
A new plant control software for the TCV tokamak

Y.R.Martin, S.Coda, B.P.Duval, X.Llobet, J.-M.Moret

CRPP - EPFL
Centre de Recherches en Physique des Plasmas, Association EURATOM-Confédération Suisse,

Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland

Abstract A new plant control software has been implemented on the TCV
tokamak. The new system allows different tasks to be performed
simultaneously. Individual systems can be selected for different tasks.
When a task starts, it loads the selected systems which execute their
actions. The task then releases each system as soon as it has finished with
it. All tasks and systems have their own processes to ensure a parallel
treatment. Moreover, each task or system is controlled by two processes,
one for navigation in the state machine and the other for executing the
corresponding actions. This was implemented to prevent errors in user
defined action codes from perturbing the navigation in the state machine.

1. Introduction

The first plasma in the TCV tokamak was produced in 1992. Since then, new ancillary systems such
as diagnostics and heating systems have been progressively added and have been incorporated into
the TCV plant control resulting in a manifold increase in complexity. The implementation of these
systems has revealed some limitations and weaknesses in the scalability of the TCV plant control
architecture. Therefore, a major upgrade was recently implemented.

A set of technical requirements for the new plant control was defined. The structure and algorithm
for the control of the TCV plant were then designed and the control parameters were defined. Once
translated into a computer language, the algorithm was successfully tested by simulating a virtual
plant. The move from the existing control sequences to the new ones is being performed gradually,
system by system. Many components of the TCV plant are now successfully controlled by this new
software.

Section 2 of this paper describes the technical requirements, while the structure of the new plant
control software is introduced in section 3. Then, section 4 presents the algorithms used for control.
Section 5 contains a discussion of the implementation.

2. Technical requirements

The first control system of TCV was composed of a few separate codes named “sequences”, each of
which contained all actions to be performed on a series of different systems as well as the
conditions for moving further in the execution of a task such as a plasma discharge, for instance.
The structure of the state machine was then implicitly defined within the code. Each new
modification required a more and more difficult intervention and the few original sequences
controlled more and more systems most of them being independent from each other. Sequences
were based on strictly serial execution, which sometimes prevented rapid action on a given system
in case of failure, for instance. On the other hand, a system could also simultaneously receive orders
from different sequences.

Therefore, the main objectives for the new system were

• clear separation between the state machine definition, the navigation within the state
machine and the actions to be performed in the different states

• parallelisation of the control of different systems

• robustness of the whole plant control against programming errors on one particular system

• ability to detect time-outs / errors in systems

• easy implementation of new equipment

• easy implementation of new states in the state machine

• smooth migration from old to new plant control

Several choices made in 1992 for the old system, however, appeared to be excellent, such as the
choice of VSystem Databases (a commercial product of Vista Control Systems) as centralised real
time databases for all plant parameters. This system allows actions on these parameters from any
process. Bridges were written to access the databases from most software used for control around
TCV. A GUI also facilitates the communication with the databases. This efficient centralised
database, together with its graphical interface, was therefore retained and, as will be shown later, is
used to transfer information between processes.

On the other hand, the tool for writing scripts included in the Vsystem package is not very efficient
and had limitations. Therefore, the new TCV plant control software is written in the TDI (Tree Data
Interface) language which is provided with MDS+ [http://www.mdsplus.org].

Finally, the new system had to be built with existing equipment, to reduce the costs.

3. New plant control structure

The new structure, built to satisfy the points described above, is the following. The whole plant is
controlled through two types of objects: systems and tasks. A system corresponds to a piece of
equipment such as power supplies, acquisition system, vacuum vessel pumping units or a
diagnostic. A task corresponds to a series of actions to be performed by a subset of systems.
Typically, ‘do a plasma discharge’ is a task.

A task is described by a state machine,
starting from and returning to the state
‘waiting’. For instance, ‘do a plasma
discharge’ goes through the states
‘preparing discharge’, ‘loading timing
system’, ‘firing plasma’ and ‘data
acquisition’. Since the TCV plant
control has to perform other tasks as
well, such as ‘start/stop’ or ‘do glow
discharge cleaning’, different tasks,
with their own state machine
description, have to be managed
simultaneously, as shown in Fig.1.

WaitingStart AStart A

A1A1

A2A2

Start BStart B

A3A3

A4A4

Stop AStop A

Abort AAbort A

B1B1

B2B2

B3B3

B4B4

B5B5

B6B6

Stop BStop B

StartStart StopStop

OffOff

VirginVirgin ExitExit

Abort BAbort B

Figure 1: State machines for tasks A, B and startup.

Each task requires its own, modifiable, subset of systems. For instance, a particular diagnostic
might be required for a plasma discharge. Therefore a dynamic matrix contains the requirements for
all systems for all tasks. When starting, a task takes with it all the required systems and all follow
the same state machine, sometimes asynchronously but with meeting points. Since systems can be
loaded by different tasks, in the first state the task waits until all required systems become available,

i.e. released by the other tasks. The last state of a task manages the release of the systems to the
‘waiting’ state. Hence, different tasks can run simultaneously, as long as they require different
systems. If one task requiring a system already working for another task starts, it will wait in the
first state until the required system is released by the other task. This structure allows, for instance,
doing a cleaning discharge while acquiring data from a plasma discharge.

If a system requires a finer state machine definition, e.g. to match an internal state machine, sub-
states can be declared for this system.

Each task and each system is controlled by two distinct processes. One is devoted to the navigation
in the state machine and the other to the execution of the actions to be performed in each state.

Each task navigation process runs the same task navigation code. Similarly, there is only one task
execution code, one system navigation code and one system execution code. In fact, the codes for
tasks or systems only differ by a few lines. Hence, only two codes are used to manage the whole
TCV plant control. The distinction between processes dealing with different systems is simply
obtained by entering the name of the system as an input parameter. The functionality of these two
master codes is described in detail in the following chapter.

Finally, the execution code for tasks and systems calls the action programs corresponding to the
relevant task or system for the current state. The collection of such programs, whose number is
approximately (# tasks + # systems) * # states, contains all the knowledge necessary to control the
different parts of the TCV plant. Each of these programs is produced by the person in charge of the
system or by the task manager. There are no restrictions in the code included in these files except for
the constraint that it must return a parameter indicating the status of the action.

If one of these programs contains errors, the execution process catches the error and sends a
warning message. If the failure is fatal so that the execution process stops, the disappearance of the
process is by an independent supervising process, whose only function is to check the presence of
all task and system processes. The missing process will immediately be signalled to the TCV
operator. On the other hand, the navigation process will keep asking the execution process to
execute the file: therefore, once the faulty process is repaired the system will fully recover. Finally,
testing these files in almost real conditions is possible since the full state machine can be manually
run for an individual system. With these characteristics the robustness of the coding is ensured.

In parallel, the navigation process checks whether the execution process spends too much time in
executing the specific file. A warning message is generated in that case. Similarly, if one task or one
system stays too long in a state, a warning message is addressed to the operator. Since any system in
any state of any task can be aborted, the operator might deselect the failing system to continue with
the other ones. In that case, the failing system would return to the waiting state via the abort state.
More generally, the operator can abort one running task. Here, all systems loaded by the task will be
sent to the abort and then waiting state. Finally, all systems have an additional flag indicating
whether they are indispensable for a given task. If one system is not necessary and develops a
problem blocking a state for too long, it is automatically sent to abort and the task is allowed to
continue.

This approach has the advantage that individual programs are compact and, since the state of any
system is always well known, the identification of the misbehaving program and its repair or
improvement is remarkably easy.

A new system is easily added to the plant control. The new system name merely has to be added to
the list of systems. The database is then automatically compiled with the new system. Once this
system is duly attributed to the different tasks, it can be loaded. The major work resides in the
implementation of the execution files for each state along the state machines of the different tasks.

A new task is also easily implemented. The new task name has to be added to the list of tasks, the
state machine has to be described and the actions for the required systems defined.

Finally, a new state in an existing state machine is also easily added. The state characteristics, as
well as the modifications of existing states targeting the new one, have to be inserted into the
specific state machine description.

4. Description of the major components

4.1 Task & system definition file

The tasks and systems are simply listed in a text file, named tcvpc_structure.txt, under the
corresponding title.

4.2 State machine definition files

Each task has its own state machine starting from and returning to the waiting state. The state
machine is described in a text file, named tcvpc_taskname_states.txt, which comprises a series of
blocks, one for each state, with the following syntax:

State statename
Pause number
Timout number
Maxdura number
Cond condition
Dest destination statename

The pause number corresponds to the waiting time in seconds between two successive runs of an
execution file. Timout contains the duration after which the alarm would ring if the execution file
has not returned, while maxdura contains the maximum duration in the state (before the alarm). The
condition, expressed in the TDI language, manages the transition to the next state, indicated under
dest. Many cond / dest pairs can be included in the description, if necessary.

4.3 Database

A database is built to transfer commands and parameters between the different processes. This real
time database is automatically created from the structure and state files after any modification of
any of those files. The main variables used in the processes are:

• Triggers to navigate within a state machine, for the corresponding task and all systems
• Flags for the requisition and necessity, demand and status, for the matrix of tasks and

systems
• Strings for the state, status, command, synchronisation, error, … for all systems plus all

tasks
• String for the current master, sub-command, … for all systems
• Numbers for time-out, counts, … for all systems plus all tasks

4.4 Navigation and execution programs for tasks and systems

The navigation and execution codes are the two central pieces of the plant control. They are devoted
to the management of all systems. All systems run replicas of the same two codes with their name
as input parameter. All tasks run very similar versions of the two codes also with the task name as
input parameter. The algorithms of the two files described below correspond to the tasks.

4.4.1 Navigation code for tasks

During the initialisation phase, the counters are reset to zero and the state to virgin. The task and
system definition file and the state definition file for the corresponding task are read and processed.

The process then enters a loop. It increments the counters and checks for time-outs and excessive
time spent in the current state. Then, the process checks whether some required but previously
aborted system could be resynchronised. Then it checks the synchronisation of all required systems
and calculates a summary status indicating if the task itself is OK and ALL required systems are OK

and synchronised. Then, if the execution process is ready to receive a new command, the conditions
to move to another state are evaluated. As soon as one condition is found true, the task moves to the
new state, changes the name of the state, sets the status to NOTOK and resets some counters. If all
conditions are false, the task remains in the same state. The name of the state is then written in the
command field, which will be asynchronously read by the execution code to perform the
corresponding action. The process then waits for a predefined, state specific, delay.

The process remains in this loop as long as the state is not ‘Exit’.

4.4.2 Navigation code for systems

The navigation code for systems only differs from the description above in a few points. Since the
systems can a priori follow all tasks, all state machine files are read. The evaluation of the
synchronisation is different: it only compares its state to the state of its current master task.
Otherwise, the treatment of the conditions, the eventual move to another state and the assignment of
the command are identical.

4.4.3 Execution code for tasks

This program directly starts with a loop. It reads the command field and if a state name is present it
set the status to NOTOK and a WORKING flag to ON. Then it looks for a file named
‘tcvpc_taskname_state’. Such a file contains the action code for the corresponding task and state. If
such file exists, it is executed. When executed, a latched status is updated with the status that the file
had to return in one database channel. In the case of an error during execution, a message is
displayed on the operator screen. If the file does not exist, the status is automatically set to OK.
When all done, the WORKING flag is set to OFF and the command field erased. The process then
waits for 1 second and starts another loop. If the command field is empty the process directly goes
to the waiting phase. The process remains in this loop as long as the command is not ‘Exit’.

4.4.4 Execution code for systems

This version only differs by the treatment of possible sub-commands. If a string is given in the sub-
command field the process will search for the file ‘tcvpc_system_string’ and execute it as for the
main command. In that case, the string is defined by the person in charge of the system.

4.5 Action codes

The action code files contain the actions which have to be performed in a given state for a given
system or task. The action can be as simple as checking the pressure in the torus or, as complex as
igniting a glow cleaning discharge. The only rules are that its execution should be non blocking and
that it must return the status.

4.6 Launching of processes

All these processes run on a single computer (ALPHA DS20, 2 processors) operating under VMS.
A command file, written in DCL, starts 5 detached processes, one for task navigation, one for task
execution, one for system navigation, one for system execution and one for supervision processes.
The first 4 processes read the task and system definition file and automatically start all required
processes as sub-processes.

4.7 Graphical output

A graphical interface is a convenient tool for the operator to verify the evolution of the processes.
VSystem GUIs, as shown in Fig.2, were implemented for this purpose. On the left, the ‘TCV Shot
Cycle Control’ window shows the evolution of the 2 main tasks: DOSHOT is in its last phase (Post)
and DOGLOW is ready to ignite the discharge (Pret). Below, the state and comment for all tasks
(first 3 lines) and systems. The color of the box with the system name indicates the status. For
instance the MDS system which deals with data acquisition is red because the acquisition is not yet
finished. The DOSHOT task is waiting for the MDS system to return to waiting. All other systems
except GLOW are released in the waiting state. GLOW is now loaded by DOGLOW.

The three columns on the right hand side of the comments show, in green, the systems which are
required for the different tasks. The GLOW system is required for both DOGLOW and DOSHOT
tasks. The last 2 thin columns show that all processes are running (green): one indicator would turn
red in case of failure. The circle with the needle, above these colums, indicates, when turning, that
the process which surveys the presence of all processes is running. The text at the bottom of the
window contains the warning messages.

The window in the top right corner shows details for the DOSHOT process. The colour of the title
corresponds to the status, the 3 boxes below contain the state, the command and the comment.
Below on the left, some partial status indicators are now red and, in grey, one sees the buttons to
navigate in the state machine. On the right, the numbers correspond to the different counters.
Below, in green and red the status of the systems as seen from the task: in full colour the status of
the loaded systems, in light colour the status of the other systems. In this case, green means that the
system is available, i.e. ready and in waiting state.

The window in the bottom right corner shows a similar view but for a system. The additional boxes
show the current master (now on ‘None’ since the MT (motor generator) is in the waiting state), the
sub-command (also on ‘None’) and the file currently being executed (empty now since the actions
to be performed during the waiting state are rapidly executed and the waiting time between
executions is long). At the bottom, two rows of buttons for navigation in the two tasks in which the
MT is involved.

5 Discussion – Conclusion

The new TCV plant control was started 8 months ago (Feb 2005) with 2 tasks and a few systems.
The transfer of a few systems or one task from the old sequence architecture to this new architecture
was successfully performed during short breaks of TCV operation. The new system now controls 3
tasks and 13 systems. It has proven particularly effective in terms of both control efficiency and
ease of problem solving.

Figure 2: Graphical interface showing the state and status of different tasks and systems

