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Abstract

The 1-D transport code PRETOR! is used to simulate TCV discharges. The discharges studied in this
work are all ohmic L-modes and cover a very wide range of plasma and shape parameters. The code
PRETOR also has a sawtooth crash model which was used to predict ITER sawtooth period2. It tums
out that TGV is in the same collisionality regimes as ITER, with regard to the sawtooth crash
criterion. Therefore PRETOR can be used to model TCV sawtooth periods in order to obtain more
accurate g profiles and better transport simulations. In doing so, the limits and range of validity of the
sawtooth model are also tested. The crash model involves several conditions, but for TCV ohmic
discharges the decisive criterion is that the effective growth rate of the interal kink must be larger
than some fraction of the diamagnetic frequencies. It is shown that the crash criterion, which can be
written as s1 2 s1crit With s1 the shear at g=1, allows one to model the sawtooth activity for all the
ohmic L-modes shots considered. For transport analysis, setting s1crit = 0.2 is sufficient as then only
the sawtooth period is not correctly determined, but the inversion radius and the profiles are good.

L. Introduction

In all tokamak plasmas, the temperature and density profiles are strongly influenced by the presence
(or absence) of sawtooth activity. It tends to flatten the profiles within a given radius related to the
mixing radius defined in the Kadomtsev complete reconnection model2-3, Recently it has been shown
that the width of the profiles in TCV can be directly related to the q =1 radius using such a simple
argument for current and pressure profilest. Therefore if one wants to simulate and eventually
predict the profiles in an experiment, using a 1-D transport model, one has to have a good sawtooth
model. It is shown in another paper in this conference® that we can obtain the correct temperature and
density profiles for most of the wide variety of the ohmic L-modes discharges in TGV using fixed
transport coefficients. In this study, we want to go one step further: simulate the time evolution of the
profiles including the sawtooth activity. In this way we can also simulate the sawtooth period.

As this was used to predict the sawtooth period in ITER, this study can be seen as the first
benchmark of the mode! with respect to experimental data. Of course, as TCV does not have alpha
particles, this is only a first step towards a reliable complete model valid for reactor-like parameters.

We have studied 17 ohmic L-modes. shots which cover well the following range of parameters:
2.3< Qedge $4.6; 0.1MA<Ip < TMA 2<ngig < 12; 0.1 < & (triangularity) < 0.6; 1 <x < 1.9. The
sawtooth period ranges from 2ms to 8ms and the inversion radius from 20 to 60% of the minor radius.
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In Section Il we describe the model, or more precisely the modification of the model with respect to the
one in Ref. [2], and then present the results in Section lll. All the variables are defined in the appendix

of Ref.[2], except if specified here.

Il. Sawtooth crash model

The aim of the model is to be able to predict when a sawtooth crash should occur and how to
determine the current (or q), density and pressure profiles after the crash. In this way it can be
coupled to a 1-D transport code, like PRETOR!, to simulate the time evolution of these profiles
including the sawtooth activity. As the crash time is much shorter than the transport time-scale, we
are not interested in simulating the crash itself which moreover is a nonlinear phenomenon. Therefore
the crash in our model is assumed to be instantaneous and all is required to know are the profiles after
the crash in order to be able to simulate the profiles until the next crash is triggered.

First we need to consider the main scale lengths which play an important role in the magnetic
reconnection process. We assume that the crash is triggered by a m=1/n=1 internal kink mode which
starts to reconnect in a thin layer around the q=1 surface p4. The layer width depends on the values
of the ion Larmor radius pj, the resistive layer width &n and the inertial skin depth de (note that &y ~
B-1/3 instead of BT in app. of Ref.[2]). In TCV we have 8y, ~ pi (=0.3cm) >> dg (=0.06cm). Therefore
we are slightly more collisional than ITER, for which pj >> &y >> de, but the ion Larmor radius is of
the order of the layer width and therefore also influences the expected growth rate.

Second we have to know in what regime we are with respect to the ideal internal kink mode. As TCV
is also in the semi-collisional regime, we expect that the layer physics will determine the growth rate
if, using the notations defined in Ref.[2]:

-3<-8W<05cndiai"t;\ (1)

where p pilp1- OtherWISe the growth rate is given by the ideal internal kink v = - SW/rA The
potential energy W is determined by the destabilizing ideal MHD po}\entlal energy SWmhd and the
stabilizing potential energy contribution from the thermal trapped ions 8Wko [7]:

S = SWmhd + SWKQ (2)

In TCV ohm|c L-modes, the poloidal beta is just above the critical value, prior to the crash, and
therefore 8Wmhd is relatively small of the order of (-10-4). On the other hand SWKO, due to its 1/sq
dependence, is not as small and is typically of the order of 10-3. However, one can expect this term to
be smaller if the ions are collisional, in particular if y < vi as less trapped particles can contribute to
SWKO. A first estimate based on Ref. [8] suggests that the effective value of SWKQ is modified as

o/ (1+vity) or  SWko /1 +Wiy)2] (3)

As vii=~ 104s1 and y=~ 3- 103 s, 8WKo/(1 + (Viiy)2) = 104 is still of the order of ISWmhdl and has a
stabilizing effect. However as p ~ 102 and 0.5 mgjaita ~ 10-3, it follows that Eq. (1) is always
satisfied in TCV ohmic L-modes discharges, independent of the exact contribution of SV\VKO.

As Eq. (1) is satisfied, the ideal kink is stabilized by FLR and diamagnetic effects, but finite resistivity
enables a reconnecting mode to become unstable, namely the resistive internal kink, with a growth
rate given by:

o= B s o (4)
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where S is the Lundquist number and ta the Alfvén time. If pi is larger than &y, then it determines the
reconnection layer width and the growth rate of the internal kink in this “ion-kinetic* regime is®:
201+1) 27 Aa17 o117
0 G B A R R )
where t=Tg/T;. In Ref.[2], as pj> 8y in ITER, only the latter growth rate was considered. However
as in TCV pj can be either smaller or larger then 3y, we have to take both into account, namely use:

Yeft = Max (Yp, Yn). (6)

Depending on the collisionality regime of the electrons and ions, and if the electrons are adiabatic or
isothe’rmal, the stabilization of the mode et by diamagnetic effects enters in different ways in the
relevant dispersion relations [2, 8, 9, 10]. As a general form one expects the mode to be stabilized if:

( o 02 03 oc4)1/(a1+(x2+oc3+oc4)

Odiae i Defai

*e  diae > C* Yeff (7)

where @xe.i = Te.j Lnbi / eBp1 Odiae.i = Te.i Lpki / éBp1. The coefficient c« also depends on
collisionality. In the collisionless limit one expects c«=1, while ¢« = (9/D)!/3 in the collisional limit!0,
where D = 0.3 Be1 v miTe/meT; is the ratio of the resistive time to the perpendicular ion momentum
diffusion time with Bg1 = 2uone1Te1/B$. As Be1 is typically of the order of 1% and Te/T; = 2, then ¢x«
= 3-4 in the collisional limit. The exact form of Eq. (7) cannot be obtained from analytical dispersion
relation as experiments are never in an asymptotic limit, however we know from these works that
density and temperatures gradients of both species can play a role. Therefore, as a first step, we
propose the following condition for triggering a sawtooth crash:

Cx Yeff > (OJdiae Cl)diai)“2 (8)

where we simply consider the electron and ion pressure gradients. A similar condition was successfully
used in TFTR to discriminate between sawtoothing and sawtooth-free discharges!?. As all the growth
rates of the internal kink mode obtained in different parameter regimes are proportional to sy, like
Yn ~ 312/3 oryp ~ 316/7, it follows that condition Eq. (8) can be rewritten for a given form of e as:

§1 > Sicrit (9)

Therefore if Eq. (1) is satisfied, the sawtooth model specifies that the crash is triggered once the
shear at q=1 exceeds a critical value s1¢rit determined by Egs. (8) and (6).

Once the crash condition Eq. (9) is satisfied, the q profile is relaxed according to Kadomtsev complete
reconnection model, as explained in Section 4.1 of Ref. [2]. In this way the profiles are modified up to
the mixing radius pmix and for simplicity the density and pressure profiles are flattened within pmix
while keeping the total particle and energy conserved. A partial relaxation model has also been
implemented in PRETOR [2] but has not yet been used in this study.

Iil. Results

The first step before simulating the sawtooth activity is to make sure that the profiles are correctly
modeled by the transport code. Indeed, as the crash criterion depends on the local values at the q = 1
surface and on some derivatives, it is important that the profiles are close to the experimental one
just before the crash. This is shown in Ref. [5] where for most of the cases both the temperature and
density standard deviations are within 10%-20%.
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As the exact form of Eq. (8) is not well defined at this stage, we have simulated all the shots with c.
as free parameters such as to fit the experimental sawtooth period within 30%. We see in Fig.1(a)
that we can simulate the sawtooth period over the wide range of parameters described above with a
reasonable variation of c«. The value of c« vs. elongation is shown in Fig.1(b). It shows that for most
of the cases we obtain the correct sawtooth period with c«=1.5. In a few cases at low Jedge the
predicted period is too small and a smaller c«+=1 is needed. This shows that we can simulate the
experimental sawtooth period with a criterion as Eq. (9) for all the TCV ohmic L-modes discharges in
the range of parameters described above. We have also changed slightly the transport coefficients in
order to change the temperatures and densities profiles at the q=1 surface within the experimental
error bars. We had then to change accordingly the value of ¢« to obtain the same sawtooth period as
before. We obtained that the value of s1git is the same as before, thus the value of s1¢rit such as to
recover the experimental sawtooth evolution is a well-defined parameter. This shows in a different
way that Eq. (9) is the relevant criterion for triggering the sawtooth crash. It confirms the results of
Ref. [11] but in a more detailed way as we simulated the whole sawtooth evolution.

In Fig. 2 we show the typical time evolution (a) of sy, and the critical shear obtained with s = T
S1critn, and Yeff = Yp, S1critp; and (b) of the q = 1 radius and Tgg. There are typically two phases in
the evolution of the q profile. First the q =1 radius evolves rapidly to a certain value close to the
value at the crash, as seen in Fig. 2(b). This is because the q profile is relatively flat after the crash
and therefore a small decrease of the q profile induces a large variation of p1. Then p1 is almost fixed
and the shear at g=1 starts to build up until it reaches sq¢rit. On the other hand S1crit Usually
increases rapidly at the beginning as the profiles peak and then saturate. In this case the crash time is
well determined. Note that if we had only a partial reconnection such that the q profile is flat around
q=1 after the crash, but qq is still below one, then the first phase might be a bit shorter while the time
for the shear s¢ to increase up to sy¢rit would be similar. Therefore we would not expect much change.
However for some cases the time evolution of sy and s1¢it are very close because the confinement
time and the resistive time inside the q=1 surface are very similar. Then in these cases small changes
can change the sawtooth behavior and the period is not as well defined as it depends on the relaxation
model. This dependence needs further detailed studies.

In Fig. 2(b) we also show the time evolution of Teg. Depending on the plasma parameters, its shape is
either triangular with a linear increase until the next crash or more saturated-like when the increase is
more rapid relatively to the sawtooth period and then saturates.

Once the sawtooth period is correctly simulated then both the sawtooth amplitude and the inversion
radius are relatively well predicted as is shown in Fig. 3. Therefore the current, g, density and
temperature profiles are consistent with the experimental measurements. This is true even for
inversion radius varying from 0.2 to 0.6 of the minor radius. Note that there is no correlation
experimentally between the inversion radius and the sawtooth period. This is also correctly simulated
with the model, even if we assume complete reconnection. It is due to the fact that the sawtooth
period depends on the relative time evolution of sy and S1crit, and therefore mainly on the local plasma
parameters.

This latter remark explains why the sawtooth activity is so much sensitive to electron cyclotron
frequency heating (ECRH) as shown in Ref. [12]. Indeed local heating can change both s4(t), by
changing the local resistive time and the current profile, and s1¢rit(t) by changing the temperature
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gradients. Moreover it affects the q =1 radius. As a first check we have simulated a case with
0.5 MW of ECRH deposited over a radial width of 0.15 a. Changing the mean deposition radius from
p=0,0.3to 0.5 we see first that p/a = 0.44, 0.40 and 0.27 respectively. Then, in the first two
cases, Sicrit is relatively large, 0.35, because heating inside q =1 gives large gradients at q = 1.
Therefore long sawtooth periods are obtained, while heating outside p gives a very small sy¢pt and
short sawtooth periods. This is in qualitative agreement with the experiment as sawtooth periods of
2 ms are observed when the heating is outside q =1 and it increases rapidly to 7-8 ms when heating
near the q = 1 surface. However, heating closer to the magnetic axis decreases again the sawtooth
period, which needs a more detailed study to be fully understood.

IV. Conclusion

We have shown that the crash model, which predicts that if Eq. (6) is satisfied then the crash is
triggered when s1 > sy¢rit, is in good agreement with all the TGV ohmic L-modes discharges with
8 2 0.1, gedge <4.5 and arbitrary x and density. Indeed, using this criterion we are able to model
correctly the inversion radius, the sawtooth period and the crash amplitude. The value of sqgit
depends on the local plasma parameters and their derivatives at the q = 1 surface and on the actual
maximum growth rate, Eq. (7), as well as the specific diamagnetic effects. We have proposed a
model, Eq. (8), which can reproduce the sawtooth period over a wide range of parameters, inversion
radii and periods with a value of c« varying only between 1 and 2. The study gives confidence in the
model used in Ref. [2] to predict the ITER sawtooth period even though in this latter case another
term, including the alpha particles, is the main stabilizing term.

As we are able to follow the time evolution of the sawtooth ramp and crash, using self-consistent
density, temperature, current and q profile as well as toroidal MHD equilibria, we have shown that the
q =1 surface broadens relatively fast after the crash and then saturates. This is why for transport
analysis of TCV-like ohmic L-modes discharges it is sufficient to use the simple criterion:

s1 > 0.2

as trigger condition. Indeed, choosing s1 small but not too small such that p1 has time to evolve to its
pre-crash value allows one to obtain correctly the inversion radius and the crash amplitude. Only the
sawtooth period is then not correctly modeled if the actual s1¢ it would be 0.3 or more for example.
However it only changes slightly the profile shapes, certainly within the experimental error bars. This
criterion is what has been used for the TCV transport simulations in Ref. [5].

Using this model we understand why and how the sawtooth activity is so sensitive to local ECRH12.
We have explained the sharp increase in sawtooth period when heating outside or near the q=1 radius.
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