
The Age of Analog Networks

Claudio Mattiussi, Daniel Marbach, Peter Dürr, and Dario Floreano

Abstract

A large class of systems of biological and technological rel-
evance can be described as analog networks, that is, collec-
tions of dynamical devices interconnected by links of varying
strength. Some examples of analog networks are genetic reg-
ulatory networks, metabolic networks, neural networks, ana-
log electronic circuits, and control systems. Analog networks
are typically complex systems which include nonlinear feed-
back loops and possess temporal dynamics at different time
scales. Both the synthesis and reverse engineering of ana-
log networks are recognized as knowledge-intensive activi-
ties, for which few systematic techniques exist. In this pa-
per we will discuss the general relevance of the analog net-
work concept and describe an evolutionary approach to the
automatic synthesis and the reverse engineering of analog
networks. The proposed approach is called analog genetic
encoding (AGE) and realizes an implicit genetic encoding
of analog networks. AGE permits the evolution of human-
competitive solutions to real-world analog network design
and identification problems. This is illustrated by some exam-
ples of application to the design of electronic circuits, control
systems, learning neural architectures, and the reverse engi-
neering of biological networks.

Introduction
Many systems of primary interest in biology and in engi-
neering can be seen as analog networks. An analog network
(Figure 1) is composed of: (a) a collection of nodes rep-
resenting devices and (b) a collection of directed or undi-
rected links connecting the devices and having a connec-
tion strength represented by a numerical value. To illustrate
the idea of analog networks and explain the practical impor-
tance of their automated synthesis and reverse engineering
we consider three examples: analog electronic circuits, arti-
ficial neural networks, and genetic regulatory networks.

An analog electronic circuit is a collection of intercon-
nected electronic devices such as transistors, diodes, capaci-
tors, and resistors (Figure 2). The purpose of an analog elec-
tronic circuit is the production and processing of electrical
signals whose amplitude can vary continuously in time. This
is opposed to digital circuits, which process signals whose
amplitude is discretized. Despite a steady trend towards the

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: An analog network is a collection of devices –
represented here by the circles – connected by links of vary-
ing strength – represented here as lines of varying thickness
between the devices.

substitution of analog with digital signal processing, analog
circuits maintain a crucial role in electronic design. For ex-
ample, in many applications, analog electronic circuits are
required in order to connect digital circuits to continuous in-
put and output signals; these analog circuits have a profound
impact on overall system performance. There is therefore a
well founded interest in the automation of the design of ana-
log electronic circuits. However, analog design has proved
much more difficult to automate than digital design. To un-
derstand the nature of this difficulty, one must consider that
the function realized by an electronic circuit is determined
by two aspects: its topology and its sizing.

The topology of a circuit refers to the nature of the de-
vices that compose the circuit and how they are connected
together. The sizing of a circuit refers to the values of the
numerical parameters that characterize the devices and links.
An example of a numerical parameter of a device is the ca-
pacitance of a capacitor. As mentioned above, the numerical
parameter associated with a link corresponds to the interac-
tion strength between the devices it connects. In the case
of electronic circuits, the interaction strength between two
devices is inversely proportional to the resistance between
them. A zero resistance value corresponds to a direct con-
nection and realizes the maximum connection strength. An
infinite resistance corresponds to the absence of a link con-
necting the two devices. All other resistance values corre-
spond to the presence of a link with a resistor between the
devices, and realize intermediate connection strengths. In

Vdc

R2

C1
R6

R1

S

Vin

RLC3

C2

Q1

R5

R4

Figure 2: A schematic drawing showing an example of ana-
log electronic circuit. The circuit can be seen as a network of
non-resistive devices (represented here with a shaded back-
ground) connected by resistive links.

digital circuits, only the two extreme values of connection
strength are used to connect the devices (for example, logic
gates) that constitute the circuit. In analog electronic cir-
cuits, in contrast, a large variety of connection strengths is
typically required to achieve the intended functionality. This
means that, compared to a digital designer, an analog de-
signer must take into account a much larger variety of pos-
sible interactions between a larger variety of parametrized
devices that can potentially compose a circuit.

A similar situation holds in the field of artificial neural
networks (ANN). An ANN is a collection of interconnected
nodes called artificial neurons, which are loosely inspired by
models of biological neurons. Each artificial neuron realizes
an input-output function that depends on a set of numeri-
cal parameters called weights and, possibly, some additional
parameters (Figure 3). Similarly to electronic circuits the
purpose of ANNs is the production and processing of sig-
nals. For example, an ANN might take as input the signal
generated by a set of biometric sensors and be required to
produce as output an estimate of the level of sleepiness of
the person wearing the sensors. ANNs find application in
numerous areas of great practical importance such as pattern
recognition for medical applications, robot learning, and in-
dustrial process control. The difference between ANNs and
analog electronic circuits is that, in ANNs, the links between
devices are directed, and that artificial neurons are typically
abstract computational devices implemented on a computer
rather than actual physical devices. Several kinds of arti-
ficial neuron devices can be defined, including, excitatory,
inhibitory, neuromodulatory, with linear or nonlinear input-
output relationship, and with or without internal memory.

The functionality of an ANN, like that of an electronic
circuit, is determined by its topology (also called its archi-
tecture) – that is, by the kind of artificial neurons that com-
pose the network and their connectivity – and by its sizing
– that is, the values of the parameters of the network. Apart
from the directed nature of the ANN links, the weights of an
ANN play a role that is analogous to the role of the recip-
rocal of the resistance between the devices that compose an
electronic circuit. They define the strength of the directed
connection between the outputs and the inputs of the neu-

Figure 3: An example of an artificial neural network (ANN).
The network can be seen as a collection of nodes connected
by directed links whose strength is represented by numerical
values called weights.

rons that compose the network. A null weight corresponds
to the absence of a connection; larger weights correspond to
stronger connections between an output and an input. For
reasons similar to those mentioned for analog electronic cir-
cuits, the design of ANNs is a difficult task. To reduce this
difficulty, the typical approach is to consider the networks
as composed of just one kind of neuron and to assign a fixed
topology, thereby limiting the design to the choice of the net-
work sizing. However, these limitations considerably reduce
the learning power of ANNs (Baum 1989).

Genetic regulatory networks (GRN), which are the basic
control and computational systems of biological cells (Bray
1995), are another example of analog networks. They are
composed of a collection of interacting genes. A gene can
be loosely defined as a fragment of the genome of a cell that
can be activated to initiate the production of molecules such
as RNA and proteins. The rate of this production activity is
denoted as the level of expression of a gene. The rate of ex-
pression of a gene can be controlled by molecules produced
externally of the cell and by the molecules produced by the
genes themselves. Thus, genes can be seen as devices whose
inputs are the concentrations of the molecules that can influ-
ence the activation of the gene and whose output is the level
of expression of the gene. Abstracting all the microscopic
details of the production of the molecules and of their inter-
action with the genome, one can represent the collection of
interacting genes as a network whose nodes are the genes.
The influence of the level of activation of a gene on that of
another gene is represented by a numerical value associated
with a link connecting the two nodes representing the genes
(Figure 4) (Stormo & Zhao 2007). Thus, in this simplified
view, the topology of a GRN is given by the kind of genes
that compose the network and their connectivity, and the siz-
ing is defined by the strength of the interaction between the
genes and possibly other numerical parameters defining the
dynamics of the genes.

To understand and control the working of a cell, it is nec-
essary to construct a model of its GRN, or of subnetworks
that control some specific functions. Practical applications
of GRN modeling include the understanding of genetically
related diseases and drug design. The model can be in-
ferred from the data resulting from the observation (for ex-
ample, using DNA microarray chips) of the levels of acti-

Figure 4: A schematic representation of a genetic regulatory
network (GRN). The genes correspond to the nodes of a net-
work and interact through links of varying strength, which
represent the regulatory interactions between the genes.

vation of the genes in various circumstances, which can in-
clude the perturbation of the network, of the external inputs,
and of the signals exchanged by the nodes. The inference
of the topology and sizing of a GRN from these observa-
tions corresponds to a process of reverse engineering of the
network (Figure 5). Given the complexity of GRNs this pro-
cess typically requires the help of a computer-based reverse-
engineering tool.

Reverse engineering has a long history in traditional en-
gineering disciplines (Ljung 1999) – for example to under-
stand a competitor’s products – but has only recently be-
come popular in biology (Bolouri & Davidson 2002). In-
deed, biologists have typically applied a forward engineer-
ing approach, where the components of a system are stud-
ied in great detail and models are built bottom-up, based
on an understanding of the individual parts and mechanisms
(Lazebnik 2002). This approach becomes increasingly diffi-
cult when applied to complex analog networks such as gene
regulatory networks. Substantial advances in experimental
technology are currently boosting research in reverse engi-
neering of biological networks. Moreover, the advent of ge-
netic engineering and synthetic biology (Endy 2005) opened
the way to the alteration of existing functionality and to
the integration of new functionalities in GRNs. This cor-
responds to an activity of design of GRNs with complexity
and potential impact analogous to that described above for
analog electronic circuits and ANNs.

Other examples such as cellular metabolic networks and
control systems, can be described according to the same ba-
sic analog network scheme that applies to analog electronic
circuits, ANNs, and GRNs. The examples presented above
suggest that, in general, the synthesis and reverse engineer-
ing of analog networks are complex problems of great prac-
tical relevance, for which few automatic techniques exist.
The identification of the common structure of an analog net-
work in these systems means that we can adopt a common
approach to the automation of their synthesis and reverse en-
gineering.

Automatic Synthesis and Reverse Engineering
of Analog Networks

The effective automation of the design and reverse engineer-
ing of analog networks requires a search algorithm capable
of exploring a solution space composed of analog networks

Figure 5: A schematic representation of the process of re-
verse engineering for a genetic regulatory network.

of arbitrary topology and sizing. This means that the search
algorithm must be endowed with (a) a way to represent the
devices that enter the network, their connectivity, and the
values of the network parameters and (b) a way to generate
new tentative solutions using the information represented by
the networks examined in the past search history. Evolution-
ary algorithms appear to be good candidates for this task,
due to the flexibility of the representation and their potential
for exploring the search space (see box for a short descrip-
tion of evolutionary algorithms).

The simplest approach to the genetic representation of
analog networks is the explicit encoding of all the de-
vices, links, and parameters of the network. This approach,
known as direct encoding, has the advantage of leading to
genomes that are very easy to decode into the corresponding
analog network (Yao 1999; Stanley & Miikkulainen 2002;
Zebulum, Vellasco, & Pacheco 2000). The drawback is the
rapid growth of the length and complexity of the genome
with the size of the network, due to the necessity of encod-
ing explicitly all the network connections and their strength,
which affects the evolvability.

An alternative and potentially very compact genetic repre-
sentation of analog networks can be obtained using a strat-
egy called developmental encoding. An example of devel-
opmental encoding is constituted by genetic programming
(Gruau 1994; Miller & Thomson 2000; Koza et al. 2003).
Genetic programming uses as genetic representation a se-
quence of instructions that can be used to build the network
by performing a series of successive alterations of the net-
work topology and sizing, starting from an elementary net-
work called an embryo. One of the challenges of genetic
programming is the necessity for the user to define a suit-
able set of network-modifying instructions. This set must
be rich enough that all possible networks of interest can be

Evolutionary algorithms
Evolutionary algorithms are a class of population-based stochastic search algorithms inspired by the process of Dar-

winian evolution (Fogel, Owens, & Walsh 1966; Holland 1975). An evolutionary algorithm maintains a collection
(population) of tentative solutions called individuals. The goal of the search is defined via a user-defined measure of
the quality of the individuals. The algorithm is required to find in the search space an individual with maximum quality
or – in a more realistic engineering perspective – an individual satisfying a predefined criterion of quality. Typically, an
initial population is generated by randomly sampling the search space. At each step of the algorithm the quality of the
individuals that form the population is evaluated and a subset of the population (the parents) is selected for reproduction.
The selection mechanism establishes a positive correlation between the quality of an individual and the number of new
individuals (offspring) that it produces. The reproduction is carried out with some stochastic mutation and recombina-
tion of the parents in order to explore new regions the search space and combine the information carried by each parent.
The probability distribution with which the offspring are generated in the search space is called the current exploratory
distribution (Toussaint 2003). In so-called generational evolutionary algorithms, the old population is replaced by a
new population composed of the newly formed individuals.

One peculiarity of evolutionary algorithms with respect to other stochastic search algorithms such as simulated anneal-
ing (Kirkpatrick, Gelatt, & Vecchi 1983) is that in evolutionary algorithms the individuals are represented in the form
of a genome, which defines their genotype. The genotype representation is, in general, distinct from the form in which
the individuals are represented in order to assess their quality. To evaluate the quality of an individual, its genotype
must be decoded into a different representation called the phenotype. The mutations and recombinations applied during
the reproduction, however, are applied to the genotype using a collection of probabilistically applied genetic operators
that alter the genotype. This decouples the space in which the exploratory distribution is defined (the genotype space)
from that in which the quality of the individuals is assessed (the phenotype space). Note, however, that the exploratory
distribution in genotype space induces a corresponding exploratory distribution in the phenotype space.

An interesting consequence of the decoupling produced by the genotype-phenotype distinction arises when many
different genotypes correspond to phenotypes having approximately the same quality. If the properties of the exploratory
distributions allow the traversal of this set of genotypes, the set is called a neutral network. The existence of neutral
networks permits continuing the exploration of the search space by random genetic drift when the current exploratory
distribution does not provide access to individuals of improved quality with respect to the existing population. The
probability of a stalling of the search is thus reduced because the drift on the neutral network can eventually give access
to regions of the search space that contain individuals of higher quality.

Readers familiar with Monte Carlo methods (Robert & Casella 2004) might have found many resonating aspects in
this description of evolutionary algorithms. In fact, evolutionary algorithms can be seen as a particular class of popula-
tion Monte Carlo methods (Cappé et al. 2004) and the description of the former can be rephrased using the terminology
of the latter. The individuals of evolutionary algorithms correspond to the particles of population Monte Carlo methods.
The exploratory distribution in the phenotype space of evolutionary algorithms corresponds to the proposal distribution
of population Monte Carlo methods (Robert & Casella 2004). When evolutionary algorithms use so-called proportional
selection, the probability of reproduction of the individuals corresponds to the normalized importance weights of pop-
ulation Monte Carlo methods. The selection mechanism of evolutionary computation corresponds to the resampling
mechanism of population Monte Carlo methods. The reproduction with mutation of the parents in evolutionary algo-
rithms corresponds to the generation of new particles by sampling the proposal distribution of the resampled particles in
population Monte Carlo methods. Finally, the genotype-phenotype distinction and the definition of the mutation in the
genotype space can be interpreted as a particular way – specific to evolutionary algorithms – to define and parametrize
the proposal distribution.

When population-based search methods are capable to maintain a sufficient population diversity (Mattiussi, Waibel,
& Floreano 2004), the search space is explored in parallel by the individuals of the population. Typically, the quality
of each individual can be evaluated independently from that of the other individuals of the population. This means that
it is very easy to parallelize the evaluation of the quality of individuals, which is in general the most computationally
expensive part of the search. Due to technological limitations, the increase in performance of single processors ’came
to a grinding halt’ some years ago (Butler 2007). Consequently, the current trend in processor design is to increase the
number of processing cores integrated on each chip and thus increase the global parallel processing capability rather
than the processing power of each core. In this technological scenario, the easy parallelizability of population-based
search methods like evolutionary algorithms is an additional bonus of these methods.

produced. At the same time, one must craft the instructions
and the mutation operators so as to ensure that only valid
network-building programs are generated during the search.

This means that for each different kind of analog network
one must face the non trivial task of designing a suitable set
of network-modifying instructions. Note, however, that ge-

Figure 6: AGE abstracts the mechanism of interaction between genes observed in biological GRNs. (top) In biological GRNs,
the link between genes is realized by molecules that are synthesized from the coding region of one gene and interact with the
regulatory region of another gene. (bottom) AGE abstracts this mechanism with an interaction map that transforms the coding
and regulatory regions into a numerical value that represents the strength of the link .

netic programming is a powerful general-purpose approach
to the representation and evolution of many kinds of com-
plex structures and is not especially targeted to analog net-
works. Thus, it cannot be expected to be particularly suited
to the evolution of analog networks.

In this paper, we describe a new approach to the ge-
netic representation and artificial evolution of analog net-
works and illustrate it with some examples taken from the
domains considered in the introduction. This new approach
is called analog genetic encoding (AGE) and realizes a com-
pact and highly evolvable implicit encoding of analog net-
works. AGE was developed having in mind the whole class
of analog networks. Thus, contrary to existing techniques
for the analysis and synthesis of analog networks, which
typically require a substantial effort of adaptation to each
specific kind of analog network, AGE can be applied ef-
fortlessly to any kind of analog network. This means in
particular that it is possible to realize a general automatic
synthesis and analysis tool for this whole class of networks,
and that the whole class can benefit from the advances and
experience gained with each specific kind of network. As
explained in more detail below, besides the advantage con-
stituted by its generality, AGE has the characteristic of being
very effective as a synthesis and analysis tool, producing re-
sults that are comparable or better than those produced by
the existing specialized techniques.

Analog Genetic Encoding (AGE)
AGE is loosely inspired by the working of biological GRNs.
In biological GRNs, the interactions between the genes is
not explicitly encoded in the genome but follows implicitly
from the physical and chemical environment in which the
genome is immersed. The activation of a biological gene de-
pends on the interaction of molecules present in the vicinity
of the gene with parts of the gene called regulatory regions

(Figure 6a). These are sequences of characters from the ge-
netic alphabet to which the molecules can bind to promote or
hinder the working of specialized molecular machinery that
is in charge of expressing the gene. The expression of the
gene corresponds to the scanning of another sequence of ge-
netic characters, called coding region, in order to synthesize
the molecules that are the products of the gene activation.
The start and end of the coding region of a gene are marked
by special sequences of characters from the genetic alpha-
bet, called promoter and terminator regions. The molecules
produced by a gene can in turn interact with the regulatory
regions of other genes and influence their activation.

AGE abstracts and extends these GRN concepts to ob-
tain a genetic representation that applies to generic analog
networks. The AGE genome is composed of sequences of
characters from a suitable alphabet, for example, the up-
percase ASCII set. As in GRNs, devices are represented
in the AGE genome by assemblies composed of two kinds
of sequences of characters (Figure 6b). The first kind of se-
quences is called token. Tokens play the role of markers and
delimiters analogous to that played in biological GRNs by
promoter and terminator regions. The second kind of se-
quences play a role analogous to that played in biological
GRNs by regulatory and coding regions. The strength of
the interaction between two devices is implicitly determined
by the second kind of sequence via a function, called the
interaction map. The interaction map takes as arguments
two sequences of characters and produces a numeric value
representing the strength of the interaction between two de-
vices. In summary, decoding the AGE genome involves the
identification of valid devices (which must be correctly de-
limited by the corresponding tokens) and the subsequent ap-
plication of the interaction map to all pairs of coding and
regulatory sequences. The interaction strength between two
sequences may be zero, in which case there is no regula-

Figure 7: In AGE, the connection between the evolved ana-
log network and the predefined external inputs and outputs is
realized using specialized devices called transducers, which
can connect to the devices of the evolved network and to the
external inputs and outputs.

tory link between the two devices. Hence, the size of the
decoded network is given by the number of devices in the
genome and the topology and sizing follow from the com-
puted interaction strengths. Further details on the encod-
ing and the interaction map, and a description of the method
used to represent parameter values can be found in our pre-
vious work (Mattiussi 2005; Mattiussi & Floreano 2007;
Mattiussi, Dürr, & Floreano 2007; Dürr, Mattiussi, & Flo-
reano 2006; Marbach, Mattiussi, & Floreano 2007).

In general, an analog network performs its function by
taking input signals from a predefined set of external input
and delivering output signals to a predefined set of external
outputs. For example, an analog electronic circuit may be
required to amplify the signal produced by a signal source
and deliver the amplified signal to a loudspeaker. To let evo-
lution establish the connections between the evolved analog
network and the external input and outputs, AGE uses a spe-
cial kind of device called a transducer (Figure 7). A trans-
ducer is a device that can be connected by the interaction
map both to devices of the evolved circuit and to the exter-
nal inputs and outputs. This establishes a bridge between the
external inputs and outputs and the evolved analog network.

Some Properties of AGE
Let us briefly review some of the properties of AGE as a rep-
resentation for analog networks in an evolutionary process.

First, AGE permits an easy adaptation of the evolution-
ary environment to arbitrary kinds of analog networks. To
set up an evolutionary run, the user of AGE needs to define
just the external inputs and outputs, and the characteristics
of the various kinds of devices that can appear in the net-
work. There is no need to tailor the genetic operators to the
particular type of analog network of interest.

Mimicking biological GRNs, AGE encodes the interac-
tion between the devices that form the network implicitly.
This has the advantage of reducing the number of elements
that must be encoded in the genome with respect to direct en-

codings. For example, the resistors appearing in the circuit
represented in Figure 2 will not explicitly appear as devices
in an AGE encoding of this circuit. An important feature
of the implicit encoding is that a single mutation can have
several effects on the network structure. This may provide
an advantage in terms of evolvability at the initial steps of
the search by letting the evolution probe simultaneously the
effect of many interactions. However, this may constitute a
problem at later stages of the search, because a single mu-
tation that simultaneously perturbs many interactions may
hinder their separate optimization. To mitigate this poten-
tial difficulty, the device interaction map has been defined
so as to allow a single sequence of characters to determine
several non-interfering interactions with several distinct de-
vices. Moreover, it is possible to implement a mechanism
that lets evolution selectively silence some interactions. For
further details on these points see Mattiussi (2005)

Most artificial genetic encodings constrain the genomes
to maintain a fixed structure and admit a small number of
genetic operators in order to remain decodable. In AGE, the
sequences that define the interaction between devices can
have variable length, and the interaction map that is used to
establish the connection between devices is defined so as to
apply to sequences of arbitrary length. The assemblies of se-
quences of characters that represent a device can be located
anywhere in the genome and can be spaced by stretches of
non-coding genetic characters. In this way the structure of
the genome is not unduly constrained and tolerates a large
class of genetic operators, which can alter both the topol-
ogy and the sizing of the encoded network. In particular, the
AGE genome permits the insertion, deletion and substitution
of single characters, and the insertion, deletion, duplication,
and transposition of whole genome fragments. All these ge-
netic mutations are known to occur in biological genomes
and to be instrumental to their evolution. In particular, gene
duplication and the insertion of fragments of genome of for-
eign organisms are deemed to be crucial mechanism for
the evolutionary increase of complexity of GRNs (Shapiro
2005). Finally, the interaction map is defined so as to be
highly redundant, so that many different pairs of character
sequences produce the same numeric value. Thus, many
mutations have no effect, resulting potentially in a high neu-
trality in the search space (see box).

With AGE, the number of devices that compose the
evolved networks is free to either increase or decrease dur-
ing evolution. Genetic operations such as genome duplica-
tion can increase the number of devices, but operations such
as substitution and deletion of genome fragments can disrupt
the structure representing a device and thus remove it from
the encoded analog network. In the experiments described
below we have often observed that a compact network real-
izing the required functionality is obtained via intermediate
stages involving larger networks. Presumably, the larger net-
works realize an easier evolutionary path towards the solu-
tion network, which, once produced, is simplified by evolu-
tion in order to increase its robustness to genetic mutations.

Another important feature of AGE is that it does not as-
sign the connections between the external inputs and outputs
and the evolved analog network but lets evolution establish

them. Thus, the search process is free to discover the sub-
set of external inputs and outputs that are actually needed to
produce the required functionality. The identification of the
subset of inputs and outputs that are actually relevant to the
task corresponds to a process of automatic feature selection.

Although it does not require it, AGE permits the incorpo-
ration of expert knowledge into the search process. One way
to do this is to seed the initial population with networks that
are known to solve a problem or subproblem that is similar
to the goal of the search. Another way is to include in the set
of devices that can be used in the network, subnetworks that
are known to be useful in the context of the given problem.

Applications and Examples
We now present a series of examples of synthesis and re-
verse engineering of analog networks using AGE. We will
focus the discussion on the characteristics and relevance
of the problems considered, and on the properties of the
evolved networks. Detailed information about the working
of the evolved networks, the computational effort required
to obtain the solutions, and comparisons with alternative
techniques can be found in the original papers cited in the
context of each example. For example, (Mattiussi & Flo-
reano 2007) compares the computational effort, the circuit
performance, and the circuit complexity resulting from the
application of AGE and genetic programming to three ana-
log electronic design problems, whereas (Dürr, Mattiussi,
& Floreano 2006) compares the computational effort and
generalization properties resulting from the application of
AGE and three other techniques for the automatic synthesis
of ANNs to the design of a neural controller for the pole bal-
ancing problem described below. Here we note just that the
required computational effort and the quality of the results
compare well with that of the best existing techniques for
the automatic synthesis and reverse engineering of analog
networks. The experiments described below did not incor-
porate expert knowledge in the search, and started from a
population of individuals whose genomes contained a small
collection of randomly generated device descriptors.

Synthesis of Electronic Circuits
To exemplify the automatic design of analog electronic cir-
cuits using AGE we consider the synthesis of a tempera-
ture sensing circuit (Mattiussi & Floreano 2007). This is
a problem of considerable practical importance as tempera-
ture management is a critical issue in many applications and
integrated temperature sensors are embedded in a growing
number of systems.

To set up the search process, we have assigned two volt-
age supplies and a load resistor as predefined external de-
vices (the devices drawn outside of the dashed box in Fig-
ure 8). We have also assigned two types of bipolar tran-
sistors of opposite polarity as the set of devices that can be
used to build the circuit. The goal of the synthesis is a cir-
cuit producing across the 10kΩ external resistor an output
voltage that is proportional to the circuit temperature T in
the range 0◦C ≤ T ≤ 100◦C, with null output voltage for
T = 0◦C and an output voltage of 10V for T = 100◦C.

Figure 8: An example of temperature sensing circuit auto-
matically designed using AGE. The predefined external de-
vices are drawn outside of the dashed line.

0

1

2

3

4

5

6

7

8

9

10

o
u
tp

u
t
v
o
lt
a
g
e
 V

(V
)

o

0 10 20 30 40 50 60 70 80 90 100

temperature °C()

Figure 9: The circles show the output voltage of the evolved
circuit shown in Figure 8 for the set of circuit temperatures
at which the circuit was tested during evolution. The back-
ground line represents the desired relationship.

The quality of a circuit is defined as the sum of the squared
discrepancies between the actual and desired output of the
circuit for 21 equispaced values of temperature in the range
of interest. To evaluate the quality of the circuits produced
during the evolutionary search we have used the circuit
simulator SPICE, which is available in the public domain
(Vladimirescu 1994).

Figure 8 shows an example of circuit found by the evo-
lutionary algorithm. The relationship between temperature
and output voltage of the circuit is shown in Figure 9 and
matches closely the desired linear relationship in the whole
temperature range, with just a small deviation at T = 0◦C.

Synthesis of Neural Controllers
To illustrate the application of AGE to the design of ANNs
we describe now the synthesis of a neural controller (Dürr,
Mattiussi, & Floreano 2006). The objective of the synthe-
sis is a controller solving the double pole balancing prob-
lem without velocity information (Figure 10). This is a stan-
dard benchmark problem used in the synthesis of neurocon-
trollers (Gruau 1994; Stanley & Miikkulainen 2002). De-

Figure 10: The mechanical setup of the double pole balanc-
ing problem without velocity information. The setup con-
sists of a cart with mass mc and one degree of freedom x.
Two poles of different lengths l1and l2 and masses m1 and
m2 are mounted on the cart with a rotational joint. The joint
angles θ1 and θ2 as well as the position of the cart x are fed
to a controller which computes a force Fx that is applied to
the cart. The controller has to stabilize the system in order
to keep the joint angles and the position of the cart within
given limits.

Figure 11: An example of ANN synthesized with AGE to
solve the double pole balancing problem. Continuous ar-
rows correspond to links with positive weight and dashed
arrows to negative weights. The input denoted by 1 provides
a fixed-value input (bias) to the network.

spite its apparent simplicity, it is a challenging problem that
is related to interesting real-world applications such as the
control of rocket stability.

As neuron devices for the AGE synthesis, we have chosen
the dynamical neuron model described in (Beer 1995). The
reason for this choice is that, with suitable topology and siz-
ing, a network of these devices can approximate arbitrarily
well the trajectories of any smooth dynamical system for a
finite interval of time. This ensures that if there is a smooth
dynamical system that can solve the problem, the space of
ANNs having these devices as nodes also contains a solu-
tion. To evaluate the quality of the solution we computed

Figure 12: Neuromodulatory neurons permit the implemen-
tation of a value-based learning mechanism in ANNs. The
basic learning mechanism changes the weight of the link be-
tween the two neurons n1 and n2 according to their activ-
ity. The neuromodulatory neuron mod modulates the basic
learning mechanism and permits the synthesis of networks
where the learning is activated only in particular circum-
stances.

the time that the evolved controller can keep the cart within
given limits starting from given initial conditions. In addi-
tion, controllers which succeed in stabilizing the system for
a certain time are evaluated with a set of different initial con-
ditions in order to test their ability to generalize.

Figure 11 shows an example of ANN synthesized with
AGE. Solutions found by AGE are typically very compact,
display excellent generalization properties, and are obtained
with a small number of evaluations when compared with
other state-of-the art methods for the synthesis of neurocon-
trollers (Dürr, Mattiussi, & Floreano 2006).

Synthesis of Learning Neural Architectures
Most biological organisms are able to cope with complex
and partially unpredictable environments. There is an obvi-
ous interest in the development of artificial agents capable
to operate with the flexibility of biological organisms. Such
agents could find application, for example, as autonomous
robots for household and industrial tasks.

To date, using sets of coordinated pre-wired behavioral
strategies, it has been possible to design autonomous agents
such as floor cleaners and lawn mowers that are capable of
dealing with tasks and environments of limited complex-
ity. More flexible agents could be obtained using a learn-
ing mechanism capable of improving the performance of the
agent, based on their past experience of interaction with the
environment. An approach that looks particularly promising
for the realization of this idea is based on the integration of
a value system in the control system of the agent (Friston et
al. 1994; Pfeifer & Scheier 2001). The value system would
link the learning to the consequences of the agent’s behav-
ior judged according to its intended function. The learning
would be activated to increase the probability of execution in
a given context of actions that have produced favorable con-
sequences in that context, and to decrease the probability of
execution of actions that led to unfavorable consequences.

The challenge in applying value-based learning to agents
operating in realistic environments is to define a system ar-
chitecture capable of estimating accurately contexts and val-

Figure 13: In the experiment of synthesis of learning neural
architectures a simulated bee with a simple vision system
flies over a field containing patches of blue and yellow flow-
ers, represented here as dark and light squares. The qual-
ity of the behavior of the simulated bee is judged from the
amount of nectar that the bee is able to collect in a series of
landings.

ues, and to link them to the activation of the elements of a
suitable repertoire of actions. A popular approach is to use a
predefined set of actions controlled by a predefined system
structure such as the actor-critic architecture inspired by the
machine learning technique of reinforcement learning (Sut-
ton & Barto 1998). This approach is typically implemented
using ANNs with hand-designed fixed structure, which re-
alize the sensory preprocessing, the value system, and the
action-selection mechanism. This puts on the designer most
of the burden of guessing the correct structure of the value
and action-selection systems for the problem at hand.

There is evidence that in biological organisms, evolved
value-based learning systems are realized through the use of
neuromodulation (Bailey et al. 2000). Specialized neuro-
modulatory neurons in the brain control activity-dependent
plastic changes in the strength of the connections between
other neurons. Applying this idea in the context of the
automatic synthesis of ANNs, it is possible to bypass the
difficulty of crafting the system architecture in value-based
learning systems. It is very easy to set up AGE for the syn-
thesis of neuromodulatory ANNs. To this end, it is sufficient
to include in the set of neuron devices a neuron model that
realizes a parametrized activity-dependent Hebbian learning
(Niv et al. 2002), and a neuromodulatory neuron model
that can connect to the standard neurons and modulate their
learning (Figure 12).

We have applied this approach to the synthesis of a learn-
ing neural architecture in simulated foraging experiment
(Soltoggio et al. 2007). In this experiment a simulated bee
can collect nectar by landing on a field that contains two
kinds of flowers (Figure 13). The amount of nectar deliv-
ered by the flowers changes stochastically during the life-
time of the simulated bee. To maximize the amount of col-
lected nectar the behavioral strategy must thus be adapted
to the prevailing yield statistics of each flower. Using AGE
we were able to evolve networks capable of maximizing the
total amount of collected nectar in various scenarios. Fig-

Figure 14: An example of neuromodulatory ANN evolved
with AGE, which solves the foraging task of Figure 13. The
G, B, and Y squares represent the color inputs of the vi-
sual system. The R square represents the reward input that
gives the amount of nectar found on the flower on which
the simulated bee has landed. The landing is signaled by
the activation of the input L. The square denoted by 1 rep-
resents a fixed value input (bias), and the dG, dB, dY in-
puts represent the memory of the color observed just before
landing. The dG, dB, and dY input signals were defined
because they were used in experiments with hand-designed
neural architectures for the same scenario (Niv et al. 2002).
The figure shows that these inputs were found by the algo-
rithm to be not necessary to solve the task and were thus
left unconnected at the end of the evolutionary search. In
the network shown here, the neuromodulatory mod neuron
modulates the learning of all the connections between the
inputs and the output neuron.

ure 14 shows an example of a successfully evolved neuro-
modulatory architecture. The value-based learning strategy
implemented by this and other ANNs evolved with AGE is
quite general and can generalize to scenarios different from
those used to assess the quality of the solution during evolu-
tion, outperforming the results obtained with hand-designed
value-based learning architectures (Soltoggio et al. 2007).

Reverse Engineering of GRNs
In the previous sections, we have exemplified the applica-
tion of AGE to the synthesis of different analog networks
with pre-specified functionalities. We shall now discuss the
inverse problem, that is, unraveling an existing network with
unknown topology and sizing given some data collected
form observations of the network activity. This is the reverse
engineering problem discussed in the introduction (see Fig-
ure 5).

Setting up a reverse engineering experiment with AGE is
straightforward. As for the synthesis of analog networks,
the user first specifies the types of devices that can appear in
the network. In the experiments discussed here, the devices
are genes and their dynamics are described by a standard
phenomenological model of gene regulation, the so-called
sigmoid model (Bolouri & Davidson 2002). Next, the AGE

Figure 15: Topology of the E. coli SOS network that was re-
verse engineered using AGE. The nodes of the network rep-
resent the genes. Arrows represent interactions that enhance
gene expression. T ends denote interactions that inhibit gene
expression. The network has been correctly reconstructed
except for one missing link (thick arrow) and one incorrectly
identified link (thick oval near the ssb node).

user has to define a measure of the quality of the evolved
networks. Whereas in a synthesis experiment this measure
is related to the desired network functionality, in reverse en-
gineering it corresponds to the quality of the match between
the gene expression data derived by simulating the evolved
network and the gene expression data observed on the target
network.

As a test case, we chose a nine-gene subnetwork of the
SOS pathway of the bacterium Escherichia Coli. Using syn-
thetic gene expression data from simulated gene perturba-
tion experiments, we have successfully reverse engineered
both topology and sizing of this target network with high ac-
curacy (Marbach, Mattiussi, & Floreano 2007). The evolved
network that displays the best match with the gene expres-
sion data is shown in Figure 15. The figure shows that AGE
was able to determine 79 of the 81 possible links of the tar-
get network and to estimate correctly their enhancing or in-
hibitory nature. The discrepancy between the reverse engi-
neered network and the target network consists of one miss-
ing link (false negative) and one incorrectly identified link
(false positive). Note that although in this example we have
considered a network composed of just one type of device,
it is possible to use AGE to reverse engineer heterogeneous
networks consisting of several different device types, such
as gene-protein networks.

Discussion and Conclusion
Analog networks can realize complex functionalities using
compact networks of relatively simple devices. This prop-
erty follows from the possibility of effectively exploiting the
rich nonlinear dynamics that can be generated by the inter-

action between the individual devices that form the network.
When implemented in silicon, analog networks can realize
impressive computational feats using a very small amount
of power (Mead 1989). The price to pay for the remarkable
compactness and efficiency of analog networks is in general
a severe limitation of their programmability with respect to
systems where the interactions and dynamics are constrained
in order to achieve programmability (Conrad 1988). This is
not a fatal limitation for analog networks, because there is
a wealth of applications where programmability is not re-
quired whereas power consumption and device count are
critical factors.

The examples described in the previous section show that
AGE is a powerful method for the synthesis and reverse en-
gineering of analog networks, which has the unique prop-
erty of being easily adapted to various kinds of problems.
In all cases where the criterion is applicable and a compari-
son is possible, AGE either outperforms or produces results
comparable to those obtained with the best domain-specific
methods for the automatic synthesis and reverse engineering
of analog networks documented in the literature, from the
point of view of the functionality of the networks, their size,
and the required computational effort.

So far, the widespread use of analog networks has been
limited by the difficulty of their synthesis by hand, and by
the dearth of effective tools for their automatic synthesis.
Using evolutionary search algorithms based on AGE it is
possible to overcome this design difficulty by automating the
synthesis of analog networks. Even if AGE was conceived
to optimize the representation and evolution of analog net-
works, the computational power required to perform the syn-
thesis is in general considerable, and became available only
recently. Thus, ironically, the digital computers that led to
the demise of analog computers (Karplus 1958) give us now
the resources for a renaissance of analog computation, in a
new age of analog networks.

Acknowledgments
Many thanks to Simon Harding for reading and commenting
on the manuscript. This work was supported by the Swiss
National Science Foundation, grant no. 200021- 112060.

References
Bailey, C. H.; Giustetto, M.; Huang, Y.-Y.; Hawkins, R. D.;
and Kandel, E. R. 2000. Is heterosynaptic modulation
essential for stabilizing Hebbian plasticity and memory?
Nature Reviews Neuroscience 1(1):11–20.
Baum, E. B. 1989. A proposal for more powerful learning
algorithms. Neural Computation 1:201–207.
Beer, R. 1995. On the dynamics of small continuous-time
recurrent neural networks. Adaptive Behavior 3(4):469–
509.
Bolouri, H., and Davidson, E. H. 2002. Modeling tran-
scriptional regulatory networks. BioEssays 24(12):1118–
1129.
Bray, D. 1995. Protein molecules as computational ele-
ments in living cells. Nature 376:307–312.

Butler, D. 2007. The petaflop challenge. Nature
448(7149):6–7.
Cappé, O.; Guillin, A.; Marin, J. M.; and Robert, C. P.
2004. Population Monte Carlo. Journal of Computational
and Graphical Statistics 13(4):907–929.
Conrad, M. 1988. The price of programmability. In
Herken, R., ed., The Universal Turing Machine: A Fifty
Year Survey. Oxford: Oxford University Press. 285–307.
Dürr, P.; Mattiussi, C.; and Floreano, D. 2006. Neuroevo-
lution with Analog Genetic Encoding. In Proceedings of
the 9th International Conference on Parallel Problem Solv-
ing from Nature (PPSN IX), Reykjavik, Iceland, volume
LNCS–4193, 671–680. Berlin: Springer.
Endy, D. 2005. Foundations for engineering biology. Na-
ture 438(7067):449–453.
Fogel, L. J.; Owens, A. J.; and Walsh, M. J. 1966. Artifi-
cial Intelligence through Simulated Evolution. New York:
Wiley.
Friston, K. J.; Tononi, G.; Reeke, Jr, G. N.; Sporns, O.;
and Edelman, G. M. 1994. Value-dependent selection in
the brain: Simulation in a synthetic neural model. Neuro-
science 59(2):229–243.
Gruau, F. 1994. Automatic definition of modular neural
networks. Adaptive Behaviour 3(2):151–183.
Holland, J. H. 1975. Adaptation in Natural and Artifi-
cial Systems: An Introductory Analysis with Applications
to Biology, Control, and Artificial Intelligence. Cambridge,
MA: MIT Press.
Karplus, W. J. 1958. Analog simulation : solution of field
problems. McGraw-Hill: New York.
Kirkpatrick, S.; Gelatt, C. D.; and Vecchi, M. P.
1983. Optimization by simulated annealing. Science
220(4598):671–680.
Koza, J. R.; Keane, M. A.; Streeter, M. J.; Mydlowec, W.;
Yu, J.; and Lanza, G. 2003. Genetic Programming IV:
Routine Human-Competitive Machine Intelligence. Nor-
well, MA: Kluwer.
Lazebnik, Y. 2002. Can a biologist fix a radio?–Or, what
I learned while studying apoptosis. Cancer Cell 2(3):179–
182.
Ljung, L. 1999. System identification: theory for the user.
Upper Saddle River, NJ: Prentice Hall, 2nd edition.
Marbach, D.; Mattiussi, C.; and Floreano, D. 2007. Bio-
mimetic evolutionary reverse engineering of genetic regu-
latory networks. In Marchiori, E.; Moore, J. H.; and Ra-
japakse, J. C., eds., 5th European Conference on Evolution-
ary Computation, Machine Learning and Data Mining in
Bioinformatics (EvoBIO 2007), 155–165. Berlin: Springer.
Mattiussi, C., and Floreano, D. 2007. Analog genetic en-
coding for the evolution of circuits and networks. IEEE
Transaction on Evolutionary Computation. Forthcoming.
Mattiussi, C.; Dürr, P.; and Floreano, D. 2007. Center
of Mass Encoding: A self-adaptive representation with ad-
justable redundancy for real-valued parameters. In et al.,
D. T., ed., Proceedings of the 2007 conference on genetic

and evolutionary computation (GECCO 2007), University
College, London., 1304–1311. New York: ACM Press.
Mattiussi, C.; Waibel, M.; and Floreano, D. 2004. Mea-
sures of diversity for populations and distances between in-
dividuals with highly reorganizable genomes. Evolutionary
Computation 12(4):495–515.
Mattiussi, C. 2005. Evolutionary synthesis of analog net-
works. Ph.D. Dissertation, EPFL, Lausanne.
Mead, C. 1989. Analog VLSI and neural systems. Reading,
MA: Addison-Wesley.
Miller, J. F., and Thomson, P. 2000. Cartesian genetic
programming. In Poli, R.; Banzhaf, W.; Langdon, W. B.;
Miller, J. F.; Nordin, P.; and Fogarty, T. C., eds., Ge-
netic Programming, Proceedings of EuroGP’2000, volume
LNCS–1802, 121–132. Edinburgh: Springer-Verlag.
Niv, Y.; Joel, D.; Meilijson, I.; and Ruppin, E. 2002.
Evolution of reinforcement learning in uncertain environ-
ments: A simple explanation for complex foraging behav-
iors. Adaptive Behavior 10(1):5–24.
Pfeifer, R., and Scheier, C. 2001. Understanding Intelli-
gence. Cambrdige, MA: MIT Press.
Robert, C. P., and Casella, G. 2004. Monte Carlo statis-
tical methods. Springer texts in statistics. New York, NY:
Springer, 2nd edition.
Shapiro, J. 2005. A 21st century view of evolution:
genome system architecture, repetitive DNA, and natural
genetic engineering. Gene 345(1):91–100.
Soltoggio, A.; Duerr, P.; Mattiussi, C.; and Floreano, D.
2007. Evolving neuromodulatory topologies for reinforce-
ment learning-like problems. In Proceedings of the 2007
IEEE Congress on Evolutionary Computation (CEC 2007).
Forthcoming.
Stanley, K., and Miikkulainen, R. 2002. Evolving neu-
ral networks through augmenting topologies. Evolutionary
Computation 10(2):99–127.
Stormo, G. D., and Zhao, Y. 2007. Putting numbers on the
network connections. BioEssays 29(8):717–721.
Sutton, R., and Barto, A. 1998. Reinforcement Learning:
An Introduction. Cambridge, MA: MIT Press.
Toussaint, M. 2003. The evolution of genetic representa-
tions and modular adaptation. Ph.D. Dissertation, Institut
für Neuroinformatik, Ruhr-Universiät Bochum, Germany.
Vladimirescu, A. 1994. The SPICE Book. New York:
Wiley.
Yao, X. 1999. Evolving artificial neural networks. Pro-
ceedings of the IEEE 87(9):1423–1447.
Zebulum, R.; Vellasco, M.; and Pacheco, M. 2000. Vari-
able length representation in evolutionary electronics. Evo-
lutionary Computation 8(1):93–120.

