

High-Level Design and Analysis of Business
Processes

The Advantages of Declarative Specifications
I. Rychkova, G. Regev, A. Wegmann

Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland

Abstract—Business process modeling techniques, such as

BPMN, encourage the early specification of the exact order in
which the activities of the process will be executed. However, a
business process may be exposed to different environments and
subjected to many conditions in which a sequence cannot be
identified at design time.

We present declarative business process specifications that can
be used to align optional process customizations, as well as
process redesign, with the business strategy of the organization.
These specifications complement the traditional (imperative)
business process model by specifying the process independently
from a particular environment.

Index Terms—Alloy, formal verification, Business Process
Modeling, refinement.

I. INTRODUCTION
LIGNING business processes with business strategy is
an important preoccupation in modern organizations.
This alignment is made simpler if an adequate level of

abstraction for business process representation is used. A
business process can be defined as “a set of partially ordered
activities aimed at reaching a well-defined goal.” [1]. The
keyword partial alludes to the problem of defining, ahead of
time, the exact order in which the activities will be executed.
Indeed a business process may be subjected to many
conditions in which this order cannot be identified at design
time. The exact sequence of activities is therefore quite
impossible to predict [1]. Even a simple sale process has been
shown to incorporate optional execution orders depending on,
among other aspects, cultural and legal considerations [2]. The
example given in [2] describes an on-line store that needs to
adapt its sale process to local customs in different countries.
The sequence of execution between payment and order
fulfillment needs to be adapted to different local preferences.
In the United States for example, payment by credit card is
most often required before goods are shipped. In some
European countries, e.g. Switzerland, customers are used to
paying for goods after they have been received.

Organizations have a marked tendency to limit their
interpretations of their environment [3]. These interpretations
constrain their business processes at the early phases of their

design [4]. Modeling techniques, such as BPMN [5] and use
cases [6], also encourage modeling details at an early stage.
As a result, in many cases, an organization will commit to one
of the execution paths (e.g. paying before sending the goods)
and later, handle the second one (sending the goods before
receiving the payment) as an exception. The number of
exceptions, however, often results in tangled processes
containing many exceptions. This has two related
consequences. First of all, the alignment between the strategy
of the organization (i.e. selling on-line) and its detailed
business processes is not apparent. Second, the flexibility of
the processes themselves [7] is limited because they become
difficult to manage and change.

In this paper, we propose a technique that complements
imperative business process specifications with declarative
specifications. This declarative specification enables designers
to describe the actions that a business process needs to
contain, but not their sequence. It omits the specification of
the control flow between the actions thus keeping the process
design independent from constraints imposed by an
environment in which this process will be implemented. The
control flow, often specific to a given environment, is later
modeled in an imperative specification. Our technique
includes checking the conformance of the imperative and the
declarative specifications.

Presented technique can improve the alignment of the
business process with the business strategy of an organization
by giving a synthesis of a set of business processes
(abstracting the control flow) while maintaining a rigorous
relationship with the detailed process. Flexibility may also be
enhanced because alternative paths are modeled as separate
business processes conforming to an overall process, thereby
helping organizations to tailor them to different environments
without losing the overall view.

This technique is a new addition to SEAM (Systemic
Enterprise Architecture Method) [8]-[10]. We illustrate our
technique with the example of an on-line book store: The
company wants to design a global view on its sale process in
order to maintain the alignment between the different
customizations of this process for different countries and to
simplify the design of these customizations. We illustrate a
business process redesign task using the same example and
show how declarative specifications help designers to
understand the relation between the redesigned process and
the initial one.

A

We formalize the concepts of the SEAM modeling
language using first-order logic with the Alloy specification
language [11]. This enables us to check our models using the
Alloy Analyzer [12].

In Section II we briefly present the SEAM method. We give
an overview of the modeling concepts of SEAM and its
underlying theory. In Section III we describe the example of
the on-line book store and a SEAM declarative specification
of the book store sale process. In this section we also illustrate
how the sale process redesign can be rigorously modeled
using declarative business process specifications. In Section
IV we briefly introduce the Alloy specification language [11]
and provide the Alloy semantics for the SEAM declarative
specification. We complete this section with the validation of
the declarative specification for the sale process using the
Alloy Analyzer. In Section V we present the relevant related
work. In Section 6 we outline what we envision as future
work.

II. DECLARATIVE BUSINESS PROCESS SPECIFICATIONS

A. The SEAM Hierarchical Model
SEAM is an Enterprise Architecture (EA) method that

uses hierarchical modeling of systems, including business and
IT systems. A SEAM model contains a set of specifications
structured in an organizational level hierarchy.

In a SEAM specification, a system is represented by a
working object. The working object can be seen as a whole
where its construction is hidden or as a composite that reveals
its components. The views as a whole and as a composite
belong to two adjacent organizational levels. A SEAM model
is usually represented graphically.

Fig. 1 illustrates four organizational levels and their
representation in SEAM. These levels are:
‐ The market segment level, in which the organization of

interest is modeled as a value network [13], a network of
companies serving a customer (which also can be seen as
being part of a value network). The value network is
represented as a whole;

‐ The business level, in which the company of interest is
represented as a whole, collaborating in inter-
organizational business process with its partners
(suppliers) within the value network. The company of
interest and all its partners are represented as wholes and
described by their responsibility within the inter-
organizational business process [9] and the data they
operate with;

‐ The operational level, where the company of interest is
represented as a composite. The employee and IT system
are represented as components of the company. They
collaborate in a business process. The IT system is
represented as a whole and is described by its
responsibility within the business process and the data it
operates with;
‐ The IT level, where the IT system is represented as a

composite, i.e. a set of collaborating applications, seen as
wholes.

To verify that a collaboration of components in one
organizational level is consistent with the definition of the
working object as a whole in the upper organizational level, a
relationship between these levels must be made. In this work,
we analyze the relationship between the market segment and
the business organizational levels and verify that the business
process defined for the value network (inter-organizational
business process) is aligned with the strategy defined in the
market segment level.

CustomerData1 Data2

Operation1

Company_c

Data1

Operation4

IT system_w Operational
organizational
level

SupplierVN_w
MarketSegment_c

Market segment
organizational
levelOperation

SupplierVN_c

Employee
O

rg
an

iz
at

io
na

l l
ev

el
s

IT system_c
App1_w

App2_w

...
..

...
..

IT organizational
level

Operation2

Operation4

Supplier1
Data1

Operation2

Company_w Business
organizational
levelOperation1

Data2

Operation3

Fig. 1. Organizational levels.

B. A Process Specification in SEAM
Fig. 2 illustrates a SEAM working object (S1) seen as a

whole (S1_w) and as a composite (S1_c), respectively. A
working object as a whole has properties and localized actions
(LA). Properties represent the state of the working object. A
localized action changes the state of the working object by
modifying its properties (Fig. 2).

Fig. 2. SEAM notation.

A working object as a composite specifies a distributed

action (DA) between components of the working object.
These components are also modeled as working objects (Fig.
2-b). The keyword Distributed stands for a distribution of
responsibilities between components, answering the question,
“Who does what?” The responsibilities are modeled as
localized actions.

The specification in Fig. 2-b can be read as follows: “To
perform LA_Operation at S1, the collaboration DA_Operation of
component working objects A1 and A2 is required. A1 participates in
DA_Operation by performing the localized action LA_Operation1
that changes Data1. LA_Operation1 is the responsibility of A1 in

DA_Operation. The responsibility of A2 in DA_Operation is
represented by the localized action LA_Operation2 that changes
Data2.”

The distributed action DA_Operation is a declarative
specification of a business process within S1. It defines the
actions to be performed by components A1 and A2 (i.e.
LA_Operation1, and LA_Operation2), but does not prescribe
the order in which these actions will be performed. Many
execution paths are valid for a given distributed action. The
selection of one of them is the business process designer’s
choice. When a designer commits to a concrete control flow,
the specification is no longer declarative; it is transformed into
a traditional imperative business process model. We call it a
customization.

C. Formal Semantics for SEAM Specifications
To rigorously reason about graphical specifications, we

define a formal semantics for SEAM. This semantics is based
on first-order logic (FOL). It enables the mapping of a SEAM
specification to the Alloy specification language [11] for
further validation.

SEAM property is specified in FOL as a set whose
elements are instances of this property. A state space of a
working object is a Cartesian product of properties of this
working object:

iP

nPP ..1 ××=Σ (1)

At any moment of time a working object is characterized by
its state. A state of a working object seen as a whole is defined

by a vector),..,(
11 mnppX = whose components are

instances of properties this working object hosts.
Here , where Pi is a property and m is a

number of instances of this property in

ii Pp
j
:

mjni ..1,..1 ==

X .

For every action A of the working object we define a
precondition and a postcondition. Precondition specifies a set

of states where action
preA

Σ⊆Σ
preA A can be executed. Postcondition

 specifies a set of states of the working object after

action was executed. Precondition and postcondition are modeled
as predicates over state space

postA ΣΣA ⊆
post

A
Σ :

. A postcondition applied to

some state

},{true:post →Σ,Apre falseA

X -)(post XA - evaluates to ‘true’ iff X belongs

to the set of post-states of action A denoted by
postAΣ . The

same is valid for a precondition.

postApost XXAX Σ∈⇔∀)(|

preApre XXAX Σ∈⇔∀)(|
 (2)

An action invariant is a condition that holds before and
after the action execution. In other terms, during the action
execution, the working object must be found only in states,

specified be the action invariant (e.g. a cash value cannot be
negative during a sale action). These states are allowable states for the
action. Global invariants specify allowable states for the
working object during its entire lifecycle, i.e. any action it might
perform. Invariants are formalized as predicates over state space

invA

invS

Σ :
},{:, falsetrueAS invinv →Σ .

Action defines a transition of the working object from state A
preX to state postX

},{: falsetrueA →

 (pre- and post-states respectively). In FOL, a
SEAM action as a whole is specified as a formula that defines
a relation between a pre- and a post- state:

× ΣΣ (3)
We specify the SEAM action using logical implication

between precondition and postcondition:
)()(:),(postpostpreprepostpre XAXAXXA → (4)

preXIf at a given state the precondition Apre of the action A holds,

then the working object will be transited to a state postX

postA
, for

which the postcondition of A - - holds.

XIf at a given state preconditions and invariants of some
actions hold, then these actions are called available

actions for the working object at a given state. The action
definition in (4) can be read as follows: If a state of the working
object is such that the action A is available, then the working object
will be transited to one of the states specified by the postcondition of
A - .

nAAA ..,2,1

postA
Preconditions, postconditions and invariants explicitly relate

actions with properties within a working object. This is visible in a
SEAM specification through the action-property relations.

Actions are specified declaratively. The action specification
abstracts out how the transition from pre- to post- state is made. An
imperative specification, in contrast, makes explicit the intermediate
states (if any) between the pre- and the post-states.

D. Refinement of SEAM Specifications
The relationships between working objects in different

organizational levels are captured by the notion of refinement,
adopted from software engineering [14]. In software
engineering, a program specification development is
considered as a sequence of step-wise refinements. Along
these lines, SEAM model development can be considered as a
step-wise refinement of its graphical specifications [15]. More
precisely, refinement in SEAM specifies a transition from one
organizational level, where the working object is presented as
a whole, to another organizational level, where the same
working object is presented as a composite. A specification of
a working object as a whole is usually called abstract, and a
specification of a working object as a composite is called
concrete. We say that a concrete specification refines the
abstract one. A relation between the state spaces of the
working object specified as abstract and the working object
specified as a concrete is called a refinement relation.

Let us consider a working objects W seen as a whole, and
specified on the state space with a localized action , and a
working object W’, seen as a composite, and specified on the state
space with a distributed action .

aΣ aA

cΣ cA

Xcpre Xcpost

Xapre Xapost

Ac

Aa

R R

Definition .
Given a refinement relation R between the state spaces

, W’ is called a correct refinement of W if and
only if for each run of the concrete action Ac of W’, which
starts at

acR Σ→Σ:

cprecX Σ∈ and terminates at cpostcX Σ∈ , there

exists a run Aa of W, which starts at apreaX Σ∈ such that

)(precXR=preaX and terminates at)(postcposta XRX = .

The definition above can be expressed as follows:

))(),((),(

|,

postcprecapostcprecc

cpostcprec

XRXRAXXA

XX

⇒

Σ∈∀
 (5)

Formula (5) says that for every pair of states postcprec XX , of

the concrete specification, whenever action Ac starts with an

initial state precX and terminates at a final state postcX ,

there exists a pair of states of the abstract specification

)(),(postcprec XRXR and a run of an abstract action Aa,

where)(precXR is its initial state, and)(postcXR is its

final state respectively.
An expression for the correct refinement in (5) is equivalent to

(6), where the refinement relation R’ is defined as a predicate and
returns ‘true’ if its arguments are related states:

),(

),(

),('),('

|,,,

;},{:'

postapreaa

postcprecc

postapostcpreaprec

apostapreacpostcprec

ac

XXA

XXA

XXRXXR

XXXX

falsetrueR

⇒⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ ∧∧

Σ∈Σ∈∀

→Σ×Σ

 (6)

This refinement is illustrated in Fig. 3. correctly refines if,

when makes a transition from its pre-state

cA aA

cA precX to its post-

state postcX , is also making a transition from its pre-state aA

pre

Fig. 3. The refinement in SEAM

The proposed formal semantics permit a validation of the
SEAM declarative specifications and a validation of the
refinement (i.e. a transition from one specification to another).

III. EXAMPLE: A SALE PROCESS FOR THE ON-LINE BOOK
STORE

In this section we illustrate the declarative business
process specifications with the example of a sale process for
an on-line book store. We also clarify the relationships
between these declarative specifications and traditional
imperative business process models.

A. The On-Line Book Store Description
The On-Line Book Store (BS) is a company that

collaborates with a publisher (P), and a bank (B) to sell books
to customers. BS manages requests from customers via
internet. A sale begins when a customer logs into
www.BS.com using an id (customerID) and requests a book
using a book id (bookID). If the requested book is available
in the publisher’s inventory and if the customer’s rating in the
data base of the bank is good then the sale is successful. The
successful sale terminates when the book is delivered by the
publisher to the customer and the payment for the book is
received by the bank from the customer.

If the ordered book is not available or the customer’s rating is not
good, we assume that no action is executed (the cash and the
inventory remain unchanged).

B. The Successful Sale: Process Design.
The company wants to design different customizations of its sale

process for different countries by maintaining a global view of this
process.

For the sake of simplicity, we limit our discussion to the
specification of the successful sale. We do not specify the case where
the payment is not received or the book is not delivered.

Localized Action sellOk

In Fig. 4 the On-Line Book-store value network is modeled as a
working object seen as a whole - SVN_w. The successful sale
process is modeled as a localized action LAsellOk of this working
object. LAsellOk specifies the strategic goal of the value network: To
perform a sale by guarantying that if a book is available and if a
customer has a good rating then this book will be delivered and paid
by the customer.

aX to its post-state postaX , and these states are related by R .

Action-property relations are used on the diagram in Fig.4 to
specify pre- and post-conditions of LASellOk. In a legend for Fig.4
we present a formal specification of pre- and post-conditions for
LASellOk written in the Alloy specification language.

http://www.bs.com/

SVN_w

Book

Id
<Int>

Quantity
<Int>

1|id

1|quantity

0..*|inventory

Cash
<int>1|cash

Customer
Info

0..*|customerDB Id
<Int>

Rating
<Int>

1|id

1|rating

Book_id
<Int>1|book_id

Customer_id
<Int>1| cusimer_id

LAsellOk

B. Pre: customer has a good rating

A. Pre: book is available

D.Post: book is delivered

C. Post: payment received

C. (book.quantity= book.quantity- 1)
A. (book.id = bookID) and
(book in bInventory) and
(book.quantity>0)
B. (buyer.id = customerID) and
(buyer in customerDB) and
(buyer.rating > 0)

D.(cash = cash + 1)

PRE POST

For all book: Book, buyer: CustomerInfo holds:

Fig. 4. Localized Action SellOk.

Distributed Action DAsellOk

To relate the strategic goal of the value network with the
specification of a business process that supports this goal, we
represent the On-Line Book-store value network as a
collaboration between the bank, the publisher and the book
store – the participants in the value network. In Fig. 5 the On-
Line Book-store value network is modeled as a working
object seen as a composite - SVN_c. The Action DAsellOk in
Fig.5 specifies how the responsibilities in a successful sale are
distributed between the value network participants. It is
therefore called a distributed action. The bank, the publisher
and the book store are modeled as working objects seen as
wholes. The responsibilities are modeled as localized actions
of the corresponding working objects: for example, the fact
that the bank checks the customer’s rating is modeled by
localized action checkRating within the B working object.

To specify the communication between the book store, the
bank and the publisher, we define additional actions
preocessRequest and getID, and properties cID, bID in Fig. 5.
These actions and properties serve for information exchange
between working objects and are not specific to the successful
sale process; we show them without shading and place the
relations between them and another actions and properties as
dashed lines.

SVN_c

BS

1|p

Book

Requested_id
<Int>

Id
<Int>

Quantity
<Int>

1|id

1|quantity

0..*|inventory

1|requested_id

Cash
<int>

1|cash

1|b

B P

Customer
Info

Id
<Int>

0..*|customerDB
1|id

Rating
<Int>1|rating

Requested_id
<Int>

1|requested_id

Book_id
<Int>1|book_id

Customer_id
<Int>1| cusimer_id

DAsellOk

process
Request

getID
getID

getPayment

checkRating

Check
Availability deliverBook

Book

cID

bID

B. Pre: customer has a good rating

Customer
Info

C. Post: payment received

A. Pre: book is available

D.Post: book is delivered

For all sharedBook:one Book, sharedCustomer: one CustomerInfo holds:
C. p_deliverBook[p_bInventory,

p_requestedID, sharedBook,
sharedCustomer]

A. p_checkAvailability[p_bInventory,
p_requestedID, sharedBook]

PRE POST
B.b_checkRating[b_customerDB,
b_requestedID, sharedCustomer]

D.b_getPayment[b_cash,
sharedCustomer]

1|bs

Fig. 5. Distributed Action DAsellOk.

SEAM uses shared properties to specify distributed

actions. Shared properties bind localized actions and represent
a common knowledge that is maintained by the working
object as a composite. In our example, sharedBook and
sharedCustomer are shared properties. They represent the
information used by the bank, the publisher, and the book
store to manage their tasks within the successful sale process
of the value network.

The Process Customization

The distributed action DAsellOk is a declarative business
process specification that defines the conditions and the
results of the process but does not impose any constraints on
how this process will be conducted in a particular
environment.

Considering that the on-line book store wants to pursue
international markets, namely US and European markets
(including Switzerland), different process customizations have
to be designed [2].

In the US, most on-line orders are paid by a credit card and
shipped only after the payment is received. A customization of the
sale process for the US market is illustrated in Fig.6-a. This
customization is modeled as a BPMN business process diagram
(BPD).

In countries such as Switzerland most mail order
companies and on-line stores have traditionally trusted
customers enough to deliver ordered goods without an
obligation to pay in advance. A payment form is shipped with
the purchase and customers can then use it to pay for their
purchases in a post office or through their bank [2]. For the
Suisse market, the sell process should be customized allowing
for the delivery prior to (or simultaneously with) the payment
procedure as illustrated in Fig. 6-b.

Fig. 6: On-line book store value network performing Sale:

a. the process customization for US;
b. the process customization for Switzerland

The distributed action DAsellOk relates business process

customizations illustrated in Fig. 6 with the strategic goal of
the on-line book store value network, specified as a localized
action in Fig. 4.

C. The Successful Sale: Process Redesign.
The second business process modeling task that can

benefit from an additional declarative specification layer is a
business process redesign. A decision of the company to
redesign its business process (or processes) can be based on
different internal or external factors, e.g. the emergence of
new technologies or new products, the change of a political
situation, the competitive landscape etc. Considering our
example, let’s imagine that the on-line book store discovered
that its shipment service suffers from chronic delays and is
found unsatisfactory by the customers. The on-line book store
decides to maintain its own inventory and to provide the
shipment service by itself instead of outsourcing this service
to the publisher.

Although the strategic goal of the value network remains
the same, the value network itself is reorganized and, as a
consequence, a business process redesign is required. The
redesign of a successful sale can be rigorously modeled using
a declarative specification that reflects a new distribution of
responsibilities between participants of the reorganized value
network. We specify a new (redesigned) distributed action for
sellOk in Fig. 7. In this specification, the book inventory
modeled as a set of books, and the localized actions
checkAvailability and deliverBook become a part of the BS
working object specification. Working object P that represents
the publisher in our specification is removed.

SVN_c

BS

1|p

Cash
<int>

1|cash

1|b

B P

Customer
Info

Id
<Int>

0..*|customerDB
1|id

Rating
<Int>1|rating

Requested_id
<Int>

1|requested_id

Book_id
<Int>1|book_id

Customer_id
<Int>

1| cusimer_id

DAsellOk

process
Request

getID

getPayment

checkRating

C. Post: payment received

Customer
Info

Check
Availability

deliverBook

cID

B. Pre: customer has a good rating

A. Pre: book is available

D.Post: book is delivered

For all sharedCustomer: one CustomerInfo holds:
C. bs_deliverBook[m_bInventory,

bs_bookID, sharedCustomer]
A. bs_checkAvailability[bs_bInventory,
bs_book_ID]

PRE POST

B.b_checkRating[b_customerDB,
b_requestedID, sharedCustomer]

D.b_getPayment[b_cash,
sharedCustomer]

Book

Id
<Int>

Quantity
<Int>

1|id

1|quantity

0..*|inventory

1|bs

Fig. 7 Distributed action for redesigned sale.

The distributed action DAsellOK in Fig.7 is consistent

with the localized action LAsellOk in Fig.4 because the latter
specifies only the work to be done, but not the distribution of
this work. This illustrates an integration of two declarative
specifications of the sale process: the initial one and the
redesigned one.

Based on the redesigned distributed action, new process
customizations for US and Switzerland are modeled in Fig. 8.
The redesigned distributed action DAsellOk relates the
business process customizations illustrated in Fig. 8 with the
strategic goal of the on-line book store value network,
specified as a localized action in Fig. 4.

Fig. 8 On-line book store value network performing Sale:
a. the process customization for US (redesigned);
b. the process customization for Switzerland (redesigned)

Fig. 9 presents an overview of the design and redesign of
the successful sale business process and shows how design
and redesign tasks can be related via declarative
specifications.

Strategic Goal:

Localized action

SVN_c

M

1|p

Cash
<int>

1|cash

B P

1|b

Customer
Info

0..*|customerDB Id
<Int>

Rating
<Int>

1|id

1|rating

Requested_id
<Int>

1|requested_id

Book_id
<Int>

1|book_id

Customer_id
<Int>1| cusimer_id

DAsellOk

process
Request

getID

getPayment

checkRating

Check
Availability

deliverBook

A

cID

B. Pre: customer has a good rating

C. Post: payment received

A. Pre: book is available

D.Post: book is delivered

Customer
Info

Book

Id
<Int>

Quantity
<Int>

1|id

1|quantity

0..*|inventory

Declarative Specification A:
Distributed action

Business process
customization 1

Business process
customization 2

Declarative Specification B:
Distributed action

Business process
customization 1

Design

Redesign

Business process
customization 2

Fig. 9. Business process design and redesign schema using declarative SEAM
specifications.

IV. VALIDATION OF DECLARATIVE SPECIFICATIONS IN
ALLOY

We call a transition from the localized action specified for
the working object seen as a whole to the distributed action
specified for the same working object seen as a composite a
specification refinement. In this section we demonstrate how
SEAM specifications and a refinement between these
specifications can be validated in Alloy.

A. Alloy Specification Language
Alloy is a declarative specification language developed by

the Software Design Group at MIT - http://Alloy.mit.edu/.
Alloy is a language for modeling systems as complex
structures with constraints and behavior based on first-order
logic. The syntax of Alloy is similar to the syntax of OCL –
the Object constraint language for UML. However, Alloy is a
fully declarative, whereas OCL combines both declarative and
imperative (operational) elements.

Unlike a programming language, a declarative Alloy
model describes the effect of a behavior and does not reveal
its mechanism. This modeling technique allows for the
creation and analysis of partial models and is beneficial when,
for example, a modeler has a limited knowledge about the
system and develops an abstract system specification. Alloy
specification language belongs to the class of formal
specification languages like Z, VDM, B, etc; its main benefit
is the possibility of a fully automated analysis of its models.

For the automated analysis of models written in Alloy, an
Alloy Analyzer [12] is used. The Alloy Analyzer is the model
checker for Alloy: given a logical formula and a data structure
that defines the interpretation domain for this formula, the
Alloy Analyzer decides whether this formula is satisfiable.
Mechanically, the Alloy Analyzer attempts to find a model
instance - a binding of the variables to values - that evaluates
the formula to ‘true’. A logical formula may correspond to
some property of the modeled system or its behavior.

In this work we are dealing with the latter case: We model
the actions performed by a system as Alloy formulae with
variables representing the system states before and after the
action. Using Alloy Analyzer, we verify if the action specifies
a legal state transition.

The second analysis presented in this work and performed
with the Alloy Analyzer is refinement checking between the
SEAM localized action and the SEAM distributed action. To
check that one (refined) action specification A’ correctly
refines another (abstract) action specification A, we assert that
A’ implies A in Alloy. The Alloy Analyzer negates the
assertion, and looks for a model, which, if found, will be a
counterexample to the claim. The absence of a
counterexample automatically means a validity of a claim.

In the rest of this section we illustrate how the mapping
between SEAM and Alloy languages is done and present the
analysis of Alloy specifications obtained in more details.

B. Specification of localized and distributed actions sellOk
using Alloy

We begin with a mapping of the SVN_w specification
shown in Fig. 4 and the SVN_c specification shown in Fig. 5
to Alloy. Technically, the mapping of SEAM specifications to
Alloy is based on the XSLT transformation of the XML file,
which contains the SEAM specification, to the Alloy
specification file.

We specify the working object SVN_w using an Alloy
signature (the analogy of a class in the object-oriented
paradigm). The properties of a working object are represented
by Alloy relations (the analogy of fields in the object-oriented
paradigm). To avoid confusion between the term “relation” in
Alloy and in SEAM, we call Alloy relations “fields” later on
in the text.

sig SVN_w{

customerID: one Int, - customer ID
bookID: one Int, - book to buy
customerDB: one CustomerDB, - customer data base
bInventory: one Inventory, - book inventory
cash: one Int - cash
}

Here a book inventory (Inventory) is modeled as a set of
books and a customer database (CustomerDB) is modeled as a
set of customer info records:

sig Inventory{content: set Book}
sig CustomerDB{content: set CustomerInfo}

The property CustomerInfo is specified as an Alloy
signature with two fields: id and rating. Respectively, the
property Book is specified as a signature with the fields id and
quantity:
sig CustomerInfo{
 id: one Int,
 rating: one Int} - rating>0 - good; <0 - bad;

sig Book{
 id: one Int,

 quantity: one Int} - number of books available

We model SEAM actions as Alloy predicates. In SEAM, an
action defines a transition of a working object from one state
(pre-state) to another (post-state). The SEAM action
specification from (4) uses a pre-state and a post-state as
parameters and can be rewritten as follows:

),..,,,..,(),(11 postpostprepre nnpostpre ppppAXXA = (7)

Components define values of

properties of the working object before and after the action
happen respectively.

postpostprepre nn pppp ,..,,,.., 11

Along these lines we use indexes _pre, _post, and
_prepost to model parameters of the Alloy predicate:
- all parameters indexed with _pre correspond to the

properties of the working object before the action and

define a pre- state of this working object preX ;
- all parameters indexed with post- correspond to the

properties of the working object after the action happens

and define the post-state postX of this working object;
- index _prepost specifies parameters that are not modified

by the action. These parameters correspond to the

properties that make a part of both preX and postX .
We write the following Alloy specifications of pre- and

post- states for localized action LAsellOk in Fig.4:

bInventory_pre: one Inventory,
customerDB_prepost: one CustomerDB,
customerID_prepost: one Int,
bookID_prepost: one Int,

cash_pre: one Int; preX

bInventory_post: one Inventory,
customerDB_prepost: one CustomerDB,
customerID_prepost: one Int,
bookID_prepost: one Int,

cash_post: one Int postX

The Alloy code below specifies the LAsellOk localized action
as a corresponding Alloy predicate. Lines 1-7 in this code
correspond to the action’s precondition; lines 8-14 – to its

postcondition. The predicate LAsellOk holds when its
precondition implies its postcondition.

pred LAsellOk [bInventory_pre, bInventory_post: one
Inventory, customerDB_prepost: one CustomerDB,
customerID_prepost, bookID_prepost, cash_pre,

sh_post: one Int] { ca
1. (all requested_book: Book, buyer: CustomerInfo|
2. ((requested_book.id = bookID_prepost) and
3. (requested_book in bInventory_pre.content) and
4. (requested_book.quantity>0) and
5. (buyer.id = customerID_prepost) and
6. (buyer in customerDB_prepost.content) and
7. (buyer.rating > 0)) =>
8. ((one b_post: Book |
9. (b_post.id = requested_book.id) and
10. (b_post.quantity= requested_book.quantity- 1)

and
11. (bInventory_post.content =

bInventory_pre.content - requested_book + b_post)
and

12. //(customerToDeliver.id = bookDeliveredToID)
13. (cash_post = cash_pre + 1))
14. // (buyer.id = paymentFromID)

))}

The specification of the localized action LAsellOk in Alloy
can be read as follows:
For all buyers and requested books (line 1): the precondition
of LAsellOk holds if the values of their id fields are equal to
the values of bookID and customerID respectively (lines 2,5),
and the requested book exists in the inventory (line 3), and is
available (line 4), and a buyer exists in the customer DB (line
6), and has a good rating (line 7). The postcondition stands
that there exists a book_post (line 8) that corresponds to the
requested book (line 9) and its quantity is equal to the
quantity of the requested book decreased by one (line 10), and
the book inventory after the action (bInventory_post) is
equivalent to the inventory before this action (bInventory_pre)
with the requested book substituted by the book_post (line 11),
and the cash value after the action is augmented by one unit
(line 13). We also need to specify that the requested book is
delivered to the proper buyer, and that the payment is received
from the proper customer (lines 12, 14). For the sake of
simplicity we do not model it in this example.

We specify the working object SVN_c from the SEAM
specification in Fig.5 as follows:
sig SVN_c{
b: one B,
p: one P,
bs: one BS}

The three fields of this signature represent three component
working objects:
lone sig B{ - the bank
customerDB: set CustomerInfo,
cash: one Int,
requestedID: one Int }

lone sig P{ - the publisher
bInventory: set Book,
requestedID: one Int }

lone sig BS{ - the book store
customerID: one Int, //customer ID

bookID: one Int //book to buy
}

The localized actions of component working objects are
modeled as the following Alloy predicates:
pred p_checkAvailability[..]{..} – the publisher
checks if the requested book is available;
pred b_checkRating[..]{..}- the bank checks if a rating
of the customer is good;
pred p_deliverBook[..]{..} – the publisher delivers the
book to the customer;
pred b_getPayment[..]{..}- the bank receives payment
from the customer.

The following predicates specify communication between
the book store, the bank, and the publisher, as do so the
corresponding localized actions in Fig. 5:
pred bs_processRequest[..]{..}- the book store gets
request and externalizes the requested book id and the
customer id for the rest of the network.
pred p_getID[..]{..} – the publisher gets the requested
book id;
pred b_getID[..]{..}- the bank gets the customer id.

 The distributed action DAsellOk binds the localized
actions of the component working objects. Without any other
specific information, we write a declarative specification of a
distributed action as a conjunction of formulae representing
localized actions. This stipulates that the action terminates
successfully if and only if all of its components terminate
successfully:

()),(..),(

),(

;,

1 postprempostpre

postpre

postpre

XXLAXXLA

XXDA

XX

∧∧

=

Σ∈
 (8)

Here),(),..,,(1 postprempostpre XXLAXXLA are localized
actions that represent responsibilities of component working
objects within the distributed action, modeled as predicates.
A distributed action does not specify its own precondition,
postcondition, and invariant: it inherits them from the
localized actions it invokes.
 A partial ordering of localized actions within the distributed
actions can be defined:

()
()),(..),(

),(..),(

),(

;,

1

1

postprenpostprem

postprempostpre

postpre

postpre

XXLAXXLA

XXLAXXLA

XXDA

XX

∧∧

⇒∧∧

=

Σ∈

+

 (9)

Here, the fact that predicates () hold implies

the fact that predicates hold. The first
group can be considered as ‘responsible’ for a precondition

of an action from (4), whereas the second group – for its

postcondition .

mLALA ∧∧ ..1

()nm LA∧∧+ ..1LA

preA

postA

The Alloy code below specifies the DAsellOk distributed
action as an Alloy predicate. This action is obtained as a
refinement of a localized action LAsellOk. Lines 1-7 in this
code correspond to the precondition of a localized action
LAsellOk from the listing above; lines 8-9 – to its
postcondition.
pred DAsellOk[p_bInventory_pre, p_bInventory_post:
one Inventory, p_requestedID_prepost: one Int,
b_customerDB_prepost: one CustomerDB,
b_requestedID_prepost: one Int, b_cash_pre,
b_cash_post: one Int,
bs_customerID_prepost, bs_bookID_prepost: one Int]{

1. (one cID,bID: Int |
2. bs_processRequest[bs_bookID_prepost,

bs_customerID_prepost, bID,cID] and
3. p_getID[bID, p_requestedID_prepost] and
4. b_getID[cID, b_requestedID_prepost]) and
5. all sharedBook:one Book, sharedCustomer: one

CustomerInfo|
6. (p_checkAvailability[p_bInventory_pre,

p_requestedID_prepost, sharedBook] and
7. b_checkRating[b_customerDB_prepost,

b_requestedID_prepost, sharedCustomer])
=>

8. (p_deliverBook[p_bInventory_pre,
p_bInventory_post,p_requestedID_prepost,
sharedBook, sharedCustomer] and

9. b_getPayment[b_cash_pre,b_cash_post,
sharedCustomer])}

Prefixes p_, b_, bs_ in the names of predicates specifying
localized actions and in the names of predicate parameters
specifying properties refer to the component working objects
these localized actions or properties belong to (e.g.
p_bInventory specifies the book inventory, which is the
property of the publisher).

C. Validation of Declarative Specifications using Alloy
Analyzer 4.0

Specifications written in Alloy can be automatically
analyzed using the Alloy Analyzer [12]. The Alloy Analyzer
tool can generate examples of the working object and
counterexamples to claims made about this working object
and its behavior.

To validate if Alloy specifications of sellOk are consistent,
we execute corresponding predicates in the Alloy Analyzer
[12]. The Alloy Analyzer examines a predicate and looks for
the possibility to instantiate this predicate, i.e. to find a set of
values that evaluates this predicate as true. If such an instance
is found, then the predicate is consistent on the test space
provided by the analyzer. If no instance found, then the
predicate is inconsistent, and the specification may contain
contradictory constraints. Note that the predicate consistency
(as well as inconsistency) is checked only on the limited test
space. An example of the execution trace in the Alloy
Analyzer is provided below:
Executing "Run LAsellOk "
Solver=sat4j Bitwidth=4 MaxSeq=4 Symmetry=20
3605 vars. 561 primary vars. 8156 clauses. 80ms.
Instance found. Predicate is consistent. 55ms

D. Validation of Refinement From LA to DA using Alloy
Analyzer 4.0

To relate the designed business process of successful sale
to the strategic goal of the on-line book store, we have to
guarantee:

1) The correct refinement from the localized action
LAsellOk to the distributed action DAsellOk;

2) The correct mapping between the declarative
specification DAsellOk and the imperative business
process specifications (i.e. BPMN diagrams) that
specify process customizations.

To check if the distributed action DAsellOk correctly
refines the localized action LAsellOk in our example, we use
the definition of refinement from (5)(6). We consider the
distributed action DAsellOk a concrete specification and the
localized action LAsellOk an abstract specification. We
rewrite (6) as an Alloy assertion that specifies the correct
refinement from abstract to concrete specification:

assert DA_LA{

all postaprecX , preapostc XXX ,, |

(R_LA_to_DA (preaprec XX ,) and

R_LA_to_DA(postapostc XX ,)and

DAsellOk(postcprec XX ,)) =>

LAsellOk(postaprea XX ,) }

Here postapreapostcprec XXXX ,,, stand for pre- and post-

states at concrete and abstract specifications respectively.
R_LA_to_DA is a refinement function that relates state spaces
of the SVN_w and SVN_c. We provide the complete
specification of this refinement function:

pred R_LA_to_DA[p_bInventory_t: one Inventory,
p_requestedID_t: one Int, b_customerDB_t: one
CustomerDB, b_requestedID_t: one Int,
b_cash_t: one Int,
bs_customerID_t, bs_bookID_t: one Int,
// concrete
bInventory_t: one Inventory,
customerDB_t: one CustomerDB, customerID_t,
bookID_t, cash_t: one Int // abstract
]{
p_bInventory_t = bInventory_t
p_requestedID_t = bookID_t
b_customerDB_t = customerDB_t
b_requestedID_t = customerID_t
b_cash_t = cash_t
bs_customerID_t = customerID_t
bs_bookID_t = bookID_t

} R[
ac XX ,]

To validate an assertion, the Alloy Analyzer looks for a
counterexample, i.e. a set of values that evaluates this
assertion to false. If such a counterexample is found then
assertion is invalid. In our case it also means that the
refinement is incorrect. If no counterexample is found, then

the assertion is valid and the refinement is correct. An
example of the execution trace is provided below:

Executing "Check DA_LA"
Solver=sat4j Bitwidth=4 MaxSeq=4 Symmetry=20
5352 vars. 593 primary vars. 16733 clauses. 618ms.
No counterexample found. Assertion may be valid.
1166ms.

The Alloy language and analyzer are known to be used for
industrial purposes, i.e. for modeling and verification of the
large-scale systems [survey-tbd]. Based on this, we conclude
that our approach is scalable and limited only by the size of a
SEAM model.

The mapping between SEAM distributed actions, modeled
declaratively, and imperative business process diagrams
modeled in BPMN can be done in two steps: (1) definition of
a control flow for SEAM distributed actions modeled
declaratively; (2) mapping of obtained imperative
specifications in SEAM to BPMN.

To pursue the first step, intermediate states of the system
and their order should be defined:

;....
,..,,..,,

1

,1

posttttpre
XXXXX

kl

posttttpre kl

<≤≤≤≤≤
Σ∈ | (9)

Intermediate states and their order specify a control flow
for a distributed action. The resulting specification is
imperative. The conformance of the imperative specification with
the declarative specification in SEAM is formally verified.

The imperative specification of a distributed action
contains the information required for the mapping to BPMN.
In our future work we will address a more detailed discussion
about the imperative specifications in SEAM and about the
mapping between SEAM and BPMN using these
specifications.

V. RELATED WORK
The possibility of customizing a business process while

taking into account an environment where this business
process is instantiated is a part of the more general problem of
flexibility. This problem was identified in [16] and [17] in
general and in the context of WfMS respectively: Knoll and
Jarvenpaa [16] introduce the term of flexibility as a form of
alignment between organizations and their IT systems in
turbulent environments, and they point out that “The principle
of “flexibility” explicitly assumes that the world is too
dynamic for a static order between different organizational
components.” The authors recognize three types of flexibility
in the context of IT: flexibility in functionality, in use and in
modification. Heinl et al. [17] illustrate the necessity of
flexibility in workflow management applications and identify
two classes of flexibilities: by selection and by adaption.
Flexibility by selection implies that more than one valid
interpretation of a workflow type exists and might be selected
based on a concrete situation. Flexibility by adaption defines
new variants of workflow execution when flexibility by
selection is not sufficient. Flexibility by selection covers the
topic of business process customization, whereas flexibility by
adaption is related to the process redesign considered in our
work.

Another stream of research, e.g. [1] and [18] favors what we
refer to as declarative business process modeling. In [1] the
representation of a business process as a trajectory in a state
space is introduced. The authors attempt to declaratively
describe the dynamics of a business process by defining a
notion of a valid state and planning rules that make a state
valid. Van der Aalst in [18] presents a case handling
paradigm to cope with business process flexibility. In contrast
to workflow management, case handling aims to describe
what can be done to achieve a business goal but not what
should be done and how.

The flexibility of a business process is usually understood
as the capability to accept changes without losing identity
[19]. Hence, this capability is not always beneficial, because
some changes can be contradictory to the strategy of an
organization. In [20] invariants for business processes are
introduced and formalized. Invariants define an identity of an
organization that must remain unchanged. Rittgen [21]
proposes the notion of Collaboration Model to capture the
stable part of a business process model. The part of the model
that is flexible is addressed in business process rules. In [22]
authors discuss a variability applied to business process
modeling and propose modeling a family of business
processes adaptable for different environments and
organizations. The authors define common and variable parts
for an entire family based on the fact that all of the processes
are designed to achieve the same goal but in a different way.

In [23] the definition of flexibility is grounded in the
notion of a process goal, which defines a set of final states of
the process, and on the theory of coordination, which
describes dependencies between processes.

Providing other types of semantics (including formal
semantics) for visual models was recognized as a useful way
to increase model precision and to automate model
verification. Baar and Marcović [24] introduce a proof
technique for the semantic preservation of refactoring rules for
UML[25] class diagrams and OCL constraints. This technique
is implemented in the RoclET tool. In [26] formal semantics
of Petri nets are defined for BPMN models. A mapping
between BPMN and Petri Net is implemented as a tool that
generates Petri Net Markup Language specifications for
further static analysis.

In spite of their effectiveness, approaches based on a
formal validation and verification using theorem proving are
rarely used in practice due to the high cost. However, we want
to point out the following work:

In [27] the UML2Alloy tool for modeling and analysis of
discrete event systems is presented. UML2Alloy is based on
MDA [OMG] and implements research results that attempt to
formalize UML[25] using Alloy. This is remarkable because it
results in the integration of semi-formal UML and formal
Alloy languages within one tool.

VI. CONCLUSION
In this paper, we have presented declarative business process

specifications as a mechanism to integrate different customizations
and redesigns of a business process. Declarative specifications focus
on the definition of a business process and on its alignment with the

organization’s strategic goals. They omit the definition of the process
control flow thus keeping the process design independent from
constraints imposed by an environment in which this process will be
implemented.

Once a control flow is selected for a process based on a specific
environment, the declarative specification can be mapped to an
imperative business process model.

In the future we envision that the work described in this paper
will enable us to link the SEAM modeling tool SeamCAD [28] and
BPMN tools [5]. In particular, we want to automatically generate
imperative BPMN models from SEAM models defined in
SeamCAD.

REFERENCES
[1] M. Khomyakov, and I. Bider, “Achieving Workflow

Flexibility through Taming the Chaos”. OOIS 2000 - 6th
international conference on object oriented information
systems. Springer, 2000, pp.85-92. Reprinted in the
Journal of Conceptual Modeling, August 2001:
http://www.inconcept.com/JCM/August2001/bider.html,
accessed December 2007.

[2] G. Regev, and A. Wegmann, “Regulation Based Linking
of Strategic Goals and Business Processes”, Proceedings
of the 3rd BPMDS Workshop on Goal-Oriented Business
Process Modeling, GBPM'02, London, September 2002.

[3] K. E.Weick, “The Social Psychology of Organizing”,
second edition, McGraw-Hill. 1979

[4] M.M. Narasipuram, G. Regev, K. Kumar, A. Wegmann,
“Business Process Flexibility through the Exploration of
Stimuli”, accepted for publication, International Journal
of Business Process Integration and Management
(IJBPIM), 2008

[5] Business Process Modeling Notation (BPMN) Version
1.0, OMG Final Adopted Specification, February 6, 2006.

[6] I. Jacobson, M. Christerson, P. Jonsson, G. Overgaard,
“Object-Oriented Software Engineering: A Use Case
Driven Approach”, (ACM Press) Addison-Wesley, 1992.

[7] G. Regev, P. Soffer, and R. Schmidt, “Taxonomy of
Flexibility in Business Processes”, proceedings of the
seventh workshop on Business Process Modeling, Design
and Support (BPMDS’06), 2006.

[8] A.Wegmann, “On the systemic enterprise architecture
methodology (SEAM)”, proceedings of International
Conference on Enterprise Information Systems 2003,
(ICEIS 2003), Angers, France.

[9] A. Wegmann, G. Regev, I. Rychkova, L-S. Lê,
“Business-IT Alignment with SEAM for Enterprise
Architecture”, proceedings of the 11th IEEE International
EDOC Conference (EDOC 2007), Annapolis, Maryland,
15-19 October 2007.

[10] A. Wegmann, P. Julia, G. Regev, O. Perroud, I.
Rychkova, “Early Requirements and Business-IT
Alignment with SEAM for Business”, proceedings of the
15th IEEE International Requirements Engineering
Conference, New Delhi, India, October 15-19th, 2007.

[11] D. Jackson, “Software Abstractions: Logic, Language,
and Analysis”, MIT Press. Cambridge, MA. March 2006.
ISBN 0-262-10114-9

[12] Alloy Analyzer 4.0, http://Alloy.mit.edu/Alloy4/
[13] Stabell, C. B. and Fjeldstad, Ø. D., "Configuring value

for competitive advantage: on chains, shops, and
network", Strategic Management Journal 19(5): p. 413 –
437, 1998

http://www.inconcept.com/JCM/August2001/bider.html
http://infoscience.epfl.ch/search?f=author&p=Wegmann%2C%20Alain&ln=fr
http://infoscience.epfl.ch/search?f=author&p=Regev%2C%20Gil&ln=fr
http://infoscience.epfl.ch/search?f=author&p=Rychkova%2C%20Irina&ln=fr
http://infoscience.epfl.ch/search?f=author&p=L%C3%AA%2C%20Lam-Son&ln=fr
http://infoscience.epfl.ch/search?f=author&p=Wegmann%2C%20%20Alain&ln=fr
http://infoscience.epfl.ch/search?f=author&p=Julia%2C%20Philippe&ln=fr
http://infoscience.epfl.ch/search?f=author&p=Regev%2C%20Gil&ln=fr
http://infoscience.epfl.ch/search?f=author&p=Perroud%2C%20Olivier&ln=fr
http://infoscience.epfl.ch/search?f=author&p=Perroud%2C%20Olivier&ln=fr
http://alloy.mit.edu/alloy4/

[14] N. Wirth, “Program development by stepwise
refinement”, Communications of the ACM, 14:221–227.
1971.

[15] I. Rychkova, A. Wegmann, “Refinement propagation.
Towards automated construction of visual
specifications”, proceedings of International Conference
on Enterprise Information Systems (ICEIS) (2007)

[16] K. Knoll, S.L. Jarvenpaa, “Information technology
alignment or “fit” in highly turbulent environments: the
concept of flexibility”, proceedings of the 1994
computer personnel research conference on Reinventing
IS.

[17] P. Heinl, S. Horn, S. Jablonski, J. Neeb, K. Stein, and M.
Teschke, “A Comprehensive Approach to Flexibility in
Workflow Management Systems”, proceedings of the
international joint conference on work activities
coordination and collaboration, 1999, San Francisco,
California, USA, February 22-25, 1999, ACM 1999,
pp79-88

[18] W.M.P. van der Aalst, M. Weske, D. Grünbauer, “Case
Handling: A New Paradigm for Business Process
Support”, Data Knowl. Eng. 53(2) (2005) 129–162

[19] G. Regev, A. Wegmann, “A Regulation-Based View on
Business Process and Supporting System Flexibility”,
proceedings of the CAiSE 2005 Workshops, p. 91-98.

[20] G. Regev, I. Bider, A. Wegmann, “Defining business
process flexibility with the help of invariants”, Special
Issue on Design for Flexibility . Published Online: 27
Sep 2006.

[21] P. Rittgen, “ Supporting Planned and Ad-Hoc Changes
of Business Processes”, proceedings of seventh
workshop on Business Process Modeling, Development,
and Support (BPMDS'06), Luxembourg, 5 – 6 June
2006.

[22] C. Rolland, N. Prakash, “On the Adequate Modeling of
Business Process Families”, proceedings of the eighth
workshop on Business Process Modeling, Development,
and Support (BPMDS'07), 11-15 June 2007, Trondheim,
Norway

[23] P. Soffer, “On the Notion of Flexibility in Business
Processes”, proceedings of sixth workshop on Business
Process Modeling, Development, and Support
(BPMDS'05), Porto, Portugal June 13-14 2005

[24] T. Baar and S. Marković, “A Graphical Approach to
Prove the Semantic Preservation of UML/OCL
Refactoring Rules”, Irina Virbitskaite and Andrei
Voronkov, editors. Perspectives of Systems Informatics,
6th International Andrei Ershov Memorial Conference,
PSI 2006, Akademgorodok, Novosibirsk, Russia, June
27-30, 2006, Proceedings, LNCS 4378, pp. 70-83,
Springer, 2007.

[25] Unified Modeling Language: Superstructure, version
2.1.2, OMG, November 2007.

[26] R. M. Dijkman, M. Dumas, and C. Ouyang, “Formal
Semantics and Analysis of BPMN Process Models”,
preprint version, QUT | ePrints Archive,
http://eprints.library.qut.edu.au/ 2007.

[27] Behzad Bordbar and Kyriakos Anastasakis,
“UML2Alloy: A tool for lightweight modelling of
Discrete Event Systems”. IADIS International
Conference in Applied Computing 2005. In Nuno
Guimarães and Pedro Isaías (es.), IADIS International
Conference in Applied Computing 2005. Volume 1.,
Algarve, Portugal, IADIS Press, 2005. 209-216

[28] L.S. Lê and A. Wegmann, “SeamCAD: Object-Oriented
Modeling Tool for Hierarchical Systems in Enterprise
Architecture”, 39h IEEE Hawaii International
Conference on System Sciences, 2006

http://infoscience.epfl.ch/getfile.py?recid=89644&mode=best
http://infoscience.epfl.ch/getfile.py?recid=89644&mode=best
http://infoscience.epfl.ch/getfile.py?recid=89644&mode=best
http://eprints.library.qut.edu.au/

	I. INTRODUCTION
	II. Declarative Business Process Specifications
	A. The SEAM Hierarchical Model
	B. A Process Specification in SEAM
	C. Formal Semantics for SEAM Specifications
	D. Refinement of SEAM Specifications

	III. Example: A Sale Process For The On-Line Book Store
	A. The On-Line Book Store Description
	B. The Successful Sale: Process Design.
	C. The Successful Sale: Process Redesign.

	IV. Validation of Declarative Specifications in Alloy
	A. Alloy Specification Language
	B. Specification of localized and distributed actions sellOk using Alloy
	C. Validation of Declarative Specifications using Alloy Analyzer 4.0
	D. Validation of Refinement From LA to DA using Alloy Analyzer 4.0

	V. Related Work
	VI. Conclusion

