

Split-Cuts and the Stable Set Polytope of Quasi-Line Graphs

Friedrich Eisenbrand

Joint work with G. Oriolo, P. Ventura and G. Stauffer

Comort Cutting AMant

Gomory cutting planes

$P=\left\{x \in \mathbb{R}^{n} \mid A x \leqslant b\right\}$ polyhedron, $c^{T} x \leqslant \delta, c \in \mathbb{Z}^{n}$ valid for P.
Then: $c^{T} x \leqslant\lfloor\delta\rfloor$ valid for integer hull P_{I} of P. (Gomory 1958, Chvátal 1973)

Gomory cutting planes

$P=\left\{x \in \mathbb{R}^{n} \mid A x \leqslant b\right\}$ polyhedron, $c^{T} x \leqslant \delta, c \in \mathbb{Z}^{n}$ valid for P.
Then: $c^{T} x \leqslant\lfloor\delta\rfloor$ valid for integer hull P_{I} of P. (Gomory 1958, Chvátal 1973)

Gomory cutting planes

$P=\left\{x \in \mathbb{R}^{n} \mid A x \leqslant b\right\}$ polyhedron, $c^{T} x \leqslant \delta, c \in \mathbb{Z}^{n}$ valid for P.
Then: $c^{T} x \leqslant\lfloor\delta\rfloor$ valid for integer hull P_{I} of P. (Gomory 1958, Chvátal 1973)

Chvátal closure

Inequality $c^{T} x \leqslant \delta$ valid for $P=\left\{x \in \mathbb{R}^{n} \mid A x \leqslant b\right\}$ if and only if there exists $\lambda \in \mathbb{R}_{\geqslant 0}^{n}$ with $\lambda^{T} A=c$ and $\lambda^{T} b \leqslant \delta$

Chvátal closure：

$$
P^{\prime}=P \bigcap_{\substack{\lambda \geq 0 \\ \lambda^{T} A \in \mathbb{Z}^{n}}} \lambda^{T} A x \leqslant\left\lfloor\lambda^{T} b\right\rfloor .
$$

（Chvátal 1973）
P^{\prime} is polyhedron，if P is rational Optimizing over P^{\prime} is NP－hard
（Schrijver 1980），（Chvátal 1973）
（E．1999）

Matching: A case where $P_{I}=P^{\prime}$

Matching

Matching polytope $P(G)$: Convex hull of incidence vectors of matchings of G.

Which kind of inequalities describe

$$
P(G) ?
$$

Matching

Matching polytope $P(G)$: Convex hull of incidence vectors of matchings of G.

Which kind of inequalities describe

$$
P(G) ?
$$

The fractional matching polytope

- $\forall e \in E: x(e) \geqslant 0$
- $\forall v \in V: \sum_{e \in \delta(v)} x(e) \leqslant 1$

The matching polytope

Theorem (Edmonds 65). The matching polytope is described by the following inequalities:
i) $x(e) \geqslant 0$ for each $e \in E$,
ii) $\sum_{e \in \delta(v)} x(e) \leqslant 1$ for each $v \in V$,
iii) $\quad \sum_{e \in E(U)} x(e) \leqslant\lfloor|U| / 2\rfloor$ for each $U \subseteq V$

The matching polytope

Theorem (Edmonds 65). The matching polytope is described by the following inequalities:
i) $x(e) \geqslant 0$ for each $e \in E$,
ii) $\sum_{e \in \delta(v)} x(e) \leqslant 1$ for each $v \in V$,
iii) $\quad \sum_{e \in E(U)} x(e) \leqslant\lfloor|U| / 2\rfloor$ for each $U \subseteq V$ Gomory Cut!

Stable Sets: A generalization of Matching

Stable Sets

Stable set: Subset of pairwise non-adjacent nodes

A stable set of a line graph is a matching of the original graph.

Claw-Free Graphs

Theorem (Minty 1980, Nakamura \& Tamura 2001). The maximum weight stable set problem of a claw-free graph can be solved in polynomial time.

Claw-Free Graphs

Theorem (Minty 1980, Nakamura \& Tamura 2001). The maximum weight stable set problem of a claw-free graph can be solved in polynomial time.

Claw-Free Graphs

Theorem (Minty 1980, Nakamura \& Tamura 2001). The maximum weight stable set problem of a claw-free graph can be solved in polynomial time.

Which kind of inequalities describe $\operatorname{STAB}(G)$ if G is claw-free ? (Gröschtel, Lovász \& Schrijver 1987)

Claw-Free Graphs

Theorem (Minty 1980, Nakamura \& Tamura 2001). The maximum weight stable set problem of a claw-free graph can be solved in polynomial time.

Which kind of inequalities describe $\operatorname{STAB}(G)$ if G is claw-free ? (Gröschtel, Lovász \& Schrijver 1987)

As of today: There is even no conjecture!

Quasi-Line Graphs

G is quasi-line if neighborhoods of nodes decompose into two cliques

Quasi-Line Graphs

G is quasi-line if neighborhoods of nodes decompose into two cliques

Quasi-Line Graphs

G is quasi-line if neighborhoods of nodes decompose into two cliques

Line graphs \subset quasi-line graphs \subset claw-free graphs

Which kind of inequalities describe $\operatorname{STAB}(G)$ if G is quasi-line ?

Quasi-Line Graphs

G is quasi-line if neighborhoods of nodes decompose into two cliques

Line graphs \subset quasi-line graphs \subset claw-free graphs

Which kind of inequalities describe $\operatorname{STAB}(G)$ if G is quasi-line ?

Gomory cuts are not enough!

Bad news first: Inequalities are not 0/1

- For each natural number a, there exists a quasi-line graph, whose stable set polytope has a normal vector with coefficients $a / a+1$ (Giles \& Trotter 1981)
- Facets cannot be interpreted as subsets of nodes

Clique family inequalities

- F is family of cliques
- $\quad p \geqslant 1$ a natural number and r remainder of $|F| / p$
- V_{p-1} : Vertices contained in $p-1$ cliques of F
- $\quad V_{\geqslant p}$: Vertices contained in at least p cliques of F

$$
(p-r-1) \cdot \sum_{v \in V_{p-1}} x(v)+(p-r) \cdot \sum_{v \in V_{\geqslant p}} x(v) \leqslant(p-r) \cdot\left\lfloor\frac{|F|}{p}\right\rfloor
$$

A generalization of Edmond's inequalities

$$
(2-1-1) \cdot \sum_{v \in \bullet} x(v)+(2-1) \cdot \sum_{v \in \bullet} x(v) \leqslant(2-1) \cdot\left\lfloor\frac{|F|}{2}\right\rfloor
$$

Ben Rebea's conjecture

Conjecture. If G is quasi-line, then $\operatorname{STAB}(G)$ can be characterized by positiveness inequalities, clique inequalitites and clique family inequalities.

Clique family inequalities are split cuts!

Split Cuts

Splits

Split: Tuple $\left(\pi, \pi_{0}\right), \pi \in \mathbb{Z}^{n}, \pi_{0} \in \mathbb{Z}$.
$P \subseteq \mathbb{R}^{n}$ polyhedron: $P^{\left(\pi, \pi_{0}\right)}=\operatorname{conv}\left(P \cap\left(\pi x \leqslant \pi_{0}\right), P \cap\left(\pi x \geqslant \pi_{0}+1\right)\right)$.

Splits

Split: Tuple $\left(\pi, \pi_{0}\right), \pi \in \mathbb{Z}^{n}, \pi_{0} \in \mathbb{Z}$.
$P \subseteq \mathbb{R}^{n}$ polyhedron: $P^{\left(\pi, \pi_{0}\right)}=\operatorname{conv}\left(P \cap\left(\pi x \leqslant \pi_{0}\right), P \cap\left(\pi x \geqslant \pi_{0}+1\right)\right)$.

Splits

Split: Tuple $\left(\pi, \pi_{0}\right), \pi \in \mathbb{Z}^{n}, \pi_{0} \in \mathbb{Z}$.
$P \subseteq \mathbb{R}^{n}$ polyhedron: $P^{\left(\pi, \pi_{0}\right)}=\operatorname{conv}\left(P \cap\left(\pi x \leqslant \pi_{0}\right), P \cap\left(\pi x \geqslant \pi_{0}+1\right)\right)$.

Split closure

Split closure:

$$
P^{s}=\bigcap_{\left(\pi, \pi_{0}\right) \text { split }} P^{\left(\pi, \pi_{0}\right)} .
$$

P^{s} is polyhedron if P is rational
Split cut: Inequality valid for P^{s}
(Cook, Kannan \& Schrijver (1990)
Special case of disjunctive cut (Balas 1979)

AKA: Gomory mixed integer cut, Mixed integer rounding cut.
(Nehmhauser \& Wolsey 1988, 1990), (Cornuéjols \& Li 2001),
(Andersen, Cornuéjols \& Li 2002)

Proving Ben Rebea's conjecture

Outline

- Decomposition theorem for quasi-line graphs
(Chudnovsky, Seymour 04)
- Either a composition of fuzzy linear interval graphs (1)
- or a fuzzy circular interval graph (2)
- Edmonds' inequalities are enough for class (1)
(Chudnovsky, Seymour 04)
- Reduction from class (2) to the class of circular interval graphs A facet of a fuzzy circular interval graph $G=(V, E)$ is also a facet of $G^{\prime}=\left(V, E^{\prime} \subset E\right)$ with G^{\prime} a circular interval graph
- Establish the conjecture for circular interval graphs

Stable sets of circular interval graphs

- Circular interval graphs

- Packing problem

$\max \quad \sum_{v \in V} c(v) x(v)$						$\left(\begin{array}{lllllllllllll}1 & 1 & 1 & & & & & & & \\ 1 & 1 & 1 & & & & & \\ & & 1 & 1 & 1 & & & & \\ & & & 1 & 1 & 1 & & & & \\ & & & & & 1 & 1 & 1 & & \\ 1 & & & & & & 1 & \\ 1 & 1 & & & & & & & \\ \hline\end{array}\right.$				
s.t.	$A x$	\leqslant	1		e.g. $A=$					
	$x(v)$	ϵ	$\{0,1\}$	$\forall v \in V$						

where the matrix A is a circular ones matrix

Totally unimodular transformation

- Totally unimodular transformation (Bartholdi, Orlin, Ratliff 80)

$$
\begin{aligned}
& x=T y \text {, where } T=\left(\begin{array}{ccccc}
{ }_{-1} & 1 & & \\
& -1 & 1 & \\
& & \ddots & \\
& & & 1 \\
& & -11
\end{array}\right) \\
& \text { Let } P=\left\{x \in \mathbb{R}^{n} \left\lvert\,\binom{ A}{-I} x \leqslant\binom{ 1}{0}\right.\right\}, Q=\left\{y \in \mathbb{R}^{n} \left\lvert\,\binom{ A}{-I} T y \leqslant\binom{ 1}{0}\right.\right\}
\end{aligned}
$$

- Effect of T on a circular ones matrix

$$
\begin{aligned}
& \text { A }
\end{aligned}
$$

Slicing the polytope

- The structure of Q

$$
Q=\left\{y \in \mathbb{R}^{n} \left\lvert\,\binom{ A}{-I} T y \leqslant\binom{ 1}{0}\right.\right\}=\left\{y \in \mathbb{R}^{n} \left\lvert\,(N \mid v) y \leqslant\binom{ 1}{0}\right.\right\}
$$

where N is "almost" a arc-node incidence matrix

- Slicing Q and P
- N totally unimodular \Longrightarrow
$\forall \beta \in \mathbb{N}, Q_{\beta}=\left\{y \in \mathbb{R}^{n} \left\lvert\,(N \mid v) y \leqslant\binom{ 1}{0}\right., y(n)=\beta\right\}$ is integral
- $\quad T$ totally unimodular \Longrightarrow
$\forall \beta \in \mathbb{N}, P \cap\left\{x \in \mathbb{R}^{n} \mid \sum_{i=1}^{n} x_{i}=\beta\right\}$ is integral

Slicing the polytope

Slicing the polytope

$$
Q_{\beta}=Q \cap y(n)=\beta
$$

Slicing the polytope

$$
Q_{\beta}=Q \cap y(n)=\beta
$$

Separation problem

- Separating a point y lying between two slices Q_{β} and $Q_{\beta+1}$.
- Reduce to a minimum circulation problem in the auxiliary graph defined by $(N,-N)$

- Detection of negative cost simple cycles

The separation problem

- Given y^{*} with $y^{*}(n)=\beta+(1-\mu), 0<\mu<1$
- $y^{*} \in Q_{I}$ if and only if there exist $y_{L} \in Q_{\beta}$ and $y_{R} \in Q_{\beta+1}$ such that

$$
y^{*}=\mu y_{L}+(1-\mu) y_{R}
$$

- If and only if following system is feasible:

$$
\begin{aligned}
\overline{y^{*}} & =\overline{y_{L}}+\overline{y_{R}} \\
N \overline{y_{L}} & \leqslant \mu d_{L} \\
N \overline{y_{R}} & \leqslant(1-\mu) d_{R}
\end{aligned}
$$

where $d_{L}=\binom{1}{0}-\beta v$ and $d_{R}=\binom{1}{0}-(\beta+1) v$.

Using duality

- If and only if the following flow problem has no negative solution

$$
\begin{aligned}
\min -f_{L} N \overline{y^{*}}+\mu & f_{L} d_{L}+(1-\mu) f_{R} d_{R} \\
f_{L} N & =f_{R} N \\
f_{L}, f_{R} & \geqslant 0
\end{aligned}
$$

The structure of the facets

- Let x^{*} in the relative interior of facet with $\sum x^{*}(i)=\beta+1 / 2$
- Facet is uniquely determined by cycle of zero weight with edge weights given by

$$
\left(s^{*}+\frac{1}{2} v\right) f_{L}+\left(s^{*}-\frac{1}{2} v\right) f_{R}
$$

where s^{*} is the slack vector

$$
s^{*}=\binom{\mathbf{1}}{\mathbf{0}}-\binom{A}{-I} x^{*} \geqslant \mathbf{0} .
$$

The network

- Row:

$$
A=\{i, i+1, \ldots, i+p\}
$$

$$
\text { Arc in } S_{L}:(i+p, i-1)
$$

Weight:

$$
\begin{aligned}
& 1-\sum_{j \in A} x^{*}(j) \text { if } n \notin A \\
& 1-\sum_{j \in A} x^{*}(j)+1 / 2 \text { if } \\
& n \in A
\end{aligned}
$$

- Lower bound: $x(l) \geqslant 0$

Arc in $\mathcal{T}_{L}:(l-1, l)$ Weight:
$x^{*}(l)$ if $l \neq n$
$x^{*}(l)-1 / 2$ if $l \neq n$

The main lemma

Lemma. If there exists a simple cycle C of cost 0 , then there exists a simple cycle C^{\prime} of cost 0 such that it does not contain any arc stemming from a clique in the left derivation f_{L}.

Sketch of proof

SSP of quasi-line graphs

Theorem (E, Oriolo, Ventura, Stauffer 2005). The stable set polytope of quasi-line graphs can be characterized by:
(i) positiveness inequalities
(ii) clique inequalitites
(iii) clique family inequalities

SSP of quasi-line graphs is split closure of fractional SSP.

Split-Cut faliftriel

Number of facets

- Chvátal closure has polynomial number of facets in fixed dimension (Bockmayr \& Eisenbrand 2001)
- Separation of Gomory-Chvátal cutting planes is a MIP (Fischetti \& Lodi 2005)

> Is P^{s} polynomial in fixed dimension?
> Can we efficiently separate split cuts in fixed dimension?

Claw-Free graphs

Still there is no conjecture about the SSP of claw-free graphs.

What is the split-rank of claw-free graphs ? Is it one?

More rank questions

Chvátal rank is finite (Chvátal 1973, Schrijiver 1980) but can be arbitrarily large; already in dimension 2

More rank questions

Chvátal rank is finite (Chvátal 1973, Schrijiver 1980) but can be arbitrarily large; already in dimension 2

More rank questions

Chvátal rank is finite (Chvátal 1973, Schrijiver 1980) but can be arbitrarily large; already in dimension 2

More rank questions

Chvátal rank is finite (Chvátal 1973, Schrijver 1980) but can be arbitrarily large; already in dimension 2

Are there such bad examples in dimension 2 for the split closure ?

