
1

Abstract- In this paper, we propose an architecture for hybrid
services, i.e., services that span many network technologies,
especially the PSTN and the Internet. These services will play
an important role in the future, because they leverage on the
existing infrastructures, rather than requiring brand-new and
sophisticated mechanisms to be deployed. We explore a few
issues related to hybrid services and propose a platform, as
well as a set of components, to facilitate their creation and
deployment. The existing infrastructure is only required to
generate specific events when requests for hybrid services are
detected. We present the design of a service layer, based on
Java, that handles the treatment of these special requests. Our
service layer is provided with a set of generic components
realized as Java Beans. Hence, we can provide hybrid services
without changing the existing infrastructure. We illustrate this
strength of our architecture by discussing the call forwarding
service.

I. INTRODUCTION

 The recent growth in the number of Internet users, coupled
with the strong foothold of the Public Switched Telephone
Network (PSTN), is creating a demand for a new class of
PSTN and Internet integrated services that can take
advantage of both technologies simultaneously. We refer to
this new class of services as hybrid services. Examples of
hybrid services are: Click-to-Dial [7] (which enables the
user to request, from a Web browser, a connection to be set
up between two telephone sets connected to the PSTN);
voice over PSTN and Internet interconnected by H.323
gateways; universal messaging; and access to both
electronic-mail and voice-mail either from the Internet or
the PSTN.

The demand for hybrid services is further fostered by the
anemic market penetration of broadband integrated
networks based on Asynchronous Transfer Mode (ATM)
technology, as well as by the fact that cellular networks are
already well integrated with the PSTN. This makes purely
Internet-based solutions, relying on Internet telephony for

 Constant Gbaguidi and Jean-Pierre Hubaux are with the
Swiss Federal Institute of Technology (EPFL), 1015
Lausanne, Switzerland. Email: {constant.gbaguidi, jean-
pierre.hubaux}@epfl.ch
Giovanni Pacifici and Asser N. Tantawi are with IBM
Research Division, Yorktown Heights, NY 10598. Email:
{giovanni, tantawi}@us.ibm.com

voice, impractical. Taken separately, the PSTN and Internet
are far from being an ideal ground for developing future
hybrid services; however, if coupled together they can
complement each other effectively.

The PSTN (including its cellular extension) provides an
extremely reliable, available and ubiquitous system, with
guaranteed Quality of Service (QoS), and a business that
commands $600 billion in total annual revenues (two orders
of magnitude higher than the one of the Internet). The
PSTN is endowed with a powerful service creation and
provision platform called the Intelligent Network (IN)
[15][6][22]. The design of the IN followed a simple
principle: separation of service-specific software from basic
call processing. Before the advent of the IN, services were
incorporated in the network switches in a manner that was
specific to each manufacturer. Therefore, introducing new
services required the modification of software in each and
every switch in the network. Such a process took years to
complete and made network operators heavily dependent on
their equipment suppliers. The IN reduced a great deal of
this dependency by moving service-specific software into
specialized nodes called Service Control Points (SCPs).
Basic call processing is performed in the switches, named
Service Switching Points (SSP) in IN parlance. The
communication between SSPs and SCPs is done through a
channel called Common Channel Signaling No. 7 (CCS7)
[24]. The advent of the IN reduced the time frame of the
introduction of a new service to a few months. The success
of IN concepts steered their application in the mobile
communications environment; examples of applications are
Wireless IN (WIN) [8] and Customized Applications for
Mobile network Enhanced Logic (CAMEL) [5].

The Internet is characterized by a devolved service
architecture, i.e., there is no global service creation and
provision framework. New services can be created by any
user that can afford a server. Creating new services implies
developing a distributed application that must be installed
and executed in the terminals and servers. Internet
applications take advantage of intelligent terminals and
powerful user interfaces. However, some services (and even
basic mechanisms) of the Internet require specialized
servers; the most important of such servers is the Domain
Name Server (DNS).

Hybrid services are expected to play a very important role
in the years to come. This is due to both the desire of users

An Architecture for the Integration of Internet and
Telecommunication Services

 Constant Gbaguidi, Jean-Pierre Hubaux, Giovanni Pacifici and Asser N. Tantawi

2

to integrate the ways they communicate (a promise made
more than 20 years ago by the Integrated Services Digital
Network, ISDN, but not fulfilled yet) and the willingness of
service providers (Internet Service Providers, ISP, Internet
Telephony Service Providers, ITSP, and Telcos) to
differentiate their offers from their competitors’. Last but
not least, smart cellular phones (featuring the functions of
both a phone and a small laptop) are expected to fuel the
integration of services.

In the recent past, new research activities that focus on
hybrid services have emerged [23, 7, 10]. So far, these
efforts have focused mainly on inter-working rather than
integration. The common approach taken by these activities
is to model the PSTN (or the Internet) as a stand-alone
system whose services can be accessed through a gateway
that acts like a PSTN (or Internet) terminal. While these
new activities are leading to the development of new
services, such as Click-to-Dial, we are still far from the true
integration that will allow service providers to rapidly
create and deploy services that can take advantage,
simultaneously, of all existing delivery and access systems.

In this paper, we present a new approach to hybrid service
creation in a heterogeneous environment that spans the
PSTN and the Internet. We propose an architecture, as well
as an early set of service components, that allows simple
and rapid creation and deployment of integrated
telecommunication and Internet services. A service
component defines a set of pre-developed service elements
that can be used to assemble a distributed service. These
service components are run on terminals, network elements,
as well as servers and peripherals; they therefore provide an
openly programmable service environment. The proposed
service components are implemented as a set of JavaBeans.
Using Java technology allows service developers to write
applications in a single language that can be executed
without modification on any equipment, while the
JavaBeans technology is used to implement the service
components. In our model, these service components are
provided by vendors of network equipment, servers,
peripherals and terminals. Therefore, the service developer
needs only to customize the service logic and integrate it
with the service components.

This paper is organized as follows. In Section II, we review
the state of the art in the Internet and the PSTN. In Section
III, we present our service platform architecture, as well as
a set of generic service components. In Section IV, we
discuss an example of hybrid service that can be
constructed using the framework and service components
described in Section III. Finally, in Section V we
summarize the main contributions of this paper and discuss
some remaining issues.

II. INTERNET AND PSTN SERVICE INTEGRATION: A
STATE OF THE ART

In the recent past, we have witnessed research efforts
geared towards the development of services that can span
both the PSTN and the Internet. We classify the efforts
relevant to this paper into four categories: enabling
technologies for interoperability at the signaling and control
level, efforts related to the access to telephony services
from a computer, works on the access to the IN
infrastructure from the Internet, and enablers of distributed
computing. Highlight representatives (H.323, Computer-
Telephony Integration, PSTN/Internet inter-working, and
CORBA, respectively) of the four categories are presented
below.

A. Interoperability among network technologies with
and without QoS guarantees : H.323

Networks over which hybrid services are deployed use
differing technologies; specifically, some of them can
embed mechanisms for delivering the QoS requested by the
user, while others may not. Making such networks
interoperate is one important issue involved in providing
hybrid services. H.323 [14][30] is an ITU-T standard that
solves much of this problem. Its primary goal is to enable
audiovisual interactions among terminals situated in various
environments, i.e., Local Area Networks (LANs) with their
many technologies (which may or may not guarantee QoS)
and telecommunication networks (PSTN, ISDN). The key
H.323 components that are important to the scope of our
work are the gateway and the gatekeeper. An H.323
gateway is in charge of translating call signaling, control
messages, and multiplexing techniques across the network
technologies involved in the call. While the gateway is an
optional element in an H.323 system, its absence, however,
undermines interoperability among differing network
technologies. An H.323 gatekeeper performs network
administration, bandwidth re-negotiation and address
translation. H.323 terminals must get permission from the
gatekeeper before they can place or accept a call. A
gatekeeper is not required in an H.323 system ; however, its
presence empowers the network administrator with
enhanced control on the network, and provides users with
the possibility to define alias addresses that are independent
of the network addresses.

B. Computer-Telephony Integration (CTI): TAPI and
JTAPI Approaches

CTI is the main scheme for the integration of computer
networking and Telecommunications. The foundations for
this integration were laid by the European Computer
Manufacturers Association (ECMA) in the technical report
ECMA TR/52 [4] on the provision of Computer-Supported
Telecommunications Applications (CSTA) [1][3]. Many
implementations were carried out for CSTA : Microsoft’s
Telephony Application Programming Interface (TAPI) [23],

3

Novell’s Telephony Services Application Programming
Interface (TSAPI) [2] and Sun’s XTL [29]. In this section,
we focus on TAPI 3.0, because it has already incorporated
H.323, which enables services to span several network
technologies. When using TAPI, an application can
generate calls that will actually go through many different
network technologies (because of the use of H.323) ; this
makes TAPI a major player at the hybrid service provision
marketplace. Most of the other telephony APIs consider
only the Internet and the telephone network.

Despite its wealth of relevant features, TAPI suffers from
an important limitation: its tight relation to Microsoft
Windows platforms. Relief is supplied by a solution based
on the Java language [9]: Java Telephony API (JTAPI)
[28]. Java is a platform-neutral language, i.e., a program
written in Java is portable, as is, onto any platform that runs
a Java Virtual Machine (JVM); the JVM translates the
program into platform-specific code [9]. JTAPI shields
applications from the specifics of the used platforms (Fig.
1). It can be used to access TAPI functionalities when the
host runs Microsoft Windows, or XTL functionalities on a
Sun machine. It is made up of a core package which
provides the basic framework for modeling telephone calls
and rudimentary features (e.g., placing, answering, and
dropping a telephone call). This package is composed of
objects which define the JTAPI call model : Provider (of
the telephony service), Call, Address, Connection,
Terminal, and TerminalConnection objects.

Fig. 1. Typical stack using JTAPI.

More interestingly, JTAPI can be used with dumb terminals
such as Network Computers (NCs). In this case, much of
the processing is uploaded to a network-based proxy.
Therefore, we can use JTAPI for dumb mobile terminals as
well. There is, however, another scheme that can be used to
perform the uploading: it is a script language based on the
Wireless Markup Language (WML) [32], which is an
adapted version of HTML to the wireless environment. This
script language, called WMLScript, is much simpler than
JavaScript (script language associated with Java). A major
drawback of using WMLScript for hybrid services is that it
is too tightly related to the wireless environment and is still
less known in the wide communications community. It is
based on tools that currently have little acceptance. For
now, we promote the use of JTAPI, essentially because of
its completeness.

C. PINT: PSTN and Internet Inter-working

A working group, called PSTN/Internet Interworking
(PINT) group, was created at the IETF in 1997 with the
objective of opening up the IN architecture to user requests
issued from the Internet [7][19]. In this scenario, the user
makes the call request from the Internet (the Web) and later
communicates through the PSTN. The reference model laid
out by the PINT group is depicted in Fig. 2. Requests
received from the user on the Web are sent to a Web server
that processes and forwards them to the gateway between
the Internet and the PSTN. This gateway then
communicates with legacy IN components such as the
Service Node (SN), the SSP (both the mobile switching
center and the classical telephone central office), the SCP,
and the Service Management System (SMS). An SN can be
regarded as a hybrid component that provides, among other
activities, the combined functionality of an SSP and an
SCP. The SMS is a system that embeds the functions
necessary for the management of the IN infrastructure.

There is another trend, toward the interweaving of the IN
and the Internet, where nearly the entire IN control system
runs on the Internet [21]. In this trend, the role of the SCP is
reduced to finding a Web server that contains the logic and
data to be used for the services, unlike in the conventional
IN system where the whole service software is controlled
by the SCP. By running much of the IN control system on
the Internet, service providers can enable the customers to
create their services as easily as create their Web pages.
Interoperability, among IN system providers, can also be
achieved [12].

D. Distributed Computing and Telecommunications
Services

The part of telecommunication services that is implemented
in software has been increasing ever since the advent of the
IN, which is one of first architectures that viewed services
as interactions among software components. Therefore, the
design of telecommunications has been influenced by
developments in software engineering. Two main trends
have emerged during the past years : object-orientation and
distributed computing. These trends are inter-related:
Distributed computing can take advantage of relevant
properties of object-orientation such as encapsulation,
which is highly desirable in a distributed environment.
Approaches that integrate the two of the aforementioned
trends are Open Distributed Processing (ODP) [16] and the
Common Object Request Broker Architecture (CORBA)
[25]. Their aim is to overcome platform and language
discrepancies; an object is only required to define an
interface in order to be invoked by other objects; this
interface depicts the operations, notifications and streams
that the object can handle, as well as its attributes. The
interface is declared according to a language called
Interface Definition Language (IDL). The choice of the
programming languages used for implementing the
interface is left to the developer.

Java applications Applets

JTAPI

Java Run-Time

XTL TSAPI TAPI Other

Telephony H/W

4

Fig. 2. The PINT reference model.

ODP and CORBA paved the road to a new way of creating
distributed services that span multiple platforms. This new
way is exemplified by the Telecommunications Information
Networking Architecture (TINA) [31] and the extended
binding model (XBIND) [20]. The idea behind these
approaches is to build an openly programmable
environment for service creation. The focus of these
activities is on QoS control and resource allocation. Both
approaches have found limited applicability because they
are both strongly tied to ATM technology which, so far, has
had little acceptance as an access network. A discussion of
the strengths and weaknesses of TINA can be found in [12].

The CORBA technology is also being considered for
Intelligent Networks as well as Wireless access and
terminal mobility. In the Intelligent Network, current efforts
focus on how CORBA could effectively interwork with
SS7. A first approach consists in providing gateways
between the SS7 network and CORBA-based systems; a
rather simple solution with arguable scalability. Another
solution would be to make use of the SS7 infrastructure as
the interoperability protocol between "islands" of CORBA-
based telecommunications equipment [26]. Wireless
networking and terminal mobility are a formidable
challenge for large object-based middlewares such as
CORBA. The problems range from the ability to cope with
the characteristics of a radio channel (limited bandwidth,
non-permanent connectivity) to the capacity to take
mobility mechanisms into account (hand-over, terminal
tracking, etc.) [27]. More generally, there are some
concerns about the ability of CORBA-based-products to
fulfill the requirements of the telecommunication systems,
when it comes to performance and scalability.

It is worthwhile noticing that the many implementations of
CORBA currently have limited interoperability. This
present-day weakness restricts the ability of CORBA to

patch computing platforms together. Moreover, most
CORBA implementations are unavailable for free. This
situation impacts the development of CORBA, compared to
the fast-evolving pace of Java, which is constantly enriched
with new features in an open way.

In this Section, we reviewed the main enabling technologies
that we will need in the construction of our platform for
hybrid services. These services rely both on the Internet and
on the PSTN for their execution and delivery. Examples are
teleshopping sessions and hybrid access to email and
voicemail. In a teleshopping session, a user, after browsing
the Web site of a given retailer, interacts with a salesperson
to purchase the selected good. Hybrid access to email and
voicemail allows a user to either access Internet email from
a PSTN phone by means of voice synthesis, or retrieve and
play back voice messages using a computer connected to
the Internet.

III. PLATFORM ARCHITECTURE

The process of implementing a service within a system
infrastructure involves a number of steps, including
creation, design, development, testing, operation, provision,
management, and termination. We call this process service
engineering. Such a process requires a platform, or an
environment that enjoys the following features:

• independence of the service from the
underlying operating systems;

• a set of reusable components for the creation
of new services;

• efficient mapping of the service components
onto the system infrastructure;

• a graphical and easy-to-use interface to create,
manage and operate services;

Mobile
Switching

Center (MSC)

Central
Office

Service Node
(SN)

Service
Management

System (SMS)

Web server

PSTN/Internet
Gateway

Service
Control Point

(SCP)

Internet

Interface to be specified by the IETF

Interface to be specified by the ITU-T

Control and management data
User data

A

B

C

D

E

F

G

HI

5

• generality and expandability to allow for the
creation of novel services.

Our focus in the remainder of the paper will be on the
determination of generic service components which, put
together, yield a wealth of hybrid services. In the following
sections, we present our methodology toward the
construction of a platform that exhibits the aforementioned
features. In section A, we describe the service platform and
its main underlying principles and concepts. Because it is
unrealistic to cover all sorts of hybrid services, we focus on
a specific family, i.e., real-time communication services
(section B). We describe a generic topology of the system
infrastructure for this family of hybrid services. A
middleware that enables the programmability of this
infrastructure is presented in section C.

A. Service Platform

As mentioned in Section I, the most popular service
architecture for the PSTN is the IN. It is provided with a
Service Creation Environment (SCE) in which a service is
created out of a set of standardized service-independent
building blocks (SIBs). Although the concept of SIB has
been removed from the standard in the Capability Set 3, it is
still used by the vendors. Once a service is built as a chain
of SIBs, the service logic is spread out into components that
are uploaded into network and control nodes, such as SCPs
and SSPs.

In a similar manner, we envision an SCE that uploads
service components into terminals and servers; in some
cases, components must also be uploaded into network
nodes or into specialized elements such as gateways (cf.
Section IV). Our proposal goes far beyond the IN SCE. In
particular, it supports the upload of specific protocols into
the elements that require specific communication
mechanisms. As depicted in Fig. 3, three services (S1, S2,
and S3) are provided on a system consisting of:

• Terminals (e.g., telephones, mobile phones,
Personal Digital Assistants, Personal
Computers, and embedded devices)

• Network Nodes (e.g., switches, routers,
Mobile-services Switching Centers, and
satellites)

• Information Servers (e.g., Web servers and
mail servers)

• Control Servers (e.g., SCPs).

For the sake of conciseness, inter-network elements (such
as gateways) are not depicted in Fig. 3. The SCE converts a
service into components to be uploaded into the system
infrastructure. For example, service S1 is broken down into
two components: CT/S1 in the terminal and CI/S1 in the
information server. The middleware layer provides the
binding and integration of the various components. It also
provides vertical independence in such a way that common

components are uploaded into heterogeneous elements. The
middleware, together with the uploaded components,
defines the Java Service Layer.

It has to be stressed that the software installed on the
terminal is not fully under the control of the service
provider; indeed, the end-user is very often entitled to select
and install the application he prefers. For example, he is
usually free to choose the Web browser; in this case, the
service provider would still have the possibility to impose
the downloading of appropriate applets at the beginning of
the session.

The system infrastructure in Fig. 3 exhibits a great deal of
heterogeneity in terms of both hardware and software
interfaces to the system elements. Therefore, we need to
define a common, ubiquitous interface for the downloaded
components. One candidate for such an interface is the Java
language and its extensions. Basically, a computing device
that has a Java virtual machine can host a Java application.
This observation is valid for both the data networking and
Telecommunications environments. This is obvious for the
data networking environment. As for the
Telecommunications environment, intelligent nodes and
terminals are expected to become more open and provide a
Java interface, such as the JAIN extension [18] for IN
SCPs. We decided to choose the Java interface for our
platform for the following reasons:

1. Ubiquity: Most terminals, even smart phones and
embedded devices, can now be provided with a Java
virtual machine; this trend is also emerging for devices
located in the PSTN such as SCPs, SSPs and SNs

2. Power: Applications written in Java can be run on any
platform that has a JVM installed; Java actually makes
the phrase “Write once, execute everywhere” a reality

3. Extensibility: Many capabilities are being added to the
core Java specification. In particular, a component
architecture (i.e., JavaBeans [17]) has been developed
to allow programmers to re-use previously written
Beans. Beans are Java classes written according to a
number of rules that especially facilitate their graphical
manipulation and inspection. They make extensive use
of events to communicate with one another. The Bean
Development Kit (BDK) [11] provides a user-friendly
environment for the manipulation of Beans.

The envisioned SCE provides a set of Beans that can be put
together to create new services. It then converts the Beans
into a set of components that are sent to the Java Service
Layer. This layer maps the components onto system
elements. The mapping depends on the capabilities of the
elements; components may reside physically in existing
elements, or they may reside in new physical elements. It is
worth noting that Beans are used in the SCE, while the Java
Service Layer manipulates service components. A Java
virtual machine runs within the middleware and is used all
over the service lifetime.

6

Fig. 3. The proposed service architecture.

B. Real-Time Communication Hybrid Service

In order to illustrate the concepts introduced above, we
focus in the remainder of this paper on a subset of hybrid
services: hybrid services that provide interactive
communications. By interactive communication, we mean a
communication between two or more end-users at the same
time; examples are telephony, videoconference and chat.
This subset has been chosen because it is at the
convergence point of Telecommunications and Internet
services; this focus makes it possible to define precise
Beans and facilitate the understanding of our proposal.

Fig. 4 illustrates an abstraction of a system that can provide
hybrid real-time communication services. We consider
three planes: user, end-system, and network. The user plane
contains user objects, abstracting over real users of the
service. Users may be either at fixed or mobile locations (an
example of user mobility is Universal Personal
Telecommunications, UPT [13]). Users interact with the
system through terminals that are abstracted as Terminal
objects in the end-systems plane. Examples of terminals are
telephones, portable phones, mobile terminals, PDAs, and
PCs. The characteristics of the terminal form the attributes
of the Terminal object. Terminals are connected to the
system through Network Access Points (NAP) as shown in
the network plane. NAPs may belong to different networks,
thus forming a hybrid environment. Examples of NAPs are
the port on the subscriber board of a local exchange, the
wireless network interface at the Base Station, and the port
on an access router. A network provides connectivity1

 1 In the remainder, we will use the term “NAP-to-NAP
Connection” to designate the way connectivity is provided

among the NAPs that belong to it. A gateway connects
NAPs from different network technologies; it acts like an
end-system to both networks. The gateway device is
abstracted in the end-system plane and provides all
necessary conversions between the two networks.

The splitting of the connection between the terminal and the
gateway in three parts may look superfluous at first. The
rationale behind this is that we consider the general case
where the terminal can move during an on-going session. In
this case, the NAP will have to change (hand-over
mechanism). Note that a gateway can be mobile, as well.

The object model corresponding to the above hybrid system
abstraction is depicted in Fig. 5. This model provides a
preliminary set of service components. The user makes use
of a terminal to access services. The terminal accesses the
network through a terminal-to-NAP connection. Access
points are linked to one another by either a NAP-to-NAP
connection (when the two access points relate to
homogeneous network elements), or a gateway connection
(connection that goes through a gateway). A gateway
connection (GWConnection) is made up of two GW-to-
NAP connections and one connection binding. The
connection binding embodies the interconnection performed
by the gateway. In a programmable platform, the gateway
can receive instructions from the Java Service Layer to bind
two connection segments on both sides of it.

between two NAPs; in the case of the Internet, this is
motivated by the fact that the kind of services we consider
here requires resource reservation strategies to be deployed.

CT/Si: Component on Terminal for Service #i
CN/Si: Component on network Node for Service #i
CI/Si: Component on Information server for Service #i
CC/Si: Component on Control server for Service #i

Beans
Archive

Downloadable
components

Service
Creation
Environment

Terminal

Middleware

CT/
S1

CT/
S3

Network node

Middleware

CN/
S2

CN/
S3

Information server

Middleware

CI/
S1

CI/
S3

Control server

Middleware

CC/
S1

CC/
S3

Java Service Layer

7

Fig. 4. System abstraction for hybrid real-time communication services.

Fig. 5. Object Model.

C. Middleware for the Programmability of the Hybrid
Service Platform

The components of the architecture described in section B
need to be programmed in order to introduce new services.
In this section, we address the programmability of these
components, by leveraging on the existing equipment, i.e.,
we do not intend to create new equipment; we rather

enhance the existing equipment in order to facilitate the
programmability of the service platform.

In section 1, we present a generic information flow diagram
that describes the processing of information within and
across the main nodes of the platform. In sections 2 and 3,
we describe relevant events and service components
necessary to the provision of hybrid services.

 Network Access Point

NAP to NAP Connection (NNC)

Terminal to NAP Connection (TNC)

 Gateway connection (GWC)
Gateway

Ui User

Ti Terminal

GW

Users

End-systems

U1
U2

U3

T1 T6
GW

Network 1 (e.g., the PSTN) Network 2 (e.g., the Internet)

NAP

Network
Phys. Addr.
Bitrate
Protocol

GWConnection

QoS

NAP-to-NAPConnection

QoS

Terminal

Logical Address

User

ID

uses

1 *

*

*

Terminal to NAP Connection

QoS

1

1

ConnectionBindingGW-to-NAP -Connection

QoS

2 1

Association class

Composition

8

1) Generic information flow diagram
In the vision that we are developing in this paper, the
introduction of new services must be smooth, in order to
minimize the upgrade of the existing service platform
elements. This principle can be neatly implemented by
using triggers. The existing element, after detecting a
special trigger, calls the Java Service Layer that embeds the
logic according to which service requests must be
processed. As depicted in Fig. 6, we suggest implementing
a process, in the elements, to detect specific patterns in the
service request and pass the treatment on to listeners located
in the Java Service Layer. Note that this mode of operation
fits well with the way the IN runs : The SSP detects special
patterns and then calls the SCP in order to get instructions
on how to process the service request. As we will see, the
model also nicely fits with Internet-based mechanisms.

Fig. 6. Trigger-Event-Source and Trigger-Event-Listener model
for the platform elements.

We expand further the above simple event source and
listener model. A source (TriggerEventSource) fires
a trigger event which is eventually caught by listeners (Fig.
7). Each trigger is characterized by a pattern (e.g., 1-800, or
a full address). When a listener catches a trigger event
(TriggerEvent), it compares the trigger’s pattern with
its own attributes. If the pattern matches these attributes,
then the listener is authorized to handle the event. This
handling includes the service logic and may require a
connection to be set up between two endpoints (or more).
The listener cannot fire a connection attempt event
(CnxAttemptEvent) towards any connection object,
since the connection that the listener wishes to create does
not exist yet. We suggest that the connection attempt event
be issued to a connection factory
(ConnectionFactory), which eventually creates a
connection object. The created object fires either
CnxCompleteEvent (connection complete event) or
CnxFailEvent (connection fail event), which are
propagated down to the trigger event listener and the trigger
event source. For the sake of conciseness, this event
propagation is not fully depicted in Fig. 7. In the case of a
gateway, a binding may be needed between the connection
segments on the two networks interconnected by the
gateway. The connection factory is then instructed by the
trigger event listener to realize the binding.

The information flow diagram depicts the creation of the
topology (Figs. 4 and 5) used for the provision of hybrid
services. Indeed, the figures mentioned essentially reflect
the connections among the main components of the
architecture. The information flow diagram therefore is an
evolution of the work presented in section B toward
concrete programmability. In the next sections, we describe
the main events and service components identified in Fig. 7.

2) Events needed
The main events identified from Fig. 7 are:
- TriggerEvent
- CnxAttemptEvent
- CnxCompleteEvent
- CnxFailEvent

Note that all event names have *Event as suffix.
We focus on the description of TriggerEvent, which is
the most illustrative event of the proposed diagram.

TriggerEvent is fired by TriggerEventSource
when an address with a specific pattern is detected. Its main
attributes are:
- originatingNetwork indicates the network

(Internet, PSTN, etc.) from where the service request
comes

- trigSrcAddr indicates the source of the service
request (e.g., an SSP address)

- trigPattern indicates the pattern whose detection
triggered the event.

The Address component represents an access point to a
resource. Its main attributes are :
- relatedLayer tells the layer to which the address

relates (e.g., an Internet address relates to layer 3)
- typeOfNetwork indicates the type of network that

the address relates to
- addrString gives the address in string form.

3) Service Components needed
The main service component object classes (Fig. 7) are :

- TriggerEventSource
- TriggerEventListener, with an important

subclass called HybridService
- ConnectionFactory
- Connection, with many subclasses, especially

ConnectionBinding.

The first two components relate to the production and
treatment of the event TriggerEvent.
TriggerEventSource abstracts over the producer of
the trigger event. It implements methods that allow listeners
of trigger events to register with it, as well as methods for
adding or removing trigger events.

Element

 Java Service Layer

Trigger-Event-Source

Trigger-Event-Listener
(implements methods to
handle the events

9

Fig. 7. A generic information flow diagram for real-time hybrid services.

TriggerEventListener registers itself with
TriggerEventSource and listens to TriggerEvent.
When this event is fired, TriggerEventListener
catches it ; it then determines whether it is allowed to
handle the event by comparing the attributes of the event
with its own attributes. Specifically, the TriggerEvent’s
attribute trigPattern is compared with the
TriggerEventListener’s attribute
patternToCatch. TriggerEventListener
implements a method (trigEventHandler) to handle
the event caught. It can fire an event called
EvtHandlingFailEvent when it fails to handle a
trigger event previously caught. The event
CnxAttemptEvent can be fired as well, if the service
logic requires a connection to be set up between two
network accesses.

HybridService is a special subclass of
TriggerEventListener ; it abstracts over the logic
that the processing of the service request must follow. The
logic is called after a trigger event has been fired ; it is a
listener of a specific trigger event. It can aggregate some
other components such as a component for address binding
(to be used for address translation, for instance), or groups
of terminals (to form a closed group or a Virtual Private
Network, VPN). The detail of these components is left for
further study. The attributes of HybridService are : (1)
servDescr, a textual description of the service, (2)
customer, the name of the customer for whom this
service was created, and (3)
customerPermanentAddr, the permanent address of
the customer.

The component HybridService is to be specialized
further (as illustrated in Section IV) in order to take into
account the specifics of each service. Hence, there will be

specializations for call centers, VPNs, and so forth. In
Section IV, this specialization is done for Call Forwarding.

The second category of components depicted in Fig. 7
concerns the connection control. Its core component is
ConnectionFactory which manages the connections
set up. It catches connection attempt events
(CnxAttemptEvent) ; it must therefore implement a
listener for these events. Its main attributes are the number
of Internet (or PSTN) connections set up
(numberOfIntCnxUp and numberOfPstnCnxUp),
and the number of bindings between connections. A special
binding is between a PSTN connection segment and an
Internet connection segment; such a binding is needed in a
gateway, for instance. ConnectionFactory
implements a method to handle connection attempt events.

Connection abstracts over a physical or logical link
between two access points that might belong to a network
element or a terminal. Its main attributes are:
- status tells the current state of the connection
- typeOfNetwork tells the type of network in which

the connection lies
- from indicates the address of the connection source
- origPort denotes the port used by the source to send

data (e.g., socket port)
- to indicates the terminating point of the connection
- termPort denotes the port used by the terminating

point to receive data
- directionality is an integer attribute that

evaluates to 1 for one-way connections and 2 for bi-
directional ones

- peakRate denotes the peak rate of the traffic carried
out over the connection

- avgRate denotes the average rate of this traffic
- delay indicates the tolerable delay.

Trigger
Event
Source

fires
Trigger
Event

goes to
TriggerEvent
Listener

fires
CnxAttempt
Event

CnxFailEvent
fires

fires

goes to

ConnectionBindingConnectionFactory

goes to

Connection

creates
CnxCompleteEvent

goes to
creates

Service component

Event

10

Connection can produce the following events : (1)
CnxCompleteEvent, when the connection set up has
been successful, (2) CnxFailEvent, when the
connection could not be established (the reasons are then
given), and (3) CnxDumpedEvent, when the connection
has been dumped due, e.g., to a user hanging up.

There are several subclasses of the generic component
Connection described above. Fig. 8 depicts the
inheritance tree related to this component in the light of Fig.
5. The main subclasses are NAP-to-NAPConnection,
Termination-to-NAPConnection, and
ConnectionBinding. Termination-to-
NAPConnection further has Terminal-to-
NAPConnection and GW-to-NAPConnection as
subclasses. Except for ConnectionBinding, all the
other subclasses are mainly discriminated by their specific
implementations; their declaration is similar to that of
Connection.

ConnectionBinding is used to bind a segment of
connection to another one. A special case is a binding
between a connection segment in the Internet and another
one in the PSTN; this happens typically in a gateway. In
this case, ConnectionBinding abstracts over a special
connection that entirely lies within the gateway. Its main
attributes are its status and references to the connections
bound. ConnectionBinding implements methods that
allow for its creation and deletion, as well as a method that
handles connection breaks. For instance, when the
connection segment on the Internet has been dumped, its
sibling in the PSTN must be released. An event,

CnxBindingDumpedEvent, is sent to the connection
factory. This management operation is performed by
cnxDumpedHandler.

IV. CASE STUDY: CALL FORWARDING SERVICE

ACROSS THE PSTN AND THE INTERNET

In this section we illustrate how the service architecture
presented above can be applied to the task of building a
service that spans across the PSTN and the Internet. In
section A, we present the service principles as well as the
specialized component classes necessary to provide the
hybrid service. In order to keep our discussion focused we
refer to a specific example (i.e., call forwarding) that allows
users to forward calls from a PSTN terminal to an Internet-
connected H.323 terminal. It should be noted that the call
forwarding service presented in this section could be
realized in many other ways and, at the same time, we could
have based our discussion on other known hybrid services.
Our intent is to use this call forwarding service just as an
exemplification of the service creation capabilities available
with our architecture. Note that the ITU-T has started to
standardize some supplementary services for H.323
terminals. We claim that our approach is more powerful ;
not only does it support services in which PSTN terminals
are also involved, but it makes the whole network
programmable; this means that a wide range of services can
be implemented without having to go through the tedious
and slow process of standardization. Clearly, this will be at
expense of service interoperability, but this is the price to
pay for competition between the various service providers.

Fig. 8. Connection class hierarchy.

Connection

NAP-to-NAPConnection Termination-to-NAPConnection ConnectionBinding

Terminal-to-NAP-Connection GW-to-NAPConnection

Inheritance

11

A. Call Forwarding across the PSTN and the Internet

We consider a service that allows a customer to forward his
incoming calls (addressed to his telephone set from any
other telephone set) to a computer terminal connected to the
Internet. The service will be realized as described in Fig. 9,
which is a specialization of Fig. 3. The Java Service Layer
runs two distributed components, scpCFS and gwCFS, that
implement the call forwarding service by controlling PSTN
SCPs as well as H.323 gateways. The service layer plays
the role of a liaison that permits the provision of H.323-
based hybrid services across the PSTN and the Internet. The
interaction beween the service layer and the PSTN side
could recall the model promoted by the PINT group. In our
approach we go one step further than the PINT paradigm :
We allow the SCP to generate requests toward the service
layer. While the PINT model focuses on enabling the PSTN
to take service requests from Internet devices, we are
concerned with implementing the service logic using Java
components. The major functionality that we expect from
the SCP is to send an event to the Java Service Layer
whenever a special trigger is detected. The logic can later
instruct the SCP to open a connection between two
endpoints. What we expect from the SCP can therefore be
expressed by three words : trigger, service logic and
connection.
Note that the standard interaction between the SSP and the
SCP will still work in our architecture. The SCP normally
implements the service logic out of SIBs. We supplement
this conventional operation of the SCP with the possibility
of implementing the logic by using well-defined Java
components. Within such a paradigm, the SCP re-emits the
trigger, detected by the SSP, toward the Java Service Layer.
This paradigm can be taken even much further, by simply
removing the SCP and letting the SSP communicate

directly with the Java Service Layer. We do not currently
extend our paradigm to this point.

To implement the logic corresponding to Call Forwarding,
we use a subclass of HybridService called
CallForwardService. The main attribute of this
subclass is a vector of addresses to which calls should be
redirected depending on the time of day. To take this into
account, we create a new class called TimedAddress
which denotes the validity of the redirect address within
certain periods of time. CallForwardService
implements methods to forward a call (forwardCall), to
terminate the forwarding (endOfForwarding), and to
get the redirect address (getForwardAddress).

B. Service Creation and Invocation

The provider decides to realize the service as follows: Any
call request, from the PSTN, that is destined to the customer
is processed in such a way that the request gets routed
through the gateway (Fig. 9). The component that
implements the logic of the forwarding for the SCP must
return a redirect address that achieves the routing through
the gateway. When the gateway receives the request, it
alerts the Java Service Layer in order to get the address of
the terminal to which the call must be redirected.

Creating a new service results from the specialization of the
generic information flow diagram (Fig. 7) for the relevant
elements in the service system infrastructure (Fig. 9). In
light of the service description given above, the two main
elements that need to be tuned in order to provide the Call
Forwarding service across the PSTN and the Internet are the

Fig. 9. Provision of call forwarding services across the PSTN and the Internet.

SSP SSP

SCP

H.323
GW IP Network

H.323
GK

SDP

 Java Service Layer

scpCFS gwCFS

1

2

3 4

5

6 7

8 9

10

scpCFS: SCP CallForwardService
gwCFS: Gateway CallForwardService

Intelligent
Network

12

SCP and the H.323 gateway. Therefore, the provider must
specialize the events and service components outlined in
Section III for each of these elements. First, he creates
CallForwardService and TimedAddress instances
for the SCP. The trigger pattern for the SCP is the
customer’s permanent address. The trigger event instance
associated with the SCP is called scpTriggerEvent.
The SCP will manage to inform the SSP about the new
trigger, so that the SSP can detect this trigger later on. The
instance of CallForwardService for the SCP is called
scpCallForwardService. This instance will create a
new object of type TimedAddress; call it
scpTimedAddress. The address embodied by this
instance must be chosen so that any call to this address gets
routed through the gateway.
The provider then creates instances of TriggerEvent,
CallForwardService and TimedAddress for the
GW; call them gwTriggerEvent,
gwCallForwardService and gwTimedAddress,
respectively. The attribute trigPattern of
gwTriggerEvent is set to the address corresponding to
scpTimedAddress. When a request with this address
reaches the GW, a trigger will be detected and an event
fired by a process within the gateway (this process is of
type EventSource). Then, gwCallForwardService
will catch and handle the event fired. gwTimedAddress
contains the address of the computer to which calls are to be
forwarded.

When a PSTN user dials the customer’s number, the request
is detected by the SSP as a special service. The SCP is then
asked to provide the appropriate instructions. It fires a
trigger event toward the Java Service Layer. The
scpCallFowardService instance created beforehand
by the service provider returns a number that enforces the
request to be routed through the gateway. The number
given to the SCP matches a trigger in the gateway. The
gateway detects the special pattern and fires a trigger event
towards the listeners that previously registered themselves.
The gwCallForwardService instance that
corresponds to this particular customer is notified and
handles the event appropriately, by returning the Internet
address where the customer’s H.323 terminal can currently
be reached. An Internet connection is established from the
gateway to this address; this connection is, later on, bound
to the connection segment within the PSTN.

V. CONCLUSION

A few years ago, the ATM technology seemed to be poised
to replace all the existing circuit-switched and packet-
switched networks; it was expected to become the unique
infrastructure for the provision of integrated and advanced
services. Clearly, this vision is not valid anymore.

More recently, the progress of real-time services over the
Internet led many people to believe that networks based on
the Internet protocol would replace the PSTN. This

evolution is probably realistic in the long run; however, the
recent history of networking has demonstrated that the most
important success factor is not so much the target
architecture itself, but rather the migration path taken to
reach it.

Identifying the appropriate migration path is precisely the
purpose of this paper. We believe that the concepts
presented will pave the way for the introduction of a new
set of services that will take advantage, in an integrated
way, of the Internet, PSTN and wireless infrastructures.
These services, that we call hybrid services, will deliver to
the users the integrated communication environment
promised more than 20 years ago (but not fulfilled yet).
Unlike other service creation architectures, such as TINA,
our approach leverages on the existing networks and
mechanisms to smoothly introduce new services.

We presented a service creation architecture and a set of
service components that allow simple, rapid creation and
deployment of hybrid services as distributed applications
that extend the functionality of existing terminals, servers
and network nodes. This is achieved by defining common
interfaces and a common execution environment provided
by the now mature Java technology. Each element is
extended with a Java virtual machine and equipped with a
set of pre-developed service components realized by
assembling JavaBeans. These service components provide
the building blocks that can be used to implement hybrid
services.

We illustrated the power of our architecture by constructing
an example of a hybrid service. We showed how the service
components defined in our architecture could be specialized
to construct a call forwarding service that spans both the
Internet and PSTN.

While in this paper we laid out the main concepts for an
architecture for integrated and seamless provision of hybrid
services, there are many other issues that we are currently
investigating. First, we are working on the building of the
SCE. Second, we are exploring an efficient way to map the
service components onto the physical platform elements.
Third, we are working on breaking down the service
component, HybridService, into finer-grained
components.

We expect this approach to play a fundamental role in the
highly competitive business of service provisioning.

ACKNOWLEDGMENTS

The authors are thankful to their colleagues Colin Harrison,
Jurij Paraszcsak, and Magda Mourad of the IBM Thomas
Research Center, as well as Holly Cogliati, Maher Hamdi,
Monika Lundell and Olivier Verscheure of the Swiss
Federal Institute of Technology.

13

REFERENCES

[1] T. A. Anschutz, A Historical Perspective of CSTA, IEEE
Comm. Mag., Vol. 34, No. 4, April 1996, pp. 30-5.

[2] P. Cronin, An Introduction to TSAPI and Network
Telephony, IEEE Comm. Mag., Vol. 34, No. 4, April
1996, pp. 48-54.

[3] H. D’Hooge, The Communicating PC, IEEE Comm. Mag.,
Vol. 34, No. 4, April 1996, pp. 36-42.

[4] European Computer Manufacturers Association (ECMA),
Computer-Supported Telecommunications Applications,
ECMA Technical Report TR/52, June 1990.

[5] ETSI, Digital Cellular Telecommunications System (Phase
2+) – Customized Applications for Mobile Network
Enhanced Logic (CAMEL) – Service Definition (Stage
1), GSM 02.78, Vers. 5.2.1, July 1997.

[6] I. Faynberg, L. R. Gabuzda, M. P. Kaplan and N. J. Shah,
The Intelligent Network Standards, their Applications to
Services (McGraw-Hill, 1996).

[7] I. Faynberg, M. Krishnaswamy and H. Lu, A proposal for
Internet and Public Switched Telephone Networks
(PSTN) Interworking, Internet Draft, March 1997.

[8] I. Faynberg et al., The Development of the Wireless
Intelligent Network and Its Relation to the International
Intelligent Network Standards, Bell Labs Technical
Journal Vol. 2 Number 3, Summer 1997.

[9] D. Flanagan, Java in a Nutshell, A Quick Reference for Java
Programmers, (O’Reilly & Associates, Inc., May 1996).

[10] http://www.geoplex.attlabs.net/
[11] http://www.javasoft.com/beans/
[12] J. P. Hubaux, C. Gbaguidi, S. Koppenhoefer, and J. Y. Le

Boudec, The Impact of the Internet on
Telecommunication Architectures, To appear in
Computer Networks, and ISDN Systems, Special Issue
on Internet Telephony, 1st Quarter of 1999.

[13] ITU-T, Universal Personal Telecommunications (UPT) –
Service Description, Rec. 851, Feb. 1995.

[14] ITU-T, Visual Telephone Systems and Equipment for Local
Area Networks which provide a Non-guaranteed Qualîty
of Service, Rec. H.323, Nov. 1996.

[15] ITU-T, Introduction to the Intelligent Network Capability
Set 1, Rec. Q.1211, March 1993.

[16] ITU-T, Basic Reference Model of Open Distributed
Processing – Part 1: Overview and Guide to Use, Rec.
X.901, 1994.

[17] H. Jubin (ed.), JavaBeans by Example, (Prentice Hall,
ISBN 0-13-790338-3, 1998).

[18] J. de Keijzer, Intelligent Agents and Java Advanced
Intelligent Network architecture (JAIN), In Proc. of
IATA ’98. http://sokrates.cs.tu-
berlin.de/deutsch/news /tagungen/IATA98/main.html

[19] M. Krishnaswamy, PSTN-Internet Interworking- An
Architecture overview, Internet Draft, Nov. 1997.

[20] A. A. Lazar, K. S. Lim and F. Marconcini, Realizing a
Foundation for Programmability of ATM Networks with
the Binding Architecture, IEEE Journal on Selected
Areas in Communications, 14(7), Sept. 1996, pp. 1214-
27.

[21] C. Low, Integrating Communication Services, IEEE Comm.
Mag., Vol. 35, No. 6, June 1997, pp. 164-9.

[22] T. Magedanz and R. Popescu-Zeletin, Intelligent Networks :
Basic Technology, Standards and Evolution, (Intl.
Thomson Computer Press Ed., 1996).

[23] Microsoft, Inc., IP Telephony with TAPI 3.0, White Paper,
1997.

[24] A. R . Modaressi and R. A. Skoog, Signaling System No.
7 : A Tutorial, IEEE Comm. Mag., July 1990, pp. 19-35.

[25] OMG, The Common Object Request Broker: Architecture
and Specification, Rev. 2.0, July 1995.

[26] OMG Document: telecom/97-12-06, Interworking between
CORBA and Intelligent Network Systems, Request for
Proposals, Dec. 1997.

[27] OMG Document: telecom/98-05-xx, Request for
Information: Supporting Wireless Access and Terminal
Mobility in CORBA.

[28] Sun Microsystems, The Java Telephony API- An
Overview, White Paper, Vers. 1.1, Jan. 1997.

[29] Sun Microsystems, Inc., The SunXTL Platform, White
Paper, Feb. 1995, available as
http://www.sun.com/products-n-
solutions/sw/SunXTL/whitepaper.ps

[30] G. A. Thom, H.323 : The Multimedia Communications
Standard for Local Area Networks, IEEE Comm. Mag., Vol. 34,
No. 12, Dec. 1996, pp. 52-6.
[31] TINA-C, Service Architecture, Vers. 5.0, June 1997.
[32] Wireless Application Protocol (WAP) Forum, Wireless

Application Protocol – Wireless Markup Language
Specification, Draft, 20 March 1998.

