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Gomory cutting planes

P = {x∈

�n | Ax6 b} polyhedron, cTx 6 δ, c∈

�n valid for P.
Then: cTx 6 bδc valid for integer hull PI of P. (Gomory 1958, Chvátal 1973)
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Chvátal closure

Inequality cTx 6 δ valid for P = {x∈

�n | Ax6 b} if and only if
there exists λ ∈

�n
>0 with λTA = c and λTb 6 δ

Chvátal closure:

P′ = P
\

λ>0
λT A∈

�n

λTAx6 bλTbc.

(Chvátal 1973)

P′ is polyhedron, if P is rational (Schrijver 1980), (Chvátal 1973)

Optimizing over P′ is NP-hard (E. 1999)



Matching: A case wherePI = P′
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Matching polytope P(G): Convex hull of incidence vectors of
matchings of G.

Which kind of inequalities describe
P(G) ?
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The fractional matching polytope

• ∀e∈ E : x(e) > 0

• ∀v∈V : ∑e∈δ(v) x(e) 6 1



The matching polytope

Theorem (Edmonds 65).The matching polytope is described by the
following inequalities:

i) x(e) > 0 for each e∈ E,

ii) ∑e∈δ(v) x(e) 6 1 for each v∈V,

iii) ∑e∈E(U) x(e) 6 b|U |/2c for each U⊆V



The matching polytope

Theorem (Edmonds 65).The matching polytope is described by the
following inequalities:

i) x(e) > 0 for each e∈ E,

ii) ∑e∈δ(v) x(e) 6 1 for each v∈V,

iii) ∑e∈E(U) x(e) 6 b|U |/2c for each U⊆V Gomory Cut!



Stable Sets: A generalization of
Matching



Stable Sets

Stable set: Subset of pairwise non-adjacent nodes

A stable set of a line graph is a matching of the original graph.



Claw-Free Graphs

Theorem (Minty 1980, Nakamura & Tamura 2001). The maximum
weight stable set problem of a claw-free graph can be solved in
polynomial time.
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Claw-Free Graphs

Theorem (Minty 1980, Nakamura & Tamura 2001). The maximum
weight stable set problem of a claw-free graph can be solved in
polynomial time.

Which kind of inequalities describe STAB(G) if G is
claw-free ? (Gröschtel, Lovász & Schrijver 1987)

As of today: There is even no conjecture !
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Quasi-Line Graphs

G is quasi-line if neighborhoods of nodes decompose into two
cliques

Line graphs ⊂ quasi-line graphs ⊂ claw-free graphs

Which kind of inequalities describe STAB(G) if
G is quasi-line ?

Gomory cuts are not enough!



Bad news first: Inequalities are not 0/1

• For each natural number a, there exists a quasi-line graph,
whose stable set polytope has a normal vector with
coefficients a/a+1 (Giles & Trotter 1981)

• Facets cannot be interpreted as subsets of nodes



Clique family inequalities

• F is family of cliques

• p > 1 a natural number and r remainder of |F|/p

• Vp−1: Vertices contained in p−1 cliques of F

• V>p: Vertices contained in at least p cliques of F

(p− r −1) · ∑
v∈Vp−1

x(v)+(p− r) · ∑
v∈V>p

x(v) 6 (p− r) · b
|F|
p
c



A generalization of Edmond’s inequalities

(2−1−1) · ∑
v∈•

x(v)+(2−1) · ∑
v∈•

x(v) 6 (2−1) · b
|F|
2
c



Ben Rebea’s conjecture

Conjecture. If G is quasi-line, then STAB(G) can be characterized by
positiveness inequalities, clique inequalitites and clique family
inequalities.

Clique family inequalities are split cuts!



Split Cuts



Splits

Split: Tuple (π,π0), π ∈

�n, π0 ∈

�

.
P⊆

�n polyhedron: P(π,π0) = conv(P∩ (πx 6 π0), P∩ (πx > π0 +1)).
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Split closure

Split closure:

Ps =
\

(π,π0) split

P(π,π0).

Ps is polyhedron if P is rational
Split cut: Inequality valid for Ps (Cook, Kannan & Schrijver (1990)

Special case of disjunctive cut (Balas 1979)

AKA: Gomory mixed integer cut, Mixed integer rounding cut.
(Nehmhauser & Wolsey 1988, 1990), (Cornuéjols & Li 2001),

(Andersen, Cornuéjols & Li 2002)

Separating split-cuts is NP-hard (Caprara & Letchford 2001)



Proving Ben Rebea’s conjecture



Outline

• Decomposition theorem for quasi-line graphs
(Chudnovsky, Seymour 04)

• Either a composition of fuzzy linear interval graphs (1)
• or a fuzzy circular interval graph (2)

• Edmonds’ inequalities are enough for class (1)
(Chudnovsky, Seymour 04)

• Reduction from class (2) to the class of circular interval graphs
A facet of a fuzzy circular interval graph G = (V,E) is also a facet of G′ = (V,E′ ⊂ E)

with G′ a circular interval graph

• Establish the conjecture for circular interval graphs



Stable sets of circular interval graphs

• Circular interval graphs

• Packing problem
max ∑v∈V c(v)x(v)

s.t. Ax 6 1

x(v) ∈ {0,1} ∀v∈V

e.g. A =









1 1 1
1 1 1

1 1 1
1 1 1

1 1 1
1 1

1 1 1
1 1 1









where the matrix A is a circular ones matrix



Totally unimodular transformation

• Totally unimodular transformation (Bartholdi, Orlin, Ratliff 80)

x = T y, where T =











1
−1 1

−1 1

. . .
1
−1 1











Let P = {x∈

�n |
(

A
−I

)

x 6
(

1
0

)

}, Q = {y∈
�n |

(

A
−I

)

T y6
(

1
0

)

}

• Effect of T on a circular ones matrix
( ... ... ... ... ... ... ... ... ... ...

0 ... 0 0 1 1 1 0 ... 0

... ... ... ... ... ... ... ... ... ...

)

→

( ... ... ... ... ... ... ... ... ... ...

0 ... 0 −1 0 0 1 0 ... 0

... ... ... ... ... ... ... ... ... ...

)

A A·T



Slicing the polytope

• The structure of Q

Q = {y∈

�n |
(

A
−I

)

T y6
(

1
0

)

} = {y∈

�n | (N|v)y 6
(

1
0

)

}

where N is "almost" a arc-node incidence matrix

• Slicing Q and P

• N totally unimodular =⇒

∀β ∈

�

,Qβ = {y∈

�n | (N|v)y 6
(

1
0

)

, y(n) = β} is integral

• T totally unimodular =⇒

∀β ∈

�

,P∩{x∈

�n | ∑n
i=1 xi = β} is integral
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Slicing the polytope

Qβ = Q∩y(n) = β



Separation problem

• Separating a point y lying between two slices Qβ and Qβ+1.

• Reduce to a minimum circulation problem in the auxiliary
graph defined by (N,−N)

• Detection of negative cost simple cycles



The separation problem

• Given y∗ with y∗(n) = β+(1−µ), 0 < µ< 1

• y∗ ∈ QI if and only if there exist yL ∈ Qβ and yR ∈ Qβ+1 such that

y∗ = µyL +(1−µ)yR

• If and only if following system is feasible:

y∗ = yL +yR

NyL 6 µdL

NyR 6 (1−µ)dR

,

where dL =
(

1
0

)

−βv and dR =
(

1
0

)

− (β+1)v.



Using duality

• If and only if the following flow problem has no negative
solution

min− fLNy∗ +µ fLdL +(1−µ) fRdR

fLN = fRN

fL, fR > 0.



The structure of the facets

• Let x∗ in the relative interior of facet with ∑x∗(i) = β+1/2

• Facet is uniquely determined by cycle of zero weight with
edge weights given by

(s∗ + 1
2v) fL +(s∗− 1

2v) fR

where s∗ is the slack vector

s∗ =

(

1
0

)

−

(

A

−I

)

x∗ > 0.



The network

i i + pi −1

l l −1

• Row:
A = {i, i +1, . . . , i + p}
Arc in SL: (i + p, i −1)
Weight:
1−∑ j∈A x∗( j) if n /∈ A
1−∑ j∈A x∗( j)+1/2 if
n∈ A

• Lower bound: x(l) > 0
Arc in TL: (l −1, l)
Weight:
x∗(l) if l 6= n
x∗(l)−1/2 if l 6= n



The main lemma

Lemma. If there exists a simple cycle C of cost0, then there exists a
simple cycle C′ of cost0 such that it does not contain any arc stemming
from a clique in the left derivation fL.



Sketch of proof

ki −1 j −1 l

A B C

1−A−B+A+1−B−C < C

if and only if

1−B−C < 0

x∗ does not satisfy clique in-
equalities.



SSP of quasi-line graphs

Theorem (E, Oriolo, Ventura, Stauffer 2005). The stable set polytope
of quasi-line graphs can be characterized by:

(i) positiveness inequalities

(ii) clique inequalitites

(iii) clique family inequalities

SSP of quasi-line graphs is split closure of fractional SSP.



Split-Cut

� �
�
�
�



Number of facets

• Chvátal closure has polynomial number of facets in fixed
dimension (Bockmayr & Eisenbrand 2001)

• Separation of Gomory-Chvátal cutting planes is a MIP (Fischetti

& Lodi 2005)

Is Ps polynomial in fixed
dimension ?

Can we efficiently separate split
cuts in fixed dimension ?



Claw-Free graphs

Still there is no conjecture about the SSP of claw-free graphs.

What is the split-rank of claw-free graphs ?
Is it one ?



More rank questions

Chvátal rank is finite (Chvátal 1973, Schrijver 1980) but can be arbitrarily
large; already in dimension 2
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More rank questions

Chvátal rank is finite (Chvátal 1973, Schrijver 1980) but can be arbitrarily
large; already in dimension 2

Are there such bad examples in
dimension 2 for the split closure ?
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