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Abstract. We consider an optimization problem arising in the desigraf-
trollers for OLED displays. Our objective is to minimize thenplitude of the
electrical current flowing through the diodes which has adiimpact on the
lifetime of such a display. The optimization problem consisfinding a decom-
position of an image into subframes with special structpraperties that allow
the display driver to lower the stress on the diodes. For mlormone images, we
present an algorithm that finds an optimal solution of thizbpgm in quadratic
time. Since we have to find a good solution in realtime, we ictamsan online
version of the problem in which we have to take a decision for mw based
on a constant number of rows in the lookahead. In this frametins algorithm
has a tight competitive ratio. A generalization of this aition computes near
optimal solutions of real-world instances in realtime.

1 Introduction

Organic Light Emitting DiodegOLEDS) have received growing interest recently as
more and more commercial products are equipped with sughagis Though they
have many advantages over current technology like LCD, smigll size OLED dis-
plays have entered the marked yet. One reason for this isntiited lifetime of those

Fig. 1. Sample of a commercial OLED device with integrated drivepch

displays. While a lot of research is conducted on the matsgiance side, the so-called
Multiline Addressing Schenfier passive matrix OLED displays [7] tackles the lifetime-
problem from an algorithmic point of view. It is based on thetfthat equal rows can
be displayed simultaneously with a lower electrical curtban in a serial manner. An
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Fig. 2. Schematic electrical circuit of a display

explanation of this phenomenon can be found in [1] and [6}eHee restrict ourselves
to an informal description for self-containment.

A (passive matrix) OLED display has a matrix structure withows andm columns.
At any crossover between a row and a column there is a vediode which works
as a pixel. The image itself is given as an integral non-egatx m matrix (r;;) €
{0,...,0}™"™™ representing its RGB values. Consider the contacts for die and
columns as switches. For the time the switch of ricand columry is closed, an elec-
trical current flows through the diode of pixgl j) and it shines. Hence, we can control
the intensity of a pixel by the two quantitietectrical currentandtime. In our applica-
tion, the electrical current is equal for all pixels. Sinégthamplitudes of the electrical
current or high peaks of intensity respectively, are theomigsues with respect to the
lifetime of the diodes [5], we try to trade as much time as fsdor it. But since an
image has to be displayed within a certain time freffpeit is a limited resource that
we shall use as efficient as possible. Hence, the vajudetermines the amount of time
within the time frame in which the switchésand; have to be simultaneously closed.
At a sufficient high frame rate e.g. 50 Hz, the perception leyeye is the average value
of the light emitted by the pixel and one sees the image.

The traditional addressing scheme is row-by-row. This mélaat the switch for the
first row is closed for a certain time while the switches fag tolumns are closed for
the necessary amount of time dictated by the entriesj = 1,..., m. Consequently
the first row can be displayed in timeax{r1; : j = 1,...,m}. Then the second row
is displayed and so on.

Consider the schematic image on the left of Fig. 3. Let us agefhe amount of
time which is necessary to display the image with this addingsscheme. The maxi-



mum value of the entries in the first row488. This is the amount of time which is nec-
essary to display the first row. After that the second rowspldiyed in time37. In total
the time which is required to display the imag@38 + 237 + 234 232 + 229 = 1170
time units.

Now consider the decomposition of the image as the sum ohtlee images on the
right of Fig. 3. In the firstimage, each odd row is equal tovisresuccessor. This means
that we can close the switches for rohand2 simultaneously, and these two equal rows
are displayed i82 time units. Rows and4 can also be displayed simultaneously which
shows that the first image on the right can be display@&@in41 time units. The second
image on the right can be displayedli#b + 191 time units while the third image has to
be displayed traditionally. In total all three images, amdsstthe original image on the
left via this decomposition, can be displayed41+155+191+156+38+38 = 701
time units. This means that we could reduce the necessagwimthis decomposition
by roughly40%. We could equally display the image in the origial0 time units but
reduce the peak intensity, or equally the maximum eledteicaent through a diode by
roughly40%.

109 238 28 0 00 109 156 3
112 237 28 112 155 3 0 0 0
150 234 25 = el 112 155 SEEel 38 38 0
189 232 22 0 0 0
227 229 19 38 38 19

Fig. 3. An example decomposition

On real-world images, an optimal decomposition of the imeltpevs a reduction of the
electrical current to 56% on the average. This means andgeref lifetime by roughly
100%, see [5].

To benefit from this decomposition in practice, an algoritionsolve the optimiza-
tion problem, which is formally described in Section 2, tabé implemented on a chip
which is attached to the display, see Fig. 1. The followingjgie criteria lie in the focus
when engineering such an algorithm.

— The algorithm has to react in realtime.

— It must have low hardware complexity allowing small prodoctcosts.

— Consequently it has to rely only on a small amount of memoxy iashould be
fully combinatorial i.e. only additions, subtractions, and comparisons aed.us

Especially the last of the above criteria clearly estaleish border between our ap-
proach and another technique [4] basedNam-negative Matrix Factorizatiof8, 2].

Contributions of this paper

First we show that monochrome images can be optimally deoseatpin polynomial
time. The presented algorithm has quadratic running timteénworst case. Therefore



we introduce an online version of this algorithm which takedecision for one row,
based on a lookahead of a certain fixed number of rows. Thagigign runs in linear
time and has tight competitive ratio. On real world imagearihs out that a lookahead
of 3 rows gives the most satisfactory results when balangppyoximation ratio, ease
of implementation and running time. Our computational ltsshow that this algorithm
with a lookahead o8 outperforms the previously best algorithm presented im{t}.
its practical approximation ratio and even more so w.striinning time. This implies
that nearly optimal Doubleline Addressing for real worldiges can be efficiently com-
puted and, in particular, that an economic hardware impfgation meeting the design
criteria is possible.

2 The Formal Model

In this section, we will briefly review the formal model presed in [1]. LetR =
(ri;) € {0, ..., 0}™*™ be the matrix representing the image. To decompves need

to find matricest”™® = (f{})) and F® = (f”)) whereF (") represents the singleline
part andF'(?) the two doubleline parts. More precisely, théh row of matrix F(2)
represents the doubleline covering rowandi + 1. Since the overlay (addition) of
the subframes must be equal to the original image to get d dalkomposition of?,

the matrices” ") and F(?) must fulfill the constrain;fig-l) + 12 i+ fi(f) = ry; for
1=1,...,nandj = 1,...,m, where we now and in the followihg use the convention
to simply omit terms with indices running out of bounds. ®inge cannot produce

“negative” light we require also non-negativity of the \abiesfig.“) > 0. Thegoalisto
find an integral decomposition that minimizes

n n—1
domax{fi) 1< <mp+ Y max{f 1 <j<m) .
=1 i=1

This problem can be formulated as an integer linear prograrefiiacing the objective
by S0, uf” + 5277wl and by adding the constraing§™ < u®). This yields

n n—1
min Z ugl) + Z UEQ)
i=1 i=1

fi(;*) <ul® forall i, j, o (2)
fi(j“) € Zxo foralli, j,a (3)

Note that the objective does not contain the&ariables.

Consider the constraints (1) for a fixed colughrBy appending the constraifit=
0 and by subtracting thé — 1-st constraint from the-th constraint, we obtain the
following set of constraints

fz(jl) - fl(i)l,j + f1(72) - fi(E)QJ =Tij —Ti—1,5 for all Z,j (4)



For eachy the constraint-matrix is thus the node-arc incidence matirespondingto a
graph like in Fig. 4. In the following we refer to this graphhieh is solely determined
by the numbem of rows in the image, by the nanpototype displaygrapltz,, =
(V, A).

Fig. 4. Prototype displaygraph with variable-names of arcs emjesind leaving rova.

The variablesfi(jl) correspond to the arcs going from left to right and vice versa

We call them arcs of typé. The variableg“g) are represented by the vertical arcs,
called type2. The number;; —r;_; ; is thedemandi; (i) of vertex: in columnj. The
optimization problem can now be understood as follows.

Given an integer matrib? € Nj*™ reserve capacities : A — N for
the arcsA of G, such that each of the demands j = 1,...,m can be
individually routed inG,, and such that(A) = 3 _. , u(e) is minimal.

In this contextjndividually routed means that for any columirthe capacities admit a
feasible flow satisfying the respective demadgs

3 Decomposing Monochrome Images in Polynomial Time

A monochrome imagis an imageR € {0,1}™*™. In this section we show that an
optimal decomposition of such an image can be computed ipnpatial time. The
following example shows the transformation of an image theodemand matrix by the
row operations that we described in the previous section.

101 1001
(1);)} — -110 — -1010 5)
111 100 0100

-1-1-1 0-1-1-1



Each column is &, +1-vector. Furthermore it is easy to see that the occurrenfcés o
and—1 in each column alternate and that edcls succeeded by a1 and each-1

is preceded by a disregarding the zeros inbetween. Moreover, the two nesran
the right of (5) have the same set of feasible solutions wetpect to the capacities
which are subsets of arcs such that the pairs of ngtley), (3,4), (2,4), and(1,4)
are connected in the corresponding subgraph. Thereforassieme w.l.0.g. that each
column yields exactly one such pair of nodes to which we a$erras acommodityin
the following. In general the problem of optimally decomipgsmonochrome images
can be understood as follows.

Given commoditieqs;,t;), j = 1,...,m with s; < t; for eachj and a
numbern, select a minimal number of arcs 6f, such that there exists a path
froms; tot; foreachj =1,...,m.

The nodes; are calledsourcesand the nodes; are calledsinks Furthermore, if a node
is neither a source nor a sink, we callSteiner The selection of arcs df,, is given
by a functionu : A — {0,1}, whereu(a) = 1 if the arca is selected and(a) = 0
otherwise.

The next lemma is easy to prove but crucial to obtain a polyiabtime algorithm.
Hereu(5°%!(i)) denotes the number of selected arcs leaving ro8ienilarly, (5" (7))
denotes the number of selected arcs entering

Lemma 1. Given a feasible solution, then there exists a feasible solutiehwith

! (5°()
/(57 ()

<1 and (6)
<1

with the same total weight.

Proof. It is easy to see that we remain feasible if we substitute aftype2 by the
two arcs of typd incident to head and tail respectively. We do not changetineber of
selected arcs by selecting the other tyec instead of the typgarc if u(5°“4(i)) > 1
or u(6"(i)) > 1 respectively as depicted in Fig. 5. Such a replacement ilfieq
since each pair of nodes which was connected by a path béfreplacement is still
connected after the replacement.

® - | ©

Fig. 5. Transformation to maintain the degree condition



In the forthcomming we maintain(6°“(i)) < 1 andu (5™ (i)) < 1 as an invariant
and call itdegree conditionThereby, the selection of one outgoing arc uniquely trans-
forms the instance to the same problem with one row less. Memié we have selected
the outgoing arc of type for nodel and if node2 is a source, we have to select the
arc of type2 as well to leave the second node to maintain the degree cmmdit turn,
this might force the same for the outgoing arcs of ned@ad so on. These implications
evolve until either everything up to the current row is bakeshor an odd commodity,
say (s,t) with t — s odd, produces a conflict (see Fig. 6). More precisely spegkin
balanced up to row means that the assignment to the capacities of theuasush that
head(a) < i is a feasible solution to the subinstance consisting ofdlest, ..., i —1
of the given image. Hence, the solution of the subproblemtistpat node; does not
depend on how we have balanced up to toWote that both subproblems are consid-
ered with respect to the given image, i.e. all commoditigst;) with s; < i < t;
are split into(s;, ¢) and(4, ¢;) where the former commodity is considered with the first
subproblem and the latter with the second. It is easy to sgddhsible solutions to the
subproblems join to feasible solutions for the originaligeon. In particular, balanced
up to row: implies that we may forbid the af¢ — 1,4 + 1) and remain feasible.

®. ®.
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Fig. 6. In both examples, we are given the commoditiés3) and(2,6). On the left, we addi-

tionally have(3, 5) whereas on the right it is the odd commod(; 6) instead. While the left
example is balanced up to nodethe commodity(3, 6) produces a conflict on the right.

We will now present a basic dynamic programming scheme usatg labels to
store at nodé how much it costs to balance up to nod&he label of the first node
is 0 and all others arec at the beginning. Let be the current node. Assume that it is
a source since otherwise we could simply skip it and proceidild the same label at
nodei + 1. We select arcs of typ until we either find a conflict or a node, sayup
to which we are balanced. If the label ©plus the number of selected arcs is smaller
than the label of, we update it accordingly. For a later reconstruction ofgbktion,
we also storé as the predecessor bfin case of a conflict we do not update anything.
Afterwards, we proceed to nodé 1. If the label ofi+1 is more than greater than label
i, we also update it and seas the predecessor of 1, i.e. selecting the arc of type
Then we repeat these steps until we reach the end. Becalseddgdree condition, we



can transform any instance such that each node is the sduatenost one commodity
and also the sink of at most one commodity. Hence, by a prepsirrg of the input data
which takesO(n - m) time, we can annotate the nodes with the necessary infamati
Since every step involves the visit 6fn) nodes and arcs, the total time for computing
the capacities i®(n?).

Theorem 1. The optimal decomposition of an image given by a magrix {0, 1}"*™
can be computed i®(n - m + n?).

4 The Online Problem

Recall that we intend to develop an algorithm that finds a dgxsition in realtime
while keeping it simplistic enough such that it can be impdated on a chip with a low
hardware complexity. Hence, we are looking for a linear tafgorithm that uses only
additions, subtractions, and comparisons. Since we do aot ts scan over the whole
rest of the graph in each iteration, it is natural to restifiet lookahead to a certain
number of rows. It follows an online version of our problemeséwe have to fix the
capacities of the outgoing arcs of a node only based on thelkdge of the following
c rows. Again, we consider monochrome images first. At the dnthis section we
describe how our method can be adapted to decompose ayloitdared images.

The canonical algorithm uses the one of Sec. 3 as follows. Mée she instance
of the knowne rows to optimality. According to that solution, we fix the gatng arcs
of the first node. After updating the instance and readinghthe row, we repeat these
steps until we reach the end. The computation t&kes n) time disregarding the time
for the preprocessing that we have to spend anyways to gasegut.

In the following, we will first give a lower bound on the comitiee ratio of any
algorithm in that online setting. Afterwards, we will anatythe competitive ratio of
the aforementioned approach. Before we state the theorésmelpful to have a look
at following example where the adversary starts with thegena the middle and then
reveals the fourth row according to the arc we have selectetthé first node.

ADP 100 ADP
110 |typet [110] type2 | A 10
tr| " (1] 111 (7)
101 * % * 001

The optimal value in both casesdsBut after making the choice for the first row, the
adversary force us to paly

Theorem 2. Any online algorithm that fixes the outgoing arcs of noaéthout know-
ing the rowsi 4 ¢ and beyond, has a competitive ratio of at Ieéic;%.

Proof. An adversary reveals the firshodes of an instance with the commoditieg; )
foralli = 1,...,cwheret; € {c+ 1,c+ 2} is chosen later depending which arc the
algorithm picks following the idea shown in (7). If the algbm selects the arc of type
1, then the adversary setsto the odd value. Otherwise, it is set to the even node. All
othert; are set such that the commoditigst;) are even. The optimal solution of the



residual problem ig. Hence, the achieved objective value is 1 whereas the opposite
choice for the first arc would yield an optimal solution ofwat.

Theorem 3. There is an algorithm with competitive ratrd;—l.

Proof. We first compare the optimal algorithm running on the congiestance with
the one running on the firstrows. Lett be the node such that the selection of the type
2 arcs starting with the first node gets balanced with resgetti¢ whole instance. If
no such node exists, then in every feasible solution the fagpe 1 has to be picked
for leaving nodel. This also holds for the instance restricted to the finsbdes. Note
that the choice of the first arc only depends on the rows Btiliess thant. Hence, if

t < ¢+ 1, then the online algorithm makes the same decision on theaficsas the
optimal one. Otherwise, it takes the arc of typeSo let us assume that the arc of type
2 would have been the optimal choice. Hence, the optimal labebdet is¢ — 2. On
the other hand, choosing only arcs of typgields a label oft — 1. Sincet > ¢ + 1,
the ratio% < % Since we can patrtition the solution that is found by theropti
algorithm into independent balanced parts, we can repeaéthrguments on them.

4.1 A compact4/3-Approximation

In this subsection, we unroll the generic algorithm for theee: = 3 and give a compact
set of rules for the selection of the capacities. These ndade generalized to decom-
posed colored images yielding a competitive approximadlgarithm in practice. They
are described as follows and depicted in Fig. 7.

Compact We consider the first three nodes. If the first node is not aceywre skip

it without selecting any outgoing arc. Assume it is a sourcéhie following. If the
corresponding sink is node(see Fig. 7a), we select the arc of typef node2 is a
Steiner nod€Fig. 7b), i.e. it is neither a source nor a sink, then we sehexarc of type

2. If node2 is a source and nodsis either the corresponding sink or Steiner (Fig. 7c/d),
we select the arc of type Otherwise, we select the arc of typ€Fig. 7e).

@) (a) @ b @ (c)

NG
; @
@ Steiner @ otherwise

Fig. 7. The rules for the algorithm @upPACT
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Lemma 2. The algorithmCoMPACT achieves a competitive ratio ¢f 3.

Proof. The interesting cases are if notleand2 are sources and their corresponding
sinks are not revealed yet. Assume first that n@de Steiner. We show that we can
transform every feasible solution such that the Steinereriedsolated (see Fig. 8).
Consider a feasible solution where the arc between mata3 is picked. Since node

2 is a source the arc betwe@rand4 is also selected. Moreover there must be an arc
between nod8 and5. We can reconnect the tail of latter to notland the head of the
outgoing arc of nodé to node2. Thereby, we do not change the number of arcs and
the routing remains feasible. If nodes a source instead, the demand of nadeay

go piggyback with the demand of noder with the one of nod8. Since the first three
nodes are sources, each of them has an outgoing arc in ewsiplesolution. If an
adversary reveals that our decision to take the arc of yfoe nodel was wrong, we
need one surplus arc to fix it. Until the adversary does nagfos to change the parity,
i.e. choose an arc of type we do not use more arcs than optimal. Moreover, if we
are forced to take such an arc, the problem decomposes adgpémdent subproblems.
Thereby, we use at most one surplus arc by three necessayanddence get a ratio
of 4/3.

.. ®

® o
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Fig. 8. Isolating a Steiner node
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Generalizing to colored images Recall that in the general case the instance is not
given by a binary matrix but a® = (r;;) € {0,...,0}™*™. So we need to gener-
alize our concepts for this purpose. We briefly sketch how thidone in our algo-
rithm. Whenevemax{r;; — r;—1; : 1 < j < m} > 0 we call the node a source

in the prototype displaygraph. For the ease of notation, sethe following abbre-
viationr; — r;_; for the maximum over all columns. Similarly, we call noda sink
wheneverr;,_; —r; > 0. The degree condition transforms int¢s°“*(i)) < 7; and
u(6™ (1)) < 7;—1. Similarly to the set of rules presented above, we define filesifor
the general case. The rule a) for example translates intouteén which we have to
reserve a capacity of at least— r; on the arc of type 1 leaving node 1. The other rules
can be generalized accordingly. We do not know the exactoxppation ratio of this
generalized algorithm. In particular we do not know whethexceedsl/3. However,

as the computational results of the next section show, iabehvery well in practice.




5 Computational Results

We use the same testset and machine asin [1]. It is a PentiumiN2@Hz and 2MB L2
cache. The images are portraits of 197 employees of the Migly fiave a resolution of
180 x 240 pixels and a colordepth of 24 bit, i.e.= 180, m = 720, andp = 255. From
[1], we take the algorithms calleelc-bf-mcgu-2and ec-bf-mcgu-4wvhich performed
best there. They differ only by the fact that the former cameitwo rows and the latter
combines up to four rows. We compare them to the generalizedr@cCT algorithm
(that solves the doubleline problem) and a cascading ofit tat four or two rows may
be combined. We will elaborate on the differencesobf-mcgu-4&nd CASCADING to
the doubleline addressing scheme at the end of this section.
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Fig. 9. Running time comparison of the old and new algorithms

In Fig. 9, we show the running times for each instance. Theusguand the crosses
(top) represent the old measurement&ofhf-mcgu-2andec-bf-mcgu-4espectively.
Whereas the dots and circles (bottom) correspond to the fgvithms GOMPACT
and CASCADING. We connected the measurements by lines to guide the eye. Not
the logarithmic scale of the time axis. One can see that theaigorithms are two
orders of magnitudes faster than the old ones. Comparinghé@a running times, the
improvement is more than a factor of 300 betweerbf-mcgu-2nd GMPACT, and
about 180 betweeac-bf-mcgu-4and CASCADING. Moreover, the variance decreases
drastically. This is due to the fact that the running timehaf bld algorithms depends
strongly on the input data, i.e. on the unary encoding lengttile it scales only with
the size of the binary encoding length in the new ones.

It remains to show that the drastic improvements with resfoethe running times
are not at the cost of the approximation quality. Thereferesolved the corresponding



integer linear programs for doubleline addressing withctw@mercial solver CPLEX.
Thereby, we obtained the optimal solutions and were abletopare the per-instance
approximation ratios aéc-bf-mcgu-2nd GMPACT. The results are depicted in Fig 10.

Per Instance Approximation Ratios

(Doubleline Addressing, k=2)
11 T T T T T T ;

== ec-bf-mcgu-2: 2.2%
1.08— Compact: 0.2% B

| | | | | | |
0 50 100 150 200
Instances

Fig. 10. Results of the old and the new doubleline algorithms nomedlito the corresponding
optimal solution. The horizontal lines indicate the respeaneans.

As one can see, the quality of the approximation of the newarélgn is not worse than
for the one presented in [1]. In fact, on average it is evesiclamably better. Recall that
the objective of our optimization problem is proportionalthe electrical current and
therefore has a direct impact on the lifetime of such a passiatrix OLED display.
The average gap of 0.2% shows that we have found an algoritatrdbes not leave
much room for improvement with respect to the necessaryralatcurrent to display
real world images using the doubleline addressing scheme.

However, one can consider combining more than two rows toaedthe electrical
current even further. The heuristics of [1] have been imjgletad in such a more general
way, that the number of lines up to which we want to combinethe controlled by a
parametek = 2,3,4,... whereas ©OMPACT is specialized to the doubleline address-
ing scheme, i.ek = 2. Nevertheless, doubleline addressing is an importantimgjl
block for more advanced strategies. We outline here a simpdethat is achieved by
cascading OMPACT. This means that we take the two frames that contain the com-
puted doublelines and feed both independently as inputdm@aCT again. Thereby
two doublelines of the outcome of the first phase may potiyntiee combined to a
doubleline which represents the combination of four linéth wespect to the original
image. Thereby, we push forward into the rangeofbf-mcgu-4vithout considering



the combination of three lines. The ratios of the objectoe€ASCADING andec-bf-
mcgu-4for each instance are presented in Fig. 11.

Approximation Quality of the Cascading
(compared to ec-bf-mcgu-4)
T T T T T

[ ‘ « Cascading / ec-bf-mcgu-4: 1.02 on averbge
1.15— —

11— . . _

0.95- , .- ) B

0.9— * —

L ‘ ‘ ‘ o
0 50 100 150 200
Index

Fig. 11. The relative objective of EsCADING with respect taec-bf-mcgu-4The horizontal line
indicates the average ratio of 1.02

The slightly worse average approximation ratio by a facfdat.62 is more than com-
pensated by the improvement with respect to the running bgna factor of about
180. Moreover, it is not possible thatAGCADING yields a worse objective value than
CompPACT on the same instance whereas this behavior occurred on sstaades con-
cerningec-bf-mcgu-2andec-bf-mcgu-4However, there might be other strategies that
are simplistic enough to guarantee a fast running time atlamdware complexity to
close the gap. This is subject to ongoing research.

We want to conclude with a brief discussion of the appliggbibf consecutive
Multiline Addressing to a broader set of images. Based omehelts for human faces,
itis natural to ask for photographsin general. It turnedtbat on a variety of over 3000
pictures, @MPACT achieves a reduction of the electrical current to 56% on veesge
with a mean per instance approximation ratio of 1.003 coexbpt the optimal solution
provided by CPLEX. The results for two exemplary music vislace even better with
a reduction to 51% which is only a factor of 1.002 away fromdpgmum. We explain
this behavior by the fact that the content of photos is rashesoth, e.g. they are not
dominated by sharp edges as in artificial images like clipand text by bitmap fonts.
This is in agreement with the results on a testset of wallsfoe mobile phones with
a mean reduction to 63% and approximation factor of 1.00%s@esl over about 4500
samples. We observed that diagonal lines, in particulaeiftidth is only one pixel and
the contrast to the neighborhood is high, constitute areghesto Multiline Addressing.

Finally, we want to thank Markus Tetzlaff for providing ustiwvihe large set of his
digital photos and Tobias Jung for performing the tests asgbis bachelor thesis.
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