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Abstract— We consider the problem of broadcasting in an ad-
hoc wireless network, where all nodes of the network are sources
that want to transmit information to all other nodes. Our figure
of merit is energy efficiency, a critical design parameter for
wireless networks since it directly affects battery life and thus
network lifetime. We prove that applying ideas from network
coding allows to realize significant benefits in terms of energy
efficiency for the problem of broadcasting, and propose very
simple algorithms that allow to realize these benefits in practice.
In particular, our theoretical analysis shows that network coding
improves performance by a constant factor in fixed networks. We
calculate this factor exactly for some canonical configurations.
We then show that in networks where the topology dynamically
changes, for example due to mobility, and where operations
are restricted to simple distributed algorithms, network coding
can offer improvements of a factor of log n, where n is the
number of nodes in the network. We use the insights gained from
the theoretical analysis to propose low-complexity distributed
algorithms for realistic wireless ad-hoc scenarios, discuss a
number of practical considerations, and evaluate our algorithms
through packet level simulation.

I. INTRODUCTION

Network coding is an area that has emerged in 2000 [1],
[2], and has since then attracted an increasing interest, as it
promises to have a significant impact on both the theory and
practice of networks. We can broadly define network coding
as allowing intermediate nodes in a network to not only for-
ward but also combine the incoming independent information
flows. Combining independent data streams allows to better
tailor the information flow to the network environment and
accommodate the demands of specific traffic patterns.

The first paradigm that illustrated the usefulness of network
coding established throughput benefits when multicasting over
error-free links. Since then, we have realized that we can
get benefits not only in terms of throughput, but also in
terms of complexity, scalability, and security. These benefits
are possible not only in the case of multicasting, but also
for other network traffic configurations, such as multiple
unicast sessions. Moreover, they are not restricted to error-free
communication networks, but can also be applied to sensor
networks, peer-to-peer systems, and optical networks. It is in
fact advocated that the first applications where network coding
will have an impact will be peer-to-peer and ad-hoc wireless
networks, as these are environments that offer more freedom
in terms of protocol design choices and where information
inherently propagates in a distributed manner. For example,
ongoing projects investigate the application of network coding
ideas to content distribution [3].

In this paper we show that use of ideas from network
coding allows to realize energy savings when broadcasting
in wireless ad-hoc networks. By broadcasting we refer to the
problem where each node is a source that wants to transmit

information to all other nodes. Such all-to-all communication
is traditionally used during discovery phases, for example
by routing protocols; more recently, it has been described
as a key mechanism for application layer communication in
intermittently connected ad-hoc networks [4]. Moreover, it is
directly related to the problem of content distribution. The
problem of broadcasting is interesting not only because it
abstracts diverse practical applications, but also because this
is a situation where information mixing is clearly beneficial
and where we thus expect network coding to offer benefits.

Energy efficiency directly affects battery life and thus is a
critical design parameter for wireless ad-hoc networks. Opti-
mizing broadcasting for energy efficiency has been extensively
studied during the last decade. Applying network coding for
wireless applications in general has also been proposed and
investigated in the more recent literature. We review both these
veins of related work in Section II.

Our interest is on the specific problem of broadcasting, that
is, all-to-all communication. As figure of merit we use energy
efficiency, calculated as the number of transmissions required
for an information unit to reach all nodes in the network. For
this specific problem, we derive exact theoretical characteriza-
tions of the expected benefits, as well as develop algorithms
that allow to realize these benefits in a distributed manner. Our
novel contributions can be summarized as follows.

We start by examining fixed networks, that is, networks
where the topology and link capacities do not change over
time. In this case we show that network coding can at most
offer a constant factor of benefits in terms of energy efficiency.
We exactly calculate these benefits for a number of canonical
configurations, such as the circular network and the square grid
network. The same analysis directly extends to all lattices.

Our ultimate goal is not only to investigate possible ben-
efits network coding can offer, but in particular, to deploy
network coding ideas in a practical setting and propose simple
algorithms that allow to realize the theoretically expected
performance. Towards this goal we then focus our attention
to decentralized operation, and examine benefits in terms of
energy efficiency that use of network coding can bring to this
problem without idealized centralized scheduling. We propose
distributed algorithms that can be deployed in real networks,
and examine different aspects of the proposed system in detail,
that are related to and motivated by practical considerations.
For example, we investigate the effect of transmission range,
the choice of a forwarding factor, possible trade-offs from
restricted complexity and memory capabilities, and limited
generation sizes. We evaluate the performance of the proposed
algorithms through simulation over random networks.

We then examine networks where the configuration dynam-
ically changes, due to nodes moving, turning on and off,
roaming out of range, etc. We focus our attention to very
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simple decentralized distributed algorithms, where nodes do
not know the identity of their neighbors. Our motivation is
that, in a dynamically changing environment, such updates
are costly. Such a configuration is provided for example by
very sparse mobile networks where intermittent connectivity
is common. Delay-tolerant networking (DTN) architectures [5]
are designed to cope with the adverse conditions found in such
environments, and existing algorithms in this area are usually
based on some form of flooding.

For a number of examples of dynamically changing topolo-
gies, we reduce the problem of energy efficiency to simple
variations of the coupon collector problem (see for example
[6]). This problem was examined in conjunction with network
coding in [7], and it was shown network coding can offer
benefits that increase as log n where n is the number of
nodes in the network. We thus establish that log n benefits are
also possible in our setting. Simulation results over realistic
networks and mobility models demonstrate that our proposed
algorithms allow to realize these benefits in practice.

Thus, we conclude that significant benefits of network
coding in a wireless environment might manifest in situations
where the network operational complexity is restricted.

The paper is organized as follows. Section II provides
a review of related work. Section III presents our problem
formulation and briefly reviews basic ideas in network coding.
In Section IV, we calculate energy efficiency benefits use
of network coding can offer over fixed networks, while in
Section V, we propose algorithms to realize these benefits
in practical networks. We evaluate the proposed algorithms
through simulation in Section VI. Section VII examines
dynamically changing networks, establishes possible energy
efficiency benefits and demonstrates that they can be realized
in practice. Section VIII concludes the paper.

II. WORK RELATED TO THE PROBLEM OF WIRELESS

BROADCASTING

There exist two main bodies of theoretical work in wireless
broadcasting, that do not employ the network coding approach.
In both cases, the emphasis is in minimizing the speed of
information dissemination, which is expressed in terms of
rounds of transmissions, with multiple nodes communicating
in parallel during each round. We present the results as related
to our specific problem. We then briefly review proposed
algorithms for flooding in practical networks. Finally, we
review related results in the network coding literature, and
discuss how our work is positioned in this framework.

A. Epidemic Algorithms for Rumor Spreading

This work focuses on networks represented as graphs, and
distributed algorithms, where nodes do not have information
about the nodes they are communicating with. At each round,
each node randomly chooses a communication partner among
the nodes that are connected to it through an edge, and either
“pushes” or “pulls” information from it (see for example [8],
[9]). Results in the literature establish that O(n log n) rounds
are required to disseminate the messages. Work in [7] showed
that using network coding over a complete graph requires

O(n) rounds, and more recently, a characterization of network
coding benefits over arbitrary graphs was provided in [10].

B. Broadcasting in Radio Communication Networks

In this body of work the wireless environment is modeled
as a graph, where, when a node transmits a message, it is
received by all its neighbors, and where a node successfully
receives information if and only if exactly one of its neighbors
is transmitting. Again transmissions are divided into rounds,
where in each round a subset of the nodes transmits, in a way
scheduled to minimize conflicts and maximize information
spreading. The goal is to disseminate the information in the
smallest number of rounds. Both centralized and decentralized
algorithms are presented. Indicative results include that the
problem is NP-hard, there exist static networks where the
number of required rounds is Θ(log2 n), while there exist
mobile networks where the number of required rounds in
Ω(n) [11], [12], [13]. Using a similar model, the problem of
minimizing energy consumption over a static wireless network
was recently studied in [14].

C. Algorithms for Flooding

Since flooding in wireless networks results in a prohibitively
large overhead [15], a substantial number of more efficient
algorithms for broadcasting have been proposed. Usually,
these are either based on probabilistic algorithms (see for
example [15], [16], [17]) where packets are only forwarded
with a certain probability, or some form of topology control
(e.g., [18], [19], [20]) to form connected dominating sets of
forwarding nodes.

D. Network Coding for Wireless

If we allow intermediate nodes to perform network coding
operations, the problem of minimizing the energy per bit when
multicasting in an ad-hoc wireless network can be formulated
as a linear program and accepts a polynomial-time solution
[21]. A distributed algorithm to select the minimum-energy
multicast tree is proposed in [22]. Minimum cost multicasting
using network coding was also examined in [23] for mobile
networks and in [24] for fixed networks.

E. This Paper

With respect to the previous work, our work is positioned
as follows. We are interested in wireless networks, where
a broadcast message is received by all neighbors within a
certain radius (as opposed to epidemic algorithms, where
communication takes place with a randomly chosen neigh-
bor). While most work in the broadcasting literature looks at
the speed of dissemination, which is measured in terms of
the required rounds, our measure of performance is energy
efficiency, which translates in number of transmissions. Work
in [14] also considers optimization for energy efficiency, but
over wireless networks modeled as arbitrary graphs. Although
this approach has its merit and is interesting, it is not clear
how well it applies in practical wireless networks, where the
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existence of “edges” connecting nodes reflects the positioning
of the nodes on the plane and is not arbitrary.

Moreover, our interest is not in worst case bounds, as in
[13], but average performance. In this sense, our work is closer
to rumor-spreading using network coding [7]. In fact, when
we look at dynamically changing topologies, where nodes do
not have information about the network topology, we show
that our problem reduces to simple variations of the coupon
collectors problem, and thus similar results apply. We make
this connection precise in Section VII.

Broadcasting is a special case of multicasting, thus the
routing algorithms in [21], [22] also apply in our case. For
our special case we derive the exact benefits in terms of
energy efficiency we expect to realize, and propose very
simple distributed routing algorithms that allow to realize these
benefits in practice. Although we derive algorithms with the
wireless broadcasting application in mind, simple variations
of our algorithms may also be used for content delivery over
peer-to-peer networks.

III. SYSTEM MODEL

We here present our problem formulation and briefly review
the basic ideas for network coding.

A. Problem Formulation

Consider a wireless ad hoc network with n identical nodes,
where each node is a source that wants to transmit the same
amount of information to all other nodes. We assume that time
is slotted and that during each time-slot a node v can broadcast
one unit of information to all its neighbors N(v) within a given
transmission range through physical layer broadcast. We also
assume that each broadcast transmission is either successfully
received by all N(v) neighbors, or else completely fails. All
nodes have the same transmission range.

Our performance metric is the total number of successful
transmissions required to transmit one unit of information
from all sources to all receivers, denoted as Tnc for the case
of network coding and Tw otherwise. We assume that the
energy expenditure is proportional to the number of successful
transmissions (we do not explicitly take into account energy
required for computation and reception). Hence, we are inter-
ested in calculating the “optimal” energy efficiency defined as
the minimum number of such transmissions required under all
possible strategies and ignoring “time” constraints.

Since we do not try to maximize the number of suc-
cessful transmissions that occur simultaneously in time (i.e.,
throughput), we do not investigate involved schedules that
ensure transmissions do not collide or interfere. However, the
transmission protocols we use for our theoretical analysis can
naturally be implemented in a parallel fashion, i.e., resulting
in high throughput as well. In fact, we propose and simulate
algorithms that operate in practical networks where nodes
attempt to transmit simultaneously, and packet loss is taken
into account through a probabilistic model. As discussed in
Section V-B, these simulation results as well follow the trend
predicted by the theoretical analysis.

For practical systems, we are interested in designing algo-
rithms that are distributed, and are not given an priori knowl-
edge of their neighborhood. In a fixed network nodes may be
able to infer some information about their neighborhood by
observing the number and pattern of transmissions, while in a
fast changing network topology, nodes are not able to collect
such information, and thus do not utilize such knowledge.

B. Network Coding Operation

Let x1, . . . , xn denote the source packets associated with
the n nodes. These packets1 are of equal length and contain
symbols from a finite field Fq. Linear network coding allows
intermediate nodes to combine incoming packets (symbols).
Each packet contains a linear combination of the source
packets, as described by a vector of coefficients with respect to
the source symbols called coding vector, that is sent appended
to the packet [25].

The coding vector can be used by network nodes to decode
the data, or further encode it. Encoding can be performed
recursively, namely, with already encoded packets. Consider a
node that has received and stored a set (a1, X1), ..., (am, Xm),
where X i denotes the information symbols and a i the ap-
pended coding vector to packet i. This node may generate a
new encoded packet (a′, X ′) by picking a set of coefficients
h = (h1, ..., hm) and computing the linear combination X ′ =∑m

j=1 hjX
j . The corresponding coding vector a ′ is not simply

equal to h, since the coefficients are with respect to the original
packets x1, ..., xn; in contrast, straightforward algebra shows
that it is given by a′

i =
∑m

j=1 hja
j
i . This operation may be

repeated at several nodes in the network.
In the following it is convenient to think in terms of vector

spaces, and say that a node has received a vector space
spanned by m coding vectors, when the node has received the
m corresponding linear combinations of the source symbols.
Each node v collects the coding vectors for the packets it
receives (or generates) in a decoding matrix Gv . A received
packet is said to be innovative if its coding vector increases
the rank of the matrix of Gv . To transmit, the node generates
a linear combination whose coding vector lies in the vector
space of its decoding matrix. Once a node receives n linearly
independent combinations, or equivalently, a basis of the
n-dimensional space, it is able to decode and retrieve the
information of the n sources. Decoding amounts to solving a
system of linear equations with complexity bounded as O(n3).

For all practical purposes, the size of the matrices with
which network coding operates has to be limited. This is
straightforward to achieve for deterministic network codes,
but more difficult with random network coding. For the latter,
packets are usually grouped into so-called generations, and
only packets of the same generation can be combined [25].
Possible alternatives for this grouping are to allocate to a
generation packets of a given source, packets generated in
within a specific area of the network, packets generated in
a certain period of time, packets containing a certain type of

1We can think of x1, . . . xn simply as symbols, or as packets of symbols
of the same size, and apply to each packet the operations symbol-wise. In the
following we will talk about symbols and packets interchangeably.
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information, combinations thereof, etc. Each source packet is
only part of a single generation.

IV. FIXED NETWORKS

In this section we consider networks where the topology
does not change, and evaluate energy efficiency benefits
that use of network coding may offer. We consider random
networks, where nodes are randomly placed on the network
surface, as well as canonical configurations. In both cases we
will assume that the common transmission range of the nodes
is such that the number of neighbors N(v) of each node v is
upper bounded by a constant, i.e., N(v) ≤ Nmax.

Theorem 1: Consider a fixed ad-hoc wireless network
where each node’s transmission is received by a constant
number of neighbors. For the application of broadcasting
network coding offers constant energy efficiency benefits.

Proof: The proof follows from two observations:
(i) There exists a routing scheme (not necessarily optimal) that
utilizes n2 transmissions. This is because, there exist exactly
n messages to be disseminated, and each of the n nodes will
need to broadcast a message to its neighbors at most once.
(ii) Any network coding scheme will utilize at least n2/Nmax

transmissions. This is because each of the n nodes needs
to receive n innovative transmissions and each transmission
brings innovative information to at most Nmax nodes.
In fact, for canonical configurations such as networks where
nodes are placed on a lattice, we can exactly calculate the
benefits in terms of energy efficiency that network coding can
offer. We illustrate this through two examples, the circular
network and the rectangular grid network.
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Fig. 1. Circular network with n = 8 nodes. Nodes in the set A (B) are
depicted as circles (squares). Also depicted is the network coding scheme that
allows to disseminate the information from nodes in A to all nodes of the
network.

A. Circular Network

Consider n nodes placed at equal distances on a circle as
depicted in Fig. 1. Assume that each node can successfully
broadcast information to its two neighbors. For example,
node β1 can reach nodes α1 and α2. The results do not change
if we increase the transmission range, as Section VI-C shows.

Algorithm 1 Network Code for Circular Network
Step k:
• Phase 1: If k = 1, each αi ∈ A broadcasts its information
symbol xi. If k > 1, each αi ∈ A transmits the sum of the
two information symbols it received in phase 2, step k − 1.
• Phase 2: Each βi ∈ B transmits the sum of the two
information symbols it received in phase 1, step k.

Theorem 2: Consider a circular network, and the optimal
routing and network coding strategies that minimize the num-
ber of transmissions for the problem of broadcasting. Then

lim
n→∞

Tnc

Tw
=

1
2
.

The theorem follows from Lemmas 1, 2 and Section VI-C.
Lemma 1: For the circular network it holds that

1) without network coding Tw ≥ n − 2
2) with network coding Tnc ≥ n−1

2 .
Proof: Since a node can successfully broadcast to its two

nearest neighbors, each broadcast transmission can transfer at
most one unit of information to two receivers. We have n −
1 receivers to cover and thus the best energy efficiency we
may hope for is n−1

2 per information unit. When forwarding
w.l.g. we may consider a single source broadcasting to n− 1
receivers. The first transmission reaches two receivers. Each
additional transmission can contribute one unit of information
to one receiver.

For the case of forwarding, it is easy to see that a simple
flooding algorithm achieves the bound in Lemma 1. For
network coding consider the following scheme. Assume that
n is an even number. Partition the n nodes in two sets
A = {α1, . . . αn

2
} and B = {β1, . . . βn

2
} of size n

2 each,
such that every node in A has as nearest neighbors two nodes
in B, as depicted in Fig. 1. It is sufficient to show that we
can broadcast one information unit from each node in set A
to all nodes in sets A and B using Tnc ≥ n

2 transmissions.
We can then repeat this procedure symmetrically to broadcast
the information from the nodes in B.

Let {x1, . . . , xn
2
} denote the information units associated

with the nodes in A. Algorithm 1 operates in n
4 steps, where

in each step first nodes in A transmit and nodes in B receive
and then nodes in B transmit and nodes in A receive.

Lemma 2: There exist schemes that achieve the lower
bounds in Lemma 1. Thus limn→∞ Tnc

Tw
= 1

2 .
Proof: We show that Algorithm 1 achieves the bound

in Lemma 1. At step k, Phase 1, each node in B is going to
receive two new information symbols from the two sources
that are 2k− 1 nodes away along the circle2. In Phase 2 each
node in A is going to receive two information units from the
sources that are 2k nodes away. Since algorithm 1 concludes in
at most n

4 steps, and ensures that each broadcast transmission
brings new information to two receivers, the result follows.

2For simplicity of notation, we assume that all indices are mod n
2

. Also
note that for n−1 odd we cannot achieve n−1

2
transmissions but n

2
, however

this does not affect the order of the result.
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Fig. 2. A rectangular grid configuration with 64 nodes enveloping the surface
of a torus. For example, the closest neighbors of the node α32 are the nodes
β29, β31, β30 and β28.

B. Rectangular Grid

In this case n = m2 nodes are placed on the vertices of
a rectangular grid, and each node can successfully broadcast
information to its four nearest neighbors.

Theorem 3: Consider the optimal routing and network cod-
ing strategies that minimize the number of transmissions for
the problem of broadcasting over a square grid network with
n nodes. Then

lim
n→∞

Tnc

Tw
=

3
4
.

The theorem follows from Lemmas 3, 4 and Section VI-C.
Lemma 3: For the rectangular grid network it holds that:

1) without network coding Tw ≥ n2

3 , and
2) with network coding Tnc ≥ n2

4 .
Proof:

Each transmission can bring one unit of information to at
most four receivers. When forwarding we have an overlap of
at least one receiver, i.e., each transmission can bring one unit
of information to at most three receivers.

Lemma 4: There exist schemes that achieve the lower
bounds in Lemma 3 and thus limn→∞ Tnc

Tw
= 3

4 .
Proof: For the case of forwarding simply use flooding

along one horizontal line and along perpendicular lines.
For the case of network coding, we extend the proof idea in

Lemma 2. We partition the square lattice into sub-lattices A
and B, such that the four closest neighbors for an element in
A belong to B (and vice-versa). Let nodes A be sources. We
describe a scheme that transmits one information unit from all
sources in A to all nodes in A and B. Again consider steps
divided in two phases, where in the first phase the nodes in A
transmit, while in the second phase, the nodes in B transmit.
To avoid edge effects, assume that the square grid envelopes
the surface of a torus, as depicted in Fig. 2.

We now discuss the connection with the circular network
proof. By “distance” between two nodes we refer to the
number of hops that separate them. For any node α or β in
the circular network, the number of neighbors at distance d is
two, independent of d (with a possible exception for d = n

2 ,
where when wrapping around the circle we may have only one
new neighbor). Thus, at every step k in the proof of Lemma 2,
it is sufficient for example for nodes αi ∈ A to receive two

TABLE I

NUMBER OF NEW SOURCES AT ALGORITHM 2.

neighbors N2k−1 neighbors N2k

step k for αi ∈ A for βi ∈ B

k = 1 4 8
1 < k < m

4
− 1 N2k−2 + 4 N2k−1 + 4

k = m
4

N2k−2 + 4 N2k−1 + 2
k = m

4
+ 1 N2k−2 − 2 N2k−1 − 4

m
4

+ 1 < k < m
2

N2k−2 − 4 N2k−1 − 4
k = m

2
4 1

new information units, to learn the information of sources at
distance d = 2k.

In contrast, in a square lattice, the number of neighbors
Nd at distance d can be calculated as Nd = Nd−1 + 4,
N1 = 4, d ≥ 2 (called the coordination sequence of the
square lattice). In the case of a grid with m2 points placed on
the surface of a torus, the number of new neighbors increases
up to a point, and then, because of overlap when wrapping
around, starts decreasing. We assume hereafter that m is even,
but very similar arguments hold for m odd. Our algorithm
for the square grid, in each step, has every node collect the
information from all sources that are at a certain (increasing)
distance from it. However, since in this case, unlike the circular
network, the number of neighbors depends on the distance, the
number of transmissions at each step is also not constant.

Algorithm 2 uses this approach. For k = 1, . . . , m
2 , each

node collects the information from a constantly increasing
area. The number of sources collected at step k (and corre-
sponding distances) for nodes in A and in B are provided
in Table I. It remains to prove is that there exist linear

Algorithm 2 Network Code for the Square Grid Network
Step k, 1 ≤ k ≤ m

2 :

• Phase 1: If k = 1, each node αi ∈ A transmits its
information symbol to their four nearest neighbors. Each
αi ∈ A transmits once. Each βi ∈ B receives four
messages. If k > 1, each αi ∈ A transmits �N2k−1

4 �
linear combinations from the N2k−2 information units it
received in phase 2, step k−1. Each βi ∈ B receives the
information units from all sources at distance 2k − 1.

• Phase 2: Each βi ∈ B transmits �N2k

4 � from the N2k−1

information units it received in phase 1, step k. Each node
αi ∈ A receives the information units from all sources at
distance 2k.

(Nk calculated as in Table I)

combinations such that each receiver is able to decode. With
a centralized scheme, this amounts to selecting values for the
coding vectors such that a product of determinants is nonzero
[26]. The sparse-zeros Lemma 6 [26], [27] shows that such
values exist. In practice, we can use a randomized approach
[28], [29] to find these values (as we do in the next section).

V. DISTRIBUTED ALGORITHMS

Our goal being to develop distributed algorithms that are
well suited for random topologies, we start in this section
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by developing a distributed algorithm for the square grid
network. Given that random topologies with a large number of
nodes tend to perform like such a network, we then tune the
algorithm to perform well in a random topology, and verify
through simulation that we obtain the expected benefits.

A. Distributed Algorithms for the Square Grid Network

The scheduling Algorithm 1 tends to be involved, and thus
might be challenging to implement in a practical system.
Algorithm 3 employs a much simpler scheduling and still
allows us to achieve the optimal benefits in terms of energy
efficiency. The algorithm operates in iterations.

Algorithm 3 Distributed Network Code for the Square Grid
• Iteration 1: Each node broadcasts the information symbol

it produces to its four closest neighbors.
• Iteration k: Each node transmits a linear combination of

the source symbols that belongs in the span of the coding
vectors the node has received in all previous iterations.

Let mk denote the number of innovative packets that node i
has received at the end of iteration k, and let V i

k be the vector
space spanned by the corresponding coding vectors. That is,
mk = dimV i

k is the dimension of the vector space V i
k . Let

A be a set of nodes, we denote by V A
k = ∪j∈AV j

k the vector
space spanned by the union of the vector spaces that nodes in
A span.

To show that Algorithm 3 allows to achieve the opti-
mal performance when broadcasting, we need to show that
there exists a coding scheme (linear combinations that nodes
can transmit) such that each broadcast transmission brings
innovative information to four receivers. This implies that
Algorithm 3 operates in k = 1 . . . � n

4 � iterations as follows.
At iteration k, each node i

1) Transmits a vector from the vector space spanned by the
coding vectors the node received at iterations 1 . . . k−1.

2) Receives four vectors from its four closest neighbors,
and increases the dimension of its vector space by four.

Before the iterations begin each node has its own source
symbol, and thus m0 = 1. We want to show that for each
node i at the end of iteration k

mk = mk−1 + 4 = 4k + 1. (1)

To prove that there exists a coding scheme such that (1) holds,
it is sufficient to prove the following theorem.

Theorem 4: There exists a coding scheme to be used with
Algorithm 3 on the square grid such that at iteration k,

dim(V A
k ) ≥ min{mk + |A| − 1, n} (2)

for any set A of nodes, where mk = 4k + 1, m0 = 1.
Indeed, from (2) for A = {i} we get that dim(V i

k ) ≥ mk =
4k + 1. But node i at iteration k has received 4k broadcast
transmissions, i.e., dim(V i

k ) ≤ mk = 4k+1. Thus the theorem
directly implies that dim(V i

k ) = mk = 4k + 1. For the proof
of this theorem we use Lemmas 5 and 6.

Lemma 5: Any set A of nodes in the grid, with 4+|A| ≤ n,
has at least four distinct neighbors.

Proof: The proof uses the fact that the vertex min-cut
between any two nodes in a square grid is four. Let B be the
set of nodes in the grid that are not in A. From assumption B
contains at least four nodes. If all the nodes in B are neighbors
of nodes in A we are done. Assume that there exist a node
β in B that is not a neighbor of any node in A. Let α be
any node in A. Connect α and β through four vertex disjoint
paths. On each such path there exists a distinct neighbor of
A.

The second result we need is a reformulation of the sparse
zeros lemma proved in [26], [27]. Here we present it in a form
that is convenient for the proof of our theorem.

Lemma 6: Consider a family of h × h matrices
A1, A2, . . . AN whose elements are finite degree
polynomials in the coefficients α1, α2, . . . α� for some
integer � ∈ N. Assume that for each matrix Ai there exist
values α1 = p1, . . ., α� = p� over a field Fqi such that the
determinant of Ai over Fqi is non zero, i.e., det(Ai) �= 0.
Then, there exists a finite field Fq, and there exist values in
Fq for {αi} such that det(A1) det(A2) . . . det(AN ) �= 0.

For example, if

A1 =
[

p2 p(1 − p)
p(1 − p) p2

]
, and A2 =

[
1 p
1 1

]
,

then for p = 1, det(A1) �= 0 over F2, for p = 0, det(A2) �= 0
over F2, and for p = 2, det(A1) det(A2) �= 0 over F3. In fact,
randomly choosing the parameter values over a field F q gives
us a valid assignment with probability that goes to one as the
size of the field q increases [29].
Proof of Theorem 4: We use induction.
We use induction.
• For k = 0, m0 = 1, since every node has one source symbol.
• For k = 1, m1 = 5. Indeed, at the end of the first iteration
each node has received the information symbols from its four
nearest neighbors. Any A nodes have their own information
and moreover the information from their one-step closest
neighbors, which, from Lemma 5, amounts to a vector space
of size at least m1 + |A| − 1 = |A| + 4.
• Assume that the condition holds for k = �−1. It is sufficient
to show that it holds for k = �.

Consider a set A. We want to show that dim(V A
k ) ≥

mk−1 + 4 + |A| − 1 = mk + |A| − 1. From induction we
know that dim(V A

k−1) ≥ mk−1 + |A| − 1. If dim(V A
k−1) ≥

mk−1 + 4 + |A| − 1 we are done. The only interesting cases
are when dim(V A

k−1) = mk−1 + i + |A| − 1, i = 0 . . . 3. We
will prove here the case where dim(V A

k−1) = mk−1 + |A|−1.
For the other three cases the arguments are very similar.

Let B be the set that includes A and all the nearest
neighbors of A. From Lemma 5 we know that B contains at
least four nodes that do not belong in A, say {β1, β2, β3, β4}.
We want to show that when the nodes in {β1, β2, β3, β4}
transmit during iteration k, they increase the rank of the set A
by four. (And in fact, of every other set they are neighbors.)
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But this holds by the following argument. From assumption,

dim(V {A,j}
k−1 ) ≥ mk−1 + |A|, for j ∈ {β1, β2, β3, β4}

dim(V {A,j,l}
k−1 ) ≥ mk−1 + |A| + 1, for j, l ∈ {β1, β2, β3, β4}

dim(V {A,j,l,z}
k−1 ) ≥ mk−1 + |A| + 2, for j, l, z ∈ {β1, β2, β3, β4}

dim(V {A,β1,β2,β3,β4}
k−1 ) ≥ mk−1 + |A| + 3.

Thus, nodes β1, β2, β3, and β4 have vectors v1 v2, v3,
and v4 respectively such that vj /∈ V A

k−1, j = 1 . . . 4, and
the vector space spanned by them has dimension four, i.e.,
dim(< v1, v2, v3, v4 >) = 4. Then, from Lemma 6, there exist
linear combinations that nodes βi can transmit at iteration
k such that the vector space of A (and in fact any set A
neighboring them) increases in size by four. �

B. Distributed Algorithms for Random Networks

We now extend Algorithm 3 to work over random topologies
where the number of neighbors N(v) of a node v is not
necessarily constant. Generally, the network is not perfectly
symmetric and we cannot assume perfect synchronization
among nodes. Moreover, we are interested in very simple pro-
tocols where nodes do not have any a priori knowledge about
the network topology, and in particular, their neighboring
nodes. To account for these factors, and given the randomized
nature of our networks, we use a protocol in analogy to
probabilistic routing algorithms that forwards packets with
a certain probability, according to a forwarding factor [16],
[17]. The forwarding factor d determines the number of coded
packets that will be sent upon reception of innovative packets
as described in Algorithm 4. A packet is transmitted by its
own source at least once. We combine this approach with
randomized network coding [28], [29].

Recall that each node v stores the coding vectors it receives
in a decoding matrix Gv . In the case of routing the coding
vectors are simply the basis vectors {ei} where ei has one
“1” at position i and “0” at all other positions. The matrix
has a size determined by the generation size. The matrix of
a source si that has not yet received information from any
other node contains only a single row e i. A received packet
is said to be innovative if its coding vector increases the rank
of the matrix. Reception of non-innovative packets is simply
ignored.

Algorithm 4 Constant Forwarding Factor d

Each node maintains a send counter s, that is initially set to
zero.

• For each source symbol that originates at a node v, the
node increases s by max(1, 	d
), and it further increases
s by one with probability p = d − max(1, 	d
) if p > 0.

• Similarly, when a node v receives an innovative symbol
it increases s by 	d
, and it further increases s by one
with probability p = d − max(1, 	d
) if p > 0.

• If s ≥ 1, a node attempts to broadcast a linear combina-
tion over the span of the received coding vectors. Each
transmission reduces the send counter s by one.

Intuitively, good values for d depend on the transmission
range and the network topology, such as the neighborhood
node density. For example, if a node v forms a vertex cutset
for the network, i.e., if removing this node disconnects the
network into two components, then this node acts as a bridge
that needs to rebroadcast each innovative packet it receives to
transfer it between the two components. In contrast, a node
in a dense area of the network, that shares each successful
reception of an innovative packet with a large number of
its neighbors, needs to retransmit more sparingly to avoid
overloading the network with redundant transmissions.

Algorithm 5 tries to adapt the number of transmissions of
a node according to the node’s local neighborhood density, as
it is perceived by the packets the node receives.

Algorithm 5 Forwarding and Receiving Factor
• In addition to updating the send counter as in Algo-

rithm 4, nodes also keep track of received non-innovative
packets. For each c non-innovative packets a node re-
ceives the send counter s is decremented by one.

To improve the energy efficiency, we can use a dynamic
forwarding factor dv different for every node v. Such an
algorithm can help to adapt to irregularities of the network
topology. The value of dv that would lead to the smallest total
number of successful transmissions can only be calculated
with perfect knowledge of the network topology. Since we
are interested in simple algorithms, we can assume that in
a fixed network a node can acquire knowledge about the
direct neighborhood as well as the two-hop neighborhood by
observing for example the flow of transmissions, while further
information is too costly to gather. We therefore investigate the
performance of two heuristics to adjust dv . Let N(v) be the
set of direct neighbors of node v and let k be a forwarding
factor to be used when a node only has one single neighbor.
We scale dv as follows.

Algorithm 6 Dynamic Forwarding Factor dv

• Algorithm 6A: Set v’s forwarding factor inversely propor-
tional to the number of 1-hop neighbors

dv =
k

|N(v)| .

• Algorithm 6B: Set the forwarding factor inversely propor-
tional to the minimum of the number of 1-hop neighbors
of v’s 1-hop neighbors

dv =
k

minv′∈N(v) |N(v′)| .

Intuitively, if a node v has multiple neighbors but one of
the neighbors v ′ has only node v as a neighbor, v needs to
forward all available information to v ′, no matter how many
neighbors v itself has.

The performance of Algorithm 6 also depends on the value
of k. In essence, k is a cumulative forwarding factor shared
between all nodes within a given radio range. It corresponds to
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the number of packets that are transmitted within this coverage
area as a response to the reception of an innovative packet,
independent of the node density.

To determine k, we need to compute the probability that a
transmitted packet is innovative. In [15], the authors analyze
the probability that the broadcast of a given message is
innovative for at least one neighbor when this message has
already been overheard a certain number of times, for the case
of flooding. This probability quickly drops to 0 for more than
ca. 6−8 overheard broadcasts of the same message. Therefore,
k should be set such that the number of broadcasts in an area
is close to this value and independent of the network density.

A similar analysis is possible for network coding. As a
rough approximation, let us assume that a node v and all
but one of its neighbors have all g information vectors, and
one neighbor v ′ has no information. We are interested in the
probability that after overhearing kg transmissions, a packet
from v will be innovative for v ′. In other words, v ′ must have
received fewer than g innovative packets from the other nodes
and is not yet able to decode.3

We compute this probability as follows. Let D0 be a disk
of radius 1 (we can take all transmission ranges equal to 1
since the probability we are interested in is independent of the
distance unit chosen). Let j = kg, and D1, ..., Dj be j disks,
also of radius 1, with centers in D0, drawn independently and
uniformly in D0. Define Qg

j as the probability that a random
point M in D0 is covered by fewer than g of the j disks. Our
upper bound is the probability Qg

kg . For fixed g and large k,
we have the approximation

Qg
kg ≈ 1.72029√

gk
e−0.321021gk. (3)

A more detailed analysis can be found in [30].
The probability of node v’s transmission being innovative is

depicted in Fig. 3 for the case of probabilistic routing (g = 1)
and network coding (g > 1). With probabilistic routing,
this probability decreases exponentially with the number of
transmissions, while it drops to 0 much more rapidly with

3In real scenarios, it is extremely unlikely that v′ overhears none of the
packets that its neighbors received previously to obtain their information.
Furthermore, v′ may obtain the missing information through a neighbor that
is not within v’s transmission range. Also this case is not part of the analysis.
Therefore, the analysis below is a worst case estimate that gives an upper
bound on the probability of v′ not being able to decode after kg transmissions.

network coding. The slope of the curve depends on the
number of information vectors g. In the network scenarios
we are interested in, g is on the order of tens to hundreds of
information vectors. To achieve probability of not being able
to decode below 1%, we have to set k ≈ 3 for network coding
and k > 6 for flooding. (Note that this is the probability that v ′

is not able to decode only using transmissions from nodes in
N(v). It might still receive packets via some other neighbors,
resulting in a higher overall PDR.) Interestingly, for k ≥ 3,
the probability of not being able to decode tends to 0 in the
limit for large g, while it is strictly positive for smaller k.

C. Distributed Generation Management

Up to now we have assumed that each node is a source
that has a single symbol to transmit, and that nodes are able
to decode as soon as they receive n linearly independent
combinations. Thus, all sources are decoded together at the
end of the transmission.

In practice, the node memory and processing capabilities
are limited and it might therefore not be possible to keep
track of all information in a single matrix. This is especially
so since in a random environment there may be benefits in
combining symbols not only across space but also across time
as is observed in the network coding literature. Following the
terminology in [25], Algorithms 4–6 can be easily extended
to operate over generations. Recall that we define a genera-
tion as a collection of packets that we allow to be linearly
combined. Dividing packets into generations decreases the
decoding complexity, allows to decode data faster (and thus
empty the respective memory), as well as use smaller coding
vectors. Furthermore, grouping information into generations
allows nodes to only decode generations they are interested
in, for example based on type of content or local scope.
Without central control in the network, nodes have to manage
generations based only on their local information. In this
section we describe simple distributed generation management
methods.

Each node selects the generation for each packet that
originates at this node, using a generation size threshold t.
The node checks which generations it knows having a size
that does not exceed the threshold t. From these, it randomly
picks one generation and allocates the packet to it. If no such
generation exists, the node creates a new generation with a
random generation ID and inserts the packet. The space of
generation IDs has to be large enough so that the probability
of having generations with the same ID created by different
nodes is relatively small. Alternatively, it is possible to use
an ID for new generations that depends on the address of the
originating node, which prevents such collisions.

The actual size of generations depends on the threshold t but
is not limited by it. Several distant nodes may decide to insert
packets into the same generation at the same time. Therefore, t
needs to be adapted based on the average size of the matrices at
a given node (and can be different for each node). Equivalently,
t can be adapted based on the available memory at a node. The
higher the probability of nodes inserting many new packets at
the same time and the lower the node memory, the lower t
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needs to be. It is further possible to compose generations that
are local in space, while the dissemination of the generation
may still be throughout the whole network. For example, we
could limit nodes that are allowed to insert packets into a
generation to the λ-hop neighborhood of the node where the
generation was created.

VI. SIMULATION RESULTS AND PRACTICAL

CONSIDERATIONS

In this section, we present the simulation results for our
algorithms, and investigate the effect of parameters such as the
forwarding factor, the transmission range, and the generation
size.

A. Description of the Simulator

Unless explicitly stated otherwise, our simulation environ-
ment is as described in the following.

Nodes have a nominal transmission range of ρ = 250m
and are placed uniformly at random on the simulation area.
To avoid edge effects, we let this area envelope the surface of
a torus. Transmissions are received by all the nodes within
transmission range. We use a custom, time-based network
simulator. A packet (symbol) transmission takes exactly one
time unit. We assume that a node can either send or receive
one packet at a time. The MAC layer is an idealized version
of IEEE 802.11 with perfect collision avoidance. At each time
unit, a schedule is created by randomly picking a node and
scheduling its transmission if all of its neighbors are idle. This
is repeated until no more nodes are eligible to transmit.

For finite field operations we select the field F28 , so that
each symbol of the field can be stored in a byte. Addition
and multiplication operations can be implemented using two
lookup tables of size 255 bytes [31]. The coding vectors are
transported in the packet header as suggested in [25]. We use
randomized network coding, i.e., combine the received vectors
uniformly at random over F28 to create the vector to transmit.

We compare our network coding algorithms against proba-
bilistic routing, where received packets are re-broadcasted with
a certain probability (similar to our forwarding factor). Our
performance metrics are packet delivery ratio (PDR), delay,
and overhead. The PDR is measured as the number of packets
that can be decoded at the destination. For probabilistic
routing, this is equal to the number of received innovative
packets, whereas with network coding, not all innovative
packets can necessarily be decoded. Similarly, delay is counted
as the average time between the transmission of a packet by
the original source and successful decoding at a node. We
also investigate overhead in terms of number of transmissions
required to achieve a certain PDR.

B. Comparison of the Forwarding Algorithms

First we compare the performance of Algorithm 4 against
probabilistic routing. The network contains 100 nodes, ran-
domly distributed on a surface of 1250m × 1250m. This
results in an average number of neighbors of around 12.
During the first 100 time units, at each time unit one packet

originates at a randomly selected node. Then the simulation
continues to run without inserting further packets until no more
nodes are eligible to forward. For network coding, we use one
single generation that holds the packets from all senders.

As shown in the left graph of Fig. 4, in the static topology
network coding achieves 100% delivery ratio for a forwarding
factor of 0.25. In contrast, probabilistic routing requires a
3 times larger number of transmissions to achieve the same
performance. This difference is more pronounced for interme-
diate forwarding factors between 0.1 and 0.2, where network
coding reaches almost all nodes while probabilistic routing has
a PDR below 40%. The average delay from the time a packet
originates until it is received (or successfully decoded) at the
destination is shown in the right graph in Fig. 4. The decoding
delay of network coding does not continue to increase for
high forwarding factors, as does probabilistic routing delay.
This is due to the fact that with probabilistic routing, multiple
duplicates of already received packets may be received before
the next novel packet, thus increasing end-to-end delay. With
network coding, all of the packets are innovative until the node
can decode everything. After this, further received packets
are non-innovative, but have no impact on delay. Therefore,
decoding delay is only marginally above 100, the minimum
number of time units each node needs to receive the 100
packets. For d between 0.1 and 0.2, probabilistic routing only
reaches nodes that are few hops away, resulting in a small
delay.

In more demanding topologies, Algorithms 5, 6A and 6B,
are likely to perform better than the simpler Algorithm 4
that uses a fixed forwarding factor for all nodes. We use a
network size of 1500m × 1500m that does not wrap around
at the edges and vary the number of nodes between 128 and
1024. The topology has four dense clusters comprising of
70% of the nodes, while the remaining 30% are randomly
distributed in the network area. We further ensure that the
network is connected. This results in complex topologies with
vastly varying node degrees.

For each algorithm we use the lowest forwarding factor
that results in a 90% PDR. As can be seen from Fig. 5,
Algorithm 4 requires up to twice the overhead of the other
algorithms. Algorithms 6A and 6B perform alike for higher
node densities, but the fact that Algorithm 6B takes the two-
hop neighborhood instead of just the one-hop neighborhood
into account helps its performance when node density is low
(less than ca. 15 neighbors per node). Here, it is particularly
likely that clusters of nodes are connected only via few
intermediate connections. Algorithm 5 that limits the overhead
when non-innovative transmissions are overheard achieves a
performance that is slightly worse than that of Algorithms 6A
and 6B. However, it is much more robust with respect to the
value of the forwarding factor. It adapts to the “complexity”
of the topology more gracefully than the other algorithms, for
which a too low forwarding factor results in a reduced PDR,
while a forwarding factor that is too high creates unnecessary
overhead. The differences between the algorithms are similar
but slightly more pronounced when we look at overhead
required to achieve a 99% delivery ratio (not shown).
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C. Impact of Transmission Range

In the canonical configurations we have examined up to
now we have assumed that each node broadcasts information
to its closest neighbors, i.e., to two neighbors in the case
of the circular network, and four neighbors in the case of
the square grid network. Similarly, in the case of random
networks, we assumed that the transmission range is relatively
small compared to the size of the network. In this section
we investigate how this assumption affects our results. In
particular, we assume that all nodes transmit at an identical
range ρ (using omni-directional antennas) but that ρ might
allow to reach more than the closest neighbors.

In a wireless environment, the transmitted power PT decays
with distance as PT

ργ due to path loss, where typical values are
γ ≥ 2. Thus, if a receiver at a distance ρ can successfully
receive a signal that has power above a threshold P0, then the
transmitted power PT must increase proportionally to P0ρ

γ .
Increasing the range of transmission increases PT . On the
other hand, increasing the transmission range allows to reach
more receivers during each transmission. In the following, we
quantify this tradeoff.

1) Circular Network: In a circular network, to reach the
two closest neighbors, a node needs to transmit at a radius
of 2 sin( 2π

n ) = 2 sin(θ). Generally to reach the 2k nearest
neighbors, 1 ≤ k ≤ n

2 , a node needs to transmit at a radius
of 2 sin( 2πk

n ) = 2 sin(kθ). In the case of network coding, if
each broadcast transmission reaches

• the two closest neighbors, we need total power

P2 =
n − 1

2
P0

sinγ(θ)
,

• the 2k closest neighbors, we need total power

P2k =
n − 1
2k

P0

sinγ(kθ)
.

Thus,

P2

P2k
= k(

sin(θ)
sin(kθ)

)γ =
k

kγ

1 − θ2

3! + θ4

5! − . . .

1 − (kθ)2

3! + (kθ)4

5! − . . .
,

and for large n (small θ) we get that

P2

P2k
≈ k1−γ . (4)

In the case of forwarding, if each broadcast transmission
reaches 2k neighbors, we need in total power

P f
2k = (1 +

n − 1 − 2k

k
)

P0

sinγ(kθ)
.

We conclude that in both cases we lose in terms of transmit
power when increasing the transmission range, but the ratio
P f

2k

P2k
remains equal to 1

2 , at least for k much smaller than n.
2) Square Grid: The square grid can be thought as 2

dimensional lattice Z2 (enveloping the surface of a torus) that
contains all the points of the form v = xe1 + ye2, where x
and y are integers and ei are the vectors of the orthonormal
basis, e1 = [1 0], e2 = [0 1]. If we draw a circle in R2 with
radius k around the point v it will contain all points (x, y)
satisfying

(x − v1)2 + (y − v2)2 ≤ k2.

Thus, if we broadcast at a constant radius ρ = k ∈ Z ,the
number of neighbors we can reach equals

Nk =
y=k∑

y=−k

(2	
√

k2 − y2
 + 1) − 1. (5)

If we compare the number of transmissions that we need with
and without network coding, we get that

Tnc

Tw
= 1−

∑y=k−1
y=0 (2	min{

√
k2 − y2,

√
k2 − (y − k)2}
 + 1∑y=k

y=−k(2	
√

k2 − y2
 + 1) − 1

Values of this ratio are included in Table II.

TABLE II

CONVERGENCE OF RATIO
Tnc
Tw

.

k 1 2 10 50
Tnc
Tw

0.7500 0.6667 0.6013 0.6089

In the case of network coding, if each broadcast transmis-
sion reaches

• the four closest neighbors, we need total power

P1 =
n − 1

4
P0.

• the k closest neighbors, we need total power

Pk =
n − 1
Nk

P0

kγ
.
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transmit ranges

Thus,
P1

Pk
=

Nk

4kγ
. (6)

If γ ≥ 2 and using (5) we can see that P1
Pk

≤ 1.
We conclude that for γ = 2 increasing the transmission

range does not affect the energy efficiency. For γ > 2 the
optimal strategy in terms of power efficiency is to transmit
to the closest neighbor. Moreover, as the transmission range
ρ increases, the benefits network coding offers also increase
and converge to approx. 0.609. This number corresponds to
the area of the intersection of two circles with the same radius
and centers at distance equal to the radius.

3) Random Networks: For the following simulations we
also investigate total network energy consumption, which is
measured as the sum of transmit power × transmission time
over the duration of the simulation.

In Fig. 6 we show simulation results for a random network
with 144 nodes and a fixed area of 1500m × 1500m. For
each transmission range, we choose the smallest cumulative
forwarding factor k for Algorithm 2B that results in an overall
PDR of more than 99%. As can be seen from the left graph,
with network coding higher transmission ranges even allow
to decrease the total energy expenditure (assuming a path
loss exponent of γ = 2). Recall that Algorithm 2B is only a
heuristic and requires k to be somewhat larger than the optimal
value. The intuition behind this result is that, the larger the
transmit range, the more “regular” the network becomes in
terms of number of neighbors, and the closer k can be set to
the optimal value. Note that nodes can trade off the number of
transmissions for transmit power, which in turn might allow
for simpler MAC layer schedules.

In contrast, for flooding the overall energy consumption
increases with the transmit range, since flooding does not
allow to reduce the number of transmissions as aggressively
as network coding for an increased number of neighbors.

The transmission range might also have an effect on delay.
In the right graph of Fig. 6 we see that there is a slight
decrease in average (decoding) delay for flooding as well
as for network coding, when the transmit range increases.
This is the result of two factors: increasing the transmission
range implies that more nodes can be reached by a single
transmission. On the other hand, scheduling becomes more
challenging, as the number of non-overlapping circles that can

be simultaneously packed (i.e., transmissions during the same
timeslot) is reduced.

D. Reducing Decoding Complexity

As discussed in Section II, to decode a generation of size
g, i.e., g linearly independent equations, we need complexity
O(g3), as we need to perform Gaussian elimination over the
g × g matrix of the received coding vectors.

If at each intermediate node we perform uniform at random
combinations over Fq, then the resulting matrix will be a
random matrix, with a large fraction of nonzero elements.
In [32] it was observed that instead of choosing coding
vectors uniformly over Fq, in many cases we get comparable
performance by performing sparse linear combinations.This
work was motivated by the observation [33] that a sparse
random matrix of size g × g(1 + ε) with limg→∞ ε

g = 0, has
with high probability full rank. In particular, this is true if
we choose each element of the matrix independently to be
nonzero with probability p = log(g)

g , and zero otherwise.
Moreover, such a matrix requires O(g 2 log(g)) operations to
be decoded. If each node in the graph performs “sparse”
linear combinations, we can express the resulting matrix that
a receiver needs to decode as a product of sparse matrices
which we can solve sequentially. Here we examine the effect
of reducing the alphabet size and of forming “sparse” linear
combinations through simulation results.

Reducing the Alphabet Size: Our simulation results in-
dicated that a relatively small alphabet size is sufficient to
achieve good network coding performance. The field of size
two, which is much smaller than the average number of
neighbors, did not lead to a good performance. However, the
field of size 22 performed very similarly to the field of size
28 (which is what we used in all the previous simulations).
Further increasing the alphabet alphabet size did provide
additional performance gains.

Reducing the Matrix Density: We use the following al-
gorithm to generate vectors with a limited number of non-
zero entries. As long as the number of non-zero coefficients
is lower than a threshold q, a row is randomly picked from
the decoding matrix, multiplied by a random coefficient, and
added to the vector to be sent out. We use a simulation
setting similar to that of the previous paragraph. Setting q = 1
corresponds to sending out the information of a single row of
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the decoding matrix which is non-innovative for neighboring
nodes with a high probability (in fact, performance degrades
to that of probabilistic routing). As soon as q ≈ log(g), there
is little difference in performance compared to an unrestricted
generation of vectors (q = 100), as can be seen from Fig. 7.
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Fig. 7. Impact of reducing the matrix density on PDR

VII. DYNAMICALLY CHANGING TOPOLOGY

In this section we consider networks where the network
configuration constantly changes, for example due to mobility.
We focus our attention to very simple decentralized distributed
algorithms, where nodes do not know the identity of their
neighbors. Our motivation is that, in a dynamically changing
environment, such updates are costly. We show that use of
network coding techniques can offer significant benefits in
terms of energy efficiency, through theoretical analysis over
a simplified mobility model, and through simulation results
over more realistic network scenarios.

A. Energy Efficiency Benefits

For the theoretical analysis we assume a uniform at random
mobility model. In particular, we divide time into iterations
and assume that at the beginning of each iteration nodes are
placed uniformly at random on a unit-area disc of radius
1/

√
π. This corresponds to having a uniform at random

mobility pattern, where the iterations are far enough in time,
to allow a node to move anywhere on the disc with equal
probability since the previous iteration. We use this generous
mobility model to simplify the analysis, but examine more
realistic models through simulation results in Section VII-B.
Moreover, we assume that each node turns off for the duration
of each iteration independently at random with probability p.

During each iteration each active node transmits within a
radius of r with

r = Θ
(

1√
n

)

fixed for all nodes, where n is the total number of nodes. Thus
at each iteration each node v has on the average a constant
number of N(v) = Nπr2 neighbors, of which N(v)(1 − p)
are active.

We compare the energy efficiency in the case where we use
forwarding and where we use network coding. We underline
our assumption that nodes do not know which are their

neighbors, or what information they already have. Thus, in the
case of forwarding, without loss of generality we can assume
that during each iteration and at each (possibly new) position
node vi always broadcasts xi. In the case of network coding,
each node transmits a random linear combination over some
finite field Fq of the symbols it has previously received.

Theorem 5: Broadcasting to all receivers can be achieved
using on the average
−without network coding: Θ(n log n)

(1−p)2 iterations,

−with network coding: Θ(n)
(1−p)2 iterations,

where at each iteration occur on the average (1 − p)n trans-
missions. Thus on the average

Tnc

Tw
= Θ

(
1

log n

)
.

Proof: Consider first the case of forwarding, and a given node
j that would like to transmit its message xj to all other n− 1
nodes.

Construct a bipartite graph as follows. The left part consists
of the n − 1 nodes. The right part consists of M nodes v i,
where node vi corresponds to iteration i, and is connected to
the neighbors of node j during this iteration. Thus the degree
of node vi is a random variable with average k(1 − p). We
are asking, how many right hand side nodes do we need, i.e.,
what number of iterations, so that node j transmits its message
in all other nodes. This simple analysis has been performed
in the context of LT and Raptor codes (see for example [34]-
Proposition 1) where it was shown that M should scale as
Θ(n logn). Since node j is active with probability (1 − p),
the average number of iterations we need equals Θ(n log n)

(1−p)2 .
This problem can also be viewed as a variation of the coupon
collector’s problem. The coupon collector’s problem in its
standard form is described as buying boxes of some product,
and in each box there exists one coupon, chosen uniformly at
random from a collection of n coupons. We are asking what
is the average number of boxes we need to buy to collect all
n coupons (see for example [6]). It is well known that in this
case the answer is O(n log n) coupons. Our case is a simple
variation, where now each box contains on the average k(1−p)
different coupons.

In [7] it was shown that use of network coding with the
standard coupon collector problem reduces the number of
required iterations to n. In our case as well, node j is active on
the average (1−p)m out of m iterations. While it is active, it
receives on the average k(1− p) transmissions from its active
neighbors. Using standard arguments in the network coding
literature, and provided that the field Fq is large enough, each
received transmission brings new information to the node j.
Thus, node j is able to decode all n information units on the
average after Θ(n)

(1−p)2 iterations. �
Note that the performance of network coding is not affected

by node mobility. In contrast, mobility has a significant
effect on forwarding. Initially, as nodes randomly move,
the information is disseminated faster than in the case of
a static network. However, because of the assumption that
nodes do not know what information their neighbors have,
as approximately half the nodes collect the information, more
and more often transmissions do not bring new information to
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the receiving nodes. This point has been observed in rumor
spreading algorithms over networks represented as graphs, and
is known as “the last coupon problem”.

It should be noted that these results do not hold, if we
assume that nodes have some information about other nodes
in their transmission range. For example, if we assume that
a node knows how many active nodes are in its transmission
range, it can wait (a possibly infinite time) until all nodes are
simultaneously in its transmission range and are active, and
then broadcast its message using just one transmission.

Although we performed this analysis in the context of ad-
hoc wireless networks, similar benefits are also possible in
environments where we need to broadcast information to a set
of receivers in a distributed manner and without knowledge
of the network topology. Many of these problems reduce
to simple variations of the coupons collectors problem. The
following example illustrates one such case.

Example 1 (Broadcasting in Cellular Networks): We con-
sider a cellular network model with m base-stations and n
mobile phone receivers. The base-stations have K information
units that they want to transmit to all mobiles. We assume that
the transmission range is the same for all base-stations, each
transmission conveys one unit of information, and that the
coverage areas of the base-stations do not overlap.

In this model base-stations are always active, while nodes
are mobile and may turn on and off. A node is active and
successfully receives information approximately M(1 − p)
out of M iterations. Thus, if base-stations broadcast using an
erasure correcting code of rate (1−p), then each transmission
brings useful information at each node. For a node to receive
K messages we need K

(1−p) iterations.
In the case of forwarding, assume that base-stations ran-

domly select and transmit one of the K messages. Thus each
node at each iteration observes one of the messages uniformly
at random. We can think of this problem as a balls-in-bins
experiment, where the bins are the K messages the node
wants to collect, and the balls correspond to the iterations.
Using standard results [6] we again need on the average n log n

(1−p)
iterations. Thus, network coding offers a log n benefit. �

B. Simulation Results

We use the random topology simulation environment de-
scribed in Section VI-A. The network size is scaled with the
number of nodes such that each node has on average four
neighbors. For simplicity, we use Algorithm 4 for the net-
work coding, since the more sophisticated algorithms mainly
help with inhomogeneous topologies, while in highly mobile
scenarios we tend to observe more canonical topologies. The
forwarding factor is set to the lowest value that achieves a
100% PDR.

We first discuss simulation results of the case where at
each iteration each node is placed uniformly at random in
the rectangular simulation area. We measure the total number
of packet transmissions required such that all nodes receive
all packets for different network sizes. Fig. 8 shows the
ratio of the required number of transmissions of flooding
and network coding for different mobility models. Uniformly
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Fig. 8. Ratio of flooding overhead to network coding overhead for random
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random mobility corresponds to the mobility model used in the
theoretical analysis in Section VII-A. The corresponding curve
in Fig. 8 confirms the log n factor in the ratio of overhead of
flooding and network coding from the theoretical analysis. A
similar overhead ratio can be observed in simulations with a
more dense or more sparse network (not shown here).

The uniformly random mobility model implies that the
composition of the neighborhood of a node is completely
uncorrelated from iteration to iteration. In practice, this is
true only when the node speed is very high or the packet
transmission rate is very low. A less generous mobility implies
that less data is transported through the network by node mo-
bility and has instead to be forwarded via intermediate nodes.
In Fig. 8 we present simulation results for a more realistic
mobility model. We use the same simulation parameters as
before, but also show the overhead ratio for mobility according
to the random-waypoint mobility model with no pause time
and movement speeds uniformly distributed between 2 m/s
and 10 m/s as well as 10 m/s and 20 m/s, respectively. With
the random-waypoint mobility model, nodes pick a random
destination whose location is uniformly distributed in the
simulation area as well as a movement speed with which they
travel until the destination is reached.

We can see that in this case, although network coding still
offers significant benefits, the performance gap with routing
is smaller. This agrees with our intuition that when mobility
is more restricted, network coding performance deteriorates,
because how well the data is “mixed” plays a crucial role for
the network coding analysis.

VIII. CONCLUSIONS

We have investigated benefits in terms of energy efficiency
that use of network coding can offer for the problem of broad-
casting over ad-hoc wireless networks. We proved that network
coding can offer a constant factor of benefits over a fixed
network, and a log n factor over a network where the topol-
ogy dynamically changes. We developed simple distributed
algorithms that allow to approach the optimal performance in
practice as we demonstrated through simulation results. Our
work indicates that there is a potential for significant benefits,
when deploying network coding over a practical wireless ad-
hoc network environment, especially when we are restricted
to use low complexity decentralized algorithms.
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[29] T. Ho, M. Mèdard, J. Shi, M. Effros, and D. R. Karger, “On randomized
network coding,” Allerton, Monticello, IL, Oct. 2003.

[30] C. Fragouli, J. Widmer, and J.-Y. L. Boudec, “A network coding
approach to energy efficient broadcasting: from theory to practice,” in
IEEE Infocom, Barcelona, Spain, Apr. 2006.

[31] C. H. Lim and P. J. Lee, “More flexible exponentiation with precom-
putation,” in Proc. Advances in Cryptology: 14th Annual International
Cryptology Conference, Aug. 1994.

[32] P. Pakzad, C. Fragouli, and A. Shokrollahi, “Coding schemes for line
networks,” ISIT, 2005.
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