinetic codes have emphasized
the need to demonstrate the validity of PIC simulations. Thetrust in ORB5 simulations is
obtained with excellent energy conservation and low numerical noise. The key algorithm
is the field aligned Fourier filter, whose implementation is extremely simple and could
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FIGURE 9. Temporal evolution ofχe/χGB vs R0/LT,e for a CYCLONE ETG simulation withρ∗ =
1/450.

be applied to any gyrokinetic code. The FAF reduces the number of Fourier modes by
one order of magnitude and allows us to increase the time stepby the same amount. In
addition to a huge gain of CPU, the field-aligned filter enhances energy conservation and
yields low numerical noise. Therefore, ORB5 is a powerful tool for studying ITG and
ETG turbulence. Our simulations have shed light on 2 important topics in the gyrokinetic
community. Firstly, there is no visible effects of the parallel nonlinearity on both the
zonal flow structure and the radial transport for smallρ∗ values, but this term should
nevertheless be kept in the model to ensure energy and particle number conservation.
Secondly, the new noise diagnostic implemented in ORB5 shows that the noise depends
on the number of markers per Fourier mode kept in the filter. Wecould thus perform low-
noise ETG CYCLONE simulation, whose transport level is comparable with flux-tube
simulations.

ACKNOWLEDGMENTS

This research was partially sponsored by the Fonds NationalSuisse de la Recherche
Scientifique and by Euratom. All simulations were performedon the IBM BlueGene
Cluster of the Ecole Polytechnique Fédérale de Lausanne.

REFERENCES

1. A. Bottino, P. Angelino, R. Hatzky, S. Jolliet, A. G. Peeters, E. Poli, O. Sauter, T. M. Tran and L.
Villard Proc.33rd EPS Conf. on Plasma Physics and Controlled Fusion (Roma, Italy, June 2006), to
be published.

2. F. Jenko and W. Dorland,Phys. Rev. Lett.89, 225001 (2002).
3. Z. Lin, L. Chen and F. ZoncaPhys. Plasmas12, 056125 (2005).
4. L. Villard, P. Angelino, A. Bottino, S. J. Allfrey, R. Hatzky, Y. Idomura, O. Sauter and T. M. Tran

Plasma Phys. Controlled Fusion46, B51 (2004).
5. J. Candy and R. E. WaltzPhys. Plasmas13, 032310 (2006).
6. T. M. Tran, K. Appert, M. Fivaz, G. Jost, J. Vaclavik and L. Villard Theory of fusion Plasmas, Int.

Workshop, Editrice Compositori, Societá italiana di Fisica, Bolognap.45 (1999).
7. W. M. Nevins, G.W. Hammett, A.M. Dimits, W. Dorland and D.E. ShumakerPhys. Plasmas12,

122305 (2005).



8. T. S. HahmPhys. Fluids31, 2670 (1988).
9. M. KotschenreutherBull. Am. Phys. Soc.33, 2107 (1988).
10. Y. Idomura, S. Tokuda and Y. KishimotoNucl. Fusion43, 234 (2003).
11. R. Hatzky, T. M. Tran, A. Könies, R. Kleiber and S. J. Allfrey Phys. Plasmas9, 898 (2002).
12. M. Fivaz, S. Brunner, G. de Ridder, O. Sauter, T. M. Tran, J. Vaclavik, L. Villard and K. Appert

Comp. Phys. Comm.111, 27 (1998).
13. A. M. Dimits, G. Bateman, M. A. Beer, B. I. Cohen , W. Dorland, G. W. Hammet, C. Kim, J. E.

Kinsey , M. Kotschenreuter, A. H. Kritz, L. L. Lao, J. Mandrekas, W. M. Nevins, S. E. Parker, A. J.
Redd, D. E. Shumaker, R. Sydora and J. WeilandPhys. Plasmas7, 969 (2000).

14. S. Brunner PhD Thesis No.1701, Ecole Polytechnique Fédérale de Lausanne, 1997.
15. L. Villard, S. J. ALlfrey, A. Bottino, M. Brunetti, G. L. Falchetto, V. Grandgirard, R. Hatzky, J.

Nührenberg, A. G. Peeters, O. Sauter, S. Sorge and J. Vaclavik Nucl. Fusion44, 172 (2004).
16. A. Y. Aydemir Phys. Plasmas1, 822 (1994).


