
Algorithms for longer OLED Lifetime

Friedrich Eisenbrand1, Andreas Karrenbauer2, and Chihao Xu3

1 Fachbereich Mathematik, Universität Paderborn,eisen@math.uni-paderborn.de
2 Max-Planck-Institut für Informatik, Saarbrücken,karrenba@mpi-inf.mpg.de

3 Lehrstuhl für Mikroelektronik, Universität Saarbrücken,
chihao.xu@lme.uni-saarland.de

Abstract. We consider an optimization problem arising in the design ofcon-
trollers for OLED displays. Our objective is to minimize theamplitude of the
electrical current flowing through the diodes which has a direct impact on the
lifetime of such a display. The optimization problem consist of finding a decom-
position of an image into subframes with special structuralproperties that allow
the display driver to lower the stress on the diodes. For monochrome images, we
present an algorithm that finds an optimal solution of this problem in quadratic
time. Since we have to find a good solution in realtime, we consider an online
version of the problem in which we have to take a decision for one row based
on a constant number of rows in the lookahead. In this framework this algorithm
has a tight competitive ratio. A generalization of this algorithm computes near
optimal solutions of real-world instances in realtime.

1 Introduction

Organic Light Emitting Diodes(OLEDs) have received growing interest recently as
more and more commercial products are equipped with such displays. Though they
have many advantages over current technology like LCD, onlysmall size OLED dis-
plays have entered the marked yet. One reason for this is the limited lifetime of those

Fig. 1. Sample of a commercial OLED device with integrated driver chip

displays. While a lot of research is conducted on the material science side, the so-called
Multiline Addressing Schemefor passive matrix OLED displays [7] tackles the lifetime-
problem from an algorithmic point of view. It is based on the fact that equal rows can
be displayed simultaneously with a lower electrical current than in a serial manner. An
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Fig. 2. Schematic electrical circuit of a display

explanation of this phenomenon can be found in [1] and [6]. Here we restrict ourselves
to an informal description for self-containment.
A (passive matrix) OLED display has a matrix structure withn rows andm columns.
At any crossover between a row and a column there is a verticaldiode which works
as a pixel. The image itself is given as an integral non-negative n ×m matrix (rij) ∈
{0, . . . , ̺}n×m representing its RGB values. Consider the contacts for the rows and
columns as switches. For the time the switch of rowi and columnj is closed, an elec-
trical current flows through the diode of pixel(i, j) and it shines. Hence, we can control
the intensity of a pixel by the two quantitieselectrical currentandtime. In our applica-
tion, the electrical current is equal for all pixels. Since high amplitudes of the electrical
current or high peaks of intensity respectively, are the major issues with respect to the
lifetime of the diodes [5], we try to trade as much time as possible for it. But since an
image has to be displayed within a certain time frameTf , it is a limited resource that
we shall use as efficient as possible. Hence, the valuerij determines the amount of time
within the time frame in which the switchesi andj have to be simultaneously closed.
At a sufficient high frame rate e.g. 50 Hz, the perception by the eye is the average value
of the light emitted by the pixel and one sees the image.

The traditional addressing scheme is row-by-row. This means that the switch for the
first row is closed for a certain time while the switches for the columns are closed for
the necessary amount of time dictated by the entriesr1j , j = 1, . . . , m. Consequently
the first row can be displayed in timemax{r1j : j = 1, . . . , m}. Then the second row
is displayed and so on.

Consider the schematic image on the left of Fig. 3. Let us compute the amount of
time which is necessary to display the image with this addressing scheme. The maxi-



mum value of the entries in the first row is238. This is the amount of time which is nec-
essary to display the first row. After that the second row is displayed in time237. In total
the time which is required to display the image is238+237+234+232+229 = 1170
time units.

Now consider the decomposition of the image as the sum of the three images on the
right of Fig. 3. In the first image, each odd row is equal to its even successor. This means
that we can close the switches for rows1 and2 simultaneously, and these two equal rows
are displayed in82 time units. Rows3 and4 can also be displayed simultaneously which
shows that the first image on the right can be displayed in82+41 time units. The second
image on the right can be displayed in155+191 time units while the third image has to
be displayed traditionally. In total all three images, and thus the original image on the
left via this decomposition, can be displayed in82+41+155+191+156+38+38 = 701
time units. This means that we could reduce the necessary time via this decomposition
by roughly40%. We could equally display the image in the original1170 time units but
reduce the peak intensity, or equally the maximum electrical current through a diode by
roughly40%.

109 238 28
112 237 28
150 234 25
189 232 22
227 229 19

=

0 82 25
0 82 25
0 41 22
0 41 22
0 0 0

+

0 0 0
112 155 3
112 155 3
189 191 0
189 191 0

+

109 156 3
0 0 0
38 38 0
0 0 0
38 38 19

Fig. 3. An example decomposition

On real-world images, an optimal decomposition of the imageallows a reduction of the
electrical current to 56% on the average. This means an increase of lifetime by roughly
100%, see [5].

To benefit from this decomposition in practice, an algorithmto solve the optimiza-
tion problem, which is formally described in Section 2, has to be implemented on a chip
which is attached to the display, see Fig. 1. The following design criteria lie in the focus
when engineering such an algorithm.

– The algorithm has to react in realtime.
– It must have low hardware complexity allowing small production costs.
– Consequently it has to rely only on a small amount of memory and it should be

fully combinatorial, i.e. only additions, subtractions, and comparisons are used.

Especially the last of the above criteria clearly establishes a border between our ap-
proach and another technique [4] based onNon-negative Matrix Factorization[3, 2].

Contributions of this paper

First we show that monochrome images can be optimally decomposed in polynomial
time. The presented algorithm has quadratic running time inthe worst case. Therefore



we introduce an online version of this algorithm which takesa decision for one row,
based on a lookahead of a certain fixed number of rows. This algorithm runs in linear
time and has tight competitive ratio. On real world images itturns out that a lookahead
of 3 rows gives the most satisfactory results when balancingapproximation ratio, ease
of implementation and running time. Our computational results show that this algorithm
with a lookahead of3 outperforms the previously best algorithm presented in [1]w.r.t.
its practical approximation ratio and even more so w.r.t. its running time. This implies
that nearly optimal Doubleline Addressing for real world images can be efficiently com-
puted and, in particular, that an economic hardware implementation meeting the design
criteria is possible.

2 The Formal Model

In this section, we will briefly review the formal model presented in [1]. LetR =
(rij) ∈ {0, . . . , ̺}n×m be the matrix representing the image. To decomposeR we need

to find matricesF (1) = (f
(1)
ij ) andF (2) = (f

(2)
ij ) whereF (1) represents the singleline

part andF (2) the two doubleline parts. More precisely, thei-th row of matrixF (2)

represents the doubleline covering rowsi and i + 1. Since the overlay (addition) of
the subframes must be equal to the original image to get a valid decomposition ofR,
the matricesF (1) andF (2) must fulfill the constraintf (1)

ij + f
(2)
i−1,j + f

(2)
ij = rij for

i = 1, . . . , n andj = 1, . . . , m, where we now and in the following use the convention
to simply omit terms with indices running out of bounds. Since we cannot produce
“negative” light we require also non-negativity of the variablesf (α)

ij ≥ 0. The goal is to
find an integral decomposition that minimizes

n
∑

i=1

max{f
(1)
ij : 1 ≤ j ≤ m}+

n−1
∑

i=1

max{f
(2)
ij : 1 ≤ j ≤ m} .

This problem can be formulated as an integer linear program by replacing the objective
by

∑n

i=1 u
(1)
i +

∑n−1
i=1 u

(2)
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(α)
ij ≤ u

(α)
i . This yields
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n
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u
(1)
i +
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∑
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u
(2)
i

s.t. f
(1)
ij + f

(2)
i−1,j + f

(2)
ij = rij for all i, j (1)

f
(α)
ij ≤ u

(α)
i for all i, j, α (2)

f
(α)
ij ∈ Z≥0 for all i, j, α (3)

Note that the objective does not contain thef -variables.
Consider the constraints (1) for a fixed columnj. By appending the constraint0 =

0 and by subtracting thei − 1-st constraint from thei-th constraint, we obtain the
following set of constraints

f
(1)
ij − f

(1)
i−1,j + f

(2)
ij − f

(2)
i−2,j = rij − ri−1,j for all i, j. (4)



For eachj the constraint-matrix is thus the node-arc incidence matrix corresponding to a
graph like in Fig. 4. In the following we refer to this graph, which is solely determined
by the numbern of rows in the image, by the nameprototype displaygraphGn =
(V, A).
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Fig. 4.Prototype displaygraph with variable-names of arcs entering and leaving row3.

The variablesf (1)
ij correspond to the arcs going from left to right and vice versa.

We call them arcs of type1. The variablesf (2)
ij are represented by the vertical arcs,

called type2. The numberrij − ri−1,j is thedemanddj(i) of vertexi in columnj. The
optimization problem can now be understood as follows.

Given an integer matrixR ∈ N
n×m
0 reserve capacitiesu : A −→ N0 for

the arcsA of Gn such that each of the demandsdj , j = 1, . . . , m can be
individually routed inGn and such thatu(A) =

∑

e∈A u(e) is minimal.

In this context,individually routed means that for any columnj the capacities admit a
feasible flow satisfying the respective demandsdj .

3 Decomposing Monochrome Images in Polynomial Time

A monochrome imageis an imageR ∈ {0, 1}n×m. In this section we show that an
optimal decomposition of such an image can be computed in polynomial time. The
following example shows the transformation of an image intothe demand matrix by the
row operations that we described in the previous section.





1 0 1
0 1 1
1 1 1



 









1 0 1
-1 1 0
1 0 0
-1 -1 -1









 









1 0 0 1
-1 0 1 0
0 1 0 0
0 -1 -1 -1









(5)



Each column is a0,±1-vector. Furthermore it is easy to see that the occurrences of 1
and−1 in each column alternate and that each1 is succeeded by a−1 and each−1
is preceded by a1 disregarding the zeros inbetween. Moreover, the two matrices on
the right of (5) have the same set of feasible solutions with respect to the capacities
which are subsets of arcs such that the pairs of nodes(1, 2), (3, 4), (2, 4), and(1, 4)
are connected in the corresponding subgraph. Therefore, weassume w.l.o.g. that each
column yields exactly one such pair of nodes to which we also refer as acommodityin
the following. In general the problem of optimally decomposing monochrome images
can be understood as follows.

Given commodities(sj , tj), j = 1, . . . , m with sj < tj for eachj and a
numbern, select a minimal number of arcs ofGn such that there exists a path
from sj to tj for eachj = 1, . . . , m.

The nodessj are calledsourcesand the nodestj are calledsinks. Furthermore, if a node
is neither a source nor a sink, we call itSteiner. The selection of arcs ofGn is given
by a functionu : A → {0, 1}, whereu(a) = 1 if the arca is selected andu(a) = 0
otherwise.

The next lemma is easy to prove but crucial to obtain a polynomial-time algorithm.
Hereu(δout(i)) denotes the number of selected arcs leaving nodei. Similarly,u(δin(i))
denotes the number of selected arcs enteringi.

Lemma 1. Given a feasible solutionu, then there exists a feasible solutionu′ with

u′(δout(i)) ≤ 1 and (6)

u′(δin(i)) ≤ 1

with the same total weight.

Proof. It is easy to see that we remain feasible if we substitute an arc of type2 by the
two arcs of type1 incident to head and tail respectively. We do not change the number of
selected arcs by selecting the other type1 arc instead of the type2 arc if u(δout(i)) > 1
or u(δin(i)) > 1 respectively as depicted in Fig. 5. Such a replacement is feasible,
since each pair of nodes which was connected by a path before the replacement is still
connected after the replacement.

1 1 1

2 ⇒ 2 ⇐ 2

3 3 3

Fig. 5. Transformation to maintain the degree condition



In the forthcomming we maintainu(δout(i)) ≤ 1 andu(δin(i)) ≤ 1 as an invariant
and call itdegree condition. Thereby, the selection of one outgoing arc uniquely trans-
forms the instance to the same problem with one row less. However, if we have selected
the outgoing arc of type2 for node1 and if node2 is a source, we have to select the
arc of type2 as well to leave the second node to maintain the degree condition. In turn,
this might force the same for the outgoing arcs of node3 and so on. These implications
evolve until either everything up to the current row is balanced or an odd commodity,
say (s, t) with t − s odd, produces a conflict (see Fig. 6). More precisely speaking,
balanced up to rowi means that the assignment to the capacities of the arcsa such that
head(a) ≤ i is a feasible solution to the subinstance consisting of the rows1, . . . , i− 1
of the given image. Hence, the solution of the subproblem starting at nodei does not
depend on how we have balanced up to rowi. Note that both subproblems are consid-
ered with respect to the given image, i.e. all commodities(sj , tj) with sj < i < tj
are split into(sj , i) and(i, tj) where the former commodity is considered with the first
subproblem and the latter with the second. It is easy to see that feasible solutions to the
subproblems join to feasible solutions for the original problem. In particular, balanced
up to rowi implies that we may forbid the arc(i− 1, i + 1) and remain feasible.

1 1

2 2

3 3

4 4

5 5

6 6

Fig. 6. In both examples, we are given the commodities(1, 3) and(2, 6). On the left, we addi-
tionally have(3, 5) whereas on the right it is the odd commodity(3, 6) instead. While the left
example is balanced up to node6, the commodity(3, 6) produces a conflict on the right.

We will now present a basic dynamic programming scheme usingnode labels to
store at nodei how much it costs to balance up to nodei. The label of the first node
is 0 and all others are∞ at the beginning. Leti be the current node. Assume that it is
a source since otherwise we could simply skip it and proceed with the same label at
nodei + 1. We select arcs of type2 until we either find a conflict or a node, sayt, up
to which we are balanced. If the label ofi plus the number of selected arcs is smaller
than the label oft, we update it accordingly. For a later reconstruction of thesolution,
we also storei as the predecessor oft. In case of a conflict we do not update anything.
Afterwards, we proceed to nodei+1. If the label ofi+1 is more than1 greater than label
i, we also update it and seti as the predecessor ofi + 1, i.e. selecting the arc of type1.
Then we repeat these steps until we reach the end. Because of the degree condition, we



can transform any instance such that each node is the source of at most one commodity
and also the sink of at most one commodity. Hence, by a preprocessing of the input data
which takesO(n ·m) time, we can annotate the nodes with the necessary information.
Since every step involves the visit ofO(n) nodes and arcs, the total time for computing
the capacities isO(n2).

Theorem 1. The optimal decomposition of an image given by a matrixR ∈ {0, 1}n×m

can be computed inO(n ·m + n2).

4 The Online Problem

Recall that we intend to develop an algorithm that finds a decomposition in realtime
while keeping it simplistic enough such that it can be implemented on a chip with a low
hardware complexity. Hence, we are looking for a linear timealgorithm that uses only
additions, subtractions, and comparisons. Since we do not want to scan over the whole
rest of the graph in each iteration, it is natural to restrictthe lookahead to a certain
number of rows. It follows an online version of our problem where we have to fix the
capacities of the outgoing arcs of a node only based on the knowledge of the following
c rows. Again, we consider monochrome images first. At the end of this section we
describe how our method can be adapted to decompose arbitrary colored images.

The canonical algorithm uses the one of Sec. 3 as follows. We solve the instance
of the knownc rows to optimality. According to that solution, we fix the outgoing arcs
of the first node. After updating the instance and reading thenext row, we repeat these
steps until we reach the end. The computation takesO(c ·n) time disregarding the time
for the preprocessing that we have to spend anyways to parse the input.

In the following, we will first give a lower bound on the competitive ratio of any
algorithm in that online setting. Afterwards, we will analyze the competitive ratio of
the aforementioned approach. Before we state the theorem, it is helpful to have a look
at following example where the adversary starts with the image in the middle and then
reveals the fourth row according to the arc we have selected for the first node.









6 1 6 0 6 0
1 1 0
1 1 1
1 0 1









type1
←−









1 0 0
1 1 0
1 1 1
⋆ ⋆ ⋆









type2
−→









6 1 6 0 6 0
6 1 1 0
1 1 1
0 0 1









(7)

The optimal value in both cases is3. But after making the choice for the first row, the
adversary force us to pay4.

Theorem 2. Any online algorithm that fixes the outgoing arcs of nodei without know-
ing the rowsi + c and beyond, has a competitive ratio of at leastc+1

c
.

Proof. An adversary reveals the firstc nodes of an instance with the commodities(i, ti)
forall i = 1, . . . , c whereti ∈ {c + 1, c + 2} is chosen later depending which arc the
algorithm picks following the idea shown in (7). If the algorithm selects the arc of type
1, then the adversary setst1 to the odd value. Otherwise, it is set to the even node. All
otherti are set such that the commodities(i, ti) are even. The optimal solution of the



residual problem isc. Hence, the achieved objective value isc+1 whereas the opposite
choice for the first arc would yield an optimal solution of valuec.

Theorem 3. There is an algorithm with competitive ratioc+1
c

.

Proof. We first compare the optimal algorithm running on the complete instance with
the one running on the firstc rows. Lett be the node such that the selection of the type
2 arcs starting with the first node gets balanced with respect to the whole instance. If
no such node exists, then in every feasible solution the arc of type 1 has to be picked
for leaving node1. This also holds for the instance restricted to the firstc nodes. Note
that the choice of the first arc only depends on the rows strictly less thant. Hence, if
t ≤ c + 1, then the online algorithm makes the same decision on the first arc as the
optimal one. Otherwise, it takes the arc of type1. So let us assume that the arc of type
2 would have been the optimal choice. Hence, the optimal labelof nodet is t − 2. On
the other hand, choosing only arcs of type1 yields a label oft − 1. Sincet > c + 1,
the ratio t−1

t−2 ≤
c+1

c
. Since we can partition the solution that is found by the optimal

algorithm into independent balanced parts, we can repeat these arguments on them.

4.1 A compact4/3-Approximation

In this subsection, we unroll the generic algorithm for the casec = 3 and give a compact
set of rules for the selection of the capacities. These rulescan be generalized to decom-
posed colored images yielding a competitive approximationalgorithm in practice. They
are described as follows and depicted in Fig. 7.

Compact We consider the first three nodes. If the first node is not a source, we skip
it without selecting any outgoing arc. Assume it is a source in the following. If the
corresponding sink is node2 (see Fig. 7a), we select the arc of type1. If node2 is a
Steiner node(Fig. 7b), i.e. it is neither a source nor a sink, then we select the arc of type
2. If node2 is a source and node3 is either the corresponding sink or Steiner (Fig. 7c/d),
we select the arc of type1. Otherwise, we select the arc of type2 (Fig. 7e).

1 (a) 1 (b) 1 (c)

2 2 2

3 3 3

1 (d) 1 (e)

2 2

3 3 otherwise

(1, 2) Steiner

(2, 3)

Steiner

Fig. 7. The rules for the algorithm COMPACT



Lemma 2. The algorithmCOMPACT achieves a competitive ratio of4/3.

Proof. The interesting cases are if node1 and2 are sources and their corresponding
sinks are not revealed yet. Assume first that node3 is Steiner. We show that we can
transform every feasible solution such that the Steiner node is isolated (see Fig. 8).
Consider a feasible solution where the arc between node1 and3 is picked. Since node
2 is a source the arc between2 and4 is also selected. Moreover there must be an arc
between node3 and5. We can reconnect the tail of latter to node4 and the head of the
outgoing arc of node1 to node2. Thereby, we do not change the number of arcs and
the routing remains feasible. If node3 is a source instead, the demand of node1 may
go piggyback with the demand of node2 or with the one of node3. Since the first three
nodes are sources, each of them has an outgoing arc in every feasible solution. If an
adversary reveals that our decision to take the arc of type2 for node1 was wrong, we
need one surplus arc to fix it. Until the adversary does not force us to change the parity,
i.e. choose an arc of type1, we do not use more arcs than optimal. Moreover, if we
are forced to take such an arc, the problem decomposes into independent subproblems.
Thereby, we use at most one surplus arc by three necessary ones and hence get a ratio
of 4/3.

1 1

2 2

3 ⇒ 3

4 4

5 5

Fig. 8. Isolating a Steiner node

Generalizing to colored images Recall that in the general case the instance is not
given by a binary matrix but asR = (rij) ∈ {0, . . . , ̺}n×m. So we need to gener-
alize our concepts for this purpose. We briefly sketch how this is done in our algo-
rithm. Whenevermax{rij − ri−1,j : 1 ≤ j ≤ m} > 0 we call the nodei a source
in the prototype displaygraph. For the ease of notation, we use the following abbre-
viation ri − ri−1 for the maximum over all columns. Similarly, we call nodei a sink
wheneverri−1 − ri > 0. The degree condition transforms intou(δout(i)) ≤ ri and
u(δin(i)) ≤ ri−1. Similarly to the set of rules presented above, we define five rules for
the general case. The rule a) for example translates into therule in which we have to
reserve a capacity of at leastr2 − r1 on the arc of type 1 leaving node 1. The other rules
can be generalized accordingly. We do not know the exact approximation ratio of this
generalized algorithm. In particular we do not know whetherit exceeds4/3. However,
as the computational results of the next section show, it behaves very well in practice.



5 Computational Results

We use the same testset and machine as in [1]. It is a Pentium M with 2GHz and 2MB L2
cache. The images are portraits of 197 employees of the MPI. They have a resolution of
180×240 pixels and a colordepth of 24 bit, i.e.n = 180, m = 720, and̺ = 255. From
[1], we take the algorithms calledec-bf-mcgu-2and ec-bf-mcgu-4which performed
best there. They differ only by the fact that the former combines two rows and the latter
combines up to four rows. We compare them to the generalized COMPACT algorithm
(that solves the doubleline problem) and a cascading of it such that four or two rows may
be combined. We will elaborate on the differences ofec-bf-mcgu-4and CASCADING to
the doubleline addressing scheme at the end of this section.

0 50 100 150 200
Index
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0.1

1
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ec-bf-mcgu-4: 3.417s
ec-bf-mcgu-2: 2.348 s
cascading: 0.019s
compact: 0.007 s

Fig. 9.Running time comparison of the old and new algorithms

In Fig. 9, we show the running times for each instance. The squares and the crosses
(top) represent the old measurements ofec-bf-mcgu-2andec-bf-mcgu-4respectively.
Whereas the dots and circles (bottom) correspond to the new algorithms COMPACT

and CASCADING. We connected the measurements by lines to guide the eye. Note
the logarithmic scale of the time axis. One can see that the new algorithms are two
orders of magnitudes faster than the old ones. Comparing themean running times, the
improvement is more than a factor of 300 betweenec-bf-mcgu-2and COMPACT, and
about 180 betweenec-bf-mcgu-4and CASCADING. Moreover, the variance decreases
drastically. This is due to the fact that the running time of the old algorithms depends
strongly on the input data, i.e. on the unary encoding length, while it scales only with
the size of the binary encoding length in the new ones.

It remains to show that the drastic improvements with respect to the running times
are not at the cost of the approximation quality. Therefore,we solved the corresponding



integer linear programs for doubleline addressing with thecommercial solver CPLEX.
Thereby, we obtained the optimal solutions and were able to compare the per-instance
approximation ratios ofec-bf-mcgu-2and COMPACT. The results are depicted in Fig 10.

0 50 100 150 200
Instances

0.96

0.98

1

1.02

1.04

1.06

1.08
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R
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ec-bf-mcgu-2: 2.2%
Compact: 0.2%

Per Instance Approximation Ratios 
(Doubleline Addressing, k=2)

Fig. 10. Results of the old and the new doubleline algorithms normalized to the corresponding
optimal solution. The horizontal lines indicate the respective means.

As one can see, the quality of the approximation of the new algorithm is not worse than
for the one presented in [1]. In fact, on average it is even considerably better. Recall that
the objective of our optimization problem is proportional to the electrical current and
therefore has a direct impact on the lifetime of such a passive matrix OLED display.
The average gap of 0.2% shows that we have found an algorithm that does not leave
much room for improvement with respect to the necessary electrical current to display
real world images using the doubleline addressing scheme.

However, one can consider combining more than two rows to reduce the electrical
current even further. The heuristics of [1] have been implemented in such a more general
way, that the number of lines up to which we want to combine them, is controlled by a
parameterk = 2, 3, 4, . . . whereas COMPACT is specialized to the doubleline address-
ing scheme, i.e.k = 2. Nevertheless, doubleline addressing is an important building
block for more advanced strategies. We outline here a simpleone that is achieved by
cascading COMPACT. This means that we take the two frames that contain the com-
puted doublelines and feed both independently as input to COMPACT again. Thereby
two doublelines of the outcome of the first phase may potentially be combined to a
doubleline which represents the combination of four lines with respect to the original
image. Thereby, we push forward into the range ofec-bf-mcgu-4without considering



the combination of three lines. The ratios of the objectivesof CASCADING andec-bf-
mcgu-4for each instance are presented in Fig. 11.
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Fig. 11.The relative objective of CASCADING with respect toec-bf-mcgu-4. The horizontal line
indicates the average ratio of 1.02

The slightly worse average approximation ratio by a factor of 1.02 is more than com-
pensated by the improvement with respect to the running timeby a factor of about
180. Moreover, it is not possible that CASCADING yields a worse objective value than
COMPACT on the same instance whereas this behavior occurred on some instances con-
cerningec-bf-mcgu-2andec-bf-mcgu-4. However, there might be other strategies that
are simplistic enough to guarantee a fast running time at lowhardware complexity to
close the gap. This is subject to ongoing research.

We want to conclude with a brief discussion of the applicability of consecutive
Multiline Addressing to a broader set of images. Based on theresults for human faces,
it is natural to ask for photographs in general. It turned outthat on a variety of over 3000
pictures, COMPACT achieves a reduction of the electrical current to 56% on the average
with a mean per instance approximation ratio of 1.003 compared to the optimal solution
provided by CPLEX. The results for two exemplary music videos are even better with
a reduction to 51% which is only a factor of 1.002 away from theoptimum. We explain
this behavior by the fact that the content of photos is rathersmooth, e.g. they are not
dominated by sharp edges as in artificial images like cliparts and text by bitmap fonts.
This is in agreement with the results on a testset of wallpapers for mobile phones with
a mean reduction to 63% and approximation factor of 1.005 averaged over about 4500
samples. We observed that diagonal lines, in particular if the width is only one pixel and
the contrast to the neighborhood is high, constitute an obstacle to Multiline Addressing.

Finally, we want to thank Markus Tetzlaff for providing us with the large set of his
digital photos and Tobias Jung for performing the tests as part of his bachelor thesis.
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