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Antigen targeting1–5 and adjuvancy schemes6,7 that

respectively facilitate delivery of antigen to dendritic cells

and elicit their activation have been explored in vaccine

development. Here we investigate whether nanoparticles

can be used as a vaccine platform by targeting lymph node–

residing dendritic cells via interstitial flow and activating

these cells by in situ complement activation. After intradermal

injection, interstitial flow transported ultra-small nanoparticles

(25 nm) highly efficiently into lymphatic capillaries and their

draining lymph nodes, targeting half of the lymph node–

residing dendritic cells, whereas 100-nm nanoparticles

were only 10% as efficient. The surface chemistry of these

nanoparticles activated the complement cascade, generating

a danger signal in situ and potently activating dendritic

cells. Using nanoparticles conjugated to the model antigen

ovalbumin, we demonstrate generation of humoral and

cellular immunity in mice in a size- and complement-

dependent manner.

Technologies for presentation of protein or peptide antigens as
vaccines must address two fundamental issues: efficient delivery of
antigen to dendritic cells and subsequent dendritic cell activation to
trigger adaptive immunity. Strategies for antigen delivery have recently
focused on in vivo targeting of dendritic cells through the use of
monoclonal antibodies either fused with protein1,2,4 or grafted to the
surface of microparticles3. Such strategies often target peripheral
dendritic cells in skin. Antigen delivery to lymph nodes might provide
an attractive alternative, because dendritic cells are present in much
higher concentration in these lymph nodes. To initiate adaptive
immunity, adjuvants must induce dendritic cell maturation. Dendritic
cells are often matured by ‘danger signals’ that work through pathways
of innate immunity such as activation of Toll-like receptors (TLRs)
and inflammatory cytokine receptors. Whereas experimental vaccines
using danger signals have shown promise6,7, risk of toxicity, physio-
logical transport limitations and economic feasibility remain as
potentially limiting issues.

As a nanoparticulate platform for antigen delivery, we used
Pluronic-stabilized polypropylene sulfide (PPS) nanoparticles8.

These nanoparticles have a hydrophobic core of crosslinked PPS,
which degrades by becoming water soluble under oxidative conditions

100-NPs
100-NPs

25-NPs

25-NPs

100-NPs 25-NPs 100-NPs 25-NPs

*60

P
er

ce
nt

 o
f D

C
s 

w
ith

 N
P

s 50

40

30

20

10

0

a b

c d

Figure 1 Ultra-small nanoparticles accumulate in lymph nodes after

intradermal injection, whereas slightly larger ones do not. (a) Fluorescence
microlymphangiography is convenient for imaging lymphatic uptake because

the lymphatic capillaries all drain in one direction, toward the base of the

tail. Shown is a co-infusion into mouse-tail skin with 100- and 25-nm

fluorescently labeled nanoparticles (100- and 25-NPs, respectively) where

the 25-NPs enter the dermal lymphatic capillary network much more

efficiently than 100-NPs do. Scale bar, 1 mm. (b) The 25-nm, but not the

100-nm, nanoparticles are visible in mouse lymph node sections 24 h after

injection. Cell nuclei shown in blue (DAPI); scale bar, 200 mm. Images in a

and b are representative of at least three independent experiments. (c) Flow

cytometry histograms show CD11c+ dendritic cells isolated from the draining

lymph nodes after intradermal co-injection of fluorescently labeled 100- and

25-NPs (black) or phosphate-buffered saline (PBS) control (gray).

Results are representative of at least three independent experiments.

(d) Calculations of the fraction of dendritic cells that have internalized

NPs after a co-injection as in c supports the hypothesis that lymph node

dendritic cells are effectively targeted after intradermal injection of smaller

but not larger nanoparticles. Values are the means from six independent

experiments; error bars correspond to s.d. *, P o 0.001.

Received 15 May; accepted 27 August; published online 16 September 2007; doi:10.1038/nbt1332
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(such as those found within the lysosome), and a hydrophilic surface
corona of Pluronic, a block copolymer of polyethylene glycol and
polypropylene glycol8. The Pluronic enables good size control down to
B20 nm during inverse emulsion polymerization8. By selecting the
lymph node as our target, we seek to achieve localization of the
nanoparticles where dendritic cells exist in high concentrations and
where a substantial fraction of dendritic cells are phenotypically and
functionally immature9 and thus able to process new antigen. This is
in contrast to the common approach of targeting dendritic cells in
peripheral tissues like skin or muscle10, where dendritic cells reside in
much lower numbers and must travel to the lymph node after antigen
uptake11, permitting premature antigen presentation12. To compensate
for low dendritic cell density in peripheral tissues, many investigators
have explored biomolecular approaches to dendritic cell targeting.
Whereas particles can be taken up nonspecifically by peripheral
dendritic cells, as demonstrated with polymer microparticles

containing antigen-encoding DNA5,13, virus-
like particles14 or polystyrene nanobeads15,
investigators have also conjugated monoclo-
nal antibodies directed to dendritic cell–
surface receptors such as DEC205 or 33D1
to protein antigen1,2 or to the surface of
liposomes or microparticles3,16 for more spe-
cific targeting. However, such sophisticated
cell-specific targeting may not be necessary if
antigen could be delivered to the lymph
node, where dendritic cells are present in
high numbers.

To target dendritic cells in the lymph node,
we exploited a biophysical mechanism—
interstitial flow—to access the lymphatic
system as a low-resistance delivery route
that leads to lymph nodes. The lymphatic
system constantly drains fluid and macromo-
lecules from the interstitial space, creating
small interstitial flows on the order of
0.1–1 mm/s17,18. We take advantage of this
basic physiological phenomenon by using
nanoparticles that are so small that they are
convected by this interstitial flow through the
interstitial matrix into the draining lymphatic
capillary bed. In previous work, size was
shown to be the most critical factor affecting
lymphatic uptake of particle-based delivery
vehicles19, probably based on the network
structure of the interstitial extracellular
matrix and the valve-like overlapping lym-
phatic cell-cell junctions, through which
entry of particles depends on extracellular
matrix hydration17. Larger nanoparticles
have also been explored by others20, but
these enter the lymphatics much less effi-
ciently than ultra-small nanoparticles and
therefore are likely to target peripheral more
than lymph node–resident dendritic cells.

To explore lymphatic uptake, we per-
formed fluorescence microlymphangio-
graphy21 by constant pressure infusion of
nanoparticles into the tip of mouse tail
skin; 25-nm but not 100-nm nanoparticles
were quickly and efficiently taken up by

lymphatic vessels (Fig. 1a). Once within the lymphatic vasculature,
the 25-nm nanoparticles were efficiently transported to the draining
lymph node (Fig. 1b) and could be retained there for at least 120 h
after injection, were colocalized exclusively with macrophages and
dendritic cells in the subcapsular sinus, and were not found within
T- or B-cell zones19. The 25-nm nanoparticles were found within
B50% of dendritic cells isolated from the lymph node (Fig. 1c,d),
whereas 100-nm nanoparticles were found within only 6% of den-
dritic cells and could not be visualized within the draining lymph
node after 24 h (Fig. 1b–d). It is likely that these larger nanoparticles
entered the lymph node after internalization by peripheral dendritic
cells and migration to the node, because dendritic cells take up large
particles in this size range as efficiently as smaller particles5,19. Thus, in
addition to targeting peripheral dendritic cells in skin, nanoparticles
that are small enough to readily access the lymphatic system from the
interstitium can effectively target lymph node–resident dendritic cells.
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Figure 2 Polyhydroxylated nanoparticle surfaces activate complement. (a) Synthesis and stabilization

with two different forms of Pluronic allowed the generation of polyhydroxylated- or polymethoxylated-

nanoparticles. (b) The a,o-terminal OH groups on Pluronic could be converted to OCH3 groups.

(c) The proposed mechanism where OH groups on the polyhydroxylated nanoparticles can bind to

the exposed thioester of C3b to activate complement by the alternative pathway. (d) Nanoparticle-

induced complement activation, as measured through C3a presence in human serum after incubation

with nanoparticles, was demonstrated to be high with polyhydroxylated nanoparticles but low with

polymethoxylated nanoparticles (OH- and CH3O-NPs, respectively). Results are normalized to control of

serum incubation with PBS. Values are means of three independent experiments; error bars correspond

to standard error of mean, s.e.m.
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Next, we designed the nanoparticles to function themselves as an
adjuvant, which is necessary to induce dendritic cell maturation and
initiate adaptive immunity. Adjuvants are typically danger signals that
work by activation of TLRs and inflammatory cytokine receptors; such
adjuvants have been widely explored in experimental vaccine formula-
tions6,7. For example, molecular danger signals that mimic the effect of
the endotoxin lipopolysaccharide (LPS), such as monophosphoryl
lipid A, have been explored7, as well as the cytokines CD40 ligand
and interferon (IFN)-g1,2,16. Delivery of danger signals with antigen
by co-encapsulation in liposomes3,16, packaging into virus-like
particles14 or co-injection with dendritic cell–targeting antibody
fusion proteins1,4,22 have been successful at producing adaptive
immune responses, but despite such promising results, many
complexities remain including toxicity, physiological transport and
economic feasibility. As an alternative adjuvant strategy, we explored
the possibility of using the complement cascade as a danger signal of
innate immunity, designing our nanoparticles with a surface chemistry
that spontaneously induces complement activation in situ.

Because the use of adjuvants based on known TLR activators has
dominated vaccine research in recent years7, the complement system,
another pathway of innate immunity, has been relatively unexplored
as a danger signal adjuvant. Complement primarily serves as a
biochemical defense system that clears pathogens nonspecifically,
but it can also play a role in promoting antigen-specific immune
responses23. Its ability to enhance humoral immunity has been
exploited with molecular targeting adjuvants that enhance antigen
delivery directly to B cells24. Only recently has it been discovered
that complement can promote T-cell immunity25,26, but the mole-
cular mechanisms and interactions with dendritic cells remain
largely unidentified.

In the alternative pathway of the complement cascade, C3 is
activated by spontaneous proteolytic cleavage to form the C3a and
C3b fragments. C3b undergoes a conformational change and exposes
a thioester, which forms a reactive acyl-imidazole bond with a
proximate histidine residue. The formed thiolate acts as a base and

catalyzes the transfer of the acyl group to hydroxyl groups, proto-
typically located on carbohydrate residues that coat pathogens27. This
mechanism also occurs with some nonnatural hydroxlyated material
surfaces28,29, including Pluronic-coated materials30. Biomaterials
scientists have typically sought to avoid complement activation in
order to minimize effects such as implant rejection and clearance of
systemic drug delivery vehicles. Here, we instead attempted to do
the opposite and specifically designed a biomaterial that strongly
activates complement so that it could generate a molecular adjuvant
danger signal in situ. Indeed, we saw that nanoparticles stabilized by
Pluronic (Fig. 2a) activated complement through Pluronic’s a and
o terminal hydroxyl groups (Fig. 2b–d). To explore whether comple-
ment was activated exclusively by surface hydroxyls, we synthesized
nanoparticles with a,o-methoxy-Pluronic (Fig. 2b). These activated
complement to a much reduced, but still nonzero extent (Fig. 2d),
demonstrating that although the surface hydroxyls are critical for very
high levels of complement activation, they are not the only feature on
the nanoparticle surface involved in complement activation.

With the ability to target lymph node–resident dendritic cells with
ultra-small nanoparticles and activate complement with their poly-
hydroxylated surfaces, we then determined that these properties could
be combined to elicit dendritic cell maturation. Following intradermal
injection into mouse dorsal foot skin of 25-nm polyhydroxylated-
nanoparticles, dendritic cells isolated 24 h after injection from the
draining lymph nodes displayed a shift from the immature to the
mature phenotype through upregulation of the co-stimulatory mole-
cules CD86, CD80 and CD40 (Fig. 3a). Both lymph node–targeting
and complement activation were necessary to elicit such an effect,
because 100-nm polyhydroxylated and 25-nm polymethoxylated
nanoparticles did not induce dendritic cell maturation above control
levels (Fig. 3a). Moreover, the dendritic cell maturation level induced
by 25-nm polyhydroxylated nanoparticles was very similar to that
induced by the endotoxin LPS, a potent activator of TLR4 (Fig. 3b),
further demonstrating that complement activation can be a very
effective intrinsic danger signal for dendritic cells. Complement
activation did not appear to significantly affect lymph node dendritic
cell uptake as 25-nm polymethoxylated and polyhydroxylated
nanoparticles were internalized by dendritic cells at similar levels
(Supplementary Fig. 1 online). As a comparison we also injected
commercially available 20-nm polystyrene nanospheres (Invitrogen)
with carboxylated surfaces. The polystyrene nanospheres accumulated
in lymph nodes at similar levels as 25-nm polyhydroxylated
nanoparticles but did not induce dendritic cell maturation (Supple-
mentary Fig. 2 online). Thus, nanoparticles engineered to both target
lymph nodes and strongly activate complement are potent maturation
stimuli for dendritic cells.

To test the extent to which the lymph node–targeting, complement-
activating nanoparticles induced an antigen-specific immune
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b

Figure 3 Lymph node-targeting, complement-activating nanoparticles induce

dendritic cell maturation in vivo. (a) Flow cytometry histograms showing

CD11c+ dendritic cells isolated from mouse lymph nodes at 24 h after

intradermal injection with either 25-nm polymethoxylated nanoparticles

(CH3O-25-NPs), 100-nm polyhydroxylated-NPs (OH-100-NPs), or 25-nm

polyhydroxylated-NPs (OH-25-NPs) demonstrate selective activation:

OH-25-NPs, which both target lymph nodes and strongly activate

complement, induce upregulation of the dendritic cell maturation markers
CD86, CD80 and CD40. (b) Histograms are also shown from mice that

received injections of negative and positive controls, PBS and LPS,

respectively; demonstrating that activation with OH-25-NPs is comparable

to activation with LPS. All results are representative of at least three

independent experiments.
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response, we conjugated ovalbumin, a model protein antigen, to
nanoparticle surfaces (Supplementary Fig. 3 online). Ovalbumin
conjugation did not significantly affect the nanoparticle size and the
antigen remained coupled to the particle after delivery to the lymph
node (Supplementary Fig. 4 online). Furthermore, the 25-nm oval-
bumin nanoparticles induced lymph node dendritic cell maturation at
the same levels as unconjugated ovalbumin co-injected with LPS
(Fig. 4a). To measure T-cell proliferation, we used an adoptive transfer
experiment with OT-II mice (a transgenic mouse strain in which CD4

T cells upregulate their ovalbumin-specific T-cell receptors).
Consistent with the results on dendritic cell activation, the 25-nm
polyhydroxylated-ovalbumin-nanoparticles showed nearly the same
capacity to induce T-cell proliferation as the positive control of
ovalbumin co-injected with LPS, each producing approximately
seven daughter generations (Fig. 4b). Helper CD4 T cells play an
important role in initiating cellular immunity by differentiating
cytotoxic CD8 T cells and in humoral immunity by stimulating
B cells to produce antibodies. Therefore nanoparticle induction

of strong antigen-specific CD4 T-cell prolif-
eration provided the impetus to determine
if cellular and humoral immunity could
be induced.

Cellular immunity is critical for vaccines
capable of inducing resistance to intracellular
pathogens, and this is typically defined by the
induction of cytotoxic T-cell memory. This is
often measured by determining if CD8 T cells
from immunized mice become activated,
producing the inflammatory cytokine IFN-g
after reexposure to an antigenic stimulus.
Adjuvants that produce sufficient CD8 T-cell
activation have thus far been elusive, however,
an LPS synthetic derivative, monophosphoryl
lipid A has shown potential7. Thus, we mea-
sured the ability of ultra-small, ovalbumin-
conjugated, polyhydroxylated nanoparticles to
induce cellular immunity compared to LPS.
We found that 25-nm polyhydroxylated-
ovalbumin-nanoparticles produced activated
T cells at similar levels to unconjugated
ovalbumin co-injected with LPS, and at sig-
nificantly higher levels than 25-nm polymeth-
oxylated-ovalbumin-nanoparticles (Fig. 4c).
This demonstrated that downstream antigen-
specific cellular immunity was attained with
ovalbumin nanoparticles, but only when the
complement-activating surface was present.

Another critical feature of vaccines is the
ability to induce humoral immunity, the
generation of a resistant level of circulating
antibodies against a pathogenic antigen.
To determine whether the nanoparticles
could induce humoral immunity, we mea-
sured antibody titers in serum 21 d after a
single injection. We found that 25-nm poly-
hydroxylated-ovalbumin-nanoparticles pro-
duced strong levels of anti-ovalbumin IgG
similar to injections of ovalbumin with
LPS or the clinically used adjuvant alum.
Significantly lower antibody titers were
observed with 100-nm polyhydroxylated-
ovalbumin-nanoparticles and 25-nm poly-
methoxylated-ovalbumin-nanoparticles
(Fig. 4d). As further confirmation of the
importance of complement activation, we
found that C3�/� mice produced substan-
tially lower antibody titers when injected
with 25-nm polyhydroxylated-ovalbumin-
nanoparticles than did wild-type controls
(Fig. 4d), where injections of ovalbumin
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Figure 4 Lymph node–targeting, complement-activating nanoparticles induce antigen-specific adaptive

immune responses. (a) Histograms display lymph node CD11c+ dendritic cell maturation profiles after

intradermal injections into mice with either ovalbumin with PBS or LPS (+PBS or +LPS, respectively)

or ovalbumin conjugated to 25-nm polyhydroxylated nanoparticles (OH-25-ovalbumin-NPs). Dendritic

cell activation is apparent for the OH-25-ovalbumin nanoparticles, comparable to that obtained with

ovalbumin+LPS. (b) Flow cytometry profiles show that lymph node CD4+CD45.2+ T-cell proliferation
after treatment with OH-25-ovalbumin-NPs is comparable to that after treatment with ovalbumin+LPS

as measured by dilution of 5-(6)-carboxyfluorescein diacetate succinimidyl diester (CFSE) labeled

OT-II T cells. Results from a and b are representative of two to four independent experiments. (c) A

restimulation assay was used to determine CD8 T-cell memory by IFN-g production. Mice received

various intradermal injections of antigen and nanoparticle formulations. The graph shows CD8 T-cell

memory after treatment with OH-25-ovalbumin-NPs but not CH3O-25-ovalbumin-NPs. Results are

mean values from three mice in each group; error bars correspond to s.e.m. *, P o 0.05. (d) Mice

received single injections of different antigen and nanoparticle formulations, and serum was collected

21 d after injection. The graph shows antibody titers for anti-ovalbumin IgG, where each point

represents an individual mouse and the bar represents the group mean. A strong humoral immune

response was observed only for OH-25-ovalbumin-NPs, but not larger or low-complement activating

nanoparticles. When the OH-25-ovalbumin-NPs were injected into C3�/� mice (open circles), this

response was abrogated (filled circles, wild type, WT), confirming the role of in situ complement

activation as a danger signal. *, P o 0.05.
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with LPS resulted in a normal antibody response in C3�/� mice.
Thus, ovalbumin nanoparticles could only induce humoral immun-
ity in the presence of both lymph node–targeting and comple-
ment activation.

Current vaccine technology research is dominated by strategies
targeting peripheral dendritic cells, for example, in the skin or muscle,
using molecular principles for dendritic cell targeting. Lymph node–
resident dendritic cells are rarely considered as targets. Thus far,
research with particulate systems in a size range small enough for
lymphatic uptake such as virus-like particles14 and polystyrene nano-
beads15 has not exploited lymphatic transport. Lymphatic delivery is
often even prevented by aggregating antigen with alum to produce a
depot effect. Adjuvant research is dominated by formulations using
TLR activators and inflammatory cytokines as molecular danger
signals6,7, complement activation having been relatively unexplored.
Our results highlight two alternative strategies for vaccination:
interstitial-to-lymphatic flow to deliver antigen and adjuvant to
lymph node–resident dendritic cells, and in situ complement
activation to mature these cells. Whereas we present the nanoparticle
system here as an implementation to explore these concepts, we do
note its ease of fabrication and antigen conjugation, high stability
and attractive affordability. Nevertheless, questions regarding toxicity,
elimination and molecular interaction between complement
and dendritic cells remain to be addressed to demonstrate the reported
system as more than an implementation to explore these
two strategies.

METHODS
Animals. BALB/c, C57BL6 and C3�/� (B6.129S4-C3tm1Crr/J), OT-II Tg

(CD45.2) and CD45.1 mice (Jackson Immunoresearch) at 6–10 weeks old

and weighing 20–30 g, were used for this study. All protocols were approved by

the Veterinary Authorities of the Canton Vaud according to Swiss law (protocol

number nos. 1687 and 1954) and by the Institutional Animal Use and Care

Committee of Mt. Sinai School of Medicine.

Nanoparticle synthesis. Pluronic-stabilized PPS nanoparticles with diameters

of 25 and 100 nm were synthesized by inverse emulsion polymerization as

described elsewhere8.

Antigen-conjugated nanoparticles. Antigen conjugation to PPS nanoparticles

was accomplished by functionalizing Pluronic F-127 surface with the model

protein antigen, ovalbumin. The conjugation scheme began with synthesis of

Pluronic divinylsulfone, to which ovalbumin was coupled through a free thiol

group on ovalbumin in a Michael-type addition reaction. Pluronic vinylsulfone

conjugated to ovalbumin was then blended with conventional Pluronic and

nanoparticles were synthesized as usual.

Fluorescence microlymphangiography. A constant-pressure infusion of

fluorescently labeled nanoparticles was performed as previously described19

in order to visualize the lymphatic capillary network in the tail skin

of mice.

C3a detection. A C3a sandwich enzyme-linked immunosorbent assay (ELISA)

was performed to measure complement activation in human serum after

incubation with polyhydroxylated- or polymethoxylated nanoparticles.

CD4 T-cell proliferation. T cells from OT-II mice were isolated and labeled

with 5-(6)-carboxyfluorescein diacetate succinimidyl diester (CFSE) and

were then adoptively transferred into wild-type (WT) mice. After 2 d,

control, antigen or nanoparticle treatments were injected into mice. At 5 d,

lymph node cells were isolated and the dilution of CFSE was measured by

flow cytometry.

CD8 T-cell memory. Mice received various intradermal injections of antigen

and nanoparticle formulations into dorsal foot skin, with a booster at 7 d and

at 21 d. T cells were isolated from the draining lymph node, exposed to an

ovalbumin-specific major histocompatibility-I peptide, and IFN-g production

was measured through ELISPOT.

Ovalbumin antibody titers. A direct ELISA against ovalbumin was performed

to detect the presence of anti-ovalbumin IgG in mouse serum.

Additional methods. Detailed methods are available in the Supplementary

Methods online.

Note: Supplementary information is available on the Nature Biotechnology website.
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