
manuscript No.
(will be inserted by the editor)

Friedrich Eisenbrand · Sören Laue

A Linear Algorithm for Integer Programming in

the Plane

Abstract We show that a 2-variable integer program, defined by m constraints involving
coefficients with at most ϕ bits can be solved with O(m+ϕ) arithmetic operations on rational
numbers of size O(ϕ).

1. Introduction

Integer programming is the problem of maximizing a linear function over the
integer vectors which satisfy a given set of inequalities. A wide range of combi-
natorial optimization problems can be modeled as integer programming prob-
lems. But integer programming is not only related to combinatorics. The greatest
common divisor of two numbers a and b ∈ Z is the smallest integer combination
xa + y b such that xa + y b > 1. This is an integer program in two variables.
This fact links integer programming also to the algorithmic theory of numbers.

The Euclidean algorithm requires O(ϕ) arithmetic operations, if ϕ is the
binary encoding length of the input. Checking an integer point for feasibility,
requires to test it for all the constraints. In this paper we prove that an integer
program max{ctx | Ax 6 b, x ∈ Z2}, where c ∈ Z2, A ∈ Zm×2 and b ∈ Zm

involve coefficients with at most ϕ bits, can be solved with O(m + ϕ) arith-
metic operations on rationals of binary encoding length O(ϕ). In the arithmetic
complexity model, this is the best one can hope for if one believes that greatest-
common-divisor computation requires Ω(ϕ) arithmetic operations.

Related work

The two-variable integer programming problem has a long history. Polynomiality
was established by Hirschberg and Wong [10] and Kannan [12] for special cases
and by Scarf [19,20] for the general case. Then, Lenstra [17] proved that integer
programming in arbitrary fixed dimension can be solved in polynomial time.

Afterwards, various authors were looking for faster algorithms for the two-
dimensional case. Here is a table which summarizes the development of the last
20 years. In this table, m denotes the number of constraints and ϕ denotes the
maximal binary encoding length of an involved coefficient.

Max-Planck-Institut für Informatik, Stuhlsatzenhausweg 85, 66123 Saarbrücken, Germany e-
mail: {eisen,soeren}@mpi-sb.mpg.de

2 Friedrich Eisenbrand, Sören Laue

Method for integer programming complexity

Feit [8], 1984 O(m log m + mϕ)
Zamanskij and Cherkasskij [23], 1984 O(m log m + m ϕ)

Kanamaru, Nishizeki and Asano [11], 1994 O(m log m + ϕ)
Eisenbrand and Rote [7], 2001 O(m + (log m)ϕ)

Clarkson [4] combined with Eisenbrand [6]1, 2003 O(m + (log m)ϕ)
This paper O(m + ϕ)

Checking a point for feasibility Θ(m)
Greatest common divisor computation O(ϕ)

For comparison, we have also given the complexity of greatest-common-
divisor computation and of checking whether a given integer point is feasible.
Thus the last two lines of the table is the goal that one should aim for. This
paper achieves this goal.

Our algorithm is the fastest algorithm in the arithmetic complexity model.
Here, the basic arithmetic operations +,-,*,/ are unit-cost operations. This
is in contrast to the bit-complexity model, where bit-operations are counted. In
this model, the algorithm in [7] is the fastest known so far. Its complexity is
O(m + log m log ϕ)M(ϕ), where M(ϕ) is the bit-complexity of ϕ-bit integer
multiplication. In the bit-model, our algorithm can also be analyzed to require
O(m+log m log ϕ)M(ϕ) if the occurring shortest vector queries are individually
carried out with Schönhage’s algorithm [21].

It is well known, see, e.g. [6,7,11] that, by means of an appropriate unimodu-
lar transformation, we can assume that the objective is to maximize the value of
the first component. In fact, a reduction of a general integer programming prob-
lem to this special objective function requires one extended gcd-computation
and a constant number of arithmetic operations. Thus we define the integer
programming problem as follows.

Problem 1 (2IP). Given a system of inequalities Ax 6 b, where A ∈ Zm×2

and b ∈ Zm, determine an integer point x∗ ∈ Z2 which satisfies Ax 6 b and has
maximal first component x∗(1), or assert that Ax 6 b is integer infeasible.

In the following, the letter m denotes the number of constraints of Ax 6 b and
ϕ is an upper bound on the binary encoding length of each constraint atx 6 β of
Ax 6 b. We can also assume that the polyhedron {x ∈ R2 | Ax 6 b} is bounded,
thus that the constraints define a convex polygon P = {x ∈ R2 | Ax 6 b}.

2. Preliminaries from algorithmic number theory

In this section, we review some basics from algorithmic number theory, which
are necessary to develop our algorithm.

1 This is a randomized method for arbitrary fixed dimension

Integer programming in the plane 3

2.1. The Euclidean algorithm and best approximations

The Euclidean algorithm for computing the greatest common divisor gcd(a0, a1)
of two integers a0, a1 > 0 computes the remainder sequence a0, a1, . . . , ak−1, ak ∈
N+, where ai, i > 2 is given by ai−2 = ai−1qi−1 + ai, qi ∈ N, 0 < ai < ai−1,
and ak divides ak−1 exactly. Then ak = gcd(a0, a1). The extended Euclidean

algorithm keeps track of the unimodular matrices M (j) =
∏j

i=1

(

qi 1
1 0

)

, 0 6 j 6

k − 1. One has
(

a0
a1

)

= M (j)
(aj

aj+1

)

. The extended Euclidean algorithm requires
O(ϕ) arithmetic operations on O(ϕ)-bit integers, if the binary encoding length
of a0 and a1 is O(ϕ), see also [15,1].

The fractions M
(i)
1,1/M

(i)
2,1 are called the convergents of α = a0/a1. A fraction

x/y, y > 1 is called a best approximation,2 if one has |yα− x| < |y′α− x| for all
other fractions x′/y′, 0 < y′ 6 y. A best approximation to α is a convergent of
α, see, e.g. [14].

2.2. Lattices

A 2-dimensional (rational) lattice Λ is a set of the form Λ(A) = {Ax | x ∈ Z2 },
where A ∈ Q2×2 is a nonsingular rational matrix. The matrix A is called a basis
of Λ. One has Λ(A) = Λ(B) for B ∈ Q2×2 if and only if B = AU with some
unimodular matrix U , i.e., U ∈ Z2×2 and det(U) = ±1. Every lattice Λ(A) has
a unique basis of the form

(

a b
0 c

)

∈ Q2×2, where c > 0 and a > b > 0, called
the Hermite normal form, HNF of Λ, see, e.g. [22]. The Hermite normal form
can be computed with an extended-gcd computation and a constant number of
arithmetic operations.

A shortest vector of a lattice Λ is a nonzero vector v ∈ Λ−{0} with minimal
ℓ∞-norm ‖v‖∞ = max{|v(i)| | i = 1, 2}. There are many algorithms known to
compute a shortest vector of a 2-dimensional lattice [9,16,21]. The following
approach is very useful for our purposes.

Proposition 1 ([5] 3). Let Λ ⊆ Q2 be a rational lattice which is given by its
Hermite normal form

(

a b
0 c

)

. A shortest vector of Λ with respect to the ℓ∞-norm

is either
(

a
0

)

or
(

b
c

)

, or a vector of the form
(

−x a+y b
y c

)

, where the fraction x/y
is a best approximation of the number b/a.

Later, we will have to deal with the following problem for which we provide
an algorithm below.

Problem 2. Given a lattice basis A ∈ Q2×2 and a sequence of positive ratio-
nal numbers α1, . . . , αK , which are not all known in advance, but which reveal
themselves one after the other. The task is to find a shortest vector w.r.t. the
ℓ∞-norm for each of the lattices Λi generated by the matrices

(

1 0
0 αi

)

· A, as αi

becomes available.

2 In [14] this is referred to as best approximation of the second kind
3 In [5] this assertion is stated for integral lattices. It is easy to see that it also holds for

rational lattices

4 Friedrich Eisenbrand, Sören Laue

Lemma 1. Let A ∈ Q2×2 and α1, . . . , αK be parameters of Problem 2, where
A and each of the αi have binary encoding length O(ϕ). After a preprocessing
step that involves O(ϕ) arithmetic operations on rational numbers of size O(ϕ),
every shortest vector query can be answered in time O(log ϕ).

Proof. In the preprocessing step we first compute the Hermite normal form
(

a b
0 c

)

of A with the extended Euclidean algorithm. Then we compute all convergents
xj/yj , j = 1, . . . , k of b/a with the extended Euclidean algorithm. From this, the
convergents come out with the following property. The sequence |−xj a+yj b| is
monotonously decreasing and the sequence yj c is monotonously increasing and
nonnegative. Since there are at most O(ϕ) convergents of b/a, the preprocessing
step takes time O(ϕ).

For each shortest vector query we do the following. By Proposition 1 and
since a best approximation of b/a is a convergent of b/a, for each of the αi,
we have to determine the convergent xj/yj of b/a such that ‖

(

−xj a+yj b
yj αi c

)

‖∞
is minimal. For this, we search the position ji in the list of convergents, where
|−xji

a+yji
b| > yji

αi c and |−xji+1 a+yji+1 b| < yji+1 αi c. If |−xj a+yj b| >

yj αi c holds for all convergents xj/yj, then ji shall be the second-last position.
Similarly, if | − xj a + yj b| 6 yj αi c for all convergents xj/yj, then ji shall be
the first position. The shortest vector of Λi is then the shortest vector among
the vectors

(

−xji
a + yji

b
yji

αi c

)

,

(

−xji+1 a + yji+1 b
yji+1 αi c

)

,

(

a
0

)

,

(

b
αi c

)

. (1)

Since there are at most O(ϕ) convergents of b/a, this position ji, can be
computed with binary search in O(log ϕ) steps. Thus a shortest vector query for
a lattice Λi generated by the matrix

(

1 0
0 αi

)

·A can be answered in time O(log ϕ).

2.3. The flatness theorem

A central concept of our algorithm, as in Lenstra’s algorithm [17], is the lattice
width of a convex body. Let K ⊆ Rd be a convex body. The width of K along
a direction c ∈ Rd is defined as wc(K) = max{ctx | x ∈ K} − min{ctx | x ∈
K}. The lattice width w(K) of a K is defined as the minimum wc(K) over all
nonzero vectors c ∈ Zd − {0}. Thus if a convex body has lattice width ℓ with a
corresponding direction c ∈ Zd, then all its lattice points can be covered by at
most ⌊ℓ⌋ + 1 parallel hyperplanes of the form ctx = δ, where δ ∈ Z ∩ [min{ctx |
x ∈ K}, max{ctx | x ∈ K}]. If a convex body does not contain any lattice
points, then it must be thin in some direction, or equivalently its lattice width
must be small. This is known as Khinchin’s Flatness Theorem [13], see also [3].

Theorem 1 (Flatness theorem). There exists a constant f(d) depending only
on the dimension d, such that each full-dimensional convex and compact body
K ⊆ Rd containing no integer point has width less than f(d).

Integer programming in the plane 5

It is not difficult to see that f(d) can be chosen to be any number larger than
dn/5, see, e.g. [3]. Thus f(2) = 2.9 satisfies our needs. One can show [2] that
f(d) = O(d3/2).

How can the width of a convex body be computed? In this paper, we only
need to do this for triangles. Let T = conv(u, v, w) ⊆ R2 be a triangle. The
width is invariant under translation. Thus the width of T is the width of the
triangle T ′ = conv(0, v − u, w − u). The width of T ′ along a vector c ∈ R2 is
then by defintion

wc(T
′) = max{0, ct(v − u), ct(w − u)} − min{0, ct(v − u), ct(w − u)} (2)

= max{0, ct(v − u), ct(w − u)} + max{0,−ct(v − u),−ct(w − u)}. (3)

Obviously, it is bounded from below by max{|ct(v−u)|, |ct(w−u)|} and bounded
from above by 2 max{|ct(v − u)|, |ct(w− u)|}. Let AT ∈ R2 be the matrix AT =
((v−u)t

(w−u)t

)

. The width along c thus satisfies the following relation

‖AT c‖∞ 6 wc(T) 6 2 ‖AT c‖∞. (4)

This means that the width of T is bounded from below by the length of the
shortest (infinity norm) vector of Λ(AT) and bounded from above by twice the
length of the shortest vector of Λ(AT). Furthermore, if v = AT c is a shortest
vector, then the following relation holds

wc(T) 6 w(T) 6 2 wc(T). (5)

In the sequel, we call a vector c ∈ Z2, such that v = AT c is a shortest vector
of Λ(AT), a thin direction of T . A shortest vector of Λ(AT) w.r.t. the ℓ∞-norm
will be denoted as a shortest vector of the triangle T . Its length is denoted by
SV(T).

3. Partitioning the polygon

In a first step, we partition the polygon into four parts. Two of the parts belong
to a class of polygons for which one already knows an O(m + ϕ) algorithm for
their corresponding integer programs [7]. In the following sections, we will deal
with the other two polygons.

First we compute the rightmost point and the leftmost point of P and we
consider the line g through these two points, see Figure 1. This line dissects P
into an upper part PU and a lower part PL. Next we compute vertices of PU

and PL which have largest distance from the line g and draw a vertical line hU

and hL through these points. The line hU dissects PU again in two parts, an
upper-left polygon PUl and an upper-right polygon PUr . The line hL partitions
PL into two parts, a lower-left polygon PLl and a lower-right polygon PLr. The
optimum integer point in P is the maximum of the optima of these four polygons.
This partition can be found with linear programming. Using the algorithm of
Megiddo [18], this requires O(m) operations. Notice that the binary encoding
length of each constraint describing the four polygons remains O(ϕ).

6 Friedrich Eisenbrand, Sören Laue

PUl

PUr

PLl

PLr

g

hU

hL

x(1)

e

Figure 1: The dissection of the polygon P . The arrow is the x(1)-direction in
which we optimize.

The polygons PUl and PLl are lower polygons in the terminology of Eisen-
brand and Rote [7]. This is because the set of points with the largest objective
value form an edge that is parallel to the objective line and there are two par-
allel lines trough the endpoints of this edge which enclose the polygon.4 Thus
Proposition 1 and Theorem 2 of [7] implies that the integer program over PUl

and PLl can be solved in with O(m + ϕ) arithmetic operations on rationals
with O(ϕ) bits. For the sake of completeness, we sketch this algorithm in the
appendix.

The polygons PUr and PLr are the ones we need to take care of. The polygon
PUr has a special structure. It has an edge e, such that each point of PUr lies
vertically above e and the two vertical lines through the endpoints of this edge
enclose the polygon. Furthermore, the vertical line through the vertex on the left
of e, defines a facet of PUr. All the other facets, from left to right, have decreasing
slope and each slope is at most the slope of e. A polygon of this kind will be
called a polygon of upper-right kind in the sequel. Notice that PLr becomes an
upper-right polygon, when it is reflected around the x(1) axis. Therefore we
concentrate now on the solution of integer programming problems over polygons
of upper-right kind.

4 In [7] the objective is to find a highest integer point, while we find a rightmost integer
point

Integer programming in the plane 7

4. A prune-and-search algorithm

In the following, let P be a polygon of upper-right kind. We now present an
O(m + ϕ) algorithm for this case. Similar to the algorithm in [7] we use the
prune-and-search technique of Megiddo [18] to solve the optimization problem
over P .

The idea is to search for a parameter ℓ, such that the truncated polygon Pℓ =
P ∩(x(1) > ℓ) has width w(Pℓ) between f(2) and 4f(2). If we have found such an
ℓ, we know two important things. First, the flatness theorem guarantees that Pℓ

is feasible and thus that the optimum of the integer programming problem over
P lies in Pℓ. Furthermore, all lattice points of Pℓ, an therefore also the optimum,
must lie on at most 4f(2) + 1 parallel line segments in the corresponding flat
direction. Thus, we have reduced the integer programming problem over P to
the problem of finding an optimum of a constant number of one-dimensional
integer programming problems, which then can be solved in O(ϕ) steps each.

We will approximate the width of Pℓ as follows. Consider the edge f of Pℓ

induced by the constraint x(1) > ℓ and the edge e′, which emerges from the
lower edge e of P intersected with (x(1) > ℓ). The convex hull of both edges is
a triangle Tℓ, see, Figure 2.

f

e′

Tℓ

(x(1) = ℓ)

Figure 2: The polygon Pℓ and the triangle Tℓ.

Obviously, we have Tℓ ⊆ Pℓ. It is easy to see that if we scale Tℓ by a factor
of 2 and translate Tℓ appropriately, then it includes Pℓ. Hence, the width w(Pℓ)
satisfies w(Tℓ) 6 w(Pℓ) 6 2 w(Tℓ). From Section 2.3 we can conclude SV(Tℓ) 6

w(Pℓ) 6 4 SV(Tℓ). Thus, we are interested in a parameter ℓ, such that the
shortest vector of Tℓ has length f(2).

We start with m constraints and maintain two numbers ℓthick and ℓthin. In the
beginning, ℓthick is the x(1)-component of the left endpoint of the edge e and ℓthin

8 Friedrich Eisenbrand, Sören Laue

is the x(1)-component of the right endpoint of the edge e. If SV(Tℓthick
) 6 f(2),

then P itself is flat an we are done. Otherwise we keep the following invariant.

The shortest vector of Tℓthick
has length at least f(2) and the short-

est vector of Tℓthin
has length at most f(2).

The idea is to prune constraints, while we search for the correct position ℓ,
which cannot be facet defining for the intermediate part of the polygon P ∩
(x(1) > ℓthick) ∩ (x(1) 6 ℓthin), see Figure 3.

One iteration is as follows. We pair up all m constraints yielding m/2 inter-
section points. Then we compute the x-median ℓmed of the intersection points.
Now we distinguish three cases. One is that ℓmed lies to the right of ℓthin. In
this case, we can delete from each pair of intersection points to the right of the
median, the constraint with the smaller slope. We can do this, since this con-
straint cannot be facet-defining for the intermediate polygon. Similarly, if ℓmed

lies to the left of ℓthick, we can delete from each pair on the left of the median
the constraint with the larger slope.

Tℓmed

Pℓ

ℓthick ℓthin

ℓmed

Figure 3: The prune-and-search algorithm for a polygon of the upper-right kind

The more interesting case is the one, where ℓmed lies in-between ℓthick and
ℓthin. Then we compute the length of the edge f which is induced by x(1) > ℓmed.
This edge is simply the line-segment spanned by the intersection of x(1) = ℓmed

with e and by the lowest intersection point of the line x(1) = ℓmed with all m
constraints.

Now we compute the shortest vector of Tℓmed
. If its length is smaller than

f(2), then we set ℓthin to ℓmed and delete from each intersection point that lies

Integer programming in the plane 9

to the right of ℓmed the constraint with the smaller slope. Otherwise we set ℓthick

to ℓmed and delete from each intersection point that lies to the left of ℓmed the
constraint with the larger slope.

We repeat this prune and search procedure until we have found a position
ℓ, where the shortest vector of Tℓ is f(2) or we identified a constant number of
constraints, which can be facet defining for P ∩ (x(1) > ℓthick) ∩ (x(1) 6 ℓthin).

In the first case, we know that the optimum lies in Pℓ and we have a flat
direction of Pℓ, namely the vector c ∈ Z2 − {0} such that v = ATℓ

c is a short-
est vector of Tℓ. Thus the optimum is the largest of the optima of the inte-
ger programs over the constant number line segments Pℓ ∩ (ctx = δ), where
δ ∈ Z ∩ [min{ctx | x ∈ Pℓ}, max{ctx | x ∈ Pℓ}]. In the second case, we know
that the optimum lies in Pℓthick

. Furthermore, Pℓthick
can be partitioned into

Pℓthin
, and the polygon P ∩ (x(1) > ℓthick) ∩ (x(1) 6 ℓthin). The first polygon

is flat. The second polygon is defined by a constant number of constraints, for
which integer programming can be solved with O(ϕ) arithmetic operations.

Analysis

We will prove that the presented algorithm runs in O(m + ϕ) using rational
numbers of size O(ϕ).

Suppose we are in the i-th round of the prune-and-search algorithm and
suppose we are left with mi constraints. In this round we compute mi/2 inter-
section points, the median of them, the corresponding triangle Tℓ and query for
the shortest vector of Tℓ. Hence, the running time for round i, without consid-
ering the shortest vector queries, is O(mi). We discard 1/4 of the constraints.
Therefore, the overall running time of the prune-and-search algorithm without
considering the shortest vector queries is O(m).

Let us consider the shortest vector queries. Let T be the first triangle, for
which we compute the shortest vector. The angle, which is enclosed by the edges
f and e′ is the same for all triangles for which we query a shortest vector. Let
AT be the matrix of T as it is defined at the end of Section 2.3. The matrices
ATℓ

of the following triangles thus satisfy

ATℓ
= βℓ ·

(

1 0
0 αℓ

)

· AT , (6)

with rational numbers αℓ and βℓ which can be computed from T and Tℓ in
constant time. The length of the shortest vector of Tℓ is equal to βℓ times the
length of the shortest vector of the lattice Λ

((

1 0
0 αℓ

)

· AT

)

. Hence, we can apply
Lemma 1. As we perform O(log m) queries, the total number shortest vector
queries can be computed with O(ϕ + log m · log ϕ) arithmetic operations on
rational numbers of size O(ϕ). Thus the total running time amounts to O(m +
ϕ+log m·log ϕ) = O(m+ϕ) arithmetic operations on rational numbers of binary
encoding length O(ϕ), which proves our main result.

Theorem 2. A two-variable integer programming problem max{ctx | Ax 6

b, x ∈ Z2}, where A ∈ Zm×2 and b ∈ Zm and c ∈ Z2 involve only coefficients of

10 Friedrich Eisenbrand, Sören Laue

binary encoding length O(ϕ), can be solved with O(ϕ+m) arithmetic operations
on rational numbers of size O(ϕ).

Appendix

For the sake of completeness, we shortly sketch how to optimize over a polygon
of the upper-left kind. A more elaborated analysis can be found in [7].

Suppose, we are given a polygon P of the upper-left kind as in Figure 4.
Similarly to the algorithm for a polygon of the upper-right kind, we search for
a parameter ℓ, such that the truncated polygon Pℓ = P ∩ (x(1) > ℓ) has width
w(Pℓ) between f(2) and 4f(2). We then know, that Pℓ contains the optimal
integer point and all integer points can be covered by at most 4f(2) parallel line
segments.

T

Tℓ

x(1) = ℓ

f

e′

Figure 4: A polygon of the upper-left kind

Analogously to Section 4, we approximate the polygon Pℓ by a triangle Tℓ.
Obviously Tℓ ⊆ Pℓ holds. It is easy to see that if we scale Tℓ by factor of 2, it
then includes Pℓ. Hence, the length of a shortest vector of Tℓ is a lower bound
for the width of Pℓ and four times the length of a shortest vector of Tℓ is an
upper bound for the width of Pℓ.

The triangles Tℓ are the convex hull of their edges f and e′, see Figure 4.
Obviously, the edge f is the same for all triangles Tℓ. Only the e′ differ, they are
scaled copies of each other.

Let T be the triangle in P as indicated in Figure 4 and let AT be its matrix
as defined in Section 2.3. Then, the matrices of all triangles Tℓ are of the form

ATℓ
=

(

1 0
0 αℓ

)

· AT . (7)

Integer programming in the plane 11

Hence, we only need to look for a rational number α, such that the corresponding
shortest vector of ATℓ

has length f(2). Applying Proposition 1 and the Euclidean
algorithm we can do this using O(ϕ) arithmetic operations on rational numbers
of length O(ϕ) as follows. Compute the convergents xj/yj of the b/a, where
(

a b
0 c

)

is the Hermite normal form of AT . We then search the first position j in
the list of convergents, where |−xj a+yj b| is at most f(2). The rational number
α is then the solution to the equation α yj c = f(2).

If we have found the parameter ℓ, we can reduce the original problem to
finding the optimal integer point of a constant number of one-dimensional integer
problems which can be solved in O(ϕ) steps each.

Acknowledgements

We would like to thank an anonymous referee of this journal and a referee of
ISAAC for helpful remarks and suggestions.

References

1. A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of Computer
Algorithms. Addison-Wesley, Reading, 1974.

2. W. Banaszczyk, A. E. Litvak, A. Pajor, and S. J. Szarek. The flatness theorem for nonsym-
metric convex bodies via the local theory of Banach spaces. Mathematics of Operations
Research, 24(3):728–750, 1999.

3. A. Barvinok. A course in convexity, volume 54 of Graduate Studies in Mathematics.
American Mathematical Society, Providence, RI, 2002.

4. K. L. Clarkson. Las Vegas algorithms for linear and integer programming when the
dimension is small. Journal of the Association for Computing Machinery, 42:488–499,
1995.

5. F. Eisenbrand. Short vectors of planar lattices via continued fractions. Information
Processing Letters, 79(3):121–126, 2001.

6. F. Eisenbrand. Fast integer programming in fixed dimension. In G. D. Battista and
U. Zwick, editors, In Proceedings of the 11th Annual European Symposium on Algorithms,
ESA’ 2003, volume 2832 of LNCS, pages 196–207. Springer, 2003. to appear in Computing.

7. F. Eisenbrand and G. Rote. Fast 2-variable integer programming. In K. Aardal and
B. Gerards, editors, Integer Programming and Combinatorial Optimization, IPCO 2001,
volume 2081 of LNCS, pages 78–89. Springer, 2001.

8. S. D. Feit. A fast algorithm for the two-variable integer programming problem. Journal
of the Association for Computing Machinery, 31(1):99–113, 1984.

9. C. F. Gauß. Disquisitiones arithmeticae. Gerh. Fleischer Iun., 1801.
10. D. S. Hirschberg and C. K. Wong. A polynomial algorithm for the knapsack problem in

two variables. Journal of the Association for Computing Machinery, 23(1):147–154, 1976.
11. N. Kanamaru, T. Nishizeki, and T. Asano. Efficient enumeration of grid points in a

convex polygon and its application to integer programming. International Journal of
Computational Geometry & Applications, 4(1):69–85, 1994.

12. R. Kannan. A polynomial algorithm for the two-variable integer programming problem.
Journal of the Association for Computing Machinery, 27(1):118–122, 1980.

13. R. Kannan and L. Lovász. Covering minima and lattice-point-free convex bodies. Annals
of Mathematics, 128:577–602, 1988.

14. A. Y. Khintchine. Continued Fractions. Noordhoff, Groningen, 1963.
15. D. Knuth. The art of computer programming, volume 2. Addison-Wesley, 1969.
16. J. C. Lagarias. Worst-case complexity bounds for algorithms in the theory of integral

quadratic forms. Journal of Algorithms, 1:142–186, 1980.
17. H. W. Lenstra. Integer programming with a fixed number of variables. Mathematics of

Operations Research, 8(4):538 – 548, 1983.

12 Friedrich Eisenbrand, Sören Laue: Integer programming in the plane

18. N. Megiddo. Linear programming in linear time when the dimension is fixed. Journal of
the Association for Computing Machinery, 31:114–127, 1984.

19. H. E. Scarf. Production sets with indivisibilities. Part I: generalities. Econometrica, 49:1–
32, 1981.

20. H. E. Scarf. Production sets with indivisibilities. Part II: The case of two activities.
Econometrica, 49:395–423, 1981.

21. A. Schönhage. Fast reduction and composition of binary quadratic forms. In International
Symposium on Symbolic and Algebraic Computation, ISSAC 91, pages 128–133. ACM
Press, 1991.

22. A. Schrijver. Theory of Linear and Integer Programming. John Wiley, 1986.
23. L. Y. Zamanskij and V. D. Cherkasskij. A formula for determining the number of integral

points on a straight line and its application. Ehkon. Mat. Metody, 20:1132–1138, 1984.
(in Russian).

