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Abstract

Magnetohydrodynamic (MHD) instabilities and plasma rotation have various im-
pacts on particle and thermal transport in toroidal plasmas. MHD instabilities
degrade the confinement, limit the maximum achievable plasma pressure, and
can lead to plasma disruptions. Plasma rotation is observed to have beneficial
effects on global instabilities and improve confinement through the reduction of
turbulent transport. Plasma rotation and stability are strongly coupled, influenc-
ing each other in a complicated fashion. The Tokamak à Configuration Variable
(TCV), unique in its plasma shaping capabilities, is equipped with a flexible auxil-
iary heating system (ECRH) and several diagnostics allowing us to study the effect
of the plasma shape on stability in a wide range of scenarios. TCV also provides for
measurements of carbon toroidal velocity in the absence of external momentum
input, an experimental condition poorly studied in the past but of major interest
for an accurate prediction of the toroidal rotation in future large experiments.

The work presented in this thesis may be divided into two parts. In the first
part, we focus on plasma instabilities appearing in three different TCV scenarios.
These instabilities limit the achievable maximum pressure and current density.
New features and previously unnoticed dependencies are shown. In the second
part of this thesis, we experimentally study the plasma rotation properties and
their relation with the plasma parameters and MHD activity. The new insight
on spontaneous rotation may help in constructing a complete model of plasma
rotation in tokamaks.

During the initial plasma current rise, edge MHD instabilities are commonly
observed in most tokamaks when the edge safety factor qa approaches low ratio-
nal values. These instabilities may lead to plasma disruptions and can effectively
limit the edge safety factor to qa > 3, which is above the well-known operational
limit qa ≥ 2. We report on a detailed analysis of the MHD modes leading to dis-
ruptions and show experimental evidence of the key role of mode coupling. The
beneficial effect of plasma shaping on current rise experiments was early noted in
the TCV operation. In this thesis we characterise the effect of the plasma shape
on the instability, showing how plasma elongation and triangularity (positive and
negative) act as stabilising factors. The complex shape dependence of such MHD
modes is interpreted on the basis of the theory of coupled tearing modes. Three



stabilising mechanisms linked with plasma shaping are shown to be important for
TCV and likely to other tokamaks.

Sawteeth, which are central relaxation oscillations common to most tokamak
scenarios, also have a significant effect on central plasma parameters. In highly
elongated TCV discharges heated with far off-axis ECRH, the sawtooth oscillations
are observed to disappear and to be replaced by a continuous MHD mode resonant
on the q = 1 surface. The combination of a flat current profile and small q = 1
radius determines the change in the plasma stability, which we study using ideal
and resistive MHD models.

Plasmas with internal transport barriers (ITBs) are routinely produced in TCV
using high power ECRH and current drive. A variety of MHD activity is observed
during these discharges including classical m/n = 3/1 and neoclassical m/n =
2/1 tearing modes, and more exotic q = 2 pseudo-sawteeth central relaxations.
Disruptive modes are observed in ITB plasmas with strong reverse magnetic shear.
In general, the MHD instabilities limit the maximum achievable plasma pressure.
The experimental β-limit in this scenario is observed to depend strongly on the
peaking of the electron pressure profile, in agreement with the ideal MHD theory.

The properties of the toroidal carbon impurity rotation in Ohmic limited L-
mode plasmas are studied in detail in stationary conditions. The dependence and
scaling of the toroidal velocity with plasma parameters, such as the plasma current
and density, are highlighted, as well as the effect of the sawtooth activity on the
rotation profile. We show that the toroidal rotation in TCV is generally directed
in the counter-current or electron diamagnetic drift direction. We also compare
the experimental results with the neoclassical prediction for stationary toroidal
rotation in absence of external momentum input.

Angular momentum relaxations are observed in TCV Ohmic plasmas. Large
magnetic islands cause strong losses of angular momentum, flattening the rotation
profile. Once the MHD mode has disappeared, the stationary angular velocity
profile is restored over a typical time scale, 100–200 ms, providing experimental
evidence of the spontaneous torque spinning the plasma column.

We show that we can reproduce the phenomena of “toroidal spin-up” and ro-
tation inversion observed in TCV Ohmic plasmas with a phenomenological mo-
mentum transport model. We infer transport coefficients, such as the momentum
diffusivity, and compare them with theoretical predictions.

Keywords: plasma physics, tokamak, magnetohydrodynamics, plasma insta-
bilities, plasma spontaneous rotation.



Résumé

Les instabilités magnétohydrodynamique (MHD) et la rotation du plasma ont des
impacts divers sur le transport des particules ainsi que sur le transport thermique
dans les plasmas toröıdaux. Les instabilités MHD dégradent le confinement, limi-
tent le maximum de pression de plasma réalisable et peuvent mener à la disruption
du plasma. On observe que la rotation du plasma a des effets bénéfiques sur les
instabilités globales et améliore le confinement en réduisant le transport turbu-
lent. La rotation du plasma et sa stabilité sont également fortement couplées,
s’influençant réciproquement de manière complexe. Le Tokamak à Configuration
Variable (TCV), unique dans sa capacité á créer des plasmas de formes très di-
verses, est équipé d’un système de chauffage additionnel (ECRH) flexible et d’un
faisceau de diagnostiques nous permettant d’étudier l’effet de la forme du plasma
sur sa stabilité dans un éventail de scénarios. TCV fournit également des mesures
de la vitesse toröıdale du carbone en l’absence d’injection externe de moment, une
condition expérimentale peu étudiée dans le passé mais d’intérêt essentiel pour
une prévision précise de la rotation toröıdale dans les futures grandes expériences.

Cette thèse peut être divisée en deux parties. Dans la première partie, nous
nous sommes concentrés sur les instabilités du plasma apparaissant dans trois
scénarios différents de TCV. Telles instabilités limitent le maximum de courant et
densité réalisable. Dans la deuxième partie, nous avons étudiés expérimentalement
les propriétés de la rotation du plasma et leur relation avec les paramétres du
plasma et l’activité MHD.

Pendant la rampe de courant plasma initiale, des instabilités MHD localisées
au bord sont généralement observées dans la plupart des tokamaks quand le fac-
teur de sécurité au bord qa s’approche des valeurs rationnelles basses. Ces insta-
bilités peuvent mener à la disruption du plasma et peuvent effectivement limiter
le facteur de sécurité à qa > 3, valeur supérieure à la limite opérationnelle bien
connue qa ≥ 2. Dans TCV, des balayages systématiques de la forme du plasma ont
démontré la possibilité d’éviter de tels types de disruption en façonnant suffisam-
ment le plasma avant d’atteindre des valeurs critiques de qa. A la fois l’élongation
et la triangularité (positive et négative) du plasma agissent en tant que facteur sta-
bilisant. L’évidence expérimentale montre clairement l’importance du couplage de
modes. La dépendance complexe de la forme de tels modes MHD est interprétée
sur la base de la théorie des modes de déchirement couplés. La déstabilisation



d’un large ı̂lot magnétique m/n = 2/1 dans des plasmas quasi-circulaires s’avére
être due à l’effet du couplage de mode toröıdal. On montre que trois mécanismes
stabilisants, liés à la forme du plasma, sont importants dans le cas de TCV.

Les instabilité dents de scie, qui sont des oscillations de relaxation centrales
communes à la plupart des scénarios de tokamak, ont un effet significatif sur les
paramètres centraux du plasma. Dans des décharges fortement allongées de TCV,
avec injection ECRH fortement hors-axe, les oscillations de dent de scie disparais-
sent et sont remplacées par un mode MHD continu résonnant sur la surface q = 1.
La combinaison d’un profil de courant plat et d’un petit rayon q = 1 déterminent
le changement de comportement des dents de scie. Dans de telles conditions
expérimentales, la stabilisation du mode kink interne, dont on pense qu’il est re-
sponsable des oscillations de dent de scie, est prédit de manière consistante par
les théories de la MHD idéale et résistive.

Des plasmas avec des barrières de transport internes (ITB) sont obtenus de
manière routinière dans TCV en utilisant le chauffage ECRH et de la génération
de courant haute puissance. On observe une grande diversité d’activité MHD pen-
dant ces décharges comprenant des modes classiques m/n = 3/1, des modes de
déchirement néoclassiques m/n = 2/1, et de plus exotiques pseudo dents de scie
q = 2. Des modes disruptifs sont observés dans des plasmas ITB avec une fort
inversion du cisaillement magnetique. Généralement les instabilités MHD limi-
tent le maximum de pression de plasma réalisable. On observe que la limite de β
diminue avec le piquage du profil de pression électronique, en accord avec théorie
MHD idéale.

Les propriétés de la rotation toröıdale d’impuretés de carbone dans des plasmas
limités ohmiques en mode L sont étudiées en détail dans des conditions station-
naires. La dépendance et la loi d’échelle de la vitesse toröıdale avec les paramètres
du plasma, tels que le courant du plasma et la densité, sont dèmontres, aussi
bien que l’effet de l’activité des dents de scie sur le profil de rotation. On mon-
tre que la rotation toröıdale est généralement dirigée dans la direction opposée au
courant du plasma c’est-á-dire paralléle à la direction diamagnétique de dérive des
électrons. La comparaison avec les prédictions néoclassiques montre que la rota-
tion du plasma dans TCV est principalement générée par les champs électriques
radiaux, avec une contribution négligeable des champs électriques toröıdaux.

On observe des relaxations de moment angulaire dans les plasmas ohmiques de
TCV. De grands ı̂lots magnétiques causent de fortes pertes de moment angulaire,
aplatissant le profil de rotation et freinant le plasma jusqu’au blocage du mode.
Une fois que le mode MHD a disparu, le profil stationnaire de la vitesse angu-
laire est rétablit aprés un temps typique de 100–200 ms, fournissant une évidence
expérimentale du couple faisant tourner la colonne de plasma.

Une inversion de la rotation toröıdale centrale est observée dans les plasmas
ohmiques à haut courant au-dessus d’un certain seuil de densité. Cette inversion
de rotation est bien reproductible et reversible. Un modèle phénoménologique
de transport de moment a été développé pour interpréter les caractéristiques du
transport de moment angulaire dans les plasmas ohmiques de TCV. Les coefficients
de transports comme la diffusivité et la vitesse convective sont déduits et comparés



aux prévisions théoriques.

Mots-clés: physique des plasmas, tokamak, magnétohydrodynamique, insta-
bilités des plasmas, rotation du plasma.





Contents

Abstract i
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Overview





Chapter 1

Introduction

This chapter is, as the title says, introductory to the context and sub-
ject of this thesis. We briefly introduce the basic concepts of nuclear
fusion reactions and nuclear fusion power plants. Nuclear fusion re-
actions may be achieved in high temperature plasmas. We focus here
on magnetic plasma confinement methods.

1.1 Nuclear Fusion

1.1.1 Nuclear Fusion: a possible source of energy for the future

Finding a safe, reliable, economic and environmentally compatible source of pri-
mary energy is certainly crucial for the future development of mankind. Despite
the relevance of the topic, no commonly accepted strategies have been found yet
on the energy sources needed to sustain the world economic growth. It is a fact
that, sooner or later, we will have to replace the power obtained by burning oil
(about 40% of the total energy produced every day [1]) and other fossil materi-
als by other means. Surprisingly, we will not have to wait on the end of the oil
resources (4 or 5 decades according to recent estimations [2]) before we face the
risk of an energy shortage. The reader may also question whether it is a good idea
to burn all the oil, producing tons and tons of greenhouse gases which may alter
the climate.

Since 1985 we have been consuming more oil than what is actually discovered.
According to several experts we will soon reach the point where the oil demand
exceeds the oil production, the so-called “oil production peak”. More precisely, the
relevant question is: do we have an idea of when the decline of the production will
begin, not for conjunctural reasons, because a war has damaged a pipeline here,
or because there is a transient little recession there, but for structural reasons,
because there is not enough oil left underground to satisfy the demand? The
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Figure 1.1: World oil production in million barrels per day. Up to 2002, the red curve
indicates the real production. Afterwards we show various predictions according to
various sources. ASPO, the Association for the Study of Peak Oil, gathers retired
oil geologists and various experts still professionally active. It organises an annual
meeting to discuss the remaining ultimate reserves (for up-to-date information, the
reader may refer to the web site [2]). The ASPO curve represents their prediction
of the maximum possible oil production for the future. The Shell (the worldwide
known oil company) curve predicts the beginning of the peak production (actually
a plateau) around 2025, which is also the approximate date mentioned in the 2003
annual report of Total (another oil company). The IEA (International Energy Agency)
curve refers to a prediction of oil demand, not production. One can see that the IEA
predicted demand is larger than the shown production predictions

“production peak” topic is the ground for large discussions between experts. To
summarise, pessimists see the peak within 5 to 10 years from today, whereas in
the more optimistic views, it will occur within 20 to 30 years [3], as illustrated in
figure 1.1.

This suggests the urgency of a large worldwide effort in finding new technolo-
gies and strategies to fulfil our needs of energy in the medium-long term. Nowa-
days the existing technologies that may replace the oil as a energy source, based
on nuclear reactions, solar or wind energy, do not satisfy all the requirements
mentioned above, i.e. safety, reliability, economical advantages and environmen-
tal compatibility. In this context the thermonuclear fusion power has the potential
to offer a practically inexhaustible and inherently safe source of energy. It also has
the advantage of producing neither greenhouse gases nor long-lived radioactive
wastes. This thesis represents a small contribution to the effort undertaken by the
international scientific community toward the development of nuclear fusion as a
commercial source of energy for the future.
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1.1.2 Nuclear Fusion: the physical process

We call nuclear fusion the process in which two nuclei collide and combine or fuse
to make a larger atom. If the two starting nuclei are lighter than iron, the fusion
process releases a large amount of energy as in the reactions:

1H
1 + 1H

1 → 1D
2 + e+ + νe (1.1)

1D
2 + 1H

1 → 2He3 + γ (1.2)

where hydrogen (H) or deuterium (D) fuses to form larger nuclei as helium (He).
These reactions involve the electro-weak interactions and they have therefore very
small cross-section (i.e. they are not very likely to happen). They are very common
in the core of the stars since the most abundant fuel is hydrogen, on earth however
they should be replaced by other reactions involving the heavier hydrogen isotopes
deuterium and tritium (T ):

1D
2 + 1D

2 → 2He3(0.817 MeV) + 0n
1(2.45 MeV) (1.3)

1D
2 + 1D

2 → 1T
3(1.01 MeV) + 1H

1(3.02 MeV) (1.4)

1D
2 + 1T

3 → 2He4(3.50 MeV) + 0n
1(14.1 MeV) (1.5)

1D
2 + 2He3 → 2He4(3.67 MeV) + 1H

1(14.7 MeV) (1.6)

where the quantities between parentheses are the final state kinetic energies in
the reaction rest frame.

Figure 1.2: Cross-section for the fusion reactions D−T , D−D, and D−He3. For the
D − D reaction, the sum of the cross-sections of both reactions 1.3 and 1.4 is given
[4].
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Among these fuelling elements only tritium is naturally radioactive (with a half
life of 12.3 years) and it hence is not freely available in nature. Thus the D − D
or D − He reactions would be preferable, because there is no need to produce
and manage any radioactive element. Unfortunately these reactions have cross-
sections comparable to the D − T reaction only at high temperatures, as can be
seen from figure 1.2. Therefore, at least in the beginning, the D − T reaction is
advised as the best candidate for a future nuclear fusion reactor.

Tritium can be produced from lithium (Li) using the neutron induced fission
reactions:

3Li7 + 0n
1 → 2He4 + 1T

3 + 0n
1 + 2.5 MeV (1.7)

3Li6 + 0n
1 → 2He4 + 1T

3 + 4.8 MeV. (1.8)

The relative abundances of the two lithium isotopes Li6 and Li7 are 7.4% and
92.6% respectively. Lithium can be found in abundance in the earth’s crust, and
also dissolved in the sea water. If all the world’s electricity were to be provided
by fusion, known total reserves would last for at least a million years [5]. Thus,
nuclear fusion promises to be a practically inexhaustible source of energy.

1.2 Principle of a nuclear fusion power plant

We call beam-target fusion the process in which the energy to initiate the reaction
comes from accelerating one of the nuclei, whereas beam-beam fusion is the pro-
cess in which both nuclei are accelerated. If the required energy is distributed
in random incoherent fashion, the fuel atoms are completely ionised and form a
plasma in so-called near thermal equilibrium. In this case one speaks of thermonu-
clear fusion.

One possible strategy for a fusion power plant is to produce and control a large
volume of D−T plasma at high temperature. In the ideal case, the temperature of
the D and T combustibles is maintained by the energy transfer of the 3.5 MeV α-
particle (2He4) created in the fusion reaction (equation 1.5), therefore additional
heating is unnecessary. If the α-particles are sufficiently well confined they can
transfer their energy via collisions. This condition is called plasma ignition. How-
ever confining the α-particles is more difficult than confining the bulk plasma,
mainly because of their energy and mass. This issue is still to be addressed for an
optimal fusion reactor. The emitted neutrons may instead leave the plasma with-
out further interaction and should be absorbed in the blankets surrounding the
reactor vessel. The heat is then carried away by a suitable coolant and provides
the power output for the power generation.

Finally the requirements for fusion power plants are given by power balance
considerations. We can define the rate of fusion reactions ν as

ν =

∫
V

nDnT < σD−T v >v dV (1.9)
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with nD, nT being the deuterium and tritium density, v the particle velocity, and
<>v denoting the average over the velocity distribution function. The heating
power Pα generated by the α-particles slowing down is given by ν multiplied by
the kinetic energy Eα given off by a single fusion reaction:

Pα = νEα. (1.10)

In the same way, one can define the fusion power Pfusion as the rate of fusion
reactions multiplied by the emitted neutron kinetic energy Efusion:

Pfusion = νEfusion. (1.11)

The energy loss can be expressed by the ratio of the total plasma energy content
W =

∫
3nTdV (where T is the temperature and n the total particle density) and

the energy confinement time τE,

Ploss =
W

τE
=

∫
(neTe + nDTD + nT TT )dV

τE
. (1.12)

The power balance for a not yet ignited plasma in a steady state yields:

Pα + Pexternal = Ploss (1.13)

where Pexternal is the external power required to sustain the plasma.
Let us now replace Pexternal by Pfusion/Q where Q is the gain factor. The Lawson

criterion requires Pfusion > Q(Ploss − Pexternal). Using equations 1.10 and 1.11 we
obtain therefore:

Pfusion

(
Eα

Efusion
+

1

Q

)
>

W

τE
. (1.14)

Assuming a uniform 50%−50% deuterium-tritium plasma (nD = nT = n/2)
the rate of fusion reactions (equation 1.9) becomes:

ν =
n2

4
V < σD−T v >v . (1.15)

With the further assumption of constant and equal temperatures (W = 3nV T ),
and using equations 1.10 and 1.12, one finally obtains:

nτE >
12

Efusion

(
Eα

Efusion
+ 1

Q

) T

< σD−T v >v
. (1.16)

Assuming that τE does not depend on the temperature, at ignition (Q = ∞)
the r.h.s. of equation 1.16 has a wide minimum close to T = 30 keV. Taking
into account the τE dependency on the temperature, it turns out that the ignition
temperature is likely to be somewhat lower. Using the approximated fusion rate <
σD−T v >v=1.1·10−24T 2m3s−1 (T in KeV) we finally obtain a convenient condition
for the ignition in terms of the triple product:

nTτE > 3 · 1021m−3keV s (1.17)

The value of nTτE obtained in fusion reaction experiments has improved by five
orders of magnitude over the past 35 years and is on the verge of reactor conditions
(see figure 1.3).
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Figure 1.3: Progress of the triple product nTτE obtained by several experiments
worldwide. The condition for an ignited plasma is shown in red.

1.3 Plasmas and methods of confinement

Any gas at high temperature is partially or totally ionised and over a wide range
of conditions constitutes a new state of the matter called plasma: a (globally)
electrically neutral system showing dominant collective behaviour. In a plasma
at the temperature required for fusion reactions the atoms are fully ionised. In a
fusion reactor the highly energetic charged particles must be kept clear from the
vessel wall containing the plasma to avoid damage to the reactor. Achieving a
good confinement is also necessary to minimise the plasma thermal energy loss,
in order to self-sustain the plasma (ignition condition) or at least minimise the
external power input. Most common confinement methods are:

Gravitational confinement. To confine the plasma one could use the gravita-
tional interaction. However the mass needed to confine the fuel well enough
to satisfy Lawson criterion is so large that gravitational confinement is only
possible in stars. Even if the more reactive deuterium fuel was used, a mass
about the size of the Moon would be needed.

Magnetic confinement. Since plasmas are very good electrical conductors, mag-
netic fields can also be used to confine fusion fuel. A variety of magnetic
configurations can be used, in linear devices such as magnetic mirrors and
toroidal devices, such as tokamaks (see section 1.3.2).

Inertial confinement. It consists in applying a rapid pulse of energy to a small
volume of fusion fuel, causing it to “implode” and heat simultaneously, reach-
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Figure 1.4: Principle of the magnetic confinement: the motion of a charged particle
in a magnetic field is restricted to a circle and, in first approximation, it is bound to
follow a magnetic field line.

ing very high pressure and temperature. This will significantly increase the
fusion reaction rate, and a large fraction of the fuel can be burned before it
dissipates. To achieve these extreme conditions, the initially cold fuel must
be explosively compressed. Inertial confinement is used in the hydrogen
bomb, where X-rays created by a fission bomb are used as reaction driver.
There are also attempts of using inertial confinement in a “controlled” nu-
clear fusion reaction, where a laser, ion, or electron beam is used as a driver.

Other confinement principles, such as muon-catalysed fusion, Farnsworth-Hirsch
fusor (inertial electrostatic confinement), and bubble fusion have also been inves-
tigated.

1.3.1 Magnetic confinement

Owing to the Lorentz force, a magnetic field can tie a charged particle by inducing
a helical trajectory around a single field line. The motion of a particle of mass ms

and charge qs in the plane perpendicular to the field line is restricted to a circle of
radius:

rL,s =
msv⊥
qsB

(1.18)

where rL,s is the so-called Larmor radius, B is the magnetic field, and v⊥ is the
particle velocity in the plane perpendicular to B. On the contrary there is no
restriction to the motion along the field lines. This is the basis of magnetic con-
finement as depicted in figure 1.4.
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Figure 1.5: Particle drift motions in a pure toroidal magnetic field. The inhomoge-
neous field leads to a separation of the charges. The resulting electric field combined
with the toroidal field causes an outward expulsion of the plasma particles.

The general motion of a charged particle in an electromagnetic field is more
complex and an analytical solution of the motion equations can not in general be
found. However, in the case of a slowly (in time and space) varying magnetic
field the perpendicular motion may be described as the sum of an helical (Lar-
mor) gyromotion and perpendicular drifts. A systematic treatment can be found
in reference [6].

1.3.2 The tokamak concept

Open magnetic field line configurations can not be used to constrain a plasma. The
simplest configuration with closed field lines is a torus. Let us define a cylindrical
coordinate system (R, Z, φ), with the origin at the torus centre, as for instance in
figure 1.8.

A purely toroidal magnetic field 	B is however found not to be homogeneous.
In fact, it varies with the radial distance according to 1/R. The magnetic field
line curvature and the gradient of the field amplitude lead to a vertical drift in
opposite directions for electrons and ions (see figure 1.5). The consequent charge
separation develops a vertical electric field 	E and an 	E× 	B drift, which eventually
brings the whole plasma toward the outer wall. This process is fast (∼ 1 μs) and no
good confinement can therefore be achieved with a pure toroidal field geometry.

The solution consists in adding a poloidal component to the magnetic field
which twists the field lines into an helical structure. The particles, (approximately)
following the field lines, will now drift partly toward the edge and partly toward
the centre of the torus, averaging out the net vertical drift and therefore avoiding
the creation of the vertical electric field.

The helical field lines can eventually wind endlessly around the torus defining
a surface. The generated magnetic structure thus consists of nested magnetic sur-
faces also called flux surfaces. Flux surfaces provide a barrier to charged particles,
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Btor

Bpol

IP

Figure 1.6: A field line on a q=2 magnetic surface. One can see that the magnetic
field line closes up on itself after 2 toroidal rotations.

toroidal field coils

Btor

Bpol

I P

transformer core

primary transformer
windingsvertical field coils

plasma
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Figure 1.7: The tokamak magnetic confinement uses three magnetic fields: the
toroidal field Bφ, the poloidal field Bθ, and the vertical field Bv (for plasma con-
trol). The poloidal field Bθ is generated by the internal plasma electric current, which
is inductively generated by the central solenoid.
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Figure 1.8: Definition of the elongation κ (left), and the triangularity δ, (right) for
a plasma with minor radius a.

assuming that there are no collisions. The twist of the field line on each surface is
characterised by the safety factor q,

q =
Δφ

2π
(1.19)

where Δφ represents the variation in the toroidal angle after a full poloidal turn
of the field line. If q = m/n with m and n being integers, the magnetic field
line closes up on itself after m toroidal and n poloidal rotations. A field line with
q=2 is illustrated in figure 1.6. We will see that rational surfaces (flux surfaces
characterised by a rational value of the parameter q) play an important role in
plasma stability.

At the plasma centre the magnetic field is purely toroidal and defines the so-
called magnetic axis. Owing to the 1/R dependence of the toroidal magnetic field,
we can define the High Field Side, HFS, (where B > B0) and the Low Field Side,
LFS, (where B < B0) of the torus, with respect to the magnetic axis (B0 is the
magnetic field on the magnetic axis).

One method to produce poloidal magnetic field and magnetic surfaces is to
induce an electric current flowing into the plasma, as in the so-called tokamaks, the
Russian acronym for ”Toroidalnaja Kamera Magnitnymi Katushkami” (figure 1.7).
An excellent guide on the tokamak concepts, physics, present and past experiments
can be found in reference [4].

The plasma current is usually induced by a transformer action in which the
central solenoid acts as the primary coil and the plasma column as a secondary
winding (see figure 1.7). The toroidal geometry and the plasma pressure act as
an outward radial force (similarly to a bladder) which tends to expand the plasma
column. This force can be balanced by the 	j× 	Bv force generated with an external
vertical magnetic field 	Bv generated and the plasma current 	j.
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Figure 1.9: Separation of the plasma from a vessel wall using a limiter (left) or a
divertor (right) configuration.

It has been shown that the plasma shape influences the stability and transport
properties of the plasma. To characterise different plasma shapes we can use the
elongation κ and the triangularity δ parameters, which are shown in figure 1.8.

To separate the plasma from the vessel wall, two main configurations can be
employed, as shown in figure 1.9. In the limiter configuration the plasma outer
boundary is defined using a material limiter, whereas in the divertor configuration
the magnetic field structure is appositely modified to produce a magnetic divertor.

Tokamak devices have the advantage of retaining the toroidal symmetry (ax-
isymmetry ⇐⇒ ∂/∂φ = 0) and are therefore essentially two-dimensional systems.
On the other hand, the necessity of inducing the plasma current allows only for
pulsed operation, therefore reducing the efficiency as a fusion power plant. Re-
cently, techniques to drive the current by other means (such as plasma waves or
ions beams) have been developed and successfully applied, opening the route to-
ward continuous tokamak operation.

Other magnetic configurations can be conceived, in which the poloidal mag-
netic field is produced by an external magnetic coil. Such configurations, as in
stellarators, are non-axisymmetric and in general much more complex, but have
the advantage of an intrinsic continuous operation.

At the present date the highest nTτE triple product values have been achieved
in tokamaks devices, which have therefore been chosen as the leading technology
for the foreseen future fusion reaction experiment (ITER) and the experimental
nuclear power plant (DEMO).

1.4 Plasma heating

Several methods to heat the plasma can be used to reach the required fusion tem-
perature (of hundreds of millions K):

• Ohmic heating. Due to the intrinsic plasma resistivity η, the toroidal plasma
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current 	j heats the plasma. The Ohmic power density is given by

PΩ = ηj2 = 	E ·	j. (1.20)

The plasma resistivity decreases with increasing electron temperatures as
T

−3/2
e . Therefore the current density increases with the applied ohmic power

(and loop voltage) but is limited by stability requirements which impose
a maximum PΩ. The achievable temperature increases with the toroidal
magnetic field. However, the magnetic fields generated by today’s supra-
conducting magnets are not sufficient to obtain the temperatures required
for fusion. Supplementary heating methods are therefore necessary.

• Neutral beam injection. It consists in the injection of beams of fast neutral
particles. Hydrogen or deuterium atoms with typical energy of 50–100 keV
are frequently used. They can penetrate the interior of the plasma, since
they are not influenced by the magnetic field, and are ionised by colliding
with the plasma electrons and ions, or by charge exchange reaction. Once
ionised, they are confined by the magnetic field and release their energy and
momentum through collisions with the other particles.

• Plasma wave heating. It consists in the excitation of electromagnetic waves
into the plasma. In addition to collisional absorption (thermalisation), a vari-
ety of resonant interactions is possible with different plasma waves allowing
for several heating schemes. For an efficient coupling and absorption, the
plasma wave must be excited and able to propagate to the resonant region
(or resonant layer). Here the wave frequency approaches resonant frequen-
cies such as the ion or electron cyclotron frequencies,

ωci =
qiB

mi
(1.21)

ωce =
eB

me
(1.22)

or other hybrid frequencies and their higher harmonics.

In tokamaks ion cyclotron frequencies are typically in the MHz range while
electron cyclotron frequencies are approximately 1000 times higher (ranging
up to 200 GHz). The electron cyclotron resonance heating (ECRH) has the
advantage that the plasma wave can propagate in vacuum, therefore allow-
ing for the antenna to be located far from the plasma boundary. Moreover
due to the B-dependence of the resonance frequency and the properties of
the resonance layer ERCH techniques permit to have a highly localised ab-
sorption, and to modify the electron temperature and current profile by di-
rectly heating the electrons.

The wave polarisation can also be adapted to optimise the coupling with the
plasma. For a wave which propagates perpendicular to the magnetic field
(	k ⊥ 	B) two independent modes exist: the ordinary mode (O-mode), where
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Figure 1.10: Main heating techniques of a tokamak plasma: ohmic, neutral beam
injection, and electromagnetic waves absorption.

the incident wave electric field is parallel to the background magnetic field,
and the extraordinary mode (X-mode), where the incident wave electric field
is perpendicular to 	B.

The propagation of these waves (with frequency ω) can be described by their
refractive index N ,

N2
O = 1 − (ωpe/ω)2 (1.23)

N2
X = (1 − (ωpe/ω)2 − ωce/ω)

1 − (ωpe/ω)2 + ωce/ω

1 − (ωpe/ω)2 − (ωce/ω)2
(1.24)

where ωpe = (e2ne/ε0me)
1/2 is the plasma frequency. If the refractive index is

zero (or imaginary) the wave is evanescent, and is reflected. The locus where
the refractive index reaches zero is called cut-off region. The non-collisional
absorption is maximal when N tends to infinity, the so-called resonance con-
dition.

The O-mode exhibits a resonance when temperature effects are included in
the calculation of the wave dispersion. Unfortunately its absorption is rel-
atively weak, therefore limiting the heating efficiency. The X-mode has in
general a better absorption, but the cut-off frequency depends on the mag-
netic field. The wave can therefore be reflected (depending on plasma condi-
tions) before reaching the resonance region. On the contrary for the O-mode
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the cut-off (ωco = ωpe) does not depend on the magnetic field but limits the
accessibility at high density.

1.5 Motivations and structure of the manuscript

1.5.1 Motivations

This thesis addresses some aspects of plasma stability and confinement. If focuses
on the effect of plasma shaping upon (mainly) current driven modes and on the in-
stabilities observed in TCV advanced scenarios with very large and localised pres-
sure gradients. Through an analysis and interpretation of the measurements, the
instabilities and the conditions leading to their occurrence can be characterised. A
comparison with the existing theories will then lead to a deeper understanding of
the physics involved.

When they do not lead to discharge disruption, plasma instabilities increase the
radial transport of particle energy and momentum, lowering the confinement time
and the achievable pressure (for a given input power) and thus the triple product
(equation 1.17). This can be compensated by building larger machines but also
leads to higher costs. Avoiding or controlling instabilities is therefore desirable
as it may lead to a more economical fusion reactor. In particular, controlling in-
stabilities through plasma shaping is highly desirable because it has a relatively
low cost compared to other means. The TCV tokamak is well suited to study the
shape effects on MagnetoHydroDynamic (MHD) stability given its flexible design
and control system. The powerful heating system allows for the attainment of
high temperatures and pressures. More importantly, it provides a local power de-
position which allows tailoring the pressure and current profiles and to test and
improve the plasma stability. The first part of this thesis is dedicated to the exper-
imental study of the plasma instabilities.

It has been recently recognised that another means of improving and modifying
the plasma stability and confinement is through plasma rotation. Recent diagnos-
tics improvements in the TCV tokamak allows us to study and characterise the
plasma rotation without an external momentum input: this condition is unusual
in today’s large tokamaks but will be common in future experiments such as ITER.
It is thus important to study what is sometimes called “spontaneous rotation”. This
is the aim of the second part of this thesis.

1.5.2 Outline of the thesis

The manuscript is divided into three parts. In the introductory part, after a brief
overview on nuclear fusion and tokamak concepts given in this chapter, we will
describe the TCV experiment and some of the diagnostics (chapter 2). In chapter
3 the most relevant (to this thesis) elements of plasma theory are highlighted.

The second part of this thesis is dedicated to the study of plasma instabilities.
In chapter 4 the analysis methods and the models used for the interpretation of
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experimental data are described. Then we present original results on the effect of
plasma shaping on MHD modes (chapter 5), the stabilisation of the well-known
sawtooth instability with appropriate shape (chapter 6), and current control and
the MHD modes in plasmas with electron transport barriers respectively (chapter
7).

The third part is devoted to plasma rotation studies. After a short introduction
on the subject in chapter 8, we describe in detail the stationary rotation profiles
in the Ohmic limited L-mode scenario (chapter 9). The main features of momen-
tum transport phenomena observed in the TCV tokamak are described in chapter
10, and analysed with a phenomenological model to get insight into the physi-
cal processes involved. Finally, conclusions are drawn on the presented work and
proposals for future work outlined (chapter 11).
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Chapter 2

MHD instabilities and equilibrium

In this chapter we discuss some theoretical aspects of MHD stabil-
ity theory in tokamaks. Various instabilities caused by current and
density gradients are introduced.

2.1 Magnetohydrodynamics theory

A plasma can be modelled as an ionised gas consisting of both charged and neu-
tral particles. A complete statistical description of plasma dynamics involves an
equation for the distribution function (the so-called Boltzmann equation) for each
particle specie (electron, ions, impurities, etc.), coupled with the Maxwell equa-
tions for the macroscopic 	E and 	B fields. However, solving such a system of equa-
tions is in general rather complicated, and simpler models have been developed
for practical applications. Fortunately, a thermonuclear plasma can be considered,
in general, as quasi-neutral, ∑

i

eZsns ≈ 0 (2.1)

where Zs and ns are the charge and the density of the s particle specie. In this
sense, a plasma may also be modelled as a single, neutral, conducting fluid. An
external magnetic field can influence the motion of such a fluid, and the theory
describing this motion is called magnetohydrodynamic (MHD) theory. A complete
derivation and mathematical description of the MHD theory can be found in many
textbooks [6, 7, 4]. We will introduce here only the main concepts needed to
understand the following.

To describe the resistive MHD fluid, besides the Maxwell equations, we need
to take into account also the mass conservation and force balance, as well as the
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generalised Ohm’s law

∇× 	B = μ0
	j (2.2)

∇× 	E = −∂ 	B

∂t
(2.3)

∇ · 	B = 0 (2.4)
∂ρ

∂t
= −∇ · (ρ	v) (2.5)

ρ

(
∂	v

∂t
+ ( 	v · ∇)	v

)
= 	j × 	B −∇ · P (2.6)

	E + 	v × 	B = η	j (2.7)

where 	v is the fluid velocity, μ0 the vacuum magnetic permeability, ρ =
∑

s msns

the mass density with ms the mass of the particle specie s, η the electrical re-
sistivity, j the electrical current, and P the pressure tensor. We also neglect the
displacement current in the Maxwell equation 2.3. This set of single-fluid equa-
tions (equations 2.3–2.7) is still incomplete. Closure requires in fact assumptions
concerning the pressure tensor P . We choose to complete the set of equations by
assuming an isotropic pressure tensor P = Ip and an adiabatic behaviour,

∂p

∂t
+ 	v · ∇p = −γp∇ · 	v (2.8)

with γ = 5/3 being the ratio of the specific heat.
By taking the curl of equation 2.7 one finds an equation governing the evolu-

tion of the magnetic field,

∂ 	B

∂t
= ∇×

(
	v × 	B

)
+

η

μ0
� 	B. (2.9)

The first term at the right hand side describes the variation of the magnetic field
due to the convection of the field moving with the plasma. The second term gives
the variation of the magnetic field by diffusion driven by gradients, and with a
diffusion coefficient η/μ0. In the case of a perfectly conducting plasma (η = 0) the
magnetic flux through any surface moving with the plasma remains constant. This
means that the magnetic flux is “frozen” into this fluid and forced to move with it.
In this case the MHD theory is called ideal MHD theory.

2.2 Magnetohydrodynamic equilibrium of a tokamak
plasma

In a stationary plasma (∂/∂t = 0) with the assumption of zero fluid velocity, 	v = 0,
the force balance equation 2.7 is written as

∇p = 	j × 	B. (2.10)
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A scalar multiplication of equation 2.10 with 	B yields 	B · ∇p = 0. Thus, there
are no pressure gradients along the magnetic field lines. The magnetic field lines
lay on the nested surfaces of constant pressure which coincides with the magnetic
flux surfaces (see section 1.3). Similarly, a scalar multiplication of equation 2.10
with 	j yields 	j ·∇p = 0, implying that currents only flow tangential to flux surface.
Owing to ∇ · 	B = 0 the poloidal magnetic flux defined as,

ψpol =

∫
Apol

	B · d 	A (2.11)

and the toroidal magnetic flux,

ψtor =

∫
Ator

	B · d 	A (2.12)

with Apol and Ator being arbitrary poloidal and toroidal cross-sections of a flux
surface, are both constant on magnetic flux surfaces. The introduction of ψpol and
ψtor allows us to rewrite the definition of the safety factor (equation 1.19) as,

q =
dψtor

dψpol
. (2.13)

This definition, valid for a general toroidal configuration, is used across this thesis,
with no cylindrical approximation. The cylindrical coordinates (R, φ, Z) are well
suited to describe a toroidal asymmetric equilibrium. The toroidal vector unit
is êφ = R∇φ. Owing to the ignorable φ coordinate, the magnetic field in the
axisymmetric case can be written as,

	B = ∇× (Aφêφ) + Bφêφ = ∇× ψ∇φ + Bφêφ. (2.14)

where we have defined the stream function, ψ = RAφ. By replacing 	B in equation
2.11 with its expression in equation 2.14, we recognise that ψpol = 2πψ. We can
express the component of the magnetic field in cylindrical coordinate as,

BR = − 1

R

∂ψ

∂R
(2.15)

BZ =
1

R

∂ψ

∂Z
(2.16)

Now using equation 2.14 and the Ampere’s law into the force balance equation
2.10 we obtain a scalar equation for the equilibrium of an axisymmetric system,
the so called Grad-Shafranov equation:

R
∂

∂R

(
1

R

∂ψ

∂R

)
+

∂2ψ

∂R2
= −μ0R

2p′(ψ) − I(ψ)I ′(ψ) (2.17)

where I(ψ) = RBφ and p′ = ∂p/∂ψ. Equation 2.17 was derived under the as-
sumption 	v = 0 but it remains a good approximation if 	v 
 	vs with 	vs the plasma
sound velocity, a condition well satisfied for the TCV plasmas (chapter 9). The
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Figure 2.1: Equilibrium nested flux surfaces of a real TCV plasma calculated by solv-
ing the Grad-Shafranov equation.

Grad-Shafranov equation is a non-linear elliptical differential equation, and must
in general be solved numerically. From the solution of equation 2.17, a displace-
ment of the centre of the flux surfaces Δ(ψ) in the direction of the major axis R
with respect to the outermost flux surface can be derived. The displacement of the
magnetic axis is called Shafranov-shift Δ0. This shift causes a closer packing of the
magnetic surfaces at the LFS of the torus (figure 2.1).

An important equilibrium parameter is the magnetic shear,

s(ρ) =
ρ

q

dq

dρ
(2.18)

where ρ =
√

ψ−ψ0

ψa−ψ0
is the normalised radial coordinate. ψ0 and ψa are calculated

respectively on the magnetic axis and the plasma boundary.
To define the efficiency of confinement, the averaged plasma pressure < p > is

divided by the strength of the magnetic field defining the dimensionless parameter:

β =
< p >

〈B2/2μ0〉 . (2.19)

β strongly influences the behaviour of the plasma stabilities, as we will discuss
below.
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Table 2.1: Examples of instabilities relevant for TCV plasmas.

Driven by: Ideal Resistive
current gradient Kink mode Tearing mode
pressure gradient Ballooning mode
both gradients Internal kink (m = 1) mode

A similar figure of merit can be written in terms of the flux surface averaged
poloidal magnetic field Bp only,

βp =
< p >

〈B2
p/2μ0〉 (2.20)

It can be shown [6, 8] that βp is related to the diamagnetic properties of the
plasma. If βp < 1 the plasma is paramagnetic because the toroidal field is larger
than in vacuum, if βp > 1 the plasma is diamagnetic and the toroidal field is
smaller than in vacuum.

2.3 Magnetohydrodynamic stability

MHD theory has proven to provide a satisfactory description of plasma equilibrium
as well as instabilities with relatively low frequencies. In the MHD model, the
main destabilising forces in a tokamak are due to the gradients of the plasma
current density and pressure, which contain the free energy of the plasma. MHD
instabilities can be divided into ideal modes, which do not depend critically on the
plasma resistivity, and resistive modes which depend on the finite resistivity of the
plasma. A second frequent characterisation of instabilities is based on whether
the mode structure requires any motion of the plasma vacuum boundary (external
modes) or not (internal modes). In a helical magnetic field, each mode can be
characterised by its m and n mode numbers. In this case, m stands for the number
of wavelengths of the modes on the poloidal circumference, and n for the number
on the toroidal circumference. It may be seen that a geometrical resonance occurs
at the magnetic surface where q = m/n.

The magnetic shear is the main stabilising factor against geometrically resonant
perturbations in closed magnetic configurations. Magnetic field line bending and
plasma compression oppose to the perturbations, and thus help to stabilise the
magnetic configuration. Typical instabilities and their main source of free energy
are given in table 2.1.

In the following, only the MHD modes relevant for this thesis will be discussed.
The experimental observation of these modes and the analysis of their structure
and occurrence will be given in the second part of this thesis. A complete review,
derivation and discussion of the MHD modes may be found in [7, 6].



24 CHAPTER 2. MHD INSTABILITIES AND EQUILIBRIUM

2.3.1 Ideal instabilities: the internal kink mode

To describe the stability of ideal MHD modes the concept of potential energy δW
is used. The following energy principle may be formulated [6]: a plasma is stable
if the potential energy δW (	ξ) of the plasma and the magnetic field is positive for
any physically allowable perturbation 	ξ.

For low-β plasmas, the main destabilising factor is the radial gradient in the
parallel current. Since they minimise the field line bending, small mode numbers
are the most unstable. They are often referred to as kink modes.

For a circular, low-β plasma in the straight tokamak approximation, without a
conducting wall, the potential energy for a perturbation with a radial displacement
ξ(r)ei(mθ−nφ) is,

δW =
2πB2

0

μ0R0

(∫ a

0

[
r

(
dξ

dr

)2

+ (m2 − 1)ξ2

](
n

m
− 1

q

)2

rdr+[
2

qa

(
n

m
− 1

qa

)
+ (1 + m)

(
n

m
− 1

qa

)2
]

a2ξ2
a

)
. (2.21)

The role of ξa and the sign of n/m−1/qa in equation 2.21 lead to different stability
properties of internal and external modes.

Since in first approximation the perturbation of an internal kink mode does
not affect the plasma boundary ξa, the second term on the R.H.S. of equation 2.21
can be neglected. For m > 1 the remaining integral is always positive, and the
internal mode is generally stable. It can be shown that the m = 1 mode on the
q = 1 surface is marginally stable, and pressure effects need to be included in δW .
It was shown by Bussac et al. [9] that for simple current profiles toroidal effects
such as the coupling to the m± 1 sidebands stabilise the internal kink mode up to
βp,1 ≈ 0.3. Here, the poloidal beta is defined as,

βp,1 =
< p >1 −p(r1)

Bp(r1)2/(2μ0)
(2.22)

where <>1 denotes a volume average inside the q = 1 surface, and r1 the ra-
dial position of the q = 1 surface. However, the shaping of the poloidal plasma
cross-section can largely modify the critical value of βp,1. Shaping effects will be
discussed in chapter 6.

The internal kink mode can generally be avoided by maintaining q0 > 1 (the
suffix 0 indicates values on the magnetic axis). Although these profiles are MHD
stable, operating Ohmically heated plasmas at q0 > 1 is experimentally rather
complicated, owing to the conductivity dependence on the temperature, σ ∝ T

3/2
e ,

which leads to a peaking of the current profile. In TCV q0 > 1 may be maintained
by applying strong EC current drive (see chapter 7).

For high-β plasmas pressure terms have to be taken into account in δW . For
sufficiently large β, internal kink modes with m > 1 can be destabilised. These
modes are sometimes referred to as infernal modes. In TCV, infernal modes are
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held responsible for disruptions and rapid collapses in plasmas with extremely
high and localised pressure gradients (see chapter 7 and [10]).

Even if a movement of the plasma boundary is allowed, modes with a resonant
surface inside the plasma, m/n < qa, result in the low-β approximation in a pos-
itive energy functional (equation 2.21), and are always stable. Since q increases
outside the plasma, modes with resonant surfaces outside the plasma, m/n > qa,
can be unstable. In particular, plasmas with m > 1 and current profiles with large
current gradients close to the edge are unstable. In this case the current has to be
sufficiently peaked in the centre. For example in the case of the so-called Shafranov
profiles [11],

j(r) =

{
j0 for r < r0,
0 for r0 < r < a

(2.23)

the stability requirement is
qa > [q0] + 1 (2.24)

where [q0] represents the integer part of q0. This imposes an upper limit to the
total current Ip ∝ 1/qa, which depends on the central current density j0 ∝ 1/q0.

A profile independent current limit is imposed by the external m = 1 mode.
For a rigid displacement, ξ = const., the integral term on the R.H.S. of equation
2.21 vanishes. The resulting potential energy is,

δW =
4π2B2

0

μ0R0
n

(
n − 1

qa

)
a2ξ2

a, (2.25)

which depends solely on the total current, and not on the profiles.
The most restrictive stability requirement is found for n = 1, and leads to the

well-known Kruskal-Shafranov limit, qa > 1. In practice, the internal kink prevents
the central safety factor from significantly decreasing below 1. In agreement with
equation 2.24, the appearance of a 2/1 kink-mode imposes the operational current
limit, qa ≥ 2. As we will see in chapter 5, owing to the toroidal coupling between
the external kink and internal resistive modes [12] (see section 2.3.2), this current
limit becomes even more stringent in case of circular plasmas, effectively imposing
the limit, qa ≥ 3. Fortunately, this limit can be overcome by proper plasma shaping
during the plasma current rise. It is however possible to suppress the external
kink mode by moving an ideal conducting wall sufficiently close to the plasma
boundary.

2.3.2 Resistive Instabilities

When the finite resistivity of the plasma is taken into account, the ideal constraint
of the flux frozen with the plasma fluid is broken. The magnetic field lines may
diffuse through the plasma, and new states with lower potential energy become
accessible. In particular the magnetic structure is allowed to change topology by
breaking and reconnecting the magnetic field lines. These magneto-fluid motions
are very common in tokamak plasmas, and lead to the formation of the so-called
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magnetic islands. Rapid reconnection can only occur in the vicinity of a magnetic
surface, where the perturbation is resonant and produces the magnetic island con-
figuration.

It is convenient to discuss the magnetic field line geometry in the helical co-
ordinate system (êρ, êζ , êη), where êη has the same helicity of the magnetic field
on the resonant surface, êρ is perpendicular to the magnetic flux surface, and êζ

is perpendicular to both directions. When the perturbation has a single helicity
(m, n) there still exists an ignorable coordinate, the helical coordinate η.

In the cylindrical approximation the radial flux coordinate ρ can be replaced
with the minor radius r. The equilibrium field close to the resonant magnetic
surface can be written as:

Beq = Bη = −
(

Bθ
q

q′

)
s

(r − rs) (2.26)

where rs is the radial position of the resonant surface s, and ′ denotes deriva-
tive with respect to r. A perturbation current along the field line causes a radial
perturbation of the magnetic field. Supposing a single harmonic we can write,

Br = B̂r sin(mζ) (2.27)

with mζ = mθ − nφ. The superposition of the equilibrium and the radial pertur-
bation fields reveals the new topology [6].

A differential equation for the field line in the (r, ζ) plane is:

−
(

Bθ
q′

q

)
(r − rs)dr = rsB̂r sin(mζ)dζ. (2.28)

By integration we obtain the field line equation:

(r − rs)
2 =

w2

8
(1 − cos(mζ)) (2.29)

where we have defined the island width w as

w = 4rs

√
B̂r

mBθs
. (2.30)

Figure 2.2 illustrates the magnetic island geometry. Inside the island, the mag-
netic field lines lay on a set of helical magnetic surfaces with the magnetic centre
indicated as the O-point. The magnetic surface that bounds the island is called
separatrix. Two separatrices meet at the X-point.

Taking into account the field perturbation 	B1 and the velocity perturbation 	v1,
equation 2.9 can be written in the following form:

∂ 	B1

∂t
= (∇ 	B)	v1 +

η

μ0
� 	B1 (2.31)
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Figure 2.2: Sketch of the magnetic island resulting from a radial perturbation of the
magnetic field. The graphical definition of the island width is shown.

or, expressed in flux coordinates for the radial component,

γψ + B′
θ

(
m − nq

m
vr,1

)
=

η

μ0

�ψ (2.32)

where γ is the growth rate. The second term in the L.H.S disappears on the rational
surface, and the term on the R.H.S. dominates despite the assumption of small
resistivity. The integration of equation 2.32, and the matching of the perturbation
between the resistive layer and the “ideal” layer outside the separatrix, allows us
to describe the growth of the island:

dw

dt
≈ η

2μ0

Δ′

d
w (2.33)

where we define Δ′ as the jump of the logarithmic derivative of the radial field
across the resistive layer,

Δ′ =
B′

r,1(rs + d/2) − B′
r,1(rs − d/2)

Br,1(rs)
(2.34)

with d the width of the resistive layer. From equation 2.33 we see that Δ′ deter-
mines whether the mode is stable (Δ′ < 0) or unstable (Δ′ > 0).

However, the linear theory used to derive equation 2.33 can not explain the
experimental observation of modes with saturated amplitudes. Therefore non-
linear effects have to be considered. It was shown by Rutherford [13] that once
the island grows as large as the resistive layer a force arises that opposes to the
plasma flow reducing the growth of the mode.

Taking into account modifications of the equilibrium current profile as well as
the island current profile leads to a quasi-linear decreasing of the driving term
[14]. The island width evolves according to,

dw

dt
= 1.66

η

μ0
(Δ′ − αw) (2.35)
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with α being a factor that depends on plasma local parameters.
In high-β plasmas various effects, such as the so-called bootstrap drive due to

perturbations of the bootstrap current, modify the stability of the tearing mode,
referred to as neoclassical tearing mode (NTM) in this regime. The growth of NTMs
is described by the generalised Rutherford equation [15]:

τR

rs

dw

dt
= rsΔ

′ + rsβpaBS
w

w2 + w2
d(νe)

(2.36)

where τR is the resistive time on the resonant surface. The first term on the R. H. S.
is the drive of a convectional tearing from the equilibrium current profile. The
second term describes the destabilising effect of the perturbed bootstrap current
jBS, being aBS = a2LqjBSBpol/p, with Lq = q/q′ the scale length of the safety factor
profile, and a2 a numerical factor. The factor wd gives a threshold island width
below which the flattening of the pressure profile, and thus the loss of bootstrap
current, is reduced.

An interesting property of NTMs is that they can grow even if Δ′ < 0. The
growth however requires a minimum island size, a so-called seed island. Such an
island can be created by MHD activities such as sawtooth oscillations.

NTMs cause a serious limitation to the achievable plasma pressure and must
thus be avoided or suppressed.



Chapter 3

The TCV experiment

This chapter briefly describes the main features of the Tokamak à
Configuration Variable (TCV), such as the plasma shaping and elec-
tron cyclotron resonant heating systems, and the main plasma diag-
nostics used in this thesis. The plasma equilibrium reconstruction,
which is at the basis for the interpretation of the plasma parameter
measurements, is also introduced.

3.1 The Tokamak à Configuration Variable

The Tokamak à Configuration Variable (TCV) at the Centre de Recherches en Physique
des Plasmas (CRPP) is a medium size tokamak with a standard aspect ratio 1/ε =
R0/a � 3.5, with R0 and a being respectively the major and minor radius of the
toroidal vacuum vessel. The main TCV parameters can be found in Table 3.1. TCV
has been explicitly designed to allow the maximal flexibility in producing different
plasma shapes and configurations, its aim being the study of the effects of plasma
shaping on confinement and stability.

The flexibility in plasma shaping is achieved by 16 independently controlled
poloidal field coils which are mounted outside the vacuum vessel (coils E1-8 and
F1-8 in figure 3.1). In particular, the operation at high plasma elongation requires
a good control of the vertical plasma position, which is achieved by a combination
of passive elements and active feedback control. The toroidally continuous, highly
conducting vessel wall acts as a passive shell allowing eddy currents which oppose
changes in the equilibrium.

TCV also features a powerful and flexible Electron Cyclotron Resonance Heat-
ing (ECRH) system, which is optimal to study plasmas with electron temperature
much larger than the ion temperature: Te � Ti.

As much as 90% of the internal surface of the stainless steel vacuum vessel is
covered with 24 mm thick graphite tiles, designed to withstand the large power
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Table 3.1: Main parameters of the TCV machine.

Parameter Symbol Value
Major radius R0 0.88 m
Minor radius a 0.25 m
Aspect ratio 1/ε ≈ 3.5
Vacuum vessel elongation κTCV 2.9
Vacuum vessel resistance ΩTCV 45 mΩ
Toroidal field on axis B0 ≤ 1.54 T
Plasma current Ip ≤ 1.2 MA
Loop voltage Vloop ≤ 10 V
Additional heating power (ECH) PECRH,X2 2.8 MW

PECRH,X3 1.4 MW
Discharge duration < 4 s

Table 3.2: Typical parameters in Ohmic and ECRH TCV plasmas. The 0 suffix indi-
cates values at the plasma centre.

Parameter Symbol Value
Central electron density ne0 1–20 · 1019 m−3
Central electron temperature Te0 ≤ 1 keV (Ohmic)

≤ 10 keV (ECRH)
Central ion temperature Ti0 ≤ 1 keV (Ohmic)

≤ 0.5 keV (ECRH)
Electron cyclotron frequency fce = eB/(2πme) ≈ 41 GHz
Elongation at the edge κa 1–2.82
Triangularity at the edge δa (-0.8)–(+0.9)
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Figure 3.1: Coil configuration showing the transformer windings (A,B,C,D), the
poloidal field coils (E,F) and the fast internal coils (G). The magnetic configuration is
measured with external flux loops (x) and internal poloidal field coils.

fluxes (in particular during the ERCH) and minimize plasma contamination by
metallic impurities. As a consequence, carbon is the main impurity in TCV plas-
mas.

The TCV flexibility allows us to obtain different plasma shapes and configura-
tions (see figure 3.2), not only from one discharge to another, but during a single
discharge. TCV has produced a wide range of limited and diverted plasmas. Low
(L-mode) and High (H-mode) confinement plasmas are routinely produced in both
limited and diverted configurations with purely Ohmic or Electron Cyclotron (EC)
heating (see Table 3.2). More recently, plasmas with internal transport barriers
have been produced using the Electron Cyclotron Current Drive (ECCD) capabil-
ities of the ECRH system. Plasma currents up to 1 MA have been attained in the
Ohmic regime, and purely wave currents up to 210 kA have been driven with EC
waves.
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Figure 3.2: TCV shapes
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3.1.1 Electron cyclotron heating system

X3 system (118GHz)

X2 system (82.7GHz)

Launcher 2, 3, 5, 6

Launcher 1, 4

Figure 3.3: Poloidal view of the TCV ECRH system

The EC system consists of six 82.7 GHz gyrotrons coupled in two clusters for
heating at the second harmonic of the electron cyclotron resonance, and a cluster
of three 118 GHz gyrotrons for heating at the third harmonic.

The nominal power of each 82.7 GHz gyrotron is 0.5 MW, resulting in a total
of 3 MW of nominal heating power at the second harmonic (∼ 2.7 MW is deliv-
ered to the plasma) with a maximum pulse length of 2 s. The electromagnetic
power is transmitted through high efficiency corrugated wave guides connected to
a launcher. There are two second harmonic launchers on the equatorial ports (1,
4 with reference to figure 3.3) and four on the upper lateral ports (2, 3, 5, 6).

Each launcher has two degrees of freedom, one in the poloidal direction, and
one in the toroidal direction. The poloidal injection angle may be varied by means
of a steerable mirror during the discharge, which allows us to change the power
deposition location. The toroidal angle may be varied in between discharges to
allow for different parallel wave vectors which change the amount and/or the
direction of the current drive. The polarisation of each beam can be adjusted to
couple to the extraordinary “X” mode ( 	E ⊥ 	B) or the ordinary “O” mode ( 	E// 	B).
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Since the absorption in the second harmonic X-mode is better than in the second
harmonic O-mode, the polarisation of the beams is usually set to X-mode. In the
following we will refer to the X-mode as X2, in case of heating at the second
harmonic, and as X3 for heating at the third harmonic.

The cut-off density (see section 1.4) for the X2 wave is ne ∼ 4·1019m−3. In order
to extend the accessible density up to ne ∼ 1.1 ·1020m−3, the 118 GHz gyrotrons for
X3 heating were recently added. A common launcher for the 118 GHz gyrotrons
is located at the top of the vessel to maximise the path of the microwave beam
along the resonance surface in the plasma, and thus maximise the absorption.
Each gyrotron provides 0.46 MW and a total of 1.4 MW of heating power with a
maximum pulse length of 2 s. The injection of the heating beam from the the low
or high field side with respect to the resonance is determined by the position of a
steerable mirror. Since the absorption efficiency is extremely sensitive to the angle
of injection, especially at low power, a feedback system is required to maintain the
optimal angle during the discharge [16].

3.2 TCV diagnostics

TCV is equipped with a comprehensive set of diagnostics, most of them offering
a complete coverage of the highly elongated vacuum vessel. Standard diagnostics
in TCV include the Thomson Scattering (TS) system, for measuring the electron
temperature and density profiles, a multichannel far-infrared (FIR) interferometer
measuring the line-integrated electron density, and several multichannel systems
for plasma radiation measurement: a soft X-ray (X-TOMO) tomographic system, a
multi-wire soft X-ray proportional detector (MPX), various foil bolometers and a
diode bolometric system, and several HFS and LFS EC radiometers.

The magnetic equilibrium is reconstructed using several sets of flux loops and
magnetic probes. A fast magnetic fluctuation diagnostic allows the monitoring of
MHD activity. TCV was recently equipped with a diagnostic neutral beam injec-
tor (DNBI) and a Charge eXchange Resonance Spectroscopy (CXRS) system, their
combined use allows us to obtain temperature and bulk velocity profiles of light
impurities.

In the following, only the diagnostics providing the measurements relevant to
this thesis work will be described.

3.2.1 Far-infrared interferometer (FIR)

The far-infrared interferometer measures the line-integrated density. It exploits
the fundamental dependence of the refractive index on the plasma density.

In the high frequency limit (ω � ωpe, ωce), the phase difference Δφ between
two laser beams, one travelling through the plasma and one travelling through air,
is proportional to the electron density integrated along the path of the beam,

Δφ =
λe2

4πc2ε0me

∫
ne(l)dl (3.1)
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Figure 3.4: Poloidal section of TCV with: a) 14 vertical chords of the FIR diagnostic.
The red chord (#9) provides the measurement of the central density; b) 25 viewing
chords of the Thomson scattering diagnostic. The dots mark the volume from which
the scattered light is collected.

where λ is the laser wavelength, and the line-integrated density n̄e is given by,

n̄e =
1

L

∫
ne(l)dl. (3.2)

where L is the length of the observation chord.
In TCV the FIR measures n̄e along 14 vertical chords (figure 3.4) and is equipped

with a 214.5 μm wavelength laser. This diagnostic is of fundamental importance
for the density control during TCV operation. A feedback loop controls the injec-
tion of the neutral gas by comparing the measured central density (from the FIR
chord #9 at R=0.9 m) with the density required by the operator.

3.2.2 Thomson scattering diagnostic (TS)

The TS diagnostic is based on the spectral analysis of the light scattered by free
electrons in the plasma. If the wave vector ki of the input wave is sufficiently large,
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yielding kiλD � 1 (with ΛD being the Debye length), particle correlations can be
neglected, and the scattered power is the incoherent sum of powers from single
electrons. The scattered field from a single electron moving with a velocity 	ve has
a frequency,

ωs = ωi +
(
	ks − 	ki · 	ve

)
(3.3)

which is actually the Doppler shifted frequency with respect to the input wave
of frequency ωi. In the non-relativistic approximation and for a monochromatic
incident wave, the frequency spectrum for a fixed scattering geometry is directly
proportional to the one-dimensional velocity distribution in the direction along
	k = 	ks−	ki. Assuming a Maxwellian electron distribution, the electron temperature
can be obtained from the width of the measured spectrum. The intensity of the
scattered light is proportional to the electron density. Thus, density measurements
can be obtained by integrating the signal over the width of the spectrum.

The TS system on TCV uses three lasers which operate at a pulse rate of 20
Hz. The beams are combined to form a closely spaced fan within a poloidal plane.
From the side of the detection optics this fan appears as a single beam (see figure
3.4b)). Using alternate triggering of the lasers, higher sampling rates (60 Hz)
can be obtained. Twenty-five viewing chords are distributed on three horizontal
ports. The scattered light is analysed with filter polychromators with three or four
spectral channels, which have been optimised for temperatures in the range 50 eV
– 20 keV. The TS diagnostic is calibrated against Raman scattering from molecular
nitrogen. The electron density measurement is cross-checked by comparing the
line-integrated data to those obtained from the FIR interferometer.

3.2.3 Soft X-ray emission measurements

The soft X-ray emission of a plasma originates from the ion-electron and electron-
impurity Bremsstrahlung, as well as from recombination radiation.

The Bremsstrahlung spectrum essentially depends on the density, temperature
and impurity content. For a Maxwellian electron distribution of temperature Te,
and ions of charge Z, the continuous Bremsstrahlung spectrum is,

dN

dEX

∝ Z2nenZ
gffe−EX/Te

EX

√
Te

(3.4)

with N being the number of emitted photons of an energy EX , n the specie density,
and gff the Maxwell-averaged Gaunt factor.

The calculation of the electron-impurity-ion recombination radiation requires
detailed knowledge of the atomic structure of the impurity ion and usually domi-
nates 3.4.

The TCV soft X-ray tomographic system consists of 10 linear detector arrays,
each equipped with strips of 20 silicon diodes, and 47 μm thick beryllium absorp-
tion foils in front of each array. The arrays are distributed in 9 ports of a single
poloidal sector to give full poloidal coverage (figure 3.5a)). The resulting 200 lines
of sight are used to perform a tomographic reconstruction of the 2D emissivity for
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Figure 3.5: View of the experimental setup of the TCV soft X-ray tomography system.

virtually all possible plasma configuration on TCV, resulting in a spatial resolution
of 3-4 cm and an acquisition rate up to 80 kHz [17].

A compact 64 channel Multiwire Proportional X-ray (MPX) detector is installed
on a helium filled slot-hole camera and views the plasma through two beryllium
windows (in total 100 μm thick). It measures soft X-ray emission in the 1–30
keV range with a radial resolution of about 8 mm. An additional 308 μm thick
aluminium foil may be used to observe higher energy photons.

The MPX detector consists of a plane of parallel anode wires placed between
two cathode plates. The anode plane has 64 independent sensitive wires. A con-
stant negative voltage is applied to the cathodes. Each sensitive wire collects the
electrons arising from photo-ionisation, and produces a continuous output current
proportional to the incident x-ray intensity. The sensitive wires are connected to
amplifiers.

Since the X-ray emissivity has a strong dependence on the electron temper-
ature, density, and impurity mixture, the X-ray signals are very sensitive to the
presence of MHD instabilities. In particular they allow the determination of the
sawtooth inversion radius and the identification of the poloidal mode structure
of the helical perturbations [17]. In particular, the high spatial resolution of the
MPX camera allows the detection of the small scale structure of the perturbations.
The soft X-ray diagnostics mainly measure parameters from the plasma centre,
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and therefore provide complementary information to the magnetic measurements,
which are described in the next section.

3.2.4 Fast edge magnetic perturbation measurements (Mirnov
system)
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Figure 3.6: Arrangement of the TCV magnetic probes in poloidal and toroidal arrays.
(a): the 38 probes of each poloidal array are numbered clockwise starting on the
equatorial mid-plane on the high field side of the vessel. The poloidal locations of
the six toroidal arrays are indicated by the dashed lines. (b): full toroidal arrays
consisting of 17 and 8 probes are located respectively on the LFS and HFS.

Magnetic pick-up coils measure the time derivative of the magnetic flux, which
induces the voltage,

Up = − ∂

∂t

∫
probe

	Bd 	A. (3.5)

with A being the surface perpendicular to the main probe axis. Assuming that the
variations of the magnetic field within the probe volume are small, the measure-
ment gives the time derivative of the magnetic field along the axis of the probe.
Since (	∇× δ 	B)r = 0 in the absence of a radial current density, the poloidal pertur-
bation field outside the plasma, δBθ, is larger than the toroidal perturbation field,
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δBφ, typically by one order of magnitude. An alignment of the probes along the
poloidal direction is therefore well suited for the analysis of the magnetic fluctua-
tions.

The magnetic probes are arranged in different toroidal and poloidal arrays for
optimal coverage. There are 6 toroidal arrays: 3 on the HFS with 8 equally spaced
probes for each array, and 3 on the LFS with 16 equally spaced probes for each
array (figure 3.6b). The three pairs of toroidal arrays are located at different
vertical positions, respectively –35, 0 and +35 cm (figure 3.6a). Furthermore, the
array on the LFS is complemented by an additional (17th) probe in sector 16, thus
increasing the resolution of toroidal mode numbers up to n=16. Arrays located at
two different vertical positions can not be simultaneously acquired.

There are 4 poloidal arrays with 38 magnetic probes each, located in sectors
3, 7, 11 and 15. They are toroidally separated by 90◦. The probes are evenly dis-
tributed around the poloidal circumference as shown in figure 3.6a). The poloidal
position is numbered clockwise starting on the equatorial mid-plane of the HFS of
the vessel. Note that these probes are neither poloidally equidistant nor equally
oriented with respect to the poloidal magnetic field. The inhomogeneities in the
probe geometry has to be carefully taken into account in the interpretation of the
MHD mode structure, as described in the next chapter. Currently, only one poloidal
array is used for fast measurements.

The magnetic probes are mounted on the inside of the vacuum vessel, and they
are protected from the plasma by graphite tiles. The use of poloidal field measure-
ments for real-time control requires an absolute calibration with an uncertainty
less than 1%. The probes are calibrated using the well-defined magnetic field of
a Helmholtz coil in the range 100 Hz – 100kHz. The analog signals are amplified
in two stages: close to the tokamak, and after the long transmission line in the
acquisition room.

3.2.5 CXRS measurements of impurity temperature and rota-
tion velocity

The first wall of TCV being almost completely covered by carbon tiles, carbon
constitutes the main impurity in TCV deuterium discharges. The impurity tem-
perature and toroidal velocity are measured by Charge eXchange Recombination
Spectroscopy, analysing the fully ionised carbon (CVI) H-like 529.1 nm emission
line induced by the DNBI [18, 19]. The experimental setup is shown schematically
in figure 3.7 (the convention on the directions of the plasma current and toroidal
field is also shown).

The CXRS diagnostic is arranged with 8 horizontal viewing chords crossing the
neutral beam. The observation points, corresponding to the intersection between
the diagnostic chords and the neutral beam, are located at the midplane of the
vacuum vessel, covering the LFS profile from R=0.885 m to R=1.065 m. They
have 2.5 cm radial resolution (figure 3.8), with a 1 cm uncertainty mainly due to
the radial extent of the emitting volumes.

During plasma discharges, the DNBI power is modulated in a sequence of



40 CHAPTER 3. THE TCV EXPERIMENT

Figure 3.7: Experimental setup of the CXRS system.

pulses, in order to trace the background spectrum due to passive charge exchange
(CX) emission. The CXRS temporal resolution is synchronised to the beam duty
cycle, and is usually set to 90 (45) ms, depending on the level of the active signal.
During the duty cycle, the CCD camera is exposed to the plasma emitted light in
three 30 (15) ms time windows. This results in three CX spectra: two without the
neutral beam, and one with the beam switched on. The 30 (15) ms ‘integration
time’ has been chosen to collect enough statistics. This time is generally longer
than the sawtooth oscillation period of Ohmic TCV discharges (2–12 ms); each CX
spectrum is therefore averaged over several sawtooth cycles.

A typical emission spectrum and intensity, acquired on the CCD detector during
a beam pulse, are shown in figure 3.9. Once the passive background is subtracted
from the NBI-enhanced spectrum, the resulting active component is fitted with a
single or multiple Gaussian model, taking into account the spectrometer instru-
mental function. The carbon temperature and toroidal velocity can be deduced
from the spectral line broadening and Doppler shift.



3.2. TCV DIAGNOSTICS 41

0.4 0.6 0.8 1 1.2 1.4
0.8

0.6

0.4

0.2

0

0.2

0.4

0.6

0.8
#27484 t=0.5s

R [m]

Z
 [m

]

Figure 3.8: Experimental view points of the CXRS system. Toward the plasma edge,
the compression of the magnetic surfaces reduces the spatial resolution.

3.2.5.a Effects of the neutral beam (DNBI) on toroidal rotation

In part III of this thesis we study the toroidal rotation of Ohmic L-mode plasmas.
To this aim, it is important to study a possible beam effect on the plasma rotation.

The neutral beam is injected at an angle of 11.25◦ with respect to the radial
direction (see figure 3.7), and is composed of different hydrogen species with
different energies: H (50 keV), H2 (25 keV) and H3 (16.6 keV). The total injected
power (up to 80 kW modulated in 30 ms pulses) is relatively small compared to the
TCV Ohmic power (0.25–1 MW) [18]. Most significantly, the calculated absorbed
power is only a fraction of the injected power, ranging from 20% at 〈ne〉 >=1 · 1019

m−3 to 78% at 〈ne〉 =6·1019 m−3.
Considering a deuterium plasma with carbon impurities only and a beam pulse

length of 30 ms, the estimated beam induced rotation is positive (co-current di-
rected) and smaller or close to 1 km/s [19], which is negligible compared to the
typically observed experimental values. Experiments using 180 ms long DNBI
power pulses have demonstrated the existence of a beam effect on plasma rota-
tion (figure 3.10).

The plasma rotation is monitored by measuring the frequency of the sawtooth
precursors oscillations visible on the soft X-ray signals. As expected with a co-
current DNBI beam (figure 3.7), the natural counter-current rotation of the plasma
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Figure 3.9: Typical intensity evolution (a) and spectrum (b) of the observed CVI
529.1 nm line. The intensity peaks correspond to acquisition times during DNBI
pulses (a). The CX spectrum induced by the neutral beam (active spectrum) is shown
in (b). The background component is interpolated from the nearest beam-off phases.

(see chapter 9) is reduced when the beam is switched on, resulting in a modulation
of the frequency of the sawtooth precursor oscillations. The amplitude of the
modulation is approximately of 1 kHz, which corresponds to ∼ 6–7 km/s.

In order to extrapolate the effect of the shorter 30 ms pulses usually applied
on TCV, we fit the modulated sawtoooth precursor oscillation frequency with ex-
ponential functions of decaying time τ (see figure 3.10),

ωON(t) = ωf + Δωe−t/τON (3.6)
ωOFF(t) = ωf − Δωe−t/τOFF (3.7)

where ωf and Δω are the final frequency and amplitude of the modulation. The
suffix ON (OFF) indicates time windows with the beam switched on (off). The fit
yields τON ∼ τOFF ∼ 60–90 ms.

Therefore the induced beam velocity for a Δt = 30 ms pulse is � 1–2 km/s,
which is slightly higher than the one calculated from the beam attenuation. It
should be noted, however, that the measured induced velocity is taken at the
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Figure 3.10: Frequency of the sawtooth precursor oscillations (black dots) ω modu-
lated by long (180 ms) NBI pulses at maximum power (in blue). The frequency is
fitted with an exponential function of decaying time τ ∼60-90 ms (in red).

plasma centre where the beam power absorption is maximum (and thus the lo-
cal induced rotation), while the theoretical induced velocity is averaged over the
plasma volume.

No other external momentum source is applied to TCV plasmas. Counting rate,
wavelength calibration and background substraction represent the main sources
of error in velocity measurements. The wavelength calibration is obtained from
a reference Ne spectrum, acquired after each TCV discharge, to compensate for
effects of thermal and mechanical drifts. The total uncertainty on the measured
toroidal velocity is 5 km/s at the plasma edge (where the carbon density is low)
and 2 km/s at the core (where beam attenuation becomes significant).

3.3 Equilibrium reconstruction

To find a tokamak equilibrium reconstruction, one has to solve the Grad-Shafranov
equation,

R
∂

∂R

(
1

R

∂ψ

∂R

)
+

∂2ψ

∂R2
= −μ0R

2p′(ψ) − I(ψ)I ′(ψ) (3.8)

where ψ is the poloidal stream function, p(ψ) the plasma pressure and I is equal
to RBφ. The ′ sign denotes differentiation with respect to ψ. The arbitrary source
functions p′(ψ) and I ′(ψ)I(ψ), are chosen to reproduce the measurements as ac-
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curately as possible. However, the problem is ill posed, since p′(ψ) and I(ψ) are
functions of ψ, whose spatial dependence is not known until equation (3.8) is
solved. Consequently, an iterative scheme has to be employed.

The TCV equilibria are reconstructed using the Grad-Shafranov solver LIUQE
[20]. The standard reconstruction, calculated immediately after each discharge,
uses the magnetic measurements from the flux loops, the poloidal field probes
shown in figure 3.1, and measurements from a diamagnetic loop to constrain the
plasma pressure. If available, additional measurements may improve considerably
the accuracy of the reconstruction. Some examples are: the Thomson and CXRS
pressure profiles, inversion surface of sawteeth obtained from tomographic recon-
struction from the soft X-ray and/or some internal measurement of the poloidal
magnetic field in order to constrain the current density profile.

In LIUQE, the source functions are expanded into a series of pre-defined base
functions,

p′ =

Np∑
n=0

anUn(ψ) (3.9)

II ′ =

NT∑
n=0

bnUn(ψ) (3.10)

where an and bn are constants to be determined. The base functions Un are defined
as functions of the normalised poloidal flux φ = (ψ−ψa)/(ψ0 −ψa), yielding φ = 0
at the edge and φ = 1 on axis,

U0 = 1 (3.11)
U1 = φ (3.12)
U2 = 1 − (2φ − 1)2 (3.13)
U3 =

[
1 − (2φ − 1)2

]
(2φ − 1). (3.14)

The optimal number and combination of source functions depend on the proper-
ties of the analysed equilibria and on the available measurements. An estimate of
the accuracy of the reconstruction can be obtained by comparing the flux surfaces
with measured plasma parameters such as the soft X-ray emissivity, temperature
or density, which are assumed to be constant on flux surfaces.

If the position of an MHD mode is determined with an independent measure-
ment, it may also be compared with the position of the resonant q = m/n rational
surface (see section 4.1.1) given by the equilibrium reconstruction. It is usually
found that the accuracy of the reconstruction degrades in the plasma core, toward
the magnetic axis.



Part II

Plasma instabilities in TCV





Chapter 4

Analysis of MHD fluctuations

This chapter describes the main techniques for the analysis of plasma
long wavelength (macro) instabilities. It is shown how the main
mode characteristics are extracted from perturbations of plasma
quantities. Such quantities include the magnetic field and the soft
X-ray emission. In particular the poloidal and radial structure of the
perturbations is compared with the analytical and numerical models
of magnetic islands. From the comparison, island widths and radial
positions can be obtained.

Macro or MHD instabilities have long wavelengths, typically of the order of the
plasma size. Such instabilities perturb the equilibrium magnetic field. These per-
turbations usually extend to the plasma edge, where they can be detected with
magnetic pick-up coils. Owing to the rotation of the plasma they are usually ob-
served as fluctuations in the laboratory reference frame. The perturbation of the
magnetic surfaces also affects other quantities, such as the temperature, density or
soft X-ray emissivity and can therefore be observed with corresponding diagnostics
which provide a sufficient temporal and spatial resolution.

4.1 Perturbation of the magnetic field

The magnetic probes measure the temporal variations of the poloidal magnetic
fields, δB. Since the typical frequencies of MHD instabilities are in the kHz range
and higher, they can be easily separated from the slower changes of the equilib-
rium magnetic field.
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Figure 4.1: Magnetic field line geometry of a diverted discharge (q95=2.5). a) The
flux contours in the poloidal plane show the plasma shape. The geometry of the
field lines on the flux surfaces is represented by the contours of the straight field line
coordinate θ∗, indicating the advance of field lines in the poloidal direction for equal
toroidal lengths. b) The field lines of the q=2 flux surface are shown in the unfolded
θ−φ plane (solid line). Replacing the polar angle θ by θ∗ results in a straight magnetic
field line representation (dashed).

4.1.1 Flux coordinate, magnetic field lines and decomposition
into modes

The geometry of the magnetic perturbations is strongly linked to the geometry of
the equilibrium field. It is thus important to study in detail the field line geometry
in a general tokamak equilibrium.

The magnetic field lines of the equilibrium field lay on nested flux surfaces (sec-
tion 1.3.2) with toroidal topology, which are usually described by the coordinates
ϕ and θ. Owing to the 1/R decay of the toroidal field, the angle of a field line with
respect to the toroidal direction is generally smaller on the high-field-side (HFS)
than on the low-field-side (LFS). Hence the local pitch angle of the field line,

dθ

dϕ
=

	B · 	∇θ

	B · 	∇ϕ
(4.1)

is not constant on a flux surface. The pitch angle also decreases at the top and
bottom of elongated plasmas as well as in the vicinity of an X-point, where it
approaches zero. The field line geometry of a diverted plasma is shown in figure
4.1.

In order to exclude the effect of toroidicity and shaping the local pitch angle can
be made a flux function with a change of coordinates which allows the magnetic
field to be expressed in terms of a flux representation:
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	B = 1/2π
(

	∇Ψp × 	∇ϕ + 	∇Ψt × 	∇θ∗
)

. (4.2)

By recalling the definition of the safety factor (equation 1.19) it can be seen by
a direct calculation that the local pitch angle is now constant on a flux surface and
equal to 1/q(r). The so-called straight-field-line coordinate function θ∗(θ, ψ) can
be obtained by multiplying the representation of an axisymmetric magnetic field,
	B = I(ψ)	∇ϕ + 	∇ψ × 	∇ϕ, with 	∇θ∗ and substituting into equation 4.1 results in,

	∇ψ × 	∇ϕ · 	∇θ︸ ︷︷ ︸
J

·∂θ∗

∂θ
=

I(ψ)

qR2
. (4.3)

The mixed product of 	∇ψ, 	∇ϕ and 	∇θ on the left hand side of equation 4.3 can
be identified as the Jacobian J of the transformation of the toroidal coordinates
(ψ, θ, ϕ) into cylindrical coordinates (R,ϕ,Z). It can be simplified by using toroidal
symmetry and the identity of the toroidal coordinate [21],

J =

∣∣∣∣∣∣
∂ψ/∂R 0 ∂ψ/∂Z

0 1 0
−Z/r2 0 (R − R0)/r

2

∣∣∣∣∣∣ =
∂ψ

∂R

(R − R0)

r2
+

∂ψ

∂Z

Z

r2
(4.4)

with r2 = Z2 + (R − R0)
2. Equation 4.3 can be integrated over θ,

θ∗(θ) =
I(ψ)

q(ψ)

∫ θ

0

dθ

R2J
+ C (4.5)

where the constant C can be determined by normalising θ∗(2π) to 2π. Since in flux
coordinates (Ψ, θ∗, φ) the magnetic field lines are straight lines in the θ∗−ϕ plane,
flux coordinates are sometimes called “straight field-line coordinates”.

We will see, in the next sections, the importance of the straight field-line coor-
dinates and of θ∗.

To extract coherent modes, the fluctuation measurements can be decomposed
into spatial Fourier components. The measurements are conveniently expanded in
the toroidal and (straight field-line) poloidal angles:

δB(	x, t) =
∑
m,n

δB̂m,n(ψ) cos(	k · 	x − Φm,n(t)) =
∑
m,n

δB̂m,n cos(mθ∗ − nϕ − Φm,n(t)).

(4.6)
Because of the toroidal symmetry each toroidal mode ΣmδB̂m,n cos(mθ∗−Φm,n(t))

is linearly independent and the expansion in ϕ is well justified. However, toroidic-
ity and plasma shaping couples several poloidal harmonics which are resonant on
different flux surfaces q = m/n. Mode coupling is often observed in tokamak ex-
periments and plays an important role in plasma stability as we will see in more
details later in this chapter and in chapter 5. A single helicity mode with amplitude
B̂m,n is often called an m/n mode with m and n the poloidal and toroidal mode
numbers respectively.

The phase Φm,n of the m/n mode generally varies with time,
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Φm,n(t) = ωm,nt + χm,n = 	km,n	vt + χm,n =
(m

r
vθ∗ − n

R
vϕ

)
t + χm,n (4.7)

where χm,n is a constant phase angle and 	v is the phase velocity of the magnetic
perturbation with respect to the probes and generally depends on the local 	E × 	B
and diamagnetic flows around the resonant surface.

4.2 Numerical techniques for the MHD mode analy-
sis

Various numerical techniques are used to analyse fast magnetic fluctuations and
to extract information concerning the temporal evolution and spatial structure of
coherent modes.

Most of the methods presented in this section are standard and were already
integrated in the tools for the analysis of high frequency fluctuations available in
TCV. A few original contributions were added during this thesis as highlighted in
the following. These methods can also be applied to other fluctuation measure-
ments. In the following an arbitrary fluctuation s(	x, t) is analysed.

4.2.1 Temporal analysis

The standard approach to the analysis of an oscillating signal is the Fourier trans-
form, which links the representation of a function in the time and frequency do-
mains,

S(ω) =

∫ ∞

−∞
s(t)eiωtdt. (4.8)

In an experiment a function s(t) is recorded at time t = tk, with k = 0, ..., N −1
at a finite sampling rate fs = 1/Δt over a finite time interval NΔt, therefore
leading to N discrete samples s(tk). The discrete form of the Fourier transform
(equation 4.8) is

S(fn) = Δt

N−1∑
k=0

s(tk)e
2πkn/N (4.9)

with fn = n/(NΔt). Equation 4.9 is periodic in n which is usually varied from
−N/2 to N/2 and corresponds to a spectral resolution up to the Nyquist frequency
fc = 1/(2Δt). If the signal s(tk) consists of purely real numbers, the Fourier coeffi-
cients of positive and corresponding negative frequencies are complex conjugates,
S(−fn) = S∗(fn). The original data set can be reconstructed from the Fourier
coefficients using the discrete form of the inverse Fourier transform,

s(tk) =
1

NΔt

N/2∑
n=−N/2

S(fn)e−2πkn/N . (4.10)
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Figure 4.2: Estimates of the power spectral density of an edge magnetic probe for a
discharge where a strong mode at 5.1 kHz was present . Several harmonics are also
clearly visible.

An estimate of the continuous power spectrum P (f) can be obtained from the
Fourier coefficients S(fn) = Sn and is defined at N/2 + 1 positive frequencies as,

P (0) =
1

(NΔt)2
|S0|2 , (4.11)

P (fn) =
1

(NΔt)2

[|Sn|2 + |S−n|2
]

, (4.12)

P (fc) =
1

(NΔt)2
|SN/2|2 . (4.13)

The normalisation used in equation 4.11 ensures that the sum over the N/2+1
values of P (fn) is equal to the mean squared amplitude of the function s(t). The
value P (fn) is an estimate of the average power over a narrow window centred
on fn. It is well known that, due to the finite length of the sampled time, this
technique leads to a significant leakage of signal power on the adjacent frequency
bins and thus to a broadening of the power spectrum [22]. The power estimation
also suffers from a large variance [22]. By partitioning the original data set in K
segments with an overlapping in the data points of one half of their length and
then averaging each power estimate for the fn frequencies, the deviation can be
reduced. The spectral leakage can be partially cured using the data windowing
technique [22, 23].
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The actual power spectral density (PSD) of the magnetic data is the result of
several contributions:

• The power spectra of the physical perturbations in the magnetic signal. In
general, it is composed of a background signal with a wide frequency range
that slowly decreases with fn, plus sharp peaks corresponding to the fre-
quency of coherent modes. The background spectrum is related to the mag-
netic plasma turbulence.

• Electronic noise and spurious pick-up of the electrical signals.

• Numerical noise and power spectral leakage as described above.

In figure 4.2 we compare the PSD from a magnetic probe during an Ohmic shot
where a strong MHD mode was present. Several harmonics of the main frequency,
f1, can be observed.

4.2.2 Spatial analysis and mode numbers

The Fourier coefficients at the mode frequency can be used to determine the mode
structure and thus identify the mode numbers. The analysis of the toroidal struc-
ture is simplified by the toroidal symmetry of a tokamak plasma, which allows
a straightforward Fourier decomposition into toroidal mode components. The
poloidal mode identification is more complex with toroidicity and poloidal shap-
ing affecting the structure of the perturbation. Varying the setup of the detectors,
such as the orientation and distance of the magnetic probes with respect to the
plasma, can also affect the measured poloidal structure of a mode.

As it was shown in section 4.2.1, the amplitude of the complex Fourier coef-
ficient allows the estimation of the spectral density, revealing the frequency f∗
of a distinct mode. In addition to the measurement of the signal power, the
Fourier coefficient at the mode frequency Y∗ = Y (f∗) also yields a phase angle
Φ∗ = arctan(�(Y∗)/�(Y∗)), which represents the phase of the mode ΔΦ(θ, φ, t) =
	k · 	x = mθ − nφ − Φm,n (compare the real part of the equation 4.10 and equation
4.6). Figure 4.3 shows the phases of the magnetic fluctuation measurements at
f∗ = 5.1 kHz as they were recorded with the toroidal array of the LFS (a) and
poloidal probe array in sector 3 (b). The phase variation of the Fourier coeffi-
cient Y∗ along the toroidal and poloidal direction can then be analysed (spectral
analysis) to extract the mode numbers m and n.

4.2.2.a Toroidal analysis

Owing to the toroidal symmetry of the plasma and of the toroidal probe array,
the phase difference ΔΦ between probes of the toroidal array increases linearly
with the toroidal angle φ of the probes. A linear fit of the type ΔΦ = nφ + φ0 is
thus sufficient to determine the toroidal mode number n. In figure 4.3(a) an n=1
structure is easily identified.
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Figure 4.3: Phase of the Fourier coefficient at f∗=5.1 kHz as a function of the toroidal
(a) and poloidal (b) angle for a quasi-circular plasma (κ = 1.12 and δ = 0). Fol-
lowing the phase of the toroidal and poloidal (θ = 0◦ on the HFS) direction reveals
the toroidal and poloidal mode number n=1 and m=2 respectively. The best-fit re-
sult with equation 4.17 is also shown (red) confirming the evaluation of the poloidal
mode number m.

The advantage of this spectral analysis is its close relation to the decomposition
of the signals into modes. To do so, it uses standard routines such as the Fast
Fourier Transform (FFT). However, its application is restricted to modes whose
oscillation frequency remains constant over the analysed time interval. Since this
time interval needs to be of a certain length to allow for a sufficient frequency
resolution, the present analysis has limited applicability.

Signals which are measured with complete toroidal arrays of equidistant de-
tectors, such as the toroidal arrays of magnetic probes on the TCV HFS and LFS
(section 3.2.4), can be directly decomposed into Fourier components of the Fourier
transform between φ and k (= n/R) space. The periodic boundary conditions
lead to discrete modes characterised by their mode numbers n. The measure-
ments s(tk, φl), taken at l = 1, ..., N toroidal locations, can be decomposed for any
sampled time tk yielding cosine and sine components for toroidal mode numbers
n = 0, 1, ..., N/2,

cn(tk) =
2

N

N∑
l=1

s(tk, φl) cos(nφl), (4.14)

zn(tk) =
2

N

N∑
l=1

s(tk, φl) sin(nφl). (4.15)

The Fourier components of the measurements can also be expressed by mode
amplitudes An(tk) =

√
cn(tk)2 + zn(tk)2 and corresponding phases Φn(tk) =

arctan(zn/cn),
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s(tk, φl) =
A0(tk)

2
+

N/2∑
l=1

An(tk) cos(nφl − Φn(tk)). (4.16)

In contrast to the spectral analysis, the toroidal mode analysis does not impose
any time behaviour and allows the measurement of the toroidal component An

with varying frequency. An thus characterises the amplitude of an MHD mode
with the toroidal mode number n and can be used, for example, to measure the
growth rate or the saturation level of a specific mode (equation 4.34 in section
4.4.3). Owing to the axisymmetric geometry of the tokamak plasma, each toroidal
component of the instabilities is linearly independent, but it may contain simulta-
neously several poloidal harmonics. The temporal derivative of the phase Φn(tk)
allows the determination of the instantaneous frequency and the direction of prop-
agation of the mode.

4.2.2.b Poloidal analysis

The identification of the poloidal mode number m from a poloidal probe array is
more complex. As can be seen from figure 4.3(b) the slope of the phase varies with
the poloidal position θ of the probes in plasmas with quasi-circular cross-section,
and such variation becomes even more evident in highly shaped plasmas. The
poloidal mode number can be obtained, in principle, by counting the multiples
of 2π of the phase shift along the entire poloidal circumference. However, this
operation can be complicated by a fast changing phase of modes with high poloidal
number and/or by the low signal amplitude caused by large distances between the
resonant surface and the magnetic probes (see section 3.2.4). In this case some
modelling for the phase-shift between probes ΔΦ(θ) is needed.

Under the assumption of field-aligned current perturbations localised around
a particular rational surface q = m/n (see section 4.4) the phase of the perturbed
magnetic field is constant on a field line and changes poloidally proportionally
to θ∗. The constant phase of the perturbation along a single field line was first
experimentally verified on the ASDEX tokamak [24]. Thus the phase variation
ΔΦ in the magnetic probe signal along the poloidal direction for an m-mode is
ΔΦ(θ) = mθ∗(θ). The function θ∗(θ) can be computed from equation (4.5) using
the equilibrium reconstruction from the LIUQE code. However, the use of an an-
alytical expression of θ∗ allows us for a faster determination of the poloidal mode
number m. The function θ∗(θ) was first derived in the large aspect ratio limit for
circular plasma by Merezhkin [25] and then generalised for shaped plasmas in
[26]. It may be expressed as,
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θ∗(θ) = θ − λ1 sin(θ) + λ2 sin(2θ) − λ3 sin(3θ) + O(ε4) (4.17)
λ1 = Δ′ + ε (4.18)

λ2 =
εarκ

′

2
(4.19)

λ3 =
εar

2δ′

3a
(4.20)

where Δ is the Shafranov shift, ε = r/R is the local inverse aspect ratio with r and
R the minor and major radius respectively. Here κ(r) and δ(r) are, respectively, the
local elongation and triangularity. The sign ′ denotes the derivative with respect
to the minor radius r. This method, implemented during this thesis, allows an
accurate extraction of the main poloidal number m by comparing the experimental
phase-shift with equation (4.17). An example of the use of this method (though
redundant in this case) is shown in figure 4.3(b). The modelling of the phase-shit
with equation (4.17) becomes critical in the case that a small number of probes is
available for the analysis or when the amplitude of the mode is below the noise
level on several probes. An example of the determination of m in such case is
shown in figure 4.4.
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Figure 4.4: Phase-shift analysis of an incomplete poloidal probe array. The best-fit
result with equation 4.17 allows to connect the probes on the LFS to those on HFS
and recognise an m = 2 mode number.

Eddy currents in the wall and the abrupt change of probe orientation close to
the vessel corner may add further complications and even allow for a reversal of
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the phase change [27]. A more detailed model which includes eddy currents and
geometrical details of the probe system is required in these cases. It turns out,
however, that for most applications in TCV, equation 4.17 allows for a sufficiently
accurate determination of the poloidal mode number.

The determination of the mode structure (in particular the poloidal mode struc-
ture) can be, in some cases, considerably improved by applying another technique
on the row magnetic data, the so-called bi-orthogonal decomposition.

4.2.2.c Spatiotemporal mode structure from bi-orthogonal analysis

Another method for the analysis of spatiotemporal signals is bi-orthogonal de-
composition (BD), which is formally identical to the singular value decomposition
(SVD) in numerical linear algebra. Unlike Fourier techniques it is a multivariate
analysis handling several dimensions at the same time. The bi-orthogonal decom-
position separates the coherent signal structures and their temporal evolutions
from the incoherent part. The measurements s(xi, tj) taken at M locations xi and
sampled at N times tj can be constructed from K = min(M, N) pairs of spatial
eigenvectors ζk(xi) and temporal eigenvectors ψk(tj),

s(xi, tj) = Ak

K∑
k=1

ζk(xi)ψk(tj). (4.21)

The spatial eigenvectors ζk(xi) are also called topos, whereas the temporal
eigenvectors ψk(tj) are called chronos. Topos and chronos are mutually orthogo-
nal. The eigenvalues, or weights Ak, are positive or equal to zero and it is con-
ventional to sort out the pairs of bi-orthogonal components in order of decreasing
weights. This allows the representation of the original signal with a limited num-
ber of pairs of components (often from two to four pairs depending on the appli-
cation) with good accuracy. The total signal energy E = ΣiΣjs

2(xi, tj), is equal to
the sum of the squared weights,

E =
K∑

k=1

A2
k. (4.22)

The relative energy stored in each pair of eigenvectors (ζk, ψk) can be expressed
with the dimensionless energy,

pk = A2
k/E (4.23)

and thus quantifies the importance of an eigenvector. A physical interpretation
of the bi-orthogonal decomposition is the projection of the data on an orthogo-
nal basis which de-correlates both the time and the space series. In contrast to
spectral analysis, the BD does not assume a constant frequency throughout the
analysed time interval and allows the identification of an arbitrary temporal evo-
lution. Neither does it make any assumption about the spatial structure, such as
the toroidal mode analysis, which requires pure Fourier components. The basis of
the expansion is automatically generated to adapt best to the coherent structures



4.2. NUMERICAL TECHNIQUES FOR THE MHD MODE ANALYSIS 57

0 10 20
-0.4

-0.2

0

0.2

0.4

E
(p

1+
p 2=

49
%

)

topos: toroidal array (LFS) [T/s]

sector
0 20 40

-0.4

-0.2

0

0.2

0.4

topos: poloidal array [T/s]

probe
0.4302 0.4304 0.4306

-0.04

-0.02

0

0.02

0.04

Time [s]

Cronos

a) b) c)

Figure 4.5: Two principal eigenvectors of the bi-orthogonal decomposition of the edge
magnetic signal from a low qa ∼ 2.5 discharge (#21402). The spatial structure
(topos) is separated in the toroidal a) and b) poloidal contributions. The temporal
behaviour (chronos) is shown in figure c). Note the π/2 phase shift between the de-
generate eigenvectors. The sinusoidal toroidal structure reveals an n=2 mode number
while the poloidal structure requires a dedicated phase analysis (see figure 4.6).

2 0 2 4 6
0

5

10

15

20

25

30

35

θ [rad]

Δ
Φ

pr
ob

e [r
ad

]

m=4.9

m=3.79

BD analys
is

spectra
l analysis

Figure 4.6: Phase analysis of the poloidal structure from the BD decomposition in
figure 4.5b (red dots) and from spectral analysis (black squares). The best-fit of
the phase variation from BD reveals an m=5 poloidal mode number and allows the
identification of the mode in discharge #21402 as a rotating 5/2 mode. The spectral
analysis leads to an underestimation of the poloidal mode number.



58 CHAPTER 4. ANALYSIS OF MHD FLUCTUATIONS

in the signals, that become thus more evident. The BD has the property that the
truncated sum over ordered eigenvectors is the best approximation of the original
data s, in the least-square sense. Other properties of the bi-orthogonal decomposi-
tion as well as some of its applications have been discussed in detail, for example,
in references [28, 21].

An interesting case is the presence of two similar, non-negligible weights Ak1 =
Ak2 . This degeneracy can usually be ascribed to the existence of a spatiotemporal
symmetry, s(t, x − x0) = s(t + t0, x), such as a rotating mode where x0 = vt0, with
v the phase velocity of the mode. In this case the phases of ζk1 and ζk2 as well as
of ψk1 and ψk2 are shifted by π/2. A time variation of the frequency and amplitude
of the mode only shows up in the chronos and not in the topos. Coupled modes,
which have identical frequencies but different wave vectors (for example modes
with the same frequency and n number but different poloidal numbers), are not
separated and appear in one pair of the bi-orthogonal components.

In figure 4.5 the possibilities of the bi-orthogonal decomposition are illustrated
for magnetic measurements from the toroidal and poloidal arrays, for a single
mode very close to the plasma edge. The two principal eigenvectors, which com-
prises 49% of the total signal energy, are degenerate and describe a rotating mode.
The toroidal and poloidal parts of the two main topos, which are shown sepa-
rately in (a) and (b), respectively, as well as the corresponding chronos (c), show
a typical phase shift of π/2. The toroidal part of the topos reveals an n=2 structure
whereas the poloidal part is very difficult to interpret and requires additional anal-
ysis. The poloidal mode number can be inferred by treating the two degenerate
eigenvectors as the sine and cosine part of a Fourier expansion. The phase and
amplitude of the rotating mode can thus be obtained. The toroidal and poloidal
mode numbers can then be extracted by fitting the phase shift as described earlier
in this section. In figure 4.6, we show the phase of the probes along the poloidal
direction extracted from the BD (circles) and spectral analysis (squares) together
with the best fit of the phase variation model described the section 4.2.2.b. From
the type of discharge it is recognised that the poloidal number of the mode is m=5
(see figure 5.7 in chapter 5). It can be seen that the BD analysis allows a good es-
timation of the number m whereas, in this case, the spectral analysis significantly
underestimates the mode number, enlightening the ability of the BD analysis in
reducing the noise while extracting only the coherent part from the signals.

4.3 Perturbations in approximate flux surface quan-
tities

The presence of MHD modes perturbs all plasma parameters, such as the temper-
ature, density and soft X-ray emissivity. While magnetic measurements are usually
limited to the plasma edge, additional internal perturbation measurements are
often needed to detect and identify MHD modes in the plasma centre.

The TCV photo-diode soft X-ray detection system allows a tomographical re-
construction of the 2D emissivity (see section 3.2.3) and the recognition of MHD
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modes [17]. This method, although also used in this thesis, is often limited by its
spatial and temporal resolution. The MPX camera (section 3.2.3), with its high
spatial resolution and high sampling rate constitutes a very good tool for MHD
studies.

4.3.1 Soft X-ray perturbed emissivity

The MPX camera views cover the plasma cross-section at one toroidal position
from below the torus. The structure of the perturbation may be detected due to
the mode rotation. A spectral analysis of the complete set of the 64 channels
allows the visualisation of the radial mode structure.

An example of an FFT analysis of the sawtooth precursor oscillations in the soft
X-ray channels is shown in figure 4.7. The mode amplitude presents two off-axis
peaks symmetrically placed with respect to the magnetic axis. The perturbations
at the HFS of the torus are out-of-phase with respect to the perturbations at the
LFS and a jump of π can be clearly seen at the position of the magnetic axis, in cor-
respondence with the minimum amplitude of the perturbations. Such a structure,
commonly observed in tokamaks, is usually interpreted as an m=1 mode [29].

In particular, the peaks of the perturbation correspond to the maximum dis-
placement of the magnetic axis and the frequency doubling observed in the most
central channels may be regarded as the signature of a rigid hot core displace-
ment which passes through the view line of the central channel twice per period.
Such a displacement can be produced by an ideal kink motion, that conserves the
magnetic topology, or by a m/n = 1/1 magnetic island [30]. No flattening in
the emissivity profile or phase jump are observed in both sides of the torus which
may indicate the presence of a magnetic island [30]. However, the signatures of
magnetic islands are more easily observed with local, non-line integrated, mea-
surements such as ECE temperature measurements [30, 31].

Another example of a mode observed with the MPX camera is shown in figure
4.8. The fluctuation amplitude now shows a more complex structure. There are
several maxima and several minima of the perturbation amplitude. The amplitude
minima correspond to phase changes (of about π). The two off-axis amplitude
maxima at R ∼ 80 cm and R ∼ 97 cm show in-phase perturbations, whereas the
on-axis maximum at R ∼ 88 cm corresponds to out-of-phase oscillations. Such
symmetric structure with respect to the magnetic axis reveals an even poloidal
mode number. Note that, simultaneously, the magnetic signal reveals an m/n=2/1
mode at the edge rotating at the same frequency. Cross-correlation techniques be-
tween the edge magnetic signals and the MPX channels identify a common origin
of the observed perturbations, thus allowing us to interpret the radial mode struc-
ture in figure 4.7 as a m=2 mode. On the HFS a secondary outer peak is observed
at R ∼ 75 cm. It has the opposite phase with respect to the primary peak, as is
also visible on the raw time traces. Such a behaviour is expected for a magnetic
island which induces a flat density and temperature profile inside the separatrix
[30, 31, 32]. However, similar features are not observed in all cases, nor are ob-
served on the LFS channels. A few obvious reasons for the inconsistency between
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HFS and LFS are:

• The effect of the integration of the signals along the view line may destroy
local features (such as phase jump) especially on the high field side where
the magnetic surfaces are more densely packed.

• Asymmetries in the perturbed temperature and density have been observed
in many tokamaks and complicate further the interpretation of the measure-
ments.

• Coupling with outer modes plus the effect of the integration may distort the
radial structure of the perturbation.

• The temperature and density profiles inside the magnetic island are not flat,
but may present a peak on the O-point [33, 32]. A peaked pressure profile
inside the separatrix is likely to lead to a perturbation with peak amplitude
on the position of the resonance surface rs. This occurs as a consequence of
the different temperatures between the X-point and the O-point of the island.

A proper interpretation of the perturbed soft X-ray signal requires detailed
modelling of the magnetic island geometry, a prescription for the pressure pro-
file inside and outside the island separatrix, and the complete geometry of SXR
diagnostic. Although SXR signal modelling constitutes an interesting task, it is
however outside the scope of this thesis.

4.4 Modelling of magnetic islands

So far we have mainly analysed the phase of the fluctuation along the toroidal and
poloidal direction in order to extract the mode numbers and thus the resonant
rational surface. A complete characterisation of the mode structure requires, how-
ever, an analysis of the amplitude as well. Field-aligned current perturbations lead
to the formation of magnetic island around rational surfaces. Such current pertur-
bations may be modelled and the resulting magnetic fluctuation can be calculated
and compared with experimental edge magnetic signals.

4.4.1 Perturbation current density and reconstruction of the
magnetic field

Modelling of the edge magnetic fluctuations from a magnetic island was success-
fully applied on ASDEX Upgrade [21]. On TCV, a similar method was implemented
by Reimerdes [23] and used for the interpretation of the Mirnov measurements.
We briefly describe this method and we show some applications in case of the
simultaneous presence of multiple poloidal harmonics (coupled modes) which al-
lows us to reveal modes not observed by other means. This type of analysis has
been extensively used during this thesis (see chapters 5 and 7).
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The model is based on the assumption that the perturbation currents flow along
the equilibrium magnetic field lines and are localised on resonant flux surfaces.
The model neglects the response of the plasma. These currents do not produce
any charge accumulation (divergence-free) and do not change the plasma equi-
librium. Using the straight field line coordinate (ψ, θ∗, φ) (equation 4.5), the per-
turbation current in the direction of the magnetic field can be decomposed into
Fourier components with toroidal and poloidal mode numbers n and m,

δ	j =
∑
m,n

Cm,n(ψ) cos(mθ∗ − nφ)b̂. (4.24)

If the requirements of a divergence free current perturbation (	∇ · δ	j = 0)
is applied on each Fourier component (cylindrical approximation) equation 4.24
leads to the resonance condition [21],

m	B · 	∇θ∗ − n	B · 	∇φ = 0 (4.25)

which can be fulfilled at a resonant surface with the safety factor q = m/n =
dφ/dθ∗ for a perturbation with the corresponding mode number (m, n).

In the limit of the model, the perturbation current is a sheet current flowing on
this resonant surface. In order to transform the current density j(Ψ) into a sheet
current density jA, it is assumed that current flows in an infinitesimally narrow
flux tube of width dr which corresponds to a flux,

dΨ =
j(Ψ)

jA

dr. (4.26)

With dΨ = RBθdr the sheet current density can be identified as,

jA =
j(Ψ)

RBθ
. (4.27)

Even though the current, which flows in a flux tube, is constant on a flux
surface, the sheet current density varies like 1/RBθ and it follows that,

	jA ∝ 1

RBθ
sin(mθ∗ − nφ)b̂. (4.28)

In order to reconstruct the poloidal component of the perturbed field only the
toroidal component of the perturbation current density needs to be taken into
account. With I = RBφ ≈ const., the toroidal perturbation current density is
proportional to,

jA,φ ≈

1

R2Bθ

sin(mθ∗ − nφ). (4.29)

Note that the coefficient in front of the sinusoidal function in equation 4.29
depends on the poloidal angle but not on the toroidal angle. Thus, a poloidal
variation of the mode amplitude is expected whereas along the toroidal direction
the mode amplitude remains constant as observed in the experiments.
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Toroidal eddy currents on the vacuum vessel may strongly influence the ampli-
tude and the phase of the perturbations and must thus be taken into account. The
problem is discretised and the resonant flux surface and the conducting vacuum
vessel are divided into toroidal current filaments. The eddy current in each of the
toroidal filaments of the vacuum vessel can be obtained from the response induced
by the magnetic flux generated by all the other filaments [23]. The contributions
from the eddy currents and the current flowing on the resonant surfaces filaments
can then be linearly added to calculate the perturbation in the poloidal field at the
probe location Bm,

Bm = Bs + Bv (4.30)

where Bs is the contribution from the resonant surface and Bv the contribution
from the vacuum vessel.

The response of the vessel depends on the frequency f of the mode. It has
been calculated that for f < 10 Hz the eddy current in the wall can be neglected
whereas for f > 1 kHz the resistivity of the wall can be neglected and the field
amplitude doubles at the wall on the LFS with respect to the no-wall case [23].

4.4.2 Comparison with the edge magnetic signal

When a single mode, arising from one resonant surface, is observed it can usually
be identified with the methods described in section 4.2. In [23] it was also shown
that the island model (section 4.4) agrees well with the experimental mode struc-
ture of single modes. The analysis becomes, however, more complicated when two
or more modes are present at the same time. If the modes are coupled and have
the same toroidal mode number they rotate at the same frequency and it is im-
possible to separate their structure with the spectral or BD analysis. The poloidal
harmonics mix up together and may give rise to strongly distorted poloidal struc-
ture, whereas the phase of the fluctuation is dominated by the mode resonant on
the outermost flux surface. Only modelling of both the phase and amplitude allows
the identification of the different modes that contribute to the observed structure
bj = b(xj). The modelled structure of an m/n-mode Bm,n(xj), or the linear combi-
nation of several modes

∑K
k=1 akBmk,nk

(xj), is fitted to the data by the least square
method by choosing K coefficients ak to minimise the χ2 [23]. Then, assuming
that all the measurements have the same standard deviation and that the model is
correct, the standard deviation of the measurements can be calculated,

σ2 =
N∑

j=1

(bj − B(xj))
2 /N. (4.31)

The parameter σn = σ/max(bj) can also be used as an estimator of the fit
quality.

In figure 4.9 we show three examples of mode identification with single and
multiple coupled modes. In the first example (from the top), a single modelled
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m/n = 2/1 mode reproduces well the phase as well as the amplitude of the ob-
served mode rotating at 5 kHz (blue solid line). The dashed line in figure 4.9a)
represent the same mode simulation without the inclusion of the eddy currents
on the wall. The parameter σn is almost identical for the two cases, σn = 8%
but the current on the q=2 rational surface is doubled in the case of no induced
eddy current compared to the case of the complete simulation with the inclusion
of the eddy current. This difference in the flux surface current has important con-
sequences because it determines a large difference in the inferred magnetic island
width (see section 4.4.3). It turns out that the eddy currents are essential for a
realistic estimation of the island width.

The second case shows the simulation of two coupled modes, an m/n = 3/1,
clearly visible on the edge magnetic signal, coupled with an m/n = 2/1 mode,
independently observed in the SXR signal. While the mode coupling effect is very
weak on the phase behaviour (compare solid and dashed lines in figure 4.9b), the
linear combination of the B3/1 and B2/1 allows a better simulation of the mode
amplitude. With only the 3/1 mode, σn,3/1 = 11% while with inclusion of both
modes σn,3/1+2/1 = 5%. Attempting to model the experiment with other combina-
tions of coupled modes (e.g. m/n = 2/1+m/n = 3/2) results in a much worse
comparison. This example demonstrates how this method may improve the anal-
ysis of coupled modes as also observed in ASDEX upgrade [21]. Note that in TCV,
the mode coupling between modes with m and m + 1 poloidal numbers appears
to increase the mode amplitude on the LFS of the torus. This type of poloidal
asymmetry is understood on the basis of a phase locking at the LFS (e.g. island
X-points both at the LFS) as predicted by mode coupling due to toroidicity [12].

A stronger effect of the mode coupling is given in figure 4.9c). The observed
phase reveals a dominant m = 2 (figure 4.9-3a) but the amplitude shows a strong
poloidal asymmetry, typical of coupled modes. The simulation with a 2/1 mode
results in an unsatisfactory comparison with σn,2/1 = 20%.

It is interesting to note that other harmonics are observed in the power spec-
trum of the magnetic signal (see figure 4.2) that can be identified as the harmonics
m/n = 2/1, 4/2 and 6/3. However, it can be shown that the inclusion of these har-
monics in the mode simulation does not improve the comparison. Neither does
the SXR signal reveal the presence of other modes. Nevertheless the island model
with coupled 2/1 and 3/2 harmonics agrees well with the observed mode structure
(σn,2/1+3/2 = 3%), revealing an m/n = 3/2 mode that could not be seen otherwise.

4.4.3 Magnetic island width

The full island geometry and thus the island width can be reconstructed using
the model elucidated in section 4.4.2 by calculating the magnetic perturbation in
the whole plasma. The superposition of the helical perturbation flux ψ∗

1 and the
equilibrium flux ψ∗

0 then reveals the geometry of the magnetic island. Note that
this linear treatment is not self-consistent but it allows us to capture the main
island features [21, 23]. The equilibrium and perturbed helical fluxes are given
by,
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ψ∗
0 = ψpol,0 − 1

qs
ψtor,0 (4.32)

ψ∗
1 (xp) = MpsIs ·

√
B2

φ + B2
θ

Bφ
(4.33)

where Mps is the mutual inductance between the toroidal filaments at the location
xp (where the flux ψ∗

1 is calculated) and xs. An example of the reconstructed island
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Figure 4.10: Island geometry of the discharge #24141 (at t=1.62 s) at two different
toroidal locations.

geometry is plotted in figure 4.10 at different toroidal locations separated by π/2.
The average island width is about 6 cm. This island width may be compared
with the one given by the cylindrical approximation in equation 2.30. Owing to
multipolar field decay, the signal at the edge is attenuated with respect to the
value at the resonant surface by a factor 1/rm+1. Taking this into account, the
island width w as function of the detected magnetic signal can be written as [23],

w =

√
(8b/rs)m+1Bθ,m,n

εsnBφ,0ss
rs (4.34)

with b the radial position of the vacuum vessel. The uncertainty of this method is
mainly due to the assumption of cylindrical geometry, vacuum-like magnetic field
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decay, and the errors on the different parameters in equation 4.34, in particular
the shear ss is not known accurately. This formula gives, for the same discharge
in figure 4.10, a value for the island width of 6-7 cm (see figure 7.5 b) in good
agreement with the more complete island model. However a larger discrepancy is
often found.

4.5 Concluding remarks

Several numerical methods have been presented to extract the coherent mode
structure from fluctuation measurements, separating their temporal and spatial
behaviours. The MHD analysis in TCV relies mostly on edge magnetic probes and
line-integrated soft X-ray emissivity measurements. Local fluctuation measure-
ment of the plasma core, such as from ECE measurements, would, perhaps, greatly
help in extracting and interpreting the structure of the instabilities observed in
TCV plasmas. Most of the methods presented here are part of the standard data
analysis tools available at TCV. New features have been added during this thesis,
such as coherence analysis between edge and core fluctuations and modelling of
the phase of the magnetic fluctuations which allows a fast and reliable analysis of
the poloidal mode number. This is however out of the scope of the present work.
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Chapter 5

Plasma shape stabilisation of current
rise MHD instabilities

This chapter describes a potentially disruptive plasma instability,
typically occurring in tokamaks during the early current rise phase
of plasma formation, as well as how to reduce or suppress this in-
stability using plasma cross section shaping. The perturbations in
plasma parameters before disruption are characterised and the main
unstable modes identified. In TCV, plasma shaping is observed to
completely stabilise this disruptive mode and is regularly used for
safe current ramp-up. Coupling between modes is found to play a
major role in the destabilisation of the disruptive mode, as suggested
by theoretical models. Three stabilising mechanisms, related with
plasma shape, are discussed and shown to be relevant in TCV plas-
mas with edge safety factor close to 3.

5.1 Introduction to plasma instabilities during cur-
rent rise

The abrupt termination of plasma discharge, often called plasma disruption, is of
major concern in present day and future tokamak fusion experiments. A disrup-
tion causes high heat and mechanical stresses to the structures surrounding the
plasma column (the vessel wall, the divertor, the magnetic coils, the diagnostics,
etc.). In large devices, such as fusion reactors, these stresses may provoke seri-
ous damage and therefore need to be avoided or mitigated. Understanding the
dynamics leading to plasma disruption, and looking for mechanisms to avoid it, is
an important part of today’s research in fusion science.

It is generally agreed that large, growing magnetic islands can cause plasma
disruption by inducing ergodization of the field line, followed by a rapid loss of
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confinement (thermal quench), and eventually by plasma current decay [34]. The
Tearing Mode (TM) instability is believed to be responsible for the formation of the
magnetic islands observed in tokamaks. In low-β regime (classical TM), the TM
stability mainly depends on the current density profile [35]. Stationary current
profiles in ohmic plasmas are typically peaked owing to the strong coupling with
the electron temperature through plasma resistivity. During the current rise phase,
the current profile can be different from its fully relaxed (stationary) shape. In fact,
if the current rise time is shorter than the current redistribution time, the current
profile can be flat or hollow in the centre with possibly large gradients toward
the edge (skin effect) [36]. Such profiles may be unstable with respect to surface
kink modes, localised on magnetic surfaces just outside the minor radius, and to
tearing modes. In general, large gradients in the current profile destabilise the
tearing modes.
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Figure 5.1: Different TCV plasma
shapes: quasi-circular (#21400,
dashed red line), moderately
shaped with negative triangularity
(#21402, black dashed-dotted line),
and medium-high elongated plasma
(#21399, blue solid line)

MHD instabilities are often observed in
tokamaks during the plasma current rise
phase [34, 37]. The MHD activity is sharply
correlated with the edge safety factor qa.
These modes appear as bursts of magnetic
activity localised at the plasma edge, where
surface kink modes are expected, and gen-
erally disappear as qa drops below the ratio-
nal value. The magnetic perturbation shows
n=1 and m = qa mode numbers, typically as-
sociated with low q (q=5, 4, 3, 5/2, 2) ratio-
nal surfaces. However under certain condi-
tions such modes are accompanied by other
instabilities, typically m=2 modes, which
grow in amplitude, lock to the external wall,
and finally lead to plasma disruption.

In large shaped tokamaks, such as JET, it
is usually sufficient to decrease the current
ramp rate in order to peak up the current
profile, keep the MHD activity at a reason-
able level, and avoid disruptions. In circular
tokamaks, such as in the Tore Supra toka-
mak, obtaining stable discharges with qa <
3 is complicated by the presence of large
MHD modes appearing during the current
rise phase [38]. The generation of an er-
godic divertor was reported to improve the
plasma stability allowing stable discharges
with qa = 2.5. Coupling between modes is
believed to play a major role in driving large
MHD modes that cause disruptions [38].

In smaller tokamaks, partly because of the vicinity of rational surfaces, and
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party because of lower temperatures, the mode coupling is expected to be effective
even for low amplitude modes [12].

In this context, plasmas can be divided in three categories according to their
shape: strongly shaped (κ > 1.7, δ > 0.3 or δ < −0.4), moderately shaped (1.7 >
κ > 1.4 and −0.5 < δ < −0.3 or 0.3 > δ > 0.2) and quasi-circular plasmas (κ < 1.4,
−0.3 < δ < 0.2). Some examples of TCV plasma shapes used in this study are
shown in figure 5.1.

In TCV, the plasma current of quasi-circular plasmas is limited by disruptions
at qa ∼ 3. Suitable control of the plasma shape is required during current rise to
find a stable path to discharges with safety factor below 3.

The work in this chapter describes an original analysis of the MHD modes
responsible for disruptions during current rise at qa ∼ 3 in Ohmic TCV plasmas. We
also report experimental evidence of the important role played by mode coupling
on TM stability. In particular, we show experimental evidence of the tearing mode
and external kink mode coupling, which is predicted to be responsible of the large
growth of the m/n=2/1 TM by Fitzpatrick [39]. We then attempt to get new
insight on the “operational” knowledge of the beneficial effect of plasma shaping
in current rise experiments. We characterise the effect of shaping on the observed
instabilities, and suggest an interpretation on the basis of the available theoretical
models.

5.2 MHD activity during current rise in TCV

The standard initial current rise rate in TCV is rather high (dIp/dt = 2 MA/s), and
accurate monitoring of plasma parameters during the rapid development of the
disruptive mode is not possible. A set of experiments with slower current rise has
therefore been performed to study specifically the pre-disruption mode activity.

In a typical experiment, the plasma shape is kept constant while the current
is raised by increasing the loop voltage. As a consequence, the edge safety factor
decreases in time. To explore the effect of plasma shaping, the elongation is varied
on a shot-to-shot basis from 1.1 to 1.8, and the triangularity from –0.5 to +0.4. In
TCV, increasing the plasma density is found to enlarge the current density profile,
and thus to influence the stability of current driven modes. For this reason, the
gas valve is pre-programmed to maintain a constant electron density at a value of
about n̄e= 2.5·1019 m−3.

However, due to the strong dependence between the plasma current and the
ionisation rate, the density is also increasing during the current rise. Nevertheless,
the density variation is kept within 10% during the relevant part of the current
ramp, between qa = 4 and qa = 3. Such a small variation is believed to only
slightly modify the current profile and the plasma stability properties. Note that a
sufficiently slow current ramp up is an essential condition for these experiments,
since it allows:

• the production of quasi-stationary current profiles, thus reducing the skin
effect.
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Figure 5.2: Left: Values of qa and q95 at the first appearance of MHD activity for a set
of TCV discharges. The q=3 surface is located inside the plasma very close the edge.
Right: LIUQE reconstruction of the q profile at t=0.367 s, approximately at the time
of modes appearance (discharge #21400, κ=1.32, δ=0.2).

• the delay of the disruption time, allowing for a better time resolution at
which the phenomena are observed.

In fact, the time scale of the current rise, τIp = Ip/(dIp/dt) ∼ 500 ms, is longer than
the current diffusion time, τη ∼ 100 ms, calculated from the experimental profiles,
and the current can relax close to its stationary profile. The current profile has
therefore a standard peaked shape in the majority of the discharges, as suggested
by the presence of sawtooth oscillations visible on the soft X-ray plasma emission.
The sawtooth oscillations are closely related with the presence of the q = 1 flux
surface in the plasma, and their occurrence indicates a current profile peaked on-
axis with a central safety factor smaller than 1.

Moreover, numerical simulations using the fixed boundary transport code PRE-
TOR support the hypothesis of stationary current profile [40]. The PRETOR code
simulates the plasma discharge with and without the inclusion of the current dif-
fusion equation. The simulations show that significant transient modifications of
the current profile are induced for current rise rates larger than 1 MA/s, whereas
the experimental value does not exceed 0.5 MA/s.

The condition of quasi-stationary current profile considerably simplifies the
interpretation of the experimental results. It allows us to neglect any transient
phenomena, and justifies the use of the current profile from the equilibrium re-
construction (such as the profile from the LIUQE code).

5.2.1 Current rise disruption in qa = 3 quasi-circular plasmas

The first detectable MHD activity normally appears when the q = 3 magnetic sur-
face enters the last 5% of the poloidal magnetic flux, equivalent to q95 < 3 (see
figure 5.2). An example of the evolution of a disruptive discharge is shown in
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#21400

Figure 5.3: Disruptive instability during current rise at qa ∼ 3 in weakly shaped
plasma (κ = 1.3, δ =0.2). From top to bottom, qa and q95, the amplitude of the n =
1 and n = 2 toroidal components of the magnetic perturbation, the spectrogram of
the magnetic signal (with indication of the mode numbers m/n), and the central soft
X-ray emissivity are shown.

figure 5.3. Owing to the mutual interaction of modes resonant on several rational
surfaces, and to the influence of the external conductive wall, the evolution of the
disruptive instability is rather complex.

We focus here on the pre-disruption MHD activity, which can be divided in four
stages:

1. An MHD mode of dominant toroidal number n = 1 typically starts when the q
= 3 rational surface approaches the edge region (from the inside, t = 0.355 s
in fig. 5.3). The mode rotates in the electron diamagnetic drift direction with
a frequency in the range 5–15 kHz and has a dominant m = 3 poloidal num-
ber). The mode amplitude and frequency are modulated by the sawtooth
crashes.

2. If the current ramp up continues, the mode amplitude increases changing
the dominant poloidal number from m = 3 to m = 2. The mode frequency
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Figure 5.4: Comparison of the poloidal magnetic structure from SVD analysis of the
pre-disruption mode and magnetic island model. The magnetic probes are numbered
clockwise from the LFS to the HFS. Good agreement is obtained using two poloidal
harmonics m = 2 and m = 3, resonant on q = 2 and q = 1.5 respectively, thus
identifying the m/n = 2/1 and m/n = 3/2 as coupled tearing modes.

decreases.

3. When the amplitude mode is in the range An=1 = 0.5–2 mT, an m/n =
3/2 mode is triggered. The mode frequency keeps decreasing. Note that
ωn=2 = 2 ωn=1, corresponding to perturbations which are locked in phase
and toroidally rotating at the same speed.

4. One or more minor disruptions, associated with a fast growth of the n=1
and n = 2 components, precede the major disruption. Right before the dis-
ruption, the mode is still rotating at a frequency of about 1 kHz.

The coupled 2/1 and 3/2 perturbations, which can be identified as tearing
modes (see figure 5.4), are mainly responsible for current rise disruption in TCV.
Note that the maximum island widths evaluated in cylindrical approximation [7]
are of typically 7 and 5 cm respectively for the 2/1 and 3/2 mode. Although these
values are probably overestimated, considering that the resonant surfaces are only
3–4 cm apart, they suggest island overlapping and consequent field stochastisa-
tion over a large portion of the plasma cross section. Moreover the presence of
the 1/1 (sawtooth) and 3/1 components may possibly extend the stochastic region
up to the plasma limiter, leading to the loss of confinement visible from the soft
X-ray emissivity collapses. The discharge terminates with a rapid current decay
accompanied by spikes on the loop voltage signal.
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5.3 Discussion and interpretation

The “current rise disruption” in TCV shows several of the most common disruption
features in tokamak devices. For instance, the simultaneous presence of coupled
toroidal (n = 1 and n =2) and poloidal (m = 1 sawtooth, m = 2, m = 3) harmon-
ics is common to pre-disruption MHD activity as in the “density limit disruption”
and “low-q disruption”, described in detail in references [34, 37]. We note that
the destabilisation of the 3/2 TM in presence of large 2/1 TM was also observed in
other tokamaks [36], and has been the object of theoretical investigation involv-
ing nonlinear effects. Reference [41], for example, invokes the modification of the
current profile due to the presence of 2/1 and 1/1 islands. By enhancing the radial
thermal transport, the modes decrease the thermal conductivity, and flatten the
electron temperature and current profile within the 1/1 and 2/1 magnetic islands.
Since the total current is kept constant (unlike the total plasma energy content)
by a loop voltage feed-back, the local current gradients in the region between the
q = 1 and q = 2 surfaces increase and destabilise the tearing mode on the q = 3/2
surface. Another well-known non-linear mechanism thought to be responsible for
mode destabilisation is the so called ‘three-wave coupling’ described for example
in [42], which may also contribute to the destabilisation of the 3/2 mode.

Mode rotation braking is often observed in tokamaks . It is generally attributed
to the eddy currents on the surrounding metallic walls that generate an electro-
magnetic braking torque eventually leading to mode locking [43]. The theoretical
temporal variation of the mode frequency scales strongly with the island width w,
such that dω/dt ∼ −w4. While the mode is locking, the stabilising contribution
of the eddy currents is lost and the mode amplitude increases. Before the first
minor disruption the mode frequency decreases whereas the amplitude grows, as
shown in figure 5.3, which is in qualitative agreement with the theoretical predic-
tions. However this type of braking mechanism, which always reduces the mode
frequency, can not explain the frequency modulation during the sawtooth activity
(t < 0.375 s). In fact, right after a sawtooth crash, the mode frequency increases
whereas the n = 1 mode amplitude decreases, reaching a minimum after about
2 ms (t > 0.370 s and after). Afterwards, the mode amplitude starts increasing
again and the mode frequency decreases while approaching the next sawtooth
crash. This behaviour may be attributed to the effect of plasma inertia, as first
observed in the FTU tokamak [44]. The plasma inertia in fact contributes to the
island frequency evolution with a term proportional to the time derivative of the
island size dω/dt ∼ −(dw/dt)/w [45]. The sawtooth activity modulates the n =
1 mode amplitude which, in turn, modulates the mode frequency owing to the
conservation of angular momentum [45].

The peculiarity of the current rise disruption is, perhaps, the early stage of the
instability, where the interaction of the 3/1 and 2/1 modes plays an important
role in the discharge evolution. In TCV, it is clearly observed that a 3/1 mode
precedes the fast growth of the 2/1 tearing mode (t = 0.370 s in figure 5.3). Such
a surface mode is believed to be reminiscent of the ideal external kink, which
tends to be unstable when a low order rational surface approaches the plasma
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3/1

2/1

Figure 5.5: Uncoupled 3/1 and 2/1 modes in non disruptive current ramp up discharge.
The 3/1 mode is destabilised at q95 = 3, saturates while rotating at 12–13 kHz, and finally
disappears after about 30 ms. The 2/1 mode rotates at 7 kHz, saturates at small amplitudes
and disappears at t=0.58 s.

edge [34]. Although this instability alone, involving only the plasma surface, is
rather harmless (see also section 5.4), it is nevertheless able to couple to the q =
2 surface and destabilise the m = 2 magnetic island.

In the following we aim to enlighten the major mechanisms involved in the
modes destabilisation and to show how it can be avoided. We will focus on the role
of mode coupling and plasma shaping on the 2/1 TM stability. In this context we
present experimental evidence of the important role of mode coupling in driving
large islands, which lead to plasma disruption.

5.3.1 Evidence and role of the m/n = 3/1 and m/n = 2/1 mode
coupling

A signature of the strong interaction of perturbations resonant on different ratio-
nal surfaces is the frequency locking. Owing to the electromagnetic force, two
coupled modes tend to rotate at the same frequency independently of their initial
natural frequency [12]. The mode natural frequency depends on the equilibrium
	E × 	B and diamagnetic flows. The FFT analysis of the n =1 component of the
disruption precursors clearly shows a single frequency ω(t), while the dominant
poloidal mode number continuously changes from m = 3 to m = 2, indicating
that the modes located on q = 2 and q = 3 surfaces are locked (see figure 5.3).

This is to be compared to the evolution of discharges where mode coupling and
disruption do not occur despite the small shaping. In these cases the m/n = 3/1
and m/n = 2/1 modes may coexist but remain uncoupled, rotating at different
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frequency while remaining at small amplitude. An example is shown in figure
5.5, where the m/n = 2/1 mode saturates at small amplitude and eventually
disappears without causing any disruption. It can be noted that the 3/1 mode
is temporarily destabilised (top plot in figure 5.5), as often observed in similar
experiments with q95 < 3 [34]. The 3/1 mode rotates at about 12 kHz, and the
2/1 mode at 7 kHz, thus they are uncoupled. Before the q = 3 surface leaves
the plasma (at t=0.48 s), the 3/1 mode vanishes while the 2/1 mode persists at
small amplitude. Clearly, the mode coupling between the internal modes and the
external surface mode is a key element of the dynamic in this type of disruptions.

5.4 Avoidance of the q = 3 current rise disruption by
means of plasma shaping

The beneficial effect of plasma shaping in suppressing the MHD activity and dis-
ruption was noticed early in TCV operation. During the initial current rise phase, a
sufficient plasma elongation and/or plasma triangularity allows for a safe crossing
of the q = 3 rational surface through the plasma boundary. The effect of plasma
shaping is schematised in figure 5.6, where the κ − δ space can be divided in
disruptive and non-disruptive regions.

Almost all quasi-circular plasmas disrupt when the edge safety factor decreases
below 3 (section 5.2). However in a few cases where only uncoupled modes are
present (as shown in figure 5.5), the current ramp up may be continued without
disrupting the discharge.

In moderately shaped plasmas, the magnetic signal shows transient bursts of
MHD activity not leading to plasma disruption. The m/n = 3/2 mode is stable, and
no mode coupling is observed. Figure 5.7 shows the MHD activity of a moderately
shaped discharge with κ = 1.25 and δ = −0.4. It can be seen that, at the crossing of
the qa = 3 surface, the magnetic signal of a 3/1 mode increases (and the frequency
abruptly decreases), the 2/1 mode remains stable, and the current rise can be
continued without difficulties. We also observe that instabilities with dominant
mode numbers m/n = 4/1, 3/1 and 5/2 are detected when the qa = 4, 3 and 2.5
surfaces are respectively crossed, confirming that an external kink mode is strongly
destabilised when a low order rational surface approaches the plasma boundary.

Notably, both positive and negative values of triangularity improve the MHD
stability and help avoiding plasma disruptions. A similar beneficial effect of the
triangularity on the stability of the internal kink mode, responsible for sawtooth
oscillations, has also been noticed [10, 46].

In the same way, and independently of triangularity, plasma elongation is also
able to reduce and suppress the MHD activity already at small values of κ. It is
found that at an elongation κ ∼ 1.35, the maximum mode amplitude decreases
abruptly (see figure 5.6), and disruptions can be avoided.

Finally, in strongly shaped plasmas the MHD activity remains below the de-
tectable level and, remarkably, even the 3/1 surface mode (also called external
kink mode) does not appear.
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To summarise, plasma shape appears to act primarily on the stability of the
tearing modes (mainly 2/1 and 3/2) and, at large values of elongation and trian-
gularity, on the external kink mode stability.

1.1 1.2 1.3 1.4 1.5 1.6 1.7
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

 Disruption

3/2 and 2/1
 modes

No disruption
3/1 mode

No disruption

3/1 mode

No disruption No mode

1.1 1.2 1.3 1.4 1.5 1.6 1.7

0

1

2

3

4

5

6

7

8

9

10

A
n=

1 [m
T

]

 

 (2,1)

 (2,1)

 (2,1)

 (3,1)

 Disruptions     free Disruptions

 0.15 <  δ <  0.25

3.2 < n
e
< 6.7 10

19 -3m

κ

Figure 5.6: Left: disruption events in the κ − δ plane. The dominant mode numbers
are also indicated. Right: maximum mode amplitude as a function of the plasma
elongation κ. Large elongation values strongly reduce the risk of disruptions during
current rise by stabilising the m/n = 2/1 tearing mode.

Several factors are expected to influence the stability of shaped plasmas and
possibly explain the experimental observations. Firstly, the equilibrium current
profile may be modified by the plasma shape, especially in the region close to the
plasma edge. Secondly, the MHD stability is expected to be strongly influenced
by the mode coupling due to the shaped plasma cross-section [12]. Thirdly, the
conducting wall stabilisation, due to the wall eddy currents, is expected to become
important for strongly shaped plasmas with large cross-sections. In fact, because
of the radial multipolar magnetic field decay, the conducting-wall effect depends
on the plasma-wall distance. Given the geometry of the TCV vacuum vessel, the
averaged distance between the plasma boundary and the metallic wall significantly
varies with the plasma shape. We will consider these three factors in section 5.5.2.
We now discuss the stability of the 2/1 tearing mode in a toroidal plasma

5.5 The 2/1 tearing modes stability of TCV shaped
plasmas

According to the cylindrical linear resistive MHD theory of low-β plasmas, the
criterion for the stability of a tearing mode is given by [35],

Δ′ ≡ lim
δ→0

1

Ψ(rs)

[
dΨ

dr
(rs + δ) − dΨ

dr
(rs − δ)

]
< 0 (5.1)
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Figure 5.7: Current ramp up experiment (#21402) at negative triangularity (–0.4).
Amplitude and spectrogram of the n = 1 and n = 2 toroidal components of the
magnetic perturbation are shown. Negative frequencies correspond to mode rotation
in the electron diamagnetic drift direction). The temporal evolution of the safety
factors at the edge and at 95% of the poloidal flux shows the crossing of the q = 3
surface through the plasma boundary.

with Ψ = rBr and rs is the radius of the resonant surface. In a cylindrical circular
plasma each poloidal harmonic m is decoupled from the others, and the tearing
stability depends only on the radial derivative of the perturbed flux calculated on
the resonant surface with q = m/n. In a toroidal plasma, however, the poloidal
harmonics are coupled by the geometry. To the lowest order, the harmonic m
drives, through toroidicity, the poloidal sidebands m ± 1 resonant on other flux
surfaces. These sidebands couple back to produce corrections to the original cylin-
drical tearing mode [12]. As shown earlier, in the initial phase of the current rise
disruption, the coupling between the q = 2 and q = 3 rational surfaces is crucial
for the subsequent growth of the instability.

We shall see that the theory of coupled tearing modes predicts under certain
conditions a destabilising effect on resonant interacting modes.
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5.5.1 Toroidal destabilisation of the tearing mode

The dispersion relation of two coupled rotating tearing modes has in general two
complex solutions for the eigenvalue ω. Let ω1 and ω2 be the ‘natural’ real (rota-
tion) frequencies of the tearing modes at the q = 2 and q = 3 surfaces respectively.
The interaction between the modes is maximised when the modes are resonant at
the same frequency ω1 ∼ ω2. Note that this condition is well satisfied in the de-
scribed experiments since the 2/1 and 3/1 perturbations exhibit the same rotation
frequency when the disruption occurs (section 5.2). It has been shown in refer-
ence [47] that under these conditions the inner mode may become more unstable
than in absence of resonant coupling (see also chapter 2). In fact, according to the
linear resistive theory, when the q = 3 surface is close to the edge, the complex
mode frequencies (eigenvalues) can be expressed as [12, 47]:

ω = ω2 + i
E22

τ2
(5.2)

ω = ω2 + i
1

τ1

[
E11 − E2

12

E22

]
(5.3)

where τ1 and τ2 are respectively the ‘visco-resistive’ reconnection times at the q =
2 and q = 3 surface, and τ1 � τ2. The diagonal matrix elements Eii, obtained by
solving the ideal MHD equations, correspond in the cylindrical limit to the tearing
mode stability index Eii = rsi

Δ′
i. The off-diagonal coupling coefficient E12 typi-

cally increases with the inverse aspect ratio and with decreasing distance between
the coupled surfaces (note that in the high magnetic shear edge region the ratio-
nal surfaces get closer to each other). A positive imaginary part of ω corresponds
to an unstable mode. Equation 5.3 suggests that in presence of mode coupling
strong destabilising occurs when E22 → 0−. Thus, under certain conditions, even
a cylindrically stable 2/1 mode may be destabilised by mode coupling.

To check if this toroidal destabilising mechanism is relevant in the TCV ramp-up
scenario, we calculate the coefficients Eij using numerical codes with the inclusion
of the experimental equilibrium from magnetic measurements. The outer region
resistive stability code PEST3 [48] is, in principle, able to calculate the complete
matrix E for an arbitrary number of rational surfaces and arbitrary toroidal geom-
etry. Unfortunately due to the vicinity of the q=3 surface to the plasma edge the
numerical scheme does not converge and the results are unreliable. We therefore
limit the use of PEST3 to the calculation of Δ′ for the 2/1 mode alone while the
tearing stability factor of the 3/1 mode E22 = rs2Δ

′
2 is computed with the cylindri-

cal code DELTAPCYL.
An example of such a calculation is shown in figure 5.8 for a quasi-circular

plasma (#21400, see section 5.2 and figure 5.3). It can be seen that Δ′
m=2 is

always negative, indicating an intrinsic stability of the 2/1 tearing mode. Owing to
the vicinity of the q = 3 surface to the plasma boundary, Δ′

m=3 will strongly depend
on the free or fixed boundary conditions (b.c.) employed in the calculation. On
the contrary the effect of the conducting wall on the more internal m = 2 mode is
small, therefore we only show Δ′

m=2 calculated with free b.c..
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Figure 5.8: Tearing stability diagram for m = 2 mode (blue circles) and m = 3
modes with free (red upward triangles) and fixed (red downward triangles) b.c. for
a “low shaping” case (κ � 1.3 and δ � 0.2). The shadowed region represents real-
istic estimations of the stability index. Negative (positive) Δ′ values correspond to
stable (unstable) modes. The solid black line represents a possible path in the tearing
stability diagram during a TCV ramp up experiment of a quasi-circular plasma lead-
ing to 2/1 mode destabilisation, whereas the dashed line refers to a strongly shaped
plasma that remains stable. The experimental equilibria have been obtained from the
magnetic measurements of discharge #21400.

With free (vacuum) b.c., Δ′
m=3 evolves during the ramp-up from negative (sta-

ble) to positive (unstable) values (when qa � 3.6). According to equation 5.3, this
implies a strong destabilisation of the 2/1 tearing mode. Despite its cylindrical
stability, the 2/1 mode may in fact abruptly grow. This effect is entirely due to the
toroidal coupling.

The presence of a perfectly conducting wall (fixed b.c.) may, however, improve
the mode stability. The plasma-wall interaction strongly depends on the distance
of the rational surfaces from the wall, and is very effective on the outer mode,
stabilising the 3/1 tearing mode in the range of qa =3–4. A realistic estimation
of the stability index lays, thus, in the region delimited by the free and fixed b.c.
curves, and depends on the exact geometry of the plasma and the conducting wall.
The boundary of the quasi-circular TCV plasma is on average quite far from the
vacuum vessel, and therefore a value of the stability index close to the free b.c.
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curve is to be expected.
Toroidal mode coupling may thus explain the destabilisation of a cylindrically

stable 2/1 tearing mode during the plasma current rise in TCV.

5.5.2 Plasma shape stabilisation of tearing modes

There are at least three mechanisms which play a role in the stabilisation of the
tearing mode and that depend on plasma shape: the interaction with the con-
ducting walls, the modification of the equilibrium current profile, and the coupling
to vacuum rational surfaces. These mechanisms act simultaneously and indepen-
dently. On the basis of the presented experiments, it is not clear whether one of
the three mechanisms is dominant over the others.

As earlier mentioned, the stabilising effect of the conducting wall is more ef-
fective on strongly shaped plasmas. The average distance between the plasma
boundary and the wall decreases at large values of elongation and triangularity.
Qualitatively, the coefficient E22 in equation 5.2 is expected to have large and
negative values, as suggested by the (dashed) “ramp up” path in figure 5.8. As a
consequence, according to equation (5.3), the destabilising influence of toroidal
mode coupling is reduced, and the growth of a large tearing mode inhibited. The
beneficial effect of the conducting wall can also be invoked to explain the observed
stabilisation of the external kink mode in strongly shaped TCV plasmas (figure 5.6,
section 5.4).

A quantitative realistic modelling of the wall effect requires the implementation
of the exact geometry of the TCV vacuum vessel into a numerical outer layer code
such as PEST3, and is beyond the scope of this thesis. In future experiments
the wall stabilising mechanism could however be experimentally tested using the
flexible shape and position control system of the TCV tokamak.

Let us now analyse the stabilising effect related to the modification of the equi-
librium current density profile by plasma shaping. It is well known that the plasma
shape strongly influences the electron temperature profile, which may in turn
modify the current profile [49, 50]. In absence of a direct measurement of the
current profile, we rely on global current profile peaking indicators, such as the
q-profile peaking factor, qa/q0, and the normalised internal inductance, li,norm[51].
Several TCV discharges have been analysed to gain insight on the influence of
plasma shape. In figure 5.9 the normalised internal inductance is plotted against
the q-profile peaking factor. For a given value of qa/q0, a smaller li,norm is a sign
of broader current profile. We find that the normalised inductance in strongly
shaped plasmas is up to 20% lower than in quasi-circular plasmas. In figure 5.9b)
we show the Δ′ calculations for the two discharges marked with black circles in
figure 5.9a). We find that the strongly shaped plasma is stable with respect to the
tearing modes, whereas the quasi-circular plasma (with higher li,norm) is unstable.

Finally, additional mode coupling effects due to the shaped plasma cross-section
are expected to influence the 2/1 tearing mode stability. The pure toroidal geom-
etry couples, in the lowest order approximation, to the m ± 1 sideband of the



5.6. CONCLUDING REMARKS 83

2.5 3 3.5 4 4.5 5

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

l i,n
or

m

q
e
/q

0
sh

ap
e 

fa
ct

or
=

 κ
−1

+
δ

0.159

0.302

0.444

0.586

0.728

0.87

LOW SHAPE 

HIGH SHAPE 

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

ρψ

<
j φ>

/m
a
x(

<
j φ>

)

21199
21399

High l
i
, Δ’

2/1
=+3.3 UNSTABLE

Low l
i
, Δ’

2/1
=- 4.2 STABLE 

a) b)
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tor for current rise discharges at qa ∼ 3. Different plasma shapes are characterised by
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rium current profiles (from LIUQE) corresponding to the two discharges marked with
black circles in a). The solid red line corresponds to the quasi-circular plasma, and
the blue dashed line to the strongly shaped plasma.

principal m poloidal component, resulting in the interaction of the q = 1, 2 and
3 rational surfaces, whereas elongation and triangularity couple the m ± 2 and
m ± 3 harmonics respectively [12]. The q = 2 tearing mode is thus influenced by
the q = 4 and q = 5 resonance surfaces. In limited discharges, the q = 4 and q =
5 flux surfaces are located in the 2.5 cm thick vacuum that separates the plasma
boundary from the conducting wall, and may therefore contribute to the global
plasma stability through mode coupling. It has been shown by numerically solving
the outer boundary layer equations for coupled modes that both elongation and
triangularity can stabilise an unstable 2/1 tearing mode for plasmas with qa < 4
[12].

5.6 Concluding remarks

• In TCV current rise experiments MHD instabilities appear when the edge
safety factor approaches the rational numbers 5, 4, 3 and 2.5. We have
analysed, for the first time, the details of this type of disruptions in TCV. We
find that the initial instability has dominant mode numbers m/n = qa and is
thus localised at the plasma boundary. This suggests a link with the external
kink mode.

• In a quasi-circular plasma the MHD activity often leads to plasma disruption
when qa ∼ 3. The disruption is preceded by the fast growth of coupled 2/1
and 3/2 tearing modes associated with a decreasing of the mode frequency.
Experiments with slow current rise rates in presence of sawtooth activity



84 CHAPTER 5. PLASMA SHAPE STABILISATION OF CURRENT RISE MHD INSTABILITIES

confirm that the current profile is peaked, close to its quasi-stationary shape.
This excludes the role of transient effects, such as the destabilising skin-
current effect, on the stability. There are evidences that resonant interaction
(mode coupling) between the 3/1 kink mode and the 2/1 tearing mode in
the initial phase of the MHD activity leads to plasma disruption:

1. disruptions always occur at qa � 3 in presence of large 2/1 magnetic
islands (figure 5.2);

2. disruptions always occur when the 2/1 tearing mode coexists with a 3/1
mode rotating at the same frequency (figure 5.3);

3. disruptions do not usually occur if the 3/1 and 2/1 modes do not coexist
or coexist but rotate with different frequency (figure 5.5).

• Moderate and strong plasma shaping stabilises the disruptive mode. Both
plasma elongation (κ > 1.35) and positive (δ � 0.2) or negative (δ � −0.3)
triangularity prevent the growth of large 2/1 magnetic islands. For strongly
shaped plasma even the surface mode is absent.

• Linear resistive MHD theory of coupled modes successfully predicts the desta-
bilisation of cylindrically stable 2/1 modes by the effect of toroidal coupling.
Calculations of the tearing stability index using the TCV experimental data
confirm the importance of this destabilising mechanism.

• Three different mechanisms, linked with plasma shaping, are suggested to
stabilise the 2/1 tearing mode:

1. the effect of the conducting wall (in particular at large elongation);

2. the modification of the equilibrium current density profile as shown by
the small normalised internal inductance of strongly shaped plasmas
and tearing stability factor calculations;

3. the coupling with the q = 4 and q = 5 resonant surfaces.



Chapter 6

Disappearance of the sawtooth
oscillations with far off-axis ECRH at

high elongation

In TCV ERCH is used to modify the pressure and current profiles
and the plasma shape. For instance, very off-axis heating allows
the production of vertically stable, high-elongation discharges at low
normalised current. In these discharges, due to the very flat current
profile (but still with positive shear), sawtooth oscillations may dis-
appear, replaced by a continuous MHD mode resonant on the q =
1 surface. The sawtooth disappearance phenomenon is found to be
well predicted by the so-called “Porcelli sawtooth model” based on
the linear stability of the internal kink mode.

6.1 Introduction to sawteeth

Sawtooth oscillations, or sawteeth, are periodic relaxations of the central temper-
ature, density and other plasma parameters [4]. First observed in the ST tokamak
[52], sawteeth are named after the characteristic signature of the temporal traces
of the soft X-ray emission. They present a slow rise of the plasma parameters
(ramp-up phase) followed by the onset of m/n = 1/1 helical perturbations, or in-
ternal kink motions (see chapter 2), localised at the estimated radius of the q = 1
surface, causing a rapid drop in the central temperature and density, the so-called
sawtooth crash (see figure 6.3). The condition q0 < 1 is necessary but not suffi-
cient for standard sawteeth to occur (see section 2.1). In general, a sufficiently
large free energy has to accumulate in the plasma core before an MHD mode
may trigger a sawtooth crash. During the crash a reconnection process results in
the flattening of the central temperature and density profiles. The corresponding
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outward transport and redistribution of energy and particles define an inversion
radius ρinv, which separates the central region where energy is lost, from an outer
region where the energy is deposited. The inversion radius is expected to be close
to the radius of the q = 1 surface. The investigation of sawteeth has concentrated
on the three consecutive phases of the sawtooth cycle: firstly, on transport of en-
ergy and particles as well as current diffusion during the sawtooth ramp, secondly,
on the instability triggering the sawtooth crash, and finally, on the relaxation pro-
cess leading to the rapid outward transport during the sawtooth crash. Important
quantities characterising the sawtooth cycle are:

• The sawtooth amplitude Asaw. Combining the measurements of central tem-
peratures, density (or soft X-ray), and inversion radius the total energy lost
during a sawtooth crash can be estimated with

Asaw ≡ ΔEc/Ec = ΔTe/Te + Δnp/np (6.1)

where the total plasma energy is Ec = 3/2NpκB(Te + Ti)Vc, and the volume
Vc ∼ 2πR0r

2
inv. For simplicity, the variation in the ion temperature is ne-

glected. Frequently, the relative variation of the central soft X-ray emission
(corrected for the temperature dependence α = d(lnIX)/d(lnTe)) is used as
an estimate of Asaw ∼ αΔIX/IX .

• The sawtooth period τsaw, the time elapsed between two sawtooth crashes. It
has been shown that for Ohmic TCV plasmas the re-heat rate in the sawtooth
ramp phase is mainly determined by the heating power density [53],

dE

dt
≈ pin (6.2)

with pin the central heating power and E the thermal energy. This result
is justified by the fact that in the plasma core the radiation and conductive
losses are small because of the high temperature and small gradients. For
standard, triangular shaped sawteeth, an integration over the sawteeth pe-
riod and averaging over the core volume yields the relation,

ΔEc

Vc

≈ 〈pin〉τsaw (6.3)

Therefore, τsaw allows us to estimate the energy lost during a sawtooth crash.
In the case of complete flattening of the profiles within q = 1 following the
sawtooth crash, it can be shown that τsaw is related with the central poloidal
beta βp,1 (also referred to as βBussac) attained prior to the sawteeth crash [9].
Roughly it can be said that longer τsaw corresponds to higher βBussac.

• The collapse time scale τc. It is typically of the order of 100 μs and almost
always much shorter than the sawtooth period (from several to hundreds of
ms in large tokamaks). The sawtooth collapse is often preceded by a grow-
ing m/n=1/1 helical perturbation seen as a sinusoidal oscillation (precursor
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oscillations) due to toroidal rotation. The presence of precursors may indi-
cate an instability growing at a rate slower than the plasma rotation period
γ < frot. The growth of this slow precursor oscillation has been believed to
be responsible for the sawtooth crash. Kadomtsev interpreted this precursor
as an m = 1, n = 1 tearing mode growing to invade fully the core encom-
passed by the island [54]. This picture is in apparent contradiction with the
observation of oscillations continuing after the sawtooth crash (successor or
postcursor oscillations). Moreover, the rapidity of the sawtooth crash in large
tokamaks implies that the relaxation must involve an event faster than the
island growth, as indicated by the magnetic signal during the crash [55].
Although many mechanisms for the sawtooth collapse have been proposed
there is not yet a commonly accepted model consistent with the large variety
of the experimental data.

The interest in sawteeth originated in their impact on central plasma parameters
and resulting degradation of confinement. In a fusion reactor the repetitive flat-
tening of central profiles would lead to a reduction of the neutron yield. In recent
years, a main concern has arisen from the observation that large sawteeth can
generate seed islands particularly on q = 3/2 and q = 2/1 surfaces and trigger
neoclassical tearing modes, which limit the achievable β. Nevertheless, sawteeth
can also be beneficial since they can prevent the accumulation of impurities in the
plasma centre. A large effort is devoted by the fusion community to the control of
sawtooth oscillations and to the understanding of the underlying physics.

6.2 Experiments with far off-axis ECRH and sawteeth
disappearance

A means to improve plasma performance is plasma cross-section shaping. Plasma
elongation, in particular, allows us to increase the plasma cross-section and achieve
higher plasma current (Ip ∝ (1 + κ2)/2) and toroidal beta values than in circular
cross-sections with the same minor radius and toroidal magnetic field [56]. Thus,
for a desired value of the plasma current, qa and βt, it is possible to use smaller
devices (smaller major radius) at lower magnetic field with obvious economical
advantages. However, stable operation at high elongation is limited by the ver-
tical instability (axisymmetric n = 0 mode) whose growth rate increases with κ
and also with the peaking of the current profile. For Ohmic plasmas, this implies
operating at low edge safety factor qa, or, equivalently, at high normalised current
IN = Ip/aB. Stable Ohmic operation at κ ∼ 2.5 requires IN > 2.25 MA/Tm in
TCV [57]. To benefit from high elongation at low and intermediate values of the
normalised current, a broadening of the current profile is required.

In TCV, profile broadening can be obtained using off axis ECRH or current
drive. Experiments have been performed using localised 2nd harmonic X-modes
(X2) to tailor the current profile during the current flat-top, and to stabilise highly
elongated discharges (κ ∼ 2.5) at high safety factor and low current [58, 59, 60].
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The current modification relies on the modification of the conductivity profile by
radially localised power deposition. Various plasma currents (280 ≤ Ip ≤ 430 kA)
and central densities ((2 ≤ ne0 ≤ 8)·1019 m−3, 0.47 ≤ ne0/ne,cut−offX2 ≤ 1.88) are
explored. The X2 power is deposited in a vertically stable Ohmic plasma, with an
intermediate elongation (κ ∼ 1.75). Discharges are preprogrammed with constant
quadrupole and hexapole fields and the plasma current is kept constant by feed-
back control. The profile broadening leads to stronger interaction of the plasma
column with the vertical magnetic field and consequently to a higher elongation
in a low IN vertically stable plasma. No direct measurement of current profile is
available but three “current indicators” can be used to follow the plasma current
evolution.
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First, the elongation results from the interaction between the plasma current
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and the current in the shaping coils. When the latter is constant an increasing
k indicates a flattening of the current profile [59, 60]. Second, the normalised
internal inductance li,norm [51], is also a typical (global) indicator of the current
profile peakedness that only weakly depends on the plasma shape. Third, as in
this scenario the bootstrap contribution is small (≤ 5%) and ECCD is negligible,
the electron temperature with its link to the plasma current profile provides useful
information on the relative variation of the peaking.

The evolution of the profile indicators is plotted in figure 6.1. During the X2 off-
axis power deposition (0.55 < t < 0.9 s), the current profile broadens, increasing
the plasma elongation. Since the current is fixed, q95 increases. The electron
temperature reaches a stationary condition after ∼100 ms (see also soft X-rays),
while the plasma current diffuses more slowly, as can be seen from the internal
inductance evolution. We are interested in the disappearance of the sawtooth
activity observed during the current profile broadening. Under certain conditions,
the sawtooth activity is replaced by a continuous MHD mode (shadowed region).
The mode structure (see section 6.4) suggests that the q = 1 surface, although
smaller than its initial size, remains present in the plasma core. The sawtooth
disappearance is studied in detail in the following sections.
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Figure 6.2: Density effect on the current broadening indicators. Left: a density in-
crease flattens the electron temperature profile in the core (Ip = 300 kA). Right: κ
increase with line-averaged density, for a central chord, at constant EC power.

We empathise again the relation of the disappearance/appearance of sawteeth
with the current peaking (right side figure 6.1) as observed in experiments with
central third harmonic (X3) heating added to the X2 pre-heated discharges. The
X3 power is applied after almost complete relaxation of the current profile (at
t= 0.9 s). As a result of the central heating, the electron temperature and current
profile peak again as visible from the temporal evolution of the ‘current indicators’.
The sawtooth crashes reappear after 100–200 ms. This important observation links
the current profile evolution to the core MHD activity.
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Another important feature of these experiments is related to the plasma density.
It is found that the density of the target plasma has a strong influence on the final
value of κ and profile broadness. Figure 6.2 shows that higher densities lead to
higher κ and broader temperature profiles, as reported and explained in [60]. The
plasma density is observed to play an important role in the core MHD activity for
this scenario as shown in the next section.

6.3 The disappearance of sawteeth: ne and li thresh-
olds

In these experiments, we distinguish two types of transition to sawtooth-free plas-
mas. The first occurs in discharges with low plasma current (< 400 kA) with no
central MHD activity observed during the sawtooth-free phase. The high resolu-
tion (∼ 0.5 cm) MPX camera (see chapter 3.1) allows the detection of a small
inversion radius. An example of the evolution of the inversion radius from the
chord-integrated signals is shown in figure 6.3, together with the central soft X-
ray time trace. The inversion radius decreases from 8.3 cm in Ohmic to 3.3 cm
in about 120 ms. For smaller rinv the evaluation becomes inaccurate. The edge
safety factor and the elongation continue to increase for more than hundred mil-
liseconds, and the q = 1 surface is expected to shrink and eventually disappear
explaining the sawtooth disappearance in these lower current plasmas.

The second, more frequent at medium (400 kA) and high (∼ 490 kA) currents,
is accompanied by core MHD activity associated with the presence of the q = 1
surface (see section 6.4). In the following we focus exclusively on this transition.
We first analyse the various phases of the MHD activity. Later, we attempt an
interpretation of the sawtooth disappearance on the basis of the MHD theory.

6.3.1 High current plasmas (Ip ≥ 350 kA, q95 ≤ 4.5, rinv ≥ 8 cm)

We want to establish the plasma conditions for the disappearance of the saw-
tooth activity and the appearance of the core MHD mode. If is found that the
plasma density and the internal inductance play an important role in triggering
the mode. Figure 6.5 shows the paths of discharges with different density and
plasma current in the (ne, li) plane during the initial ECRH phase. Together with
the requirement of a finite q = 1 surface, high density and low internal inductance
constitute favourable conditions for the appearance of the central mode that re-
places the sawteeth. At sufficiently high plasma density, the sawteeth disappear
for li ≤ 0.9 independently of the total current. This circumstance could be related
with the shape of the current density profile. Both the low internal inductance and
the high density (as shown in figures 6.2 and 6.5) indicate that a very flat current
profile is an essential condition for the stabilisation of the sawtooth instability and
its replacement by a continuous mode.
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axis ECRH. The inversion radius decreases accordingly to the evolution of the safety
factor q-profile and the q = 1 surface is expected to leave the plasma core.

6.4 MHD modes analysis

In the discharge of figures 6.4 and 6.6 the last visible sawtooth crash happens
at t=0.674 s which coincides with the appearance of the continuous mode. The
frequency spectra of the magnetic signals shows one or two sharp peaks corre-
sponding to the n =1 and n =2 toroidal Fourier components respectively. The
fundamental frequency ω1 ranges from 2 to 6 kHz (see figure 6.6). The frequency
ω2, of the n =2 component, is 2ω1. The same frequency peaks observed in the
magnetics are found in several channels of the MPX detector. A third harmonic
may be present with ω3 = 3ω1 and interpreted as the n =3 component of the
toroidal spectrum. The relative phases and amplitudes for the three harmonics ω1,
ω2 and ω3 can be plotted to visualise the radial mode structure as in figure 6.6. By
counting the phase jumps and peaks and comparing the high and low field side
structure we can infer that the n =1, 2 and 3 harmonics have dominant poloidal
number m =1, 2 and 3 respectively. The three components are resonant on the
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q =1 flux surface and have similar phase velocity:

vn = ωn
Rq=1

n
= ω1Rq=1 (6.4)

The toroidal spectrum of the q =1 mode appears to be rather broad, with impor-
tant n =1, 2 and 3 components. The broad spectrum may be due to the presence of
a relatively high central safety factor q0, resulting also in a small magnetic shear on
q =1, which was observed to broaden the toroidal spectra of the sawtooth instabil-
ity [55]. This conjecture is supported by the fact that the amplitude of the higher
harmonics slowly decreases after t=0.9 s in correspondence with an increase of
the magnetic shear (see figure 6.9a) and pressure peaking (A2/2/A1/1 from 50% to
20% and A3/3/A1/1 from 20% to 0, where Am/n is the amplitude of the mode).

The position of the maximum of the 1/1 component is usually interpreted as
the maximum displacement of the hot plasma core due to the kink motion or to a
magnetic island. We speculate here, that the off-axis peaks of the 2/2 component
correspond to the position of the q =1 surface. These maxima may be expected
from the larger density and emissivity of the O-point of the magnetic island with
respect to the X-point. Such peak density and temperature profiles inside the mag-
netic island separatrix have been observed in Textor [33, 32] for the 2/1 island
and in many other tokamaks for the 1/1 island (often under the name of “Snake
instability”). In section 6.4.1 we will use this conjecture to infer the evolution in
the position on the q =1 surface from the radial structure of the mode in figure
6.6. The TCV core MHD activity has some similarities with the well-known Snake
instability [61, 62]. For instance, both instabilities are triggered in presence of a
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flattened current profile and both have multiple poloidal harmonics. However, the
TCV continuous mode does not show any particular localised emission region (im-
purity filament) that would be consistent with the present sinusoidal shape of the
oscillations in the soft X-ray signal. In this respect, the perturbed emissivity profile
has a similar structure to the precursor (successor) oscillations of the sawtooth ac-
tivity, as shown in figure 6.7. It basically consists of a core displacement, with no
evidence of a highly emitting filament or impurity accumulation, and is consistent
with the formation of a magnetic island due to an unstable current profile.

6.4.1 Evolution of the q=1 position.

Of great importance to understand the changes of the sawtooth characteristics is
the evolution of the q =1 radius. In TCV, ρq=1 can be obtained from the equilib-
rium reconstruction, radial structure of a MHD mode resonant on q =1 or from the
inversion radius of the soft X-ray signals. Figure 6.8a shows the evolution of the
q =1 radius obtained combining these techniques. The Ohmic inversion surface
can be accurately obtained from the tomographic inversion of the soft X-ray emis-
sivity (figure 6.8b). It corresponds, for this specific case, to an inversion radius
ρinv=0.57 (r/a=0.48). The value obtained from the equilibrium reconstruction
code LIUQE is somewhat larger, ρq=1,LIUQE=0.62. With the far off-axis ECRH
power deposition and the consequent current profile flattening, the q =1 radius
decreases as shown by the LIUQE reconstruction (figure 6.8a). Given the reduced
sawtooth amplitude and the fast plasma profile evolution, the determination of the
inversion surface from tomography is too inaccurate during this transition phase
and we therefore rely on the equilibrium reconstruction. Once the core mode is
observed, it provides, by means of its radial structure, an alternative measure of
the q =1 radius. After the fast shrinking phase (up to about t=0.9 s) the q =1
radius reduces slowly and almost linearly reaching the value ρq=1 = 0.24 which
corresponds to 5.6 cm. Thus the q = 1 surface remains in the plasma during the



6.5. COMPARISON WITH SAWTOOTH MODELS 95

0.5 1 1.5

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Time [s]

ρ q=
1

ρ
q=1

 from 2/2 mode
ρ

q=1
 from LIUQE

0.6 0.8 1 1.2

0.6

0.4

0.2

0

0.2

0.4

0.6

R [m]

Z
 [m

]

ρ
inv

=0.57(12cm) from SXR at t=0.55s b)
a)

ρ
q=1

=9 cm, t=0.63s 

ρ
q=1

=8 cm t=0.7s

ρ
q=1

=5.6 cm 

# 22621 t=0.55s

ρ
inv

Figure 6.8: Estimations of the q =1 radius evolution from different techniques. a):
evolution of the position of q =1 surface from LIUQE and from the position of the
maxima of the 2/2 perturbation in the MHD mode. b): sawtooth inversion surface
from the tomography of the soft X-ray emissivity during the Ohmic phase.

entire of the ECRH phase.

6.5 Comparison with sawtooth models

A complete description of the sawtooth cycle requires a model for the transport
inside the q =1 surface, an instability threshold for the onset of the crash and a
prescription for the post-crash relaxed profile. In order to explain the sawtooth
disappearance we only need to consider the condition for the destabilisation of a
mode causing the sawtooth crash. For this purpose we make use of a model devel-
oped to predict the sawtooth period in JET and ITER [63] and already successfully
applied to Ohmic and ECRH TCV plasmas [64, 65] and NBI plasmas at JET [66].
The model, referred to as Porcelli model [63], has been implemented in the trans-
port code PRETOR [67] by Angioni with some modifications and improvements
as described in [65]. The sawtooth crash is triggered by the destabilisation of the
internal kink mode, which can be either ideal or non-ideal in nature, depending on
the values of the plasma parameters but always evaluated with linear theory. How-
ever, the reader may question whether the linear theory is appropriate to treat the
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case of the sawtooth disappearance. In fact, the saturated continuous mode in the
ECRH phase shows that the internal kink enter the non-linear regime. However,
for a certain time, the linear regime should still be relevant and the predictions of
the linear theory could nevertheless provide some insight.

The basic features of the Porcelli sawtooth model are presented in the next
section. Although in PRETOR are implemented formulas that evaluate the ideal
kink mode growth rate, the stability of highly shaped plasmas typical of these ex-
periments is best studied using the full toroidal geometry code KINX [68] (section
6.5.2). Finally, we simulate the evolution of the temperature and current profiles
under the effect of the off-axis ECRH using PRETOR in “predictive mode”. The
transport coefficient is varied in order to match the experimental electron temper-
ature and the experimental sawtooth period τsaw and inversion radius ρinv.

6.5.1 Sawtooth crash triggering conditions in the Porcelli model

According to reference [63], a sawtooth crash is triggered when an internal kink
mode becomes unstable. The kink stability is evaluated using linear MHD theory
in the ideal and resistive regime.

Within this framework, an ideal-like internal kink triggers the sawtooth crash if
its growth cannot be stabilised by the plasma diamagnetic flows, i.e. if,

γideal > 0.5ωi,dia (6.5)

where γideal is the growth rate of the internal kink and ωi,dia = kTi/LpeBr1 the
ion drift frequency with Lp being the pressure scale length, r1 the radial position
of the q =1 surface and B the total magnetic field. The growth rate of the ideal
internal kink can be expressed in terms of the normalised potential energy δŴ =
−4δW/s1ξ

2ε1RB2,

γideal =
−δŴMHD

τA
(6.6)

with τA = R/vA being the Alfvén time, s1 = ρ1(dq/dρ1) and ε1 the magnetic shear
and inverse aspect ratio on q =1 and ξ the radial displacement. The ideal MHD
internal kink potential energy could, in principle, be accurately evaluated using
a full geometry ideal MHD code such as KINX. However, a numerical evaluation
would be computationally too demanding if employed to simulate the full saw-
tooth cycle. Therefore analytical formulas are used to evaluate the ideal stability
with the form,

δŴMHD =
(
δŴBussac + δŴelong

)
Cδ (6.7)

The terms δŴBussac, first calculated in Ref. [9], takes into account the effect of
toroidicity in the large aspect ratio limit of circular cross section while δŴelong

includes the destabilising effect of plasma elongation. The additional triangularity
factor Cδ give the necessary corrections due to the plasma shape. A well-known
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analytical expression for the first term is [9]

δŴBussac = −9π

s1

(li1 − 0.5)ε2
1(β

2
p1 − β2

pc) (6.8)

where li1 is the internal inductance inside the q =1 surface, βp1 = (2μ0/B
2
p1)(〈p〉1−

p1) the so-called βBussac in which 〈〉1 denotes volume averaging within the q =1
surface, and βpc = 0.3(1 − 5r̄1/3ā). Therefore, the ideal kink mode (for circular
cross-sections) can be destabilised by δŴBussac becoming negative once the plasma
pressure sufficiently exceeds a critical value. It is interesting to note that for a
given q-profile, the ideal internal kink is stable for sufficiently flat pressure profile
at a finite value of the q =1 radius. In a shaped plasma, however, the destabilising
effect of the elongation may destabilise the ideal internal kink even at βp1 = 0. In
addition to the ideal MHD potential energy, fast and trapped particles ion effects
can also contribute to the potential energy. In the presently considered TCV ex-
periments, the stabilising effect of fast particles on sawteeth can be neglected. In
contrast, the stabilising effect of collisionless thermal trapped ions may be impor-
tant and its contribution to potential energy, δŴkin, is added to δŴMHD in equation
6.7. The specific formulas for δŴelong, Cδ and δŴkin, as implemented in PRETOR,
can be found in [65]. When the condition 6.5 is satisfied, an internal kink with
a step-like radial structure similar to the ideal mode is destabilised. Therefore it
will be referred to as the ideal internal kink, even if non-ideal effects have been
included.

If the plasma is stable with respect to the ideal mode, the resistivity becomes
important. When the internal kink potential energy is sufficiently close to zero,
the mode dynamics and the linear growth rate are determined by microscopic
non-ideal effects in a narrow layer around the q =1 surface where reconnection of
magnetic field lines can occur. In this case, the internal kink changes its structure
from that of an ideal mode to that of a reconnecting mode and in these condi-
tion is referred to as the resistive internal kink. Furthermore, when the internal
kink potential energy δŴ is positive and larger than a certain threshold, identi-
fied in Ref. [63] as basically given by the normalised ion-sound Larmor radius ρ̂,
the mode structure changes again from that of a global resistive kink to that of
a drift-tearing mode [69]. The drift-tearing mode is strongly localised near the
q =1 surface and assumed to be too localised to generate an internal collapse as
a sawtooth crash. Hence the domain in which the resistive internal kink can be
destabilise is given by

−ρ̂ < −δŴMHD < 0.5ωi,diaτA (6.9)

The condition 6.9 defines the reconnection regime. When the ion-gyro radius is
larger than the resistive layer (i.e. high temperature plasmas), the resistive in-
ternal kink in the so-called semi-collisional ion-kinetic regime has to be considered
[70], which has a different growth rate. A general condition for the resistive mode
to be triggered has been proposed [64] which includes the diamagnetic stabilising
effects of ions and electrons

max(γρ, γη) > cr(ωi,diaωe,dia)
1/2 (6.10)
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where γρ and γη are the linear internal kink growth rate in the resistive and ion-
kinetic regime respectively and cr is a numerical coefficient of the order of unity.
The resistive growth (γρ or γη) essentially depends on the magnetic shear on the
q =1 surface, whereas the stabilising diamagnetic effect increases with pressure.
Thus, the triggering condition can be rewritten in the form

s1 > s1crit,ρ,η (6.11)

where s1crit, the critical shear on q =1, is proportional to some power of βp1.
The expressions for s1critρ,η, are somewhat different for the two kink regimes but
usually give very similar results. The formulas implemented in PRETOR can be
found in [65].

An instability condition similar to equation (6.11), involving a critical value
of the magnetic shear at q =1, was found in agreement with the experimental
observation of stabilisation and onset of sawteeth in TFTR [71]. In particular, it
was found that an increased pressure gradient, resulting from an improved core
transport, increased the critical shear above the experimental shear value on q =1
stabilising the sawtooth activity. In section 6.5.3, we will see that in TCV off-
axis heated discharges, the resistive internal kink may be stabilised by a similar
mechanism. However, in TCV, the variation and reduction of the shear on q = 1
stabilises the resistive internal kink rather than an increased critical shear.

Since both inequalities (6.9) and (6.11) need to be satisfied for the onset of
a resistive internal kink, a crash can be prevented either reaching the condition
s1 < s1crit or the condition δŴMHD > ρ̂. While the latter trigger is found to be
the relevant condition for JET NBI-discharges, due to the stabilising effect of the
fast ions, the former is found to be consistent with the experimental results in
TCV Ohmic and ECRH plasmas at low and moderate elongation. On the contrary,
at high elongation, the ideal internal kink was proposed to be responsible for
the observed sawtooth behaviour [46, 58]. In the presented ECRH experiments
the plasma elongation is fairly high (κ = 2.3 − 2.5) but the current and pressure
profile are rather non-standard, being strongly broadened by the far off-axis ECRH.
To determine whether the ideal or the resistive regime of the internal kink mode
is relevant, all these competing factors have to be taken carefully into account.
We therefore prefer to use the numerical results of the ideal kink stability from
the MHD code KINX [68], which are more accurate than the analytical formulas
implemented in PRETOR.

6.5.2 Analysis of the ideal internal kink stability with KINX

The internal kink mode stability depends strongly on the plasma shape. The ideal
internal kink is predicted to be more stable at large positive and negative trian-
gularities and to be destabilised at large elongation. A detailed discussion of the
analytical and numerical results on the effect of plasma shape can be found in
reference [72].

Since the growth rate formulas used in PRETOR contain only a simplified de-
scription of the shape dependence [65], we use the results of the full toroidal
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geometry MHD code KINX. In references [73] and [72] respectively, two formu-
las are proposed, to fit the numerical results of the mode normalised growth rate,
γidealτa, in a wide range of plasma shape, pressure and current profiles,

γ1τA = 0.5ε1(κ1 − 0.5)

[
βp1 −

(
0.5 − ε1

εa
(κ1 − 1.5|δ1 + 0.04|)

)](1.23−1.26ε1)

(6.12)

γ2τA = 0.44
ε1κ1

1 + 7ε1s1

(
βp1 − βc

p1

)
(6.13)

with βc
p1 = 0.9 − (0.6 + 0.1s1)κ1 and all plasma parameters evaluated at the q = 1

surface. Note the dependence on the elongation (κ1) and q = 1 surface radius
(ε1 ∼ r1/R) that increases the growth rate in both cases. According to reference
[72] about 300 different equilibria have been used in the fitting procedure, span-
ning 0.02 < εa < 0.8, 1 < κa < 2.8, −0.6 < δa < 0.9, 0.02 < s1 < 0.75, and
resulting in a γτA variation from 0 to 0.25. The equation 6.12 contains the ex-
plicit dependence on plasma triangularity (δ1) and a stronger dependence on the
q = 1 radius, while equation 6.13 contains the dependence on the shear (s1) and
is particularly adapted for high elongation, low shear plasmas [72]. The formulas
are evaluated using the experimental profiles and the position of the q =1 surface
estimated from sawtooth inversion radius and the radial m/n=2/2 mode structure
(see section 6.4). In figure 6.9 we show the evolution of the ideal growth rate for
a typical case, together with the results of two full numerical KINX simulations in
the Ohmic and ECRH phase. Since during the ECRH phase, LIUQE typically gives
a central safety factor larger than one, the equilibrium was re-run with a modified
current profile which reproduces the experimental value of the q =1 radius but
otherwise similar in other parameters. The normalised growth rate ranges from 0.
to 0.035 (depending on the model and time) that are, generally speaking, small
values. We can see that, in Ohmic, the ideal γ in equations 6.12 and 6.13 have
similar trends but different absolute values, larger in both cases than the numeri-
cal full simulation. The large difference between the full simulation and the fitting
formula is not completely unexpected since such difference was already noted in
reference [72] for γτA <0.03.

The analytical formulas are regarded, here, as a useful tool to understand the
trends in ideal stability changes due to the additional off-axis heating. The off-axis
ECRH changes the ideal kink stability in a rather unexpected way. In fact, despite
the increased destabilising plasma elongation (see equation 6.13), the growth rate
sharply decreases. This is mainly due to the reduction of the q =1 radius reflected
in the ε1 factor while βp1 remains constant during this phase (see figure 6.9a). The
small increases in γ at t=0.9 s well correlates with the increase of βp1 (consequence
of a slow density peaking) and the magnetic shear s1.

For a more accurate analysis of the ideal kink stability we rely on the results
from the full numerical simulations. In the ECRH phase we obtain a very low value
of the growth rate, of the order of γidealτA ∼ 10−3 to be compared to the stabilising
contributions from the trapped ions δŴkin [63] and diamagnetic effect 0.5ωi,diaτA



100
CHAPTER 6. DISAPPEARANCE OF THE SAWTOOTH OSCILLATIONS WITH FAR OFF-AXIS

ECRH AT HIGH ELONGATION

0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

1.2

Time [s]

s
1

β
p1

ρ
q=1

κ
a
-1

a)

0 0.5 1 1.5 2
0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Time [s]

γ id
ea

lτ A

KINX fit1
KINX fit2
KINX full simulation

Ohmic ECH

b)

Figure 6.9: Ideal kink stability evolution of an off-axis heated high elongation dis-
charge (#22621) from KINX code. a) Magnetic shear s1 (red dashed line), Bussac
beta βp1 (full magenta), q =1 radius ρq=1 (black dashed dotted), edge elongation κa

(blue dotted) used in the evaluation of γ1τA and γ2τA. b): Evaluation of the nor-
malised ideal growth rate from equations 6.12 (fit 1, blue dots) and 6.13 (fit 2, red
squares) and full numerical simulation with KINX (black triangles).

(see equation 6.5). The term δŴkin, explicitly evaluated from equation [65],

δŴkin = 0.6cp
ε
1/2
1 βi0

s1
, cp =

5

2

∫ 1

0

dx x3/2pi(x)/pi(x = 0), (6.14)

with x = r/r1, is typically of the order of 4 ·10−3 in Ohmic and of 0.02 in the ECRH
phase. The larger value in ECRH is mainly due to the 1/s1 dependence of δŴkin.
The diamagnetic contribution to the rotation stabilisation is 0.5 ωi,dia ∼ 0.003 in
both cases. We have then, for Ohmic plasmas, γτA = δŴMHD + δŴkin = 0.003 −
0.031 ≥ 0.5 ωi,dia while in ECH δŴMHD + δŴkin ≤ 0.

In the far off-axis heated discharges, the linear ideal kink is thus suggested
to be stabilised by either diamagnetic effects or trapped ions. This is unexpected
because of the large elongation. The present analysis shows, however, that the
small radius of the q=1 surface has a strong stabilising effect finally reducing the
growth rate of the mode.

6.5.3 Comparison with the Porcelli model using PRETOR simu-
lations

As seen in the previous section, despite the high elongation reached in the ECRH
phase, the linear ideal internal kink is likely to be stabilised by non-ideal effects.
This is mainly due to the very flat current profile and reduced q =1 radius. Simi-
larly, the condition for the ideal trigger (equation 6.5) is never satisfied in PRETOR
simulations of these discharges. The ideal internal kink mode is stable for any ρq=1

value, even without taking into account the (dominant) stabilising kinetic contri-
bution δŴkin. The sawtooth trigger is given by satisfying the condition 6.11. It
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Figure 6.10: PRETOR-ST simulation of off-axis ECH heated discharge #22621. a): s1

and s1,crit during the sawtooth cycle showing the complete resistive kink stabilisation
since s1,EXP. < s1,crit. b): comparison of the experimental and PRETOR-ST electron
temperature profile.

must be said that previous applications of the Porcelli model to TCV Ohmic and
ECRH discharges [64, 74] reached the same conclusion, namely that the appropri-
ate trigger in TCV plasma conditions was the resistive or the ion-kinetic trigger.

For a correct evaluation of s1 and scrit, the simulated profiles must agree, within
the errors, with the experimental profiles in the region close to q =1. In particular,
it is important to match the experimental density and temperature profiles. The
density can be automatically matched by switching off the particle transport equa-
tion and fix the density profile to the experimental one. The plasma shape, total
current and Zeff are also taken directly from the experiment. The temperature
profile is self-consistently simulated using the Ohmic and the additional heating
using the ray tracing code TORAY [75]. The simulated electron temperature pro-
file outside q =1 is then matched to the experimental profile by changing the
transport coefficients. The sawtooth model contains the free parameter cr, which
is arbitrarily fixed to the value needed to simulate the sawtooth period during the
Ohmic phase. The temperature and current profiles are allowed evolve until a
sawtooth crash is eventually triggered, and the relevant parameters are monitored
during the sawtooth cycle. In figure 6.10b, we compare the experimental and
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the PRETOR electron temperature profiles when the q =1 radius matches well the
experimental value of 5.6±0.5 cm. The agreement is satisfactory and gives confi-
dence on the evaluation of the critical and magnetic shear that can be compared
with the experimental estimations of s1. The evolution of s1,PRETOR and s1crit dur-
ing the sawtooth cycle is shown in figure 6.10a. The sawtooth trigger condition,
s1 > s1,crit, is satisfied when the q =1 radius > 8 cm, corresponding to a sawtooth
period of about 10 ms. Below this radius the internal kink is stable. Also the
shear calculated with the LIUQE and KINX code are smaller than s1. We conclude
therefore that the stationary current profile is so strongly flattened by the off-axis
ECH that the local value of the shear on q =1 is lower than the critical shear.
Notably, at the time of the transition to sawtooth-free regime (t=0.68 s in figure
6.8), the estimated q =1 radius is 8-9 cm and agrees quite well with simulated
value. However, it remains to explain why the electron temperature and current
profiles do not continue to evolve up to a sawtooth crash as occurring in the sim-
ulations. We suggest that under the effect of the ERCH, the internal kink enters
in the non-linear regime or, perhaps is inhibited by an other instability such as the
tearing mode. The linear growth rate is, in fact, reduced and non-linear effects
may become important. Moreover, a magnetic island on q=1 is often observed
in plasmas with flat q-profiles (Snake instability). The transition to a non-linear
saturated state may explain the disappearance of the sawtooth activity.

6.6 Concluding remarks

• Vertically stable discharges with κ ∼ 2.5 at low and medium IN are obtained
in TCV using very off-axis ERCH. The vertical stability at large elongation is
essentially obtained by current profile broadening that increases the current
density at the edge. Correspondingly the sawtooth activity disappears. At
low current (Ip < 380 kA) the sawteeth disappear because the q =1 surface
shrinks due to the reduction of the central current density. At high current,
in the early phase of current broadening, the sawtooth activity is replaced by
a continuous MHD activity with multiple m/n=1 harmonics, that persist in
stationary conditions during the entire ECRH phase indicating the presence
of a finite size (∼ 5.6 cm) q =1 surface.

• The MHD mode appears in discharges with higher density and at sufficiently
low internal inductance (li < 0.89). Experiments with combined off-axis X2
(current broadening) and central X3 (current peaking) heating clearly link
the sawtooth disappearance and the formation of the saturated island to the
formation of a flat current profile with a small q =1 radius.

• The linear ideal kink stability and plasma shape effect are studied, in detail,
with the KINX code. It is found that the destabilising effect of high elongation
on the internal kink mod is compensated by the reduction in the q =1 radius
and the ideal growth rate is likely to be stabilised by non-ideal effects, as also
suggested by the Porcelli model in PRETOR. The modification of the central
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plasma beta does not play an important role in internal kink stabilisation
contrary to what was observed in the TFTR tokamak [71].

• The comparison with the Porcelli sawtooth model [63] indicates that the
linear resistive kink is stabilised by the low shear on q=1.

• We suggest that the resistive kink or a tearing mode destabilised by the flat
current profile enter the non-linear regime reaching the saturation. The ex-
tra transport due to this mode clumps the profile and no sawtooth crash is
triggered. However, only a fully non-linear analysis may verify this scenario.
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Chapter 7

MHD activity in EC-heated TCV
plasmas with eITBs

In this chapter we report on the MHD activity observed in advanced
TCV scenarios showing electron internal transport barrier (eITB).
The eITB is created with the aid of the electron cyclotron current
drive (ECCD) by producing reversed or low central magnetic shear.
The phenomenology of the MHD activity is described, and mode char-
acteristics are compared with ideal and resistive MHD modes possi-
bly responsible for these instabilities. The performance limitations
imposed by these modes are highlighted, and possible solutions are
suggested.

7.1 Introduction to electron internal transport bar-
riers

Undoubtedly the quest for improving plasma confinement has always been of ma-
jor concern in tokamak experiments. Historically, tokamak reactors operating in
the so-called low confinement regime (L-mode) proved to be not very attractive
as nuclear fusion power plants. In L-mode, the electron diffusivity is two orders of
magnitude larger than what is expected from collisions, and only very large (and
expensive) devices would be able to produce energy at a reasonable price. These
losses are likely to be due to turbulent transport phenomena.

The most exploited regime of improved confinement is the so-called H-mode,
or high confinement mode, which is known since 1982 [76]. In this regime, a
region of reduced transport close to the plasma edge is produced through mech-
anisms that are still not fully understood. In this region, the particle and thermal
diffusivity are close to the values predicted by the collisional theory. In the past
ten years, plasmas showing large internal temperature gradients have been ob-
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tained in many devices. Some of the earliest results are reported in references
[77, 78, 79], whereas a more recent review on the subject can be found in [80].

The large gradients are thought to be the result of a reduced turbulent trans-
port. The low transport region is localised in the radial direction, and called in-
ternal transport barrier (ITB). In general, ITB plasmas are produced transiently,
using fast ramps of plasma current in presence of an early pre-heat phase that
slows down current diffusion to create hollow or very flat central current profiles.
Strong shear in the radial electric field and/or negative shear in the q-profile are
believed to be key ingredients to reduce the turbulent transport [81].

In TCV, localised electron heating and current drive by cyclotron waves (ECRH
and ECCD) are used to tailor the current profile and produce inverted q-profiles.
The transport barriers are clearly visible on the dominating electron transport
channel and thus called electron ITB or eITB. Quasi-stationary ITB regimes, lim-
ited only by the gyrotron duty cycle or by MHD modes, are routinely obtained in
TCV [82, 83, 84]. There exist essentially two regimes that have been developed at
TCV:
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Discharges with an inductively driven current component. The tailoring of the
current density is achieved by a combination of off-axis ECRH and a strong
central counter ECCD applied to an Ohmic target of fixed current in the
range 120–250 kA. Heating off-axis broadens the electron temperature pro-
file, Te, as well as the current density profile via a change in the resistivity.
The flattening of the current profile is generally observed from the variation
in the plasma inductance on a resistive time scale. Subsequent power depo-
sition in the centre, combined with counter ECCD, leads to Te profiles which
clearly reveal the formation of a transport barrier. The pre-heat phase also
helps producing more stable plasmas, thus allowing the achievement of long
pulses of Improved Central Electron Confinement (ICEC) discharges [82].

Discharges without an inductively driven current component. In the Fully Non-
Inductive Reverse Shear (FNIRS) scenario the Ohmic current is replaced by
non-inductive current driven by off axis co-ECCD [84, 83, 85] up to about
100 kA. Calculations with the Fokker-Plank code CQL3D [86] show that the
off-axis co-ECCD is not sufficient to produce a hollow j(r) profile. The boot-
strap current, having an off-axis maximum, determines the final shape of the
total current density profile [87]. Once the transport barrier is formed, it can
be strengthened (weakened) by adding central counter(co)-ECCD.

The eITB plasmas resulting from the ICEC and FNIRS scenarios differ in the
location of the maximum pressure gradient and in the current profile shape (fig-
ure 7.1). In ICEC plasmas, due to the strong inductive current component which
tends to peak the current profile, the low or negative shear region is localised close
to the magnetic axis, ρITB = 0.2–0.4 with qmin ∼ 1. Note that there is no direct
measurement of the current profile and that the calculation, and modelling of the
q-profile in this scenario have been proven particularly difficult [74, 65]. This
is mainly due to the fact that to obtain the total current profile one has to sub-
tract two large and comparable contributions, namely the ECCD and the inductive
current. The bootstrap current plays here an important but not crucial role. Ex-
periments with different plasma currents showed, however, a strong link between
the inferred q-profile and the eITB location [88]. In fact, it is found that at fixed
power, the ITB tends to shrink at higher plasma currents. This further supports the
idea that a larger region of low or negative shear corresponds to a larger ρITB. As
a consequence, the energy fraction inside the barrier increases. When the Ohmic
current is eliminated, as in the FNIRS scenario, the current profile shape can be
more easily controlled, and stronger reverse shear can be obtained with an ITB
located further off axis (ρITB = 0.35–0.55).

Before describing the experimental results, we discuss the results of ideal MHD
calculations in reverse shear scenarios with large pressure gradients [10].
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Figure 7.2: Theoretical β limit due to global kink mode (infernal mode) in plasmas
with reverse shear, calculated with the KINX code [10]. The β limit is plotted versus
the pressure peaking (left) and qmin (right) for different positions of the ITB.

7.2 An ideal MHD result: infernal modes in reverse
shear scenario

Global, low n (typically n = 1) ideal instabilities in the presence of large pressure
gradients and β, referred to as “infernal modes”, are found to be unstable in re-
verse shear scenario [10]. Following the reference, we summarise a few features
of the infernal modes. The main parameters used to define the infernal mode
stability are the minimum safety factor qmin and its radial position ρqmin

, the pres-
sure peaking, and the radius of the maximum of the pressure gradient ρp (often
referred to as ρITB).

The mode poloidal structure shows a strong poloidal asymmetry with larger
amplitude at the LFS (sometimes called ballooning character). For q-profiles with
qmin expected for TCV eITB plasmas, calculations show that the poloidal Fourier
spectrum sharply peaks around m = 2 and m = 3. By increasing the value of
qmin and the radial position of the maximum pressure gradient, the mode moves
radially towards the positive shear region and closer to the plasma edge, changing
its character into an external kink mode, a current driven mode. At values of
qmin > 4, the external kink mode character becomes dominant.

Owing to the hollow current profile and the large localised pressure gradi-
ent, the ideal βt limit is reduced [10] in comparison to the well-known Troyon
limit (βt ≤ 3IN) [89] valid for a monotonic q-profile. The maximum achievable β
strongly decreases with the pressure peaking p0/ < p >V , and the minimum safety
factor qmin (see figure 7.2). On the contrary, the βN limit increases with increasing
ρqmin

and ρITB. Large pressure peaking (> 4–5) decreases the maximum βN also for
monotonic q-profiles with similar li. This is important for TCV since the pressure
peaking may reach very high values (up to 15) in eITB plasmas. We anticipate
that the experimental β limit is strongly sensitive to the pressure peaking (see
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figure 7.11) thus suggesting that the infernal modes could explain the observed
disruptions and rapid internal collapses.

7.3 MHD mode in improved central electron con-
finement scenario

In the ICEC scenario, two main MHD activities have been observed: slowly grow-
ing magnetic islands and fast growing kink-like modes. The latter may show
the signature of periodic relaxation oscillations (PROs) in the SXR signals with
sawtooth-like features [90].

7.3.1 Tearing modes in ICEC plasmas

The magnetic islands cause oscillating perturbations (typically 3–6 kHz in TCV) of
the magnetic field and soft X-ray emissivity. In general, the magnetic islands are
associated with the destabilisation of the tearing modes (TMs), driven by current
and pressure gradients. In the presented experiments, the tearing modes are lo-
calised near the q = m/n = 2/1 and/or 3/1 surfaces, outside the eITB and in the
region of positive magnetic shear. Neither the double tearing mode nor the 3/2
mode have been observed.

The negative influence of TMs on global confinement is shown in figure 7.3.
As an n = 1 mode build up at t = 0.556 s, the global confinement degrades signif-
icantly. The growth of the mode amplitude is correlated with a gradual decrease
of the SXR signal, indicating that the TM is indeed responsible for the degra-
dation of confinement and ITB strength. The confinement enhancement factor
HRLW = τE/τE,RLW [91] drops from 3.5 to 2.5, while the eITB strength (identi-
fied by ρ∗T , according to Tresset [92]) decreases. As the mode amplitude further
increases during the current rise (t = 1.0–1.3 s), the averaged HRLW drops down
to 2, and ρITB shrinks from 0.3 to 0.2, with consequent termination of the high
confinement phase.

The edge magnetic perturbations can be well reproduced by the magnetic is-
land model (see also chapter 4), which also allows us to reconstruct the island
structure (figure 7.4). In the presented discharge, the perturbation does not have
a single helicity, but is composed of two coupled magnetic islands rotating to-
gether: a 3/1 island, observed predominantly in the edge magnetic signal, and a 2/1
island, more clearly seen in the SXR signal.

Note that a satisfactory modelling of the edge magnetic signal requires the
presence of a 2/1 island in the fitting procedure (section 4.4.2), whose presence
is independently confirmed by the structure of the perturbed SXR signal. In the
low Ip phase (figure 7.4a), the 2/1 mode structures from the magnetics and the
SXR show good agreement in the q = 2 resonance surface position and the island
width w2/1, indicating that the q-profile region around q = 2 is well reconstructed
by LIUQE. More generally, the equilibrium q-profile in the positive shear region
is reliably determined by the (slow) edge magnetics measurements. After the
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simultaneous current- and κ-ramp-up (in order to limit the qa variation) the SXR
measurements indicate a somewhat smaller q = 2 radius and a much larger island
size than what deduced from the magnetics (figure 7.4b). However, since the
SXR are line-integrated measurements, the radial structure of the perturbation
amplitude is strongly influenced by the plasma geometry and by the presence of
an outer mode (here the 3/1 mode). As a result, the localisation of the mode from
SXR analysis has large uncertainties.
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Figure 7.4: Coupled 3/1 (blue) and 2/1 (red)
magnetic islands reconstructed from the mag-
netic perturbation data in (a) early phase at
low current (120 kA), and (b) later phase af-
ter current (180 kA) and κ ramp up. From
discharge #24139. The radial structure of
the perturbation amplitude in the SXR signal
is superimposed for comparison to the 2/1 re-
constructed island.

At the mode onset, βN ranges
from 0.6 to 1.4, and the collisional-
ity νe∗ from 0.003 to 0.01. For simi-
lar values of these parameters, neo-
classical tearing modes NTM were
previously observed in TCV plasmas
without eITB [93]. A typical signa-
ture of an NTM is the linear depen-
dence of the saturated island width
on βp [15],

wsat

rs
= βp

abs − aGGJ

−rsΔ′ (7.1)

where abs is a coefficient describing
the destabilising effect of the per-
turbed bootstrap current, and aGGJ

describes the stabilising effect of
toroidicity and shaping.

There are indications of such a
βp dependence in the ICEC tearing
modes. This effect can be seen in
discharges with a single 2/1 island.
As shown in figure 7.5, after a tran-
sient phase at mode onset, the sat-
urated amplitude follow linearly the
plasma β.

Despite the experimental difficulties due to mode coupling, there is evidence of
the correlation between βp and the island width also in discharges with more than
one magnetic island, as in the precedent case. According to the magnetics data
only (see figure 7.3), in fact, w2/1/rs decreases by more than a factor of 2 (from
0.47 to 0.20) during the current rise (βp from 1.1 to 0.6). This strongly suggests
a reduction of the destabilising drive from the bootstrap current as expected for
neoclassical tearing modes.

7.3.2 Pseudo sawteeth in ICEC plasmas

Fast collapses and periodic relaxation oscillations (PROs) have been observed
quite frequently in ICEC plasmas. The PROs often show a sawtooth-like signa-
ture, and an associated MHD activity with m = 2, n = 1 mode numbers. The
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sawtooth period τsaw ranges from 5 to 20 ms depending on the plasma current.
This time is considerably longer than τsaw in ordinary sawteeth. A paradigm of
PROs is shown in figure 7.7. During the on-axis power ramp-up the plasma pres-
sure increases steadily until an MHD event sets on, and abruptly reduces the
central pressure at t=0.98 s. Subsequently the discharge undergoes several in-
ternal disruptions while a change in the plasma equilibrium occurs: the plasma
elongation increases as a result of a flattening in the current profile as observed
in the internal inductance. The safety factor passes from 8 to 10 at the edge.
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Figure 7.6: Line-integrated soft X-
ray emissivity profiles before and af-
ter the pseudo sawtooth crash. The
inversion radius is located 2-3 cm in-
side the q=2 radius from LIUQE re-
construction.

The internal relaxation phase is associated with
continuous MHD activity with 2/1 mode num-
bers that cease after about 150 ms (see spec-
trogram in figure 7.7d). The plasma β begins
to rise again and after few tens of ms the PROs
appear with a period of 20 ms and remain until
the central EC heating power is turned off.

The regular sawtooth-like crashes are some-
times accompanied by perturbations visible in
the soft X-ray signals and in the magnetics (fig-
ure 7.9). The MHD activity shows m =2, n =1
mode numbers indicating that, differently from
standard sawteeth, the crashes are caused by an
MHD instability resonant on q =2. The equilib-
rium reconstruction and q-profile modelling in-
dicate that the q =1 surface is not present in the
plasma during this phase. The pre-crash and
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ρ

Figure 7.7: Paradigm of pseudo sawteeth regime in ICEC discharge #21714. a)
Plasma current Ip. b) ECH power and βp. c) Central soft X-ray emissivity. d) Spectro-
gram of the n = 1 toroidal component of the magnetic signal. Negative frequencies
indicate mode rotation in the electron diamagnetic drift direction. Note also the tran-
sition from continuous TM to pseudo sawteeth in correspondence of the change in
ρq=2

post-crash line-integrated soft X-ray profiles (figure 7.6) show an inversion radius
located close but somewhat inside (about 2-3 cm) the q =2 surface as calculated
by LIUQE. This discrepancy could be due to the inaccuracy of the q-profile recon-
struction or to the presence of a second q =2 surface in the plasma. Consistently,
in this case, the q profile should be reversed with qmin close to 2, corresponding
to a current profile particularly unstable with respect to infernal modes (section
7.2). We may conclude that the MHD activity in ICEC plasmas, either tearing-like
or sawtooth-like, is mainly originating from the most unstable q =2 resonant sur-
face. Keeping qmin > 2, as for FNIRS plasmas, is probably the best to produce
stable eITB plasmas. It is worth noticing that the characteristic of the q =2 MHD
activity, namely the continuous tearing mode or regular pseudo-sawtooth regime,
appears to change from one to the other depending on the plasma parameters and,
in particular, on the size of the q =2 surface. To illustrate this point it is useful to
compare the discharge #21714 (figure 7.7) with the discharge #25258 (figure
7.8). Although accompanied by rapid collapses the first appearing MHD activity
in #21714 is a continuous tearing mode. The subsequent changes in the equilib-
rium lead to a reduction of the q =2 radius with respect to the pre-MHD-activity
value, passing from ρq=2=0.75 to ρq=2=0.59. With the new plasma equilibrium
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showing the transition from PRO regime to continuous tearing mode on q=2, as a
consequence of the current rise (at constant Bt) and the larger size of the q=2 surface.

the tearing mode stabilises (figure 7.7d) while the plasma pressure rises rapidly.
After about 20 ms of stable discharge, once passed a certain threshold in pressure,
the pseudo-sawteeth regime begins.

An opposite situation appears in discharge #25258 (figure 7.8). In the ICEC
phase at low current (120 kA) high qa(=15), pseudo-sawteeth develop with a
small amplitude and a period of 5-7 ms. At t=1 s the plasma current is risen to
200 kA without change of the magnetic field. The relaxations become less regular
and show a longer sawtooth period (up to 20 ms). After reaching the current and
ECRH power flattop (figure 7.8a-b) the q =2 sawtooth-like activity is replace by
a continuous m/n =2/1 mode (figure 7.8c-d), showing a tearing structure in the
magnetic and SXR perturbation. During the current ramp ρq=2 increases from 0.2
to 0.61 (LIUQE values) while ρITB stays substantially unvaried. This transition
from sawtooth-like to tearing mode (and viceversa), is probably connected with the
regime on the mode unstable on q =2, changing from an ideal nature close to the
large pressure gradient to a resistive nature further out.
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Figure 7.9: The MHD activity during pseudo sawtooth regime. Left: sawtooth-like
crash and post-cursor oscillations. Right: poloidal phase change in the magnetic sig-
nals. The high field side and low field side probes (blue diamond) are connected using
the Merezhkin’s model (equation 4.17) (black full line) showing an m=2 dominant
poloidal number.

7.4 MHD activity in fully non-inductive reverse shear
scenario

In fully non-inductive eITB scenarios, 3/1 or 2/1 magnetic islands may be present
when the off-axis co-current ECCD beams are too centrally aimed. In this case,
the current profile becomes too peaked leading to unstable tearing modes and
the transport barrier does not form. These modes can generally be avoided by
widening the driven current to produce a flatter current profile. Simulations of
the current profile with the ASTRA and CQL3D codes show qmin > 3 [94], sug-
gesting that the most TM unstable resonant surfaces are either avoided or perhaps
stabilised in the proximity of qmin.

Fast internal relaxations are observed if too much power, and consequently too
much pressure, is put into the plasma. In some discharges, the plasma recovers
after the rapid internal collapse and the pressure rises again, and a series of central
periodic relaxations similar to the pseudo-sawteeth shown earlier take place. An
example of such relaxation is shown in figure 7.10a.

In some cases, the relaxation may present some post-cursor oscillations in the
magnetic field, with frequency in the 15–20 kHz range, and rotating in the electron
diamagnetic drift direction. The toroidal number is easily identified as n = 1. The
poloidal mode structure is complex and presents a marked poloidal asymmetry
with a larger mode amplitude on the LFS of the torus (see figure 7.10c). This is
generally interpreted as an indication of the ballooning character of the unstable
mode. The poloidal number m is in the range 3 < m < 4 (m = 3.5 in figure 7.10d).
The soft X-ray profile collapses inside ρ ∼ 0.57, outside ρqmin and quite close to the
q = 3 surface (see figure 7.1d). The instability fast growth and mode numbers
are consistent with those of an unstable infernal mode (see section 7.2), which



116 CHAPTER 7. MHD ACTIVITY IN EC-HEATED TCV PLASMAS WITH EITBS

1.221 1.222 1.223 1.224 1.225 1.226 1.227
4

4.5

5

5.5

6

Time [s]

Is
xr

 a
.u

.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

ρψ

Is
xr

 a
.u

.

a)

b)ρ
inversion

=0.57

21653

0 2 4 6
0

50

100

150

200

250

300

350

400

θ
pol

 [rad]

B
po

l
 [a

.u
.]

0 2 4 6

10

5

0

5

10

15

20

25

30

θ
pol

 [rad]

Δ
Φ

pr
ob

e

m=3.5
high field side 

low field side c) d)

mode amplitude phase
21653

Figure 7.10: Internal relaxation seen on the SXR emissivity (a and b), and poloidal
structure from magnetic post-cursor oscillations showing the mode amplitude (c) and
phase (d).

is thus a good candidate to explain the internal collapses and the disruptions. If
the thermal energy loss is dramatic, in fact, the coupling with the ECRH power
is lost and the discharge disrupts. The characteristic time of disruption, ∼20 μs,
is consistent with an ideal growth rate. Calculations with profiles approaching
disruptions confirm that the ideal limit is reached [10].

7.5 Summary, further discussions and conclusions

The achievable βN in TCV eITB discharges is limited by MHD instabilities mainly
driven by very large and localised pressure gradients. Two types of MHD activity
are observed in TCV plasmas with eITB: tearing-modes and kink-ballooning modes,
which may lead to sawtooth-like relaxations and plasma disruptions.

The tearing modes tend to appear at a somewhat lower β than the kink-
ballooning modes, and usually when the internal inductance exceeds 1.2, sug-
gesting the presence of an unfavourable, excessively peaked, current profile. The
linear dependence of the saturated island width on the poloidal beta suggests a
neoclassical nature of the TMs (figure 7.5). However, some features are difficult
to reconcile with the picture of an NTM. The absence of an evident trigger and the
fast growth of the mode (saturation time, τtear = 3 ms) are not explained by the
standard NTM theory (resistive time scale, τR ∼ 200 ms) based on the modified
Rutherford equation (equation 2.36). The experimental growth, dw/dt, reaches up
to 10 m/s, whilst the predicted growth is 1 m/s. Such a fast experimental growth
could only be explained by the Rutherford equation in presence of an extremely
large drive (bootstrap current, for instance), which is not easily justified by the
experimental profiles.

Note that on TCV, NTMs were observed in low current ECRH discharges with
a strong co-ECCD component and a very peaked current profile [23, 93]. There,
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the mode evolution and saturation level are found in agreement with the modified
Rutherford equation. Perhaps, the large growth rate of these modes is nothing but
the sign of an ideal nature. The plasma beta at the mode onset is high βN (see
figure 7.11) and the pressure drive is very important.

This “hybrid” nature of the q=2 activity is also consistent the fact that the con-
tinuous (TM) mode changes characteristics when the resonant surface moves in-
ward (figures 7.7 and 7.8). The mode grows faster and gives rise to rapid electron
temperature and soft X-ray emissivity collapses, which may have the signature
typical of the standard q = 1 sawtooth instability, or lead to plasma disruption.
Similar crashes and disruptions generated by a fast growing mode are observed in
discharges in fully non inductive scenario with more reverse shear. Interestingly,
the ideal MHD theory predicts a strong destabilisation of the “infernal mode” when
the maximum pressure gradient gets close to qmin. In these experiments, the kink-
ballooning mode tends to become unstable when the q=2 surface moves closer
(ρq=2 = 0.3–0.6) to the maximum pressure gradient (ρITB = 0.2–0.4). Hence it
is suggested that the q=2 has a hybrid ideal-resistive nature which become more
ideal when the rational surface approaches the source of the instability at ρITB.

The pressure gradients play an important role in stabilising eITB plasmas. In
fact, the electron pressure peaking pe0/〈pe〉 is found to be a key parameter to the
stability limit (see figure 7.11).

To obtain high βN , the pressure profile must not exceed a certain threshold in
the peaking factor. Careful optimisations of the EC power level and deposition
location are necessary. A particularly successful example is represented by the
discharge #23612 (see figure 7.11), where off-axis ECRH is deposited slightly
inside the q = 2 surface. At the same time (t = 0.4 s) the central counter-ECCD
power is turned on, and reaches 1.5 MW at t = 0.7 s. Consequently Te rises, but
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the peaking of the pressure profiles does not exceed 12 because of the flattening
effect of the off-axis heating. During the whole heating phase a small amplitude
mode is present, but does not degrade the performance. The ITB radius keeps
rather constant during the power ramp (ρITB ∼ 0.35), and a good confinement
(HRLW ∼ 4–4.5) is obtained at βN = 1.4. At t = 1.49 s the off-axis heating is
switched off. The pressure exceeds the peaking limit in less than 10 ms, and at t
= 1.517 s an MHD mode destroys the good confinement, decreasing the global βN

to less than 0.8, and leading to a new plasma equilibrium in the pseudo-sawtooth
regime (plasma parameters close to the discharge in figure 7.7). The attempt to
reach higher βN by increasing the heating power will not be successful unless too
strong peaking of the pressure profile is avoided. A similarly strong destabilising
effect of the pressure peaking is predicted for the infernal modes by ideal MHD
theory even for monotonic or flat q profiles. Note the similarity between figures
7.11 and 7.2a, in which the theoretical beta limit calculated with the code KINX
is shown. The infernal mode is closely related with the observed MHD activity
and may thus explain the beta limits and the pseudo-sawtooth regime in TCV eITB
plasmas.



Part III

Toroidal plasma rotation and
momentum transport





Chapter 8

Introduction to plasma rotation

8.1 Motivations

From the condition for plasma ignition, equation 1.17, we can see that good par-
ticle and energy confinement is required to achieve nuclear fusion. This justifies
the experimental and theoretical efforts invested in the study of particle and ther-
mal transport in magnetised plasmas in comparison to what has been performed
in the study of momentum confinement. It is significant that in the ITER Physics
basis report [95], the section on momentum confinement is less than four pages
long compared to almost fifty pages on particle and thermal confinement. In spite
of this, the issue of plasma rotation and momentum transport has recently raised
renewed interest inside the fusion community, resulting in an increased number
of seminars, conferences and publications on this and related subjects. Why is this
so?

The study of the confinement of momentum and plasma rotation has been
recognised to be of interest for several reasons. First, the plasma rotation in
toroidal devices is related to several important issues, such as stability and tur-
bulence, and it is often found to be beneficial to the plasma performance. At
the DIII-D tokamak, strong plasma rotation is proven to stabilise the Resistive
Wall Mode [96]; at the JET tokamak, NBI induced toroidal rotation increases the
beta threshold for triggering neoclassical tearing modes (NTM) [97]; differential
rotation between magnetic surfaces can decrease mode coupling enhancing the
plasma stability against macro MHD modes [12] and thus increasing the achiev-
able β. Second, the radial electric field and its associated 	E × 	B flow shear, in-
timately linked to plasma rotation, is widely believed to reduce or suppress tur-
bulent transport through differential rotation and may result radial turbulence
decorrelation. The reduced turbulence may result in regimes of enhanced confine-
ment such as H-mode plasmas and/or plasma with internal transport barriers [98].
Third, angular momentum confinement investigations provide further insight into
the general problem of confinement in tokamak plasmas. To date, several basic
physical mechanisms are still poorly understood. In particular, the question of
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whether the momentum transport is collisional (neoclassical) or/and turbulence
driven (anomalous) is still open (see discussion in ref. [99]). In some experiments
with strong momentum input from neutral beam injection (NBI), the momentum
transport was found to be consistent with neoclassical theory [100] but more of-
ten the experimental momentum diffusivity χφ was found comparable with the ion
heat diffusivity χi, which is frequently anomalous [101, 102, 103]. Neoclassical
predictions of the poloidal velocity qualitatively were found to disagree with recent
measurements at the DIII-D tokamak [104, 105]. The observation of rapid toroidal
rotation with no external momentum input [106, 107, 108, 109, 110, 111, 112]
poses the question of the origin of internal self-generated angular momentum,
masked in experiments that employ strong NBI. It is important to understand and
model this non-diffusive component of the radial momentum flux to estimate the
expected toroidal velocity of large future experiments, such as ITER, where the
planned NBI power may not be sufficient to drive strong rotation [95]. In fact,
according to [95] the NBI power will drive, in standard H-mode scenario, only
an angular velocity of about 1 kHz, compared with the > 10 kHz of today’s large
experiments. The spontaneous rotation is usually observed to be comparable with
or exceed the ion diamagnetic drift velocity vdiam = (dpi/dr)/(eBni) and may thus
be a substantial fraction, or even dominate, the ITER total toroidal rotation. A
reliable scaling law for the spontaneous rotation should be assessed to model the
transport level and stability in ITER plasmas.

The spontaneous toroidal rotation shows a rich and complex phenomenology
varying strongly with the plasma conditions (L-mode, H-mode, limited or diverted
configurations) and heating scenario (Ohmic, ECRH or ICRH) [113]. Counter-
current toroidal rotation has been measured in Ohmic L-mode discharges in most
tokamaks, but in some experiments co-current toroidal rotation was observed, as
reported by Rice [108]. The toroidal rotation may invert in the core and the edge
of a stationary discharge [114] or change sign during the temporal evolution of
the plasma parameters [111]. Even the absolute rotation velocity exhibits a wide
range of values from almost negligible to a significative fraction of the ion thermal
velocity.

Strong toroidal acceleration in the direction of the plasma current (co-current)
has been observed at the L-H transition in Alcator C-Mod in Ohmic or ICRH heated
discharges. An anomalous momentum diffusivity was inferred from the temporal
evolution of the rotation profile [115], and a turbulent driven edge momentum
source was invoked to explain the experimental data. No rotation measurements
at the edge region supporting this hypothesis were reported. In short, most of
the basic physics linked with spontaneous plasma rotation remains sketchy and/or
unexplained.

8.2 Aims and objectives of the TCV rotation studies

The TCV CXRS diagnostic provides high quality rotation data that allow to:

• quantify and characterise the stationary spontaneous rotation velocity along
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the minor radius for various plasma shapes and TCV scenarios:

- limited or diverted Ohmic and ECH L-mode plasmas,

- diverted Ohmic and ECH H-mode plasmas,

- electron internal transport barrier plasmas;

• contribute to the determination of scaling laws to predict the level of plasma
rotation in future large experiments (chapter 9);

• clarify momentum transport mechanisms (collisional or anomalous) and the
nature of radial angular momentum flux and momentum sources in plasmas
with no external momentum input (chapter 10);

• validate theoretical models of spontaneous rotation and momentum trans-
port in absence of neutral beam injection (chapter 9).

The results presented in the next two chapters represent an initial effort in
these directions.
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Chapter 9

Stationary toroidal plasma rotation
in TCV

This chapter describes the measurement of carbon impurity toroidal
rotation in Ohmic L-mode limited discharges. The dependence and
scaling of the toroidal velocity with plasma parameters, such as cur-
rent and density, are highlighted as well as the effect of the sawtooth
activity on the rotation profile. The comparison with neoclassical
predictions concludes that the TCV plasma rotation is mainly driven
by radial electric fields, with a negligible contribution from toroidal
electric fields. The neoclassical theory of toroidal rotation in the
small vφ/vth limit quantitatively and qualitatively disagrees with the
experimental observations. An alternative empirical equation for the
angular momentum flux, able to reproduce the measured stationary
rotation profile outside the sawtooth inversion radius, is proposed.

9.1 Introduction

In TCV a detailed exploration of the plasma rotation in a simple scenario, charac-
terised by stationary plasma conditions and not involving additional heating and
complex edge magnetic geometry, is thought to be optimal in assessing the issue
of spontaneous plasma rotation, and permits straightforward interpretation of the
experimental results as well as direct comparison with the available theories.

As part of this thesis work1, a set of experiments was performed to study sys-
tematically the dependence of the toroidal rotation on basic plasma parameters
such as the plasma current, electron density and temperature. The Ohmic limited
L-mode scenario was chosen as an initial step in the systematic exploration and

1The content of this chapter is very similar to a recent publication by A. Scarabosio et al. in
”Plasma Physics and Controlled Fusion” [116].
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Table 9.1: Main parameters of the TCV Ohmic plasmas used in the rotation experi-
ments.

Parameter Value
a 0.25 m
R 0.88 m
Bt 1.44 T
Ip [–350,+320] kA
qa [2.4, 8.8]
Vl [1, 2] V

< ne > [0.8, 7]·1019 m−3

Te0 [600, 1200] eV
Ti0 [300, 700] eV
κ [1.3, 1.7]
δ [–0.3, 0.65]

Zeff [1.2, 2]

characterisation of the plasma rotation in all TCV plasma conditions and scenar-
ios. The main device and plasma parameters used for these rotation experiments
are given in Table 9.1.

9.2 Experimental results

The main experimental results discussed in this section are:

1. Considerable net angular momentum is measured with central toroidal ve-
locity up to 50 km/s in the absence of relevant external momentum input.
The toroidal rotation is counter-current and inverts when reversing the di-
rection of the plasma current (figures 9.3, 9.4 and 9.7).

2. Inside the sawtooth inversion radius, the rotation profile is flat or even hol-
low for low qa, high current plasmas (figures 9.3 and 9.4).

3. Core plasma rotation scales as vφ,max[km/s] = −12.5 · Ti0[eV]/Ip[kA], within
the parameters shown in figure 9.9, with velocities up to 50 km/s.

4. Outside the inversion radius, the rotation profile decreases continuously and
quasi-linearly toward the edge (fig. 9.9).

5. The edge rotation in TCV stationary plasmas is small (see figure 9.8) and
perhaps slightly co-current at the plasma boundary.

9.2.1 Plasma current effects on TCV toroidal rotation profiles

This section describes the dependence of the toroidal rotation profiles on the
plasma current and q-profile. The plasma current is varied from shot to shot
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whilst maintaining constant, during the discharge, the plasma shape (κ = 1.35
and δ = 0.15), position and averaged density (〈ne〉 ≈ 3 · 1019 m−3 for most experi-
ments).
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Figure 9.3: Angular velocity for various edge safety factors with positive plasma cur-
rent. The dots represent the experimental measurements, the solid lines are smoothed
cubic spline curves used to extrapolate the toroidal velocity outside of the observed
regions. Vertical lines indicate the measured sawtooth inversion radius obtained from
the tomography inversion of the soft X-ray emissivity. The dashed lines represent
the bulk plasma rotation profiles (main ion specie) predicted by neoclassical the-
ory (equation 9.3) for high and low current discharges. From discharges #27095
(green), #27494 (black), #27094 (red), #27098 (blue), #27502 (cyan).

The plasma parameter evolution for a typical experiment are shown in fig-
ure 9.1. The temperatures and rotation profiles are averaged over a long quasi-
stationary phase where the relative variation of the plasma parameters is typically
below 5%. The quasi-stationary phase is often longer than 1 s, considerably longer
than the energy confinement time τE (of the order of 20–40 ms), and corresponds
to several resistive current redistribution times (τR ≈ 100 ms). The averaged elec-
tron and ion temperatures and the electron density, from Thomson scattering and
CXRS, are shown in figure 9.2 for several values of the edge safety factor qa with
positive plasma current. In figure 9.3 and 9.4 we present the rotation profiles for
different qa values with positive and negative Ip. The angular velocity ωφ = vφ/R,
an approximate flux function [117], is plotted versus the normalised poloidal flux
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ρψ. The carbon fluid is found to rotate in the electron diamagnetic toroidal drift
direction, in the opposite direction to the plasma current (negative for positive Ip).
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Figure 9.4: Angular velocity for various edge safety factors with negative plasma cur-
rent. Vertical lines indicate the measured sawtooth inversion radius obtained from the
tomography inversion of the soft X-ray emissivity. From discharges #27478 (green),
#27477 (black), #27483 (red), 27484 (blue), #27488 (cyan).

More generally, the total impurity toroidal momentum is clearly negative (counter-
current rotation) for all TCV Ohmic L-mode discharges within the plasma param-
eter ranges shown in table 9.1. The velocities at the plasma edge and magnetic
axis are extrapolated using a smoothing cubic spline interpolation with zero first
derivative on axis and zero second derivative at the plasma boundary. Interest-
ingly, the extrapolated edge rotation has a small (<8 km/s) co-current velocity
at the plasma boundary (except for the very low qa case). This is confirmed by
high spatial resolution edge rotation measurements suggesting a rotation inver-
sion at a few centimetres inside the plasma boundary (see section 9.2.2). The ve-
locity increases monotonically from the plasma edge reaching a maximum value
vφ,max = vφ(ρs) at the location ρs. Inside ρs(qa) the profiles are hollow as most
clearly shown for the higher current cases (black and green profiles). The central
velocity is found to increase with the edge safety factor.

It is interesting to compare the experimental toroidal velocity with other char-
acteristic velocities of interest such as the thermal (vth), the sound (vsound), and
the diamagnetic (vi,diam) velocity for plasmas with parameters in the table 9.1. We
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Figure 9.5: Correlation between the radius of maximum rotation ρs and the sawtooth
inversion radius ρinv. The blue dots refer to positive current scans, and the red squares
to negative current scans. Note that ρs > ρinv for ρinv ≥ 0.6

find vsound ∼ 2vth ∼ 220–450 km/s, vi,diam = (dpi/dr)/(eBni) = 4–8 km/s and
vφ,CX = ωφR = 10–40 km/s. The measured carbon velocity is subsonic, but not a
negligible fraction of the sound speed, and of the order of the diamagnetic speed.
This condition is usually referred to as the small plasma rotation regime, and im-
plies that the diamagnetic term in the momentum balance equation may not be
neglected.

We now turn to the effect of the sawtooth instability on the rotation profile. The
radial position of the maximum velocity, ρs, scales linearly with ρinv (figure 9.5),
strongly suggesting that the sawtooth activity flattens, or clips, the rotation profile
within the inversion radius. A further demonstration of such “clipping effect” by
the sawtooth instability is provided by experiments in which the current profile
is modified using the ECRH. The ECRH is used in TCV to heat and/or modify the
electron temperature and current density profiles. In particular, off-axis deposition
allows an increase in the off-axis electron temperature and, by keeping the total
current fixed and owing to the electric conductivity dependence on Te, to flatten
the current density profile [118]. In figure 9.6 we show the temperature and ro-
tation profiles during the Ohmic and the ECRH phase of a limited discharge. With
an ECRH power deposition of 500 kW at ρdep = 0.65, the electron temperature
is flattened with no change in its central value. Consequently, the central safety
factor increases, the inversion radius is observed to move inwards from 0.35 to
0.15 of the normalised radius ρψ, and the central toroidal velocity increases whilst
the rotation profile peaks considerably. After a transient period, shorter than the
diagnostic temporal resolution, the new stationary rotation profile is found that
is monotonic up to the new inversion radius of the ECRH phase, consistent with
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peaking with the reduction of the inversion radius. From discharge #27677 (qa ∼ 6)

the results of the qa scan in figures 9.3 and 9.4. This is further evidence of a core
momentum transport dominated by the effect of the sawtooth instability. We ob-
serve a deviation from the linear correlation between ρs and ρinv at large ρinv (see
figure 9.5). In fact, in the lowest qa discharges, the rotation profile is hollow fur-
ther out from the inversion radius and, in some cases, the central rotation velocity
is directed co-current (as for the lowest qa example in figure 9.4). The rotation
profile hollowness increases with the plasma current and suggests the existence of
some internal torque, possibly linked with the sawtooth activity, which may cause
an inversion in the central rotation.

Finally, it is useful to directly compare the rotation profile from discharges with
opposite plasma current directions. Attention was paid to obtain discharges with
the same total current, plasma shape, temperature and electron density profiles.
The toroidal rotation is found to invert when changing the direction of the plasma
current as shown in detail in figure 9.7. Inside the inversion radius, the velocities
are identical to within the experimental uncertainty. Note that the small, but
systematic, differences observed outside ρinv may not be ascribed to neutral beam
induced rotation. In fact, the absolute rotation velocity is larger for the case of
counter-rotation (positive Ip) whereas the beam induced rotation is expected to
be co-current (see section 3.2.5 and figure 9.7). Errors in the reconstructed radial
position of the magnetic axis of about 1 cm or small differences in the inversion
radius may explain the faster counter-rotation of the positive Ip discharge.

Summarising this section, we have shown the profiles of spontaneous toroidal
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rotation in TCV Ohmic limited L-mode. The rotation velocity increases toward the
centre reaching its maximum value close to the sawtooth inversion radius. Central
velocities are of the order of or larger than the diamagnetic speed. The rotation
velocity increases with the edge safety factor up to 50 km/s, and the rotation
profiles reverse symmetrically when inverting the plasma current direction. The
sawtooth activity flattens the profile inside the inversion radius.
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Figure 9.7: Angular velocity profiles for positive (discharge #27098, blue) and neg-
ative (discharge #27484, red) Ip. For a closer comparison, the absolute value of the
toroidal rotation in discharge #27098 is plotted (dashed blue line).

9.2.2 Edge toroidal rotation measurements

To observe the complete rotation profile, inclusive at the plasma edge, the mag-
netic axis of the plasma was shifted upwards inside the TCV vessel to place the
CXRS observation at the outer part of the plasma. The plasma shape and the other
plasma quantities were kept constant. The rotation profiles of three discharges lo-
cated at Zaxis ∼ 0, 15 and 25 cm, are shown in Fig. 9.8b. In figure 9.8a the obser-
vation points are graphically displaced to show the magnetic surfaces seen by the
CXRS diagnostic. The profiles consistently overlap over the commonly observed
region and a similar result holds for the electron and ion temperature profiles mea-
sured by Thomson scattering and CXRS respectively. The carbon impurity toroidal
rotation decreases monotonically, and quasi-linearly, at the plasma periphery. The
outermost measurement indicates a low, co-current toroidal rotation suggesting
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a rotation inversion with respect to the majority of the plasma column close the
edge.
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Figure 9.8: a) Experimental view points of the CXRS system and typical poloidal
cross-section of the TCV plasmas used for these investigations. Toward the plasma
edge, the compression of the magnetic surfaces reduces the diagnostic’s radial spatial
resolution and the lower carbon density reduces the signal level. A displacement of
the vertical plasma position allows the measurement of the full profile with high
resolution. The observation points, with a displaced magnetic axis at Zaxis ∼ 0,15
and 25cm, are superimposed to the plasma equilibrium. From discharges #29672
(blue), #29676 (red), #29678 (green), respectively. b) Angular rotation profiles
plotted as function of the normalised poloidal flux for similar plasmas with qa = 4.4
and with different Zaxis.

Although affected by large experimental uncertainty, the small co-current rota-
tion velocity measured at the edge is consistent with the values extrapolated from
the inner part of the rotation profiles (see figures 9.3 and 9.4), as well as with
other edge measurements, in particular in presence of MHD modes [119]. We
notice that the total (volume integrated) plasma momentum is negative (counter-
current) for all the experiments presented here.

9.2.3 Basic scaling law for the TCV toroidal rotation

In this section, we discuss the dependence of the toroidal rotation profile on the
plasma total current, density and temperatures, and provide a simple scaling law
for the toroidal carbon velocity.
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As shown earlier (see section 9.2.1), the inner part of the profile is flat or hol-
low inside the inversion radius. The outer part is found to approximately vary
linearly with the normalised poloidal flux coordinate, ρψ, and it can be well de-
scribed with a function of the type vφ,0(1 − ρψ)α with the approximation of zero
rotation at the plasma edge (see section 9.2.2), as shown in figure 9.9 (left). Thus
a convenient description of the TCV rotation profile requires only the position and
the value of its maximum, vφ,max.

To characterise the basic dependence of vφ,max on the main plasma parameters,
a database with plasma current |Ip| = [100–240] kA and averaged density in the
range [1.4–3.7] ·1019 m−3, has been assembled. The ion temperature was varied
(by approximately a factor 2) by changing the Ohmic input power (thus varying
Ip), and the equipartition power through its plasma density dependence Pequi ∼
n2(Te − Ti)/T

3/2
e . Only discharges with a stationary phase exceeding 300 ms, and

acquired electron and ion kinetic data were analysed. Discharges with strong MHD
activity were also excluded from the database.
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pendence of the product vφ,max · Ip on the ion temperature. The database encompasses
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When averaging over the steady state phase, a simple scaling can be extracted,
as shown in figure 9.9 (right). The product vφ,max · Ip is proportional to the ion
central temperature, and the best linear fit (dashed line in fig. 9.9) has the scaling:

vφ,max [km/s] = −12.5 · Ti0 [eV]

Ip [kA]
(9.1)

It is worth noting that this scaling is valid not only for vφ,max, but for the entire
profile outside the inversion radius, reinforcing the link with ion temperature pro-
file.

In contrast with NBI heated discharges [101], no direct dependence on plasma
density is observed in these TCV experiments. The average toroidal rotation fol-
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lows the ion temperature, regardless of the electron density and electron temper-
ature evolution (see figure 9.10). In NBI discharges, the majority of the angular
momentum is externally injected into the plasma. This momentum is then diffused
by transport process and shared by plasma particles giving rise to a strong density
dependence on the toroidal velocity. On the other hand, in the Ohmic regime,
the momentum is internally generated, and there is no a priori reason for such a
density dependence.

Equation (9.1) is, to our knowledge, the first experimental scaling law for
Ohmic L-mode discharges using CXRS spectroscopy data. We note that this scaling
is similar to that found for the central co-rotation on the C-mod tokamak [107]
for ICRH and Ohmic H-mode plasmas, although, there, the toroidal velocity is
proportional to the total energy content, W , rather than to the ion temperature.
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Figure 9.10: Temporal evolution of the averaged density, temperatures, and toroidal
rotation during density ramp by gas injection. The rotation velocity mimics the ion
temperature evolution rather than the density and electron temperature evolution
(discharge #28359).

9.2.4 Rotation profiles with plasma triangularity

A set of experiments for a range of triangularity at fixed current and elongation
was performed with the triangularity varied from δ = −0.3 to δ = 0.65. The plasma
cross-section increases from negative to positive δ, and the edge safety factor varies
accordingly from 3 to 4.8. The reconstructed q-profile differs, however, very little
inside ρψ = 0.95. Despite the fact that the preprogrammed density was the same
for all discharges, the line-integrated density was found to be about 25% higher at
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Figure 9.11: Ion temperature (a) and rotation (b) profiles in a δ scan at fixed current
(340 kA). We show for reference the experimental uncertainties on one of the profiles.

negative δ (figure 9.11a), suggesting a better particle confinement. This can also
be seen from the ion temperature increase when passing from δ = 0.65 to δ = −0.3.
Such beneficial effect of the negative triangularity has already been observed on
TCV ECRH plasmas [120], and the underlying reasons are under investigation.

For fixed triangularity, the toroidal velocity is linear with the Ti. It depends
(weakly) on δ, as shown in figure 9.11b). The central rotation moves toward
positive velocity (co-current) for negative plasma triangularity. However, the low
values of rotation and the relatively large experimental uncertainties do not al-
low a clear conclusion on the triangularity dependence of the toroidal rotation.
This experiment could be repeated at lower plasma current, where higher toroidal
velocities are expected.

9.3 Comparison with neoclassical predictions

The experimental toroidal velocity may be readily compared with analytical ex-
pressions for the mean ion toroidal velocity derived in the framework of the neo-
classical theory [121, 117]. Here, we consider the different plasma rotation drives:
the thermodynamic forces, density and temperature gradients, and the radial and
toroidal electric field and we quantify their effects and relative importance in the
TCV case. We then compare the experimental rotation profile with the profile
obtained by setting the neoclassical radial flux of angular momentum to zero.

9.3.1 Toroidal electric field contribution to impurity toroidal
rotation

Kim, Diamond et al. [121], using the moment approach of Hirshman and Sigmar
[122], calculate the toroidal ion flow velocities for a plasma with an impurity
species, whilst neglecting the electron contributions to the viscous and friction
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Figure 9.12: Contour plot of the neoclassical central impurity toroidal rotation, vI
φ,0

induced by the toroidal electric field (see equation 9.2) as a function of the effective
charge and central density for a qa = 6 discharge (#27098).

forces. The effects of the toroidal electric field are considered separately from
the other drives, assuming zero total plasma momentum since an Eφ field cannot
bring any net momentum to the plasma. The resulting main ion flow is small
and co-current directed, similar to the case of an impurity free plasma. Yet, if the
ion-ion collisional frequency and the impurity density are sufficiently low, a large
impurity counter rotation arises balancing the co-rotation of the main ions. In TCV
Ohmic plasmas, however, the Eφ contribution to the impurity rotation is too small
to explain the measured values. In fact, the predicted counter (negative) velocity
on axis is [108]:

vI
φ,0 = 4.19 · f(Zeff)

ZiVloopT
3/2
I,0

ni,0

√
AiR0

(9.2)

with Zi and Ai the main ion electric charge and mass number, Vloop the induced
loop voltage, TI,0 the measured central carbon temperature in keV, ni,0 the central
deuterium density, R0 the radius of the magnetic axis, and Zeff the effective charge.
The factor f is close to unity. Since the largest uncertainties are in the values of
the effective charge and ion density, we calculate the central carbon velocity as
a function of these two quantities shown in figure 9.12. Even for very low Zeff

and ni,0, the theoretical toroidal rotation is less than 10 km/s, well below the
measured value. Moreover, using Zeff from the soft X-ray emissivity yields vI

φ,0 ≈ –
3 km/s, which is an order of magnitude smaller than the observed rotation velocity.
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Thus, in the TCV tokamak, the toroidal electric field may only contribute a small
fraction of the measured carbon toroidal rotation and its contribution will thus be
neglected in the remainder of this chapter.

9.3.2 Radial electric field and diamagnetic contributions to toroidal
rotation

We now turn our attention to the other rotation drives, namely the radial gradient
of the electrostatic potential, the ion temperature and the plasma density, as cal-
culated in reference [121] in the framework of the neoclassical theory. They may
be expressed as:

vi,I
φ =

Er

Bθ
− Ti

eBθ

[
Ki,I

1 (ν∗,i, ε)
1

Lni

+ Ki,I
2 (ν∗,i, ε)

1

LTi

]
(9.3)

1/LT =
∂T

∂r

1

T

1/Ln =
∂n

∂r

1

n

where Ki,I
1 and Ki,I

2 are numerical coefficients of order unity that depend on the
ion species collisionality ν∗,i, and the inverse aspect ratio ε. The gradient scale
lengths, Lni

and LTi
are negative quantities for monotonic, peaked profiles. The

second and third terms in equation 9.3 depend on the ion density and temperature
gradients respectively, and we will refer to them as the diamagnetic terms.

Since the coefficients Ki,I
1 and Ki,I

2 depend on the ion species, the toroidal
velocity is different for deuterium and carbon ions. Such a difference between
species in the rotation velocity was experimentally verified in the Doublet III-D
[123], and shown to be important in JET plasmas with internal transport barrier
[124]. The theoretical expression for the velocity difference,

Δvφ = vI
φ − vi

φ ≈ 3

2

(
3

2

√
r

R

)
1

eBθ

dTi

dr
,

independent of Er according to equation 9.3, would result in the carbon impurity
acquiring a counter rotation with respect to the bulk ions. Δvφ is small (except
near the plasma edge) for TCV high current discharges, whereas in low current
plasmas it may reach values up to 10 km/s and should be taken into account for
comparison with other independent measurements of the plasma toroidal velocity
(see figure 9.3). The predicted difference in rotation velocities does not, how-
ever, alter the conclusions presented in this section and will be neglected in the
following.

The term proportional to the radial electric field Er in equation 9.3 arises from
the combination of the parallel and perpendicular component of the velocity, and
is equal for all particle species. In TCV, a direct measurement of the radial electric
field is not yet available, so that a quantitative comparison with the experiment
is not possible. Nevertheless, some qualitative features of the toroidal rotation in
TCV tokamak presented in the previous sections are consistent with equation 9.3:
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contributions (second and third terms in eq. 9.3) to the carbon velocity (dot-dashed
black line), the Er/Bθ inferred from eq. 9.3 (dashed black line), and the Er profile
(full red line).

1. the ion velocity scales with the poloidal magnetic field as 1/Bθ, consistently
with the 1/Ip scaling of the measured toroidal velocity and the inversion with
the plasma current direction (see figure 9.7);

2. the linear dependence on Ti in the experimental scaling can be explained if
the radial electric field is also proportional to Ti and/or its first derivative.

Alternatively, equation 9.3 provides an analytical expression for the evaluation
of the radial electric field from the experimental toroidal rotation, density and
temperature profiles together with magnetic equilibrium information without ex-
perimental knowledge of the poloidal rotation. We note that this is equivalent to
estimating the radial electric field by using the radial component of the momen-
tum balance equation with the assumption of a neoclassical poloidal rotation of
the form vθ = (1 − Ki

2)Ti/(eBφLTi
). This assumption is not justified, a priori, but

provides a zero order estimate valid in case of damped poloidal rotation.
We now evaluate the radial electric field from measured experimental profiles

and compare the contribution of the various terms to the experimental toroidal
velocity. It is found that, for these Ohmic discharges, the bulk ions are in the
banana collisional regime (except at the plasma edge), and the impurity ions in
the collisional regime. In this collisionality regime, the calculated diamagnetic
toroidal velocity is co-current and of the order of 10–20 km/s (second and third
term in equation 9.3). To compensate the diamagnetic contribution, the deduced
Er/Bθ term is larger than the toroidal rotation measured by CXRS (as shown in
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figure 9.13). The radial electric field Er profile presents a well close to mid radius
and directed toward the plasma centre (figure 9.13), independently from the sign
of the plasma current. It is thus concluded that the toroidal rotation in TCV Ohmic
discharges is consistent with the dominant radial electric field as for NBI driven
discharges.

9.3.3 Comparison of experimental and theoretical stationary
toroidal velocity profiles

In absence of external momentum sources, the steady state rotation profile, or
equivalently the radial electric field, may be explicitly evaluated by setting to zero
the radial flux of toroidal angular momentum. Such calculations were performed
decades ago for pure plasmas (no impurity), by Rosenbluth et al. in the banana
regime [125], by Hazeltine in the collisional regime [117], and by Tsang and Frie-
man in the intermediate regime [126], employing the drift kinetic equation de-
rived by Hazeltine [127]. Recently, Catto and Simakov [128] showed that Hazel-
tine’s equation is incorrect to the order required (in the Larmor radius expansion)
for the calculation of the radial momentum flux, and re-evaluated the radial elec-
tric field in the collisional regime [129]. Alternatively, Claassen et al., starting from
fluid equations, developed a neoclassical theory of poloidal and toroidal rotation
formally valid in the high collisional regime, which agrees with Catto’s result in
the r/qR 
1 limit [130]. Wong et al. [131] repeated the calculation of the small
rotation version of the angular momentum flux in the banana regime finding a
temperature-gradient-driven component of the flux with an equal analytical form
of that in reference [125] but with a numerical coefficient of opposite sign (and sim-
ilar absolute magnitude). In both low and high collision regimes, a component of
the momentum flux, independent from the toroidal velocity (and its derivative),
arises from neoclassical effects. In terms of a transport matrix, this corresponds
to a coupling (off-diagonal element) between the radial gradient of the ion tem-
perature and the toroidal velocity. This coupling term is especially important in
Ohmic discharges because, acting as a source term, it determines the spontaneous
stationary rotation profile.

According to most recent calculations of references [131] and [129], the sta-
tionary toroidal velocity gradient in the large aspect ratio limit may be written
as,

dvφ,banana

dr
= 3.7

1

eBθ

1√
ε

{
dT

dr

[
1

2r
+

2dq

qdr
+

2dn

ndr
− dT

2Tdr

]
+

d2T

dr2

}
(9.4)

dvφ,PS

dr
= −0.19q2 T

eBθ

(
d lnT

dr

)2

(9.5)

valid in the banana and in the Pfirsch-Schlüter regime respectively. q = rBφ/RBθ

is the safety factor, and the density and temperature refer to the main ion species.
By inspection, it is seen that for standard profiles the different terms in the

square brackets of equation 9.4 are all positive except for the density-gradient
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term, which is negative. The positive (negative) terms lead to negative (positive)
velocity gradients, which correspond to a co-current (counter-current) toroidal
rotation. When the temperature profile possesses a point of inflexion, d2T/dr2

changes sign from positive on the outside to negative on the inside. This term is
small for typical TCV ion temperature profiles. In some cases, the density gradient
term may dominate at the plasma edge, producing counter rotation. However,
close to the plasma centre, the term proportional to 1/2r dominates, leading to a
strong tendency for central co-current rotation in contrast with the TCV observa-
tions.
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Figure 9.14: Ion normalised collisionality νi,∗ for a low density ECRH discharge (solid
blue) and an Ohmic discharge (dashed black) at higher density. The ions are in the
banana regime except in the edge of the higher density case.

Turning to equation 9.5, valid in the high collisional regime, we note that it has
a simpler form and involves only the gradients of the ion temperature profile. The
toroidal velocity is always positive, resulting in a co-current rotation everywhere
in plasmas with zero rotation at the last closed flux surface. In conclusion, both
the plasma edge (collisional) and the plasma centre (collisionless) are expected
to co-rotate with respect to the plasma current. The predicted tendency for co-
current rotation contrasts with the observations of counter-current rotation in L-
mode plasmas in TCV and in other tokamaks.

Before comparing in details the neoclassical formulas (9.4) and (9.5) with the
TCV experiments let us consider the ion collisionality in Ohmic TCV L-mode dis-
charges. As anticipated in section 9.3.2, the bulk ions (deuterium) lie in the ba-
nana regime (ν∗,i < 1) except at the plasma edge and for Ohmic plasmas at high
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density (figure 9.14). The normalised ion collisionality ν∗,i is defined as,

ν∗,i =
qR

ε3/2τDvth,D
(9.6)

with ε the inverse aspect ratio, vth,D the deuterium thermal velocity, and τD the ion
collision time.
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Figure 9.15: Comparison of experimental toroidal rotation profiles with the neoclas-
sical model. Top: discharge #27767 with q = 6 and rinv ∼ 3.5 cm. Bottom: discharge
#27175 with q=4 and rinv ∼ 10.5 cm. The experimental profile (solid blue), the low
(red dashed) and high (black dash-dotted) collision models are shown. The theoreti-
cal profiles have been re-scaled with numerical coefficients (shown in the picture) to
allow for an easier comparison.

We remark that the basic assumptions of small rotation and low plasma β, as-
sumed in the calculation, are well justified for our TCV experimental conditions
(see section 9.2). Although the sawtooth activity is observed to have a strong influ-
ence on the rotation profile, it is not included in the standard neoclassical theory.
The comparison must be therefore limited to the region outside the inversion ra-
dius. In addition, since the models neglect the presence of plasma impurities, we
assume that deuterium and carbon rotate with equal velocities.

Using the experimental profiles, we numerically integrate the R.H.S of equa-
tions 9.4 and 9.5 assuming zero rotation on the last closed flux surface, as shown
in figure 9.15 for two discharges with small and large ρinv, and quite different
profile peaking. The discrepancy between experimental and theoretical values is
evident in the rotation direction, magnitude and profile shape. We may conclude
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that, for TCV Ohmic discharges with parameters from table 9.1, not only the mo-
mentum diffusivity [119] but also the non-diffusive angular flux responsible for
the observed spontaneous rotation is anomalous (non-neoclassical). It should be
noted, however, that equations 9.4 and 9.5 are strictly valid only in the small
aspect ratio limit of circular plasma for the high and low collisionality regimes,
which does not correspond to the experimental conditions.

Finally, it is found that the simple empirical formula,

dvφ

dr
= − α

eBθr
√

εa

dT

dr
(9.7)

with εa = a/R = 0.28 and α ∼ 1, reproduces reasonably well the TCV experimental
rotation profiles outside the inversion radius (see figure 9.16). Close agreement
may be obtained for all profiles in figures 9.3 and 9.4, by varying α within the
uncertainty for the term 1

Bθr
dTi

dr
(about 30%).

0 0.05 0.1 0.15 0.2 0.25
80

70

60

50

40

30

20

10

0

r
min

 [m]

ω
φ⋅R

0 [k
m

/s
]

Exp.
∫drκ/(εa

rBθ)dT
i
/dr

α=0.7

α=1

rinv

Figure 9.16: Comparison of the experimental toroidal rotation profiles (solid lines)
with the empirical model depicted by eq. 9.7 (dashed) for discharges #27767 (blue,
rinv ∼ 3.5 cm) and #27175 (red, rinv ∼ 10.5 cm).

9.4 Summary and conclusions

This chapter shows the first results of toroidal rotation measurement in Ohmic
limited TCV plasmas. The observed carbon velocity is of the order of the deu-
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terium diamagnetic drift velocity, and up to 1/5 of the deuterium thermal velocity.
It is directed in the opposite direction with respect to the plasma current, and the
profile reverses when reversing the plasma current. The angular velocity profile is
found to be flat or hollow inside the sawtooth inversion radius, and linearly de-
creases towards the plasma edge. The flattening effect of the sawtooth activity was
highlighted in current profile tailoring experiments using ECRH, where the rota-
tion profile is observed to peak consistently with the modified sawtooth inversion
radius. By vertically shifting the plasma magnetic axis, the plasma edge velocity
was measured. Such experiments show that, close to the limiter, the asymptotic
rotation is close to zero or perhaps slightly co-current, suggesting that the angu-
lar momentum cannot simply diffuse in the plasma interior from an edge source.
Equivalently, these results present strong evidence for a non-diffusive component
in the radial momentum flux as observed in the JFT-2M tokamak [132]. The max-
imum carbon velocity scales as vφ,max [km/s]=–12.5 Ti [eV]/Ip [kA] over a large
range of plasma density (1.4 < ne < 3.7·1019 m−3) and edge safety factor (3.2
< qa < 12).

We would like to emphasise here that since there is no direct toroidal momen-
tum input, a small residual toroidal stress can modify the radial electric field and
the toroidal rotation. It is therefore difficult to distinguish between the various ef-
fects, whether fluctuation induced or neoclassical. Moreover the turbulent 	E × 	B
flow depends, in general, on the turbulent spectra [133, 134], and thus there is no
comprehensive analytical formula to compare with the experiment. We therefore
restrict our comparison to the neoclassical theory. Our analysis shows that the con-
tribution to the toroidal carbon flow from the toroidal electric fields is negligible
and that the diamagnetic terms act as a co-current drive and may not explain the
observed counter-rotation. The TCV plasma rotation thus appears to be mainly
driven by the radial electric field which has a strong potential well around mid
radius. This result does not strictly depend on the validity of the neoclassical the-
ory of equilibrium flows but relies on a sufficiently small poloidal rotation. In this
case the dominant contribution to Er comes from the toroidal rotation. A more
robust measurement of the radial electric field will be soon available on TCV with
the commissioning of a new vertical CXRS system able to measure the poloidal
velocity along the plasma radius.

Although momentum transport is likely to be anomalous, the stationary spon-
taneous plasma rotation may still be partly determined by neoclassical effect under
certain conditions. However we find that the TCV stationary toroidal velocity pro-
file is not described by the neoclassical theory of small toroidal rotation recently
revisited in the large aspect ratio limit [129],[131]. The neoclassical temperature-
gradient-driven flux is expected to induce strong central co-current rotation, in
contrast to the experimental observations of counter-current rotation. In fact, we
find that the TCV stationary rotation profiles presented here are consistent with
the empirical equation

Γrφ =
dvφ

dr
+ α

T

eBθr
√

εa

d lnT

dr
= 0 (9.8)

with α ∼ 1, which well reproduces the experimental rotation scaling and the pro-
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file shape outside the inversion radius. Since the neoclassical expressions used for
the present comparison are based on many assumptions it is possible that a more
complete treatment may lead to substantially different interpretation. However we
believe that a quantitative evaluation of the turbulence-driven toroidal rotation is
essential for a successful explanation of the intriguing puzzle of spontaneous ro-
tation and momentum transport in tokamak plasmas. The analysis presented here
represent a first assessment and characterisation of spontaneous rotation and a
starting point for future comparisons with theory. More theoretical efforts are
however needed for a complete comparison with the experimental results.
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Chapter 10

Angular momentum transport in
TCV L-mode plasmas

In the first part of this chapter we report on the observation of a tran-
sient momentum transport that dramatically changes the toroidal
rotation profile and the total plasma angular momentum. We in-
clude the observation of the toroidal rotation braking due to MHD
modes, the plasma acceleration (spin-up), and the spontaneous core
toroidal rotation inversion discovered in high density L-mode plas-
mas. In the second part we present a model of the temporal evolution
of the rotation profiles during the plasma spin-up and rotation in-
version.

10.1 Observations of momentum transport phenom-
ena

In experimental conditions similar to those presented in the previous chapter, we
observe transient phenomena that change dramatically the toroidal rotation. We
report here on these observations.

10.1.1 Ion momentum losses with large MHD activity

As shown in chapter 5, a rotating magnetic island may couple to the conducting
wall, slow down while growing to a larger size, and eventually lead to major or
minor disruptions. An example of such an MHD activity is shown in figure 10.1.
The rapid drop in the central soft X-ray signal (t =0.77 s) coincides with the minor
disruption. After that, the discharge is stable. The magnetics and the soft X-ray
measurements [135] reveal an m/n = 2/1 mode.
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Figure 10.2: Comparison of the carbon ro-
tation and the MHD mode frequencies during
mode locking.

The large magnetic island re-
duces the electron and ion tempera-
tures everywhere in the plasma (fig-
ure 10.3). During mode locking the
carbon rotation frequency at the q
= 2 rational surface agrees, within
the experimental uncertainty, with
the mode frequency from the Mirnov
coils (figure 10.2). Thus the MHD
mode forces the plasma to slow
down from its natural toroidal rota-
tion.

From the toroidal rotation pro-
file shown in figure 10.4, one can
see that the plasma rotates as a rigid
body inside the q = 2 surface. While
slowing down, the MHD mode drags
the central ion rotation, reducing its
toroidal velocity not only locally, everywhere inside the unstable flux surface.

While reducing the rotation inside the q = 2 surface, the presence of the MHD
mode does not modify the rotation gradient outside the island rational surface
(compare the profiles in figure 10.4). The instability may thus induce, for a suf-
ficiently low mode frequency, a rotation inversion close to the plasma edge. This
is clearly visible in discharges with the CXRS chord observing the plasma edge
(figure 10.5). The presence of the mode induces a rotation inversion at about ρ
=0.85, with an edge co-current rotation with velocities not compatible with 0. We
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Figure 10.3: Negative effect of the magnetic island on the temperature profiles. Elec-
tron a) and ion a) temperature profiles with and without the large magnetic island
during the same discharge (#28487).

may conclude that the MHD mode induces a net loss of total momentum and force a
slow rigid body rotation inside the unstable flux surface, whilst it does not change
the rotation gradients outside.

10.1.1.a Discussion and interpretation of the observations

Rigid-body toroidal rotation in presence of large magnetic islands has been ob-
served at JET in NBI plasmas [136], and theoretically explained by Lazzaro et
al. [137]. According to the authors, when the axisymmetry of the plasma col-
umn is broken by the helical MHD instability, an enhanced neoclassical viscosity
arises. This extra viscosity is such that it flattens the rotation profile not only lo-
cally, around the magnetic island, but also in the core region inside the unstable
resonant surface as observed in TCV. The inversion in the edge toroidal rotation
with large co-current velocity has been, at our knowledge, observed for the first
time in TCV (figure 10.5). In steady state plasmas and in absence of MHD modes,
the edge carbon velocity is always found to be very small (figure 9.8). When large
magnetic islands are present, however, one can not assume a small edge rotation
as a natural boundary condition, despite the momentum losses with the edge neu-
trals and the presence of the limiter. We may reconciliate these observations by
considering the following forces to play a role:

1. a spontaneous rotation drive, or torque, of unknown nature;

2. a viscous force proportional to the rotation gradient;

3. an effective viscous force due to the sawtooth activity;

4. a friction force due to the edge neutrals;

5. an electromagnetic drag and extra viscosity due to the large magnetic island.
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Figure 10.6: a) Time evolution of the electron and ion temperatures (a) from TS and
CXRS measurements, and of the electron density (b) after the minor disruption.

In absence of the island, force 1, 2, and 3, which act on the gradients, balance
themselves resulting in the typically observed velocity gradients (chapter 9). The
plasma is essentially free to move in the toroidal direction, and even a localised
friction (4) would lead to small edge velocities (without changing the gradients),
in agreement with experimental observations. The extra force (5) alters the force
balance. Inside the q = 2 surface generates a large effective viscosity that flattens
the profile without changing the gradient outside. Owing to the strong “plasma-
mode” coupling, the velocity on the q = 2 surface is forced to match the magnetic
island velocity, ωφ = ωMHD. The whole plasma is then dragged by the electromag-
netic interaction between the MHD mode and the conducting wall. This scheme is
also consistent with the model presented at the end of this chapter.

We will now discuss the toroidal acceleration, or spin-up, following the decay
of the MHD mode.

10.1.2 Plasma toroidal spin-up following large MHD event

Usually, excessively large magnetic islands lead to plasma minor disruptions. The
abrupt instability almost completely brakes the plasma rotation except at the plasma
edge where co-current rotation is observed (green triangles in figure 10.7, large
experimental uncertainties are however present in this case).

After the minor disruption, the discharge recovers and quickly reaches a new
stationary regime (note that the rotation velocity is positive because the plasma
current is negative). The plasma toroidal spin-up is the restoration of the station-
ary rotation, at much larger timescales (200–300 ms) than for the density and
temperatures (τTe < 20 ms, τTi

< 50 ms, τne < 70 ms, see figure 10.6).
The CX velocities shows a growth with a characteristic time constant, τφ =

100–150 ms in the radial region outside the inversion radius (see figure 10.7b).
A rough estimate of the momentum diffusivity yields Dφ = a2/τφ ≈ 0.5 m2/s,

which is of the order of the thermal diffusivity, but a hundred times larger than
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Figure 10.7: a) Spin-up of the toroidal rotation after a minor disruption. b) Tempo-
ral evolution of signals in channels #1 and #6.

the neoclassical prediction. From the modelling of transient profiles presented
in section 10.2 we obtain a more accurate estimate of Dφ, obtaining a similar
result: the momentum relaxation during rotation spin-up is much faster than what
predicted by the neoclassical theory.

We may also note from figure 10.7a that the plasma column commences accel-
erating in the 0.4 < ρ < 0.8 region, characterised by large pressure gradients but
away from the edge. This will be related to the radial distribution of the momen-
tum source in section 10.2.2).

10.1.3 Core toroidal rotation inversion at high Ip and ne

A new rotation regime has been discovered by ramping up the plasma density.
A detailed description can be found in [138], and the phenomenon is currently
under investigation as part of another thesis project [139].

We present here some of the key elements of the transition, which is best ob-
served in a slow case with τinv ≈ 200 ms sampled at high CXRS rate (20 Hz). An
example of such a discharge is shown in figure 10.8a). The rotation profile changes
in the central part of the plasma column up to ρ ∼ 0.7 (dashed green). The sub-
sequent profile (dotted-dashed red) indicates when the core rotation crosses vφ =
0 km/s: the central plasma (ρ < 0.6) appears to accelerate rigidly in the co-current
direction. The outermost CXRS chord (ρ = 0.85) shows a negative transient ve-
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locity, ∼ –7 km/s, as if it is accelerated in the counter-current direction. After the
inversion transient, the edge rotation recovers its pre-transition value (very close
to 0).

The counter-current acceleration of the outer part of the plasma column dur-
ing the early phase of the transition is confirmed by high resolution edge mea-
surements, in discharges where the plasma axis is vertically displaced to allow the
CXRS diagnostic chords to observe the plasma edge. Figure 10.8b) shows the edge
toroidal rotation profile evolution for a discharge with Ip = 340 kA: the rotation
inversion (at t = 1.15 s) affects the plasma core up to ρ ∼ 0.85; for more external
radii, the rotation for the standard (counter-) and inverted (co-current) regimes is
always ∼ 0 km/s within the experimental uncertainty. A co-current acceleration
of the plasma core > 10 km/s is accompanied by a counter-current acceleration of
the plasma edge ∼ 7 km/s. The transient edge acceleration may be ascribed to the
attempt of conserving the total momentum. Even if on a long time scale the total
momentum is not conserved, it may be that on a short time (≤ 50 ms) the mo-
mentum is partly conserved. We will propose a possible interpretation in section
10.2.2.b. A higher time resolution measurement is however needed to resolve the
phenomenon in greater detail.

10.2 Phenomenological modelling of momentum trans-
port

We describe the phenomenological model of momentum transport, and we apply it
to the spin-up and rotation inversion experiments described in sections 10.1.2 and
10.1.3 respectively. We do not aim to a physical description of the phenomenon,
but we try to estimate the momentum transport parameters.

10.2.1 Momentum transport modelling: equations and method-
ology

The time evolution of the velocity profiles has been simulated with a 1D momen-
tum transport model in cylindrical geometry, which includes the conservation of
the angular momentum Pφ = nimivφ, a prescription for the radial flux of angular
momentum Γrφ, and an appropriate boundary condition,

∂P

∂t
=

1

r

d (rΓrφ)

dr
+ Sφ (10.1)

Γrφ = Dφ
dP

dr︸ ︷︷ ︸
diffusive

+ vc
r

a
P︸ ︷︷ ︸

convective

+ Dφ
αnimi

eBθ

1√
εa

1

r

dTi

dr︸ ︷︷ ︸
non−diffusive

(10.2)

Pφ(a, t) = Pφ,a(t), or Γrφ(a, t) = Γrφ,a(t) (10.3)

with Sφ being an arbitrary external momentum source, ε the inverse aspect ratio,
a the minor radius and α a numerical constant.
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across a toroidal rotation inversion. The change in the rotation affects the central part
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The first term in equation 10.2 represents the momentum diffusion arising from
the plasma viscosity, the second is a convective (pinch term) contribution to the
flux, and the third is a “non-diffusive” term independent of the angular momentum
Pφ and proportional to the ion temperature gradient. In general, non-diffusive
contributions to the radial flux arise from the non-diagonal part of the transport
matrix, and are held responsible for the spontaneous toroidal rotation in tokamaks.
Non-diffusive flux may originate from both collisional [131, 130, 129, 125] and
turbulent transport processes [133, 134]. Since there is no common agreement
on the form of this term, we adopt the empirical form in equation 9.7, specifically
formulated for the TCV experiments presented in chapter 9.

In pure Ohmic plasmas, there is no external momentum source Sφ. Never-
theless, it is instructive to model the momentum transport adopting an artificial
external source and comparing with the results obtained using the third term in
equation 10.2. We will drop the distinction between the external source Sφ and
the non-diffusive part of the momentum flux unless otherwise specified.

In the following we neglect the density gradient, and in equations 10.1 and
10.2 we can replace the angular momentum density Pφ with the toroidal velocity
vφ.

We use the experimental initial conditions. The pinch velocity vc is constant
and the diffusion coefficient is normalised to its neoclassical value [125] Dφ =
βDneo with Dneo = 0.1 q2νiiρ

2
L, where νii is the ion collision frequency and ρL the

ion Larmor radius. Typically Dneo monotonically increases from the plasma centre
to the edge, as the experimental TCV thermal and particle diffusivity coefficients
[65]. Dneo may range from 0.0003 m/s2 at the centre to 0.0300 m/s2 at the edge in
high density, high q discharges. Two examples of Dneo profile are shown in figure
10.9.
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10.2.1.a External momentum source and boundary conditions

Several combinations of momentum sources and boundary conditions are possi-
ble, here we analyse a few simple cases. We use two types of momentum source
Sφ and of boundary conditions at the plasma edge. Zero radial flux is naturally
imposed at the plasma centre as a consequence of the cylindrical geometry, while
the boundary condition at the edge are:

1. We fix the rotation velocity dependence, either constant in time, vφ(a, t) = va,
or exponentially varied, vφ(a, t) = va(1 − e−t/τe). The free parameter τe is
used to ensure stationary conditions on the characteristic experimental time
of momentum confinement τφ (see section 10.1.2). The edge velocity va may
be left as a free parameter to be fitted to the experimental data.

2. Alternatively, we fix the value of the rotation gradient dvφ/dr|a at the edge,
or the value of the radial flux of angular momentum Γrφ(a, t).

The momentum sources Sφ are:

1. Sφ = 0 everywhere. The spontaneous rotation is generated from the non-
diffusive term in equation 10.2. Integrating equation 10.1 one finds that,
in absence of an external source, the variation of the total angular momen-
tum Pφ,tot is equal to the radial flux of angular momentum calculated at the
plasma edge. Thus, the edge flux must be zero in steady-state condition.

2. Box-like momentum source. By varying the width, d, we can change the lo-
calisation of the momentum source. Alternatively a Gaussian shaped source
can be used with very similar results. Note that when the source Sφ is applied
in the simulation, the non-diffusive term in equation 10.2 is turned off.

Examples of source shapes used for the transport modelling are shown in figure
10.10.

10.2.1.b The effect of the sawteeth

The sawtooth activity influences the toroidal rotation by flattening the central pro-
file and must therefore be taken into account. The diffusion term therefore dom-
inates over the other terms in equation 10.2. The simplest method to implement
this is given by considering only the diffusive part of the radial momentum flux
inside rinv.

10.2.1.c Implementation, tests and method of comparison

For a given set of momentum source and boundary conditions (b.c.), equation 10.1
is numerically integrated using the standard PDE solver in the Matlab software
package. The free parameters are β, vc, va and τe (transport properties and b.c.),
or the momentum source α r1, r2 and Sφ. We look for the set of parameters that
minimise,
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Figure 10.10: Momentum sources used in the simulation: wide box-like and edge lo-
calised Gaussian shaped sources, and non-diffusive radial momentum flux depending
on the ion temperature gradient (equation 10.2).

χ2 =

N∑
i

(vi,exp − vi,sim)2/σ2
i (10.4)

where vi,exp and vi,sim are the experimental and simulated toroidal velocity respec-
tively, and σi is the uncertainty on each measurement. Typically 4–5 free parame-
ters are used in a simulation.

For the sake of simplicity, we will admit that the torque pushing the plasma
“turns on” instantaneously after the minor disruption, and remains constant there-
after. The transport parameters Dφ, vc also do not evolve. The rotation profile will
then evolve to a new steady state according to equation 10.1 and to the applied
momentum source and boundary condition.

The implementation of the numerical model has been tested by comparing
the numerical solutions with well-known analytical solutions available when the
diffusion equation is separable. In particular we have,

vφ(r, t) = e−t/τφ · e−vcr2/2aDφM

(
a

2vcτφ
; 1;

vcr
2

2aDφ

)
(10.5)

if Sφ = 0

vφ(r, t) =
(
1 − e−t/τφ

) · e−vcr2/2aDφM

(
a

2vcτφ
; 1;

vcr
2

2aDφ

)
(10.6)

if Sφ(r) = vφ(r,∞)/τφ

where M(a; b; Z) are the so-called Kummer functions [140]. For these solutions
only the diffusive and convective terms are considered in equation 10.2, and Dφ
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Figure 10.11: Test of the model implementation against analytical solutions of the
diffusion equation (eq. 10.5).

and vc are constant. The numerical solution is very accurate as seen in the example
in figure 10.11.

10.2.2 Modelling of the toroidal plasma spin up and core rota-
tion inversion

The evolution of the rotation profiles during the toroidal spin-up (figure 10.7) and
rotation inversion (figure 10.8a) are modelled using equation 10.1 together with
several combinations of momentum sources and boundary conditions. We attempt
to address the following issues:

1. Estimation of the momentum diffusivity and comparison with neoclassical
theory.

2. Estimation of the distribution of the spontaneous momentum source. In par-
ticular, is an edge localised momentum source consistent with the experi-
ment?

3. Local and total angular momentum conservation during the transient.

The conservation of the total angular momentum may be implemented by
constraining the edge radial momentum flux to match the total momentum in-
put, Γrφ(a) =

∫
V

dV Sφ, at any time. By relaxing this condition and imposing
Γrφ(a) =

∫
V

dV Sφ(1 − e−t/τe) the generation of total momentum is permitted.
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Table 10.1: Summary of the transport, source and boundary condition best-fit pa-
rameters of the simulations of toroidal spin-up in figure 10.12.

source/b.c. χ2 D/Dneo vc [m/s] α;r1 Sφ; r1; r2 τe [s]
box-like/va 23 14 0 0 375;0.33;0.74 0.9
dTi/dr/va 22.4 15 0 -1.1;0.4 0 0.7
dTi/dr/Γrφ 25.3 13.4 0 -1.22;0.4 0 0.14
edge/va 25.1 23 2.5 0 3.8 · 104;0.4

10.2.2.a Simulations of the toroidal spin-up

Examples of spin-up simulations are shown in figures 10.12(a-b-c-d) together with
the adopted momentum source, whilst the best-fit estimates of the transport co-
efficients, source and boundary parameters are summarised in table 10.1. The
χ2-test at 95% confidence level is positive for all simulations.

The main results are:

• For all source types and boundary conditions, the best-fit momentum diffu-
sivity is larger than the neoclassical value, with Dφ/Dneo ranging from 13 to
23. Therefore the momentum transport during plasma spin-up in this TCV
Ohmic plasma is anomalous.

• The assumption of an edge localised momentum source is to be rejected since
it directly leads to large edge velocities, 7–8 km/s for r/a > 0.9 (see figure
10.12d), which are inconsistent with the edge rotation measurements (see
figure 9.8).

• A comparison of figures 10.12a) and 10.12b) shows that both a simple box-
type momentum source and the non-diffusive flux may equally well repro-
duce the experimental data.

• Satisfactory results may be obtained using fixed v(a, t) = v0 (figure 10.12d)
or time decaying (figure 10.12a-b) vφ(a, t) = v0e

−t/τe . Also a time varying
boundary edge radial flux provides a good match to the experimental data.
On the contrary, the exact conservation of the total angular momentum leads
to large and negative edge velocities (dotted-dashed line in figure 10.12c).
A dissipation, probably localised at the plasma edge, is needed to change the
total angular momentum.

To summarise, the momentum radial transport during the plasma spin-up ob-
served in TCV Ohmic L-mode plasmas is faster than what is predicted by the neo-
classical theory. The toroidal torque is likely to be distributed in the outer part of
the minor radius where the largest pressure gradients are present and not at the
far edge. The edge friction plays an important role in determining the value of the
final rotation velocities.
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Figure 10.12: Comparison of four simulations of the plasma spin-up. The momentum
applied is indicated with a dashed line. The boundary conditions are: v(a, t) =
v0e

−t/τe (a-b), Γrφ(a) =
∫

V
dV Sφ(1 − e−t/τe) (c), v(a, t) = v0 (d).

10.2.2.b Simulation of the core rotation inversion

To simulate the momentum variation (figure 10.8), we need to properly choose
the initial condition vφ(tstart). We estimate 1.09 s < tstart < 1.13 s. We average the
two rotation profiles in this time interval, and use the result as the initial condition
in the simulation.

An obvious requirements in order to simulate the edge momentum variation in
0.75 < ρ < 1 is a freedom in the choice of the velocity at the boundary. We may
however use a boundary condition of the type Γrφ(a, t) =

∫
V

dV Sφ(1− e−t/τe). The
stationary condition is assured by cancelling the total momentum input

∫
V

dV Sφ

for t � τe.
Alternatively we simulate the rotation inversion by including an edge friction

term F = −νvφ in equation 10.1, and we use the boundary condition Γrφ(a, t) =∫
V

dV Sφ. We use as a momentum source a box-type function in 0 < ρ < 0.75.
The simulation are shown in figure 10.13, while the best-fit transport coeffi-

cient, source and boundary condition parameters are given in table 10.2. The
χ2-test is positive at 95% confidence level.
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Table 10.2: Summary of the best-fit transport coefficient, source and boundary con-
dition parameters for the simulation of the rotation inversion.

source/b.c. χ2 D/Dneo Sφ − r1 − r2 τe [s] ν [s−1]
box-like/Γrφ 21.2 77 209;0;0.75 0.1 0
box-like/Γrφ 23.2 150 253;0;0.75 0 292
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Figure 10.13: Comparison of two rotation inversion transport models using a box-
type momentum source located in 0 < r/a < 0.75. a) No edge friction and boundary
condition Γrφ(a, t) =

∫
V

dV Sφ(1 − e−t/τe). b) Edge friction F = −νvφ and boundary
condition Γrφ(a, t) =

∫
V

dV Sφ.

The main results are:

• The estimated diffusivities are about two order of magnitudes larger than
the neoclassical values, further supporting the anomalous nature of the mo-
mentum transport.

• The momentum source need to extend inside the inversion radius and close
to the magnetic axis. The inverted rotation profile is generally slightly more
peaked than in normal regime. The flattening of the sawtooth is however
less effective. The peaking of the inverted profile is not understood yet, and
beyond the scope of this thesis.

• The counter-current acceleration of the edge plasma is achieved by partial
and total momentum conservation of the total angular momentum. How-
ever, in order to restore a small value of vφ(r = a), some momentum loss at
the plasma boundary is required.

10.3 Final remarks and conclusions

Various momentum transport phenomena have been observed in TCV Ohmic L-
mode plasma. Some of them are related with the MHD activity (magnetic island)
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that is observed to flatten the rotation profile up to the radius of the unstable
resonant flux surface. If the magnetic island interacts with the conducting wall,
the plasma close to the unstable surface rotates at the same frequency as the MHD
mode. The plasma rotation appears to brake as a consequence of the rapid and
dramatic loss of confinement.

Two cases of dramatic momentum variations have been analysed. In the first
case, the plasma spin-up is followed by a minor disruption. In the second case, a
spontaneous inversion in the core toroidal rotation is observed. Remarkably, the
abrupt change in the plasma momentum is not accompanied by a similar change
in the thermal or particle transport [138].

Despite their rather different features, both phenomena can be satisfactorily
simulated with a phenomenological transport model that finds momentum diffu-
sivities up to hundred times larger than the neoclassical predictions. This reveals
the anomalous nature of the momentum transport. Even if many other successful
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Figure 10.14: Plasma regions characterised by different rotation properties.

models could be thought of, with our model we are able to reproduce the experi-
mental data with a simple scheme and a minimal number of forces acting on the
plasma:

1. A momentum drive, source or sink or a non-diffusive flux of momentum. The
drive acts in the core of the plasma (region A in figure 10.3). It may drive
positive or negative momenta, It leads to a rotation profile characterised by
(dvφ/dr)/vφ < 0.

2. A viscous force. The balance of the driving force and the viscous force define
the stationary rotation gradients.
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3. A friction which tends to reduce the edge velocity (region C) and dissipate
momentum.

In region (B) the rotation velocity may invert direction, either spontaneously or
forced by MHD modes. Both positive and negative (dvφ/dt)/vφ are possible.
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Summary and conclusions

In this thesis we explore two of the many interesting subjects in tokamak plasma
physics. In the first part, we study the magnetohydrodynamic (MHD) stability for
a wide range of parameters of TCV plasmas. In the second part, we report on the
properties of spontaneous plasma toroidal rotation.

For the MHD stability analysis, we take advantage of TCV exceptional shaping
capabilities, flexible electron heating, and current drive system to study plasmas
with high elongation, high positive and negative triangularity, and unconventional
current density profile. Our analysis reveals new features of instabilities commonly
observed in tokamak devices. Such features may have important effects on the
optimisation of future plasma performances, and are of interest for the community
of experimental and theoretical fusion physicist.

The perturbations of physical quantities, such as the edge magnetic field and
the soft X-ray emission, provide the information on the location and radial ex-
tent of the MHD instabilities. Techniques of numerical data analysis, such as Fast
Fourier Transform and Singular Decomposition Value, are applied to extract co-
herent mode structures. Identifying the nature of the different modes and relating
their occurrence with the plasma parameters allow us to develop strategies to mod-
ify or suppress such modes and thus improve plasma stability. TCV experiments
point out that MHD instabilities strongly depend on the plasma shape as well as
current density and pressure profile.

In TCV, plasma shaping is found to stabilise modes and disruptions commonly
observed during the current rise in circular plasmas. With a reduced plasma shap-
ing, bursts of low (m, n) MHD modes are observed when flux surfaces with integer
qa value (qa =3, 4, 5) approach and cross the plasma boundary. With qa ∼ 3 MHD
perturbations may become too large and lead to plasma disruption. However the
mode structure was poorly known.

Experiments with slow plasma current rise allow us to separate the destabil-
ising effect resulting from the transients of current profiles (skin effect) from the
stability of the steady-state plasma equilibrium profiles. The evolution of the mode
structure reveals a complex interaction between modes resonant at different flux
surfaces. We find that the disruptions are always preceded by growing perturba-
tions with coupled m/n = 3/1 and m/n = 2/1 modes. On the basis of the MHD
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theory of coupled modes [47, 12], our calculations of the tearing stability under
the TCV conditions indicate the toroidal mode coupling as the main responsible
for the growth of large magnetic islands.

The toroidal mode coupling instability can be prevented by appropriate plasma
shaping. Even small elongations (κ ∼ 1.4) and positive or negative triangularities
(|δ| > 0.3) have strong beneficial effects in suppressing the perturbations and thus
avoiding the disruptions. Plasma shaping induces three different mechanisms that
stabilise the 2/1 tearing mode. First, the modification of the equilibrium current
density profile improves the intrinsic cylindrical Δ′ plasma stability against tearing
modes. Second, the conducting wall has a stabilising effect, especially effective at
large plasma elongations. Third, the plasma elongation and triangularity induce
the stabilising coupling respectively with the vacuum q = 4 and q = 5 resonant
surfaces. Despite the impossibility to determine the relative importance of the
various mechanisms, we experimentally tested the effect of the conducting wall
by varying the major radius of the magnetic axis, the plasma minor radius or the
vertical position of the plasma.

The strong dependence of the plasma stability on the current density is high-
lighted by studying the sawtooth oscillations. In presence of off-axis heating and
high density, the current density profile strongly flattens creating a region of low
magnetic shear around a small sized q = 1 surface. In highly elongated discharges
with flat current profiles, the sawteeth are observed to disappear and to be re-
placed by a continuous MHD mode. Magnetic and soft X-ray measurements show
a mode structure with three (m/n = 1/1, 2/2, 3/3) poloidal/toroidal Fourier har-
monics resonant on the q = 1 surface. Linear MHD stability calculations show that
the combination of the low shear and small q = 1 radius stabilise the ideal and re-
sistive internal kink mode in spite of the larger plasma elongation. Assuming linear
theory is applicable in this case, this would explain the sawtooth disappearance.
However, the presence saturated continuous mode may indicate that the internal
kink is already in the non-linear phase. Alternatively, the flat current profile may
destabilise a tearing mode and inhibit the sawtooth crashes.

Pressure profiles with large and localised gradients have negative effects on
the β limit in TCV eITB discharges, in which a variety of MHD modes have been
observed. Again, we provide a characterisation of these modes.

Partly pressure-driven neoclassical tearing modes (m/n = 2/1) degrade the
global confinement by destroying the internal transport barrier. Stationary q =
2 pseudo-sawteeth are often observed in low or weakly reversed shear plasmas.
They usually limit the achievable β without destroying the transport barrier. The
tearing or sawtooth-like character of the q = 2 MHD activity is thought to be re-
lated with the ideal or resistive regime of the instability which ultimately depends
on the plasma beta. Internal localised and/or disruptive modes are observed in
ITB plasma with strong reverse shear and large βN . These modes present a fast
growth rate consistent with an ideal MHD nature, and are usually avoided by re-
ducing the heating power and hence the plasma pressure. The maximum achiev-
able βN is found to strongly decrease with the peaking of the electron pressure
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profile, as predicted by the theoretical beta-limit in eITB plasmas [10]. This result
confirms that a low n low m ideal infernal mode is the main responsible for the
MHD activity in TCV eITB plasmas.

An optimal power deposition, which broadens the pressure profile, is an es-
sential ingredient to avoid excessively large peaking in ITB plasmas and achieve
stable, high βN , discharges.

The plasma rotation is believed to have an important influence on the plasma
stability and confinement. We report on the experimental study of spontaneous
toroidal rotation and momentum transport properties in plasmas with negligible
momentum input. Today’s tokamak are strongly NBI heated, and thus present a
large externally driven toroidal rotation which masks the spontaneous rotation.
Future large tokamaks will however operate in a regime of low external momen-
tum input, therefore the understanding and modelling of spontaneous rotation has
recently driven a large interest in the plasma physicist community. The presented
experimental represent part of the effort needed to build reliable theoretical mod-
els of spontaneous rotation.

Stationary and non-stationary toroidal rotation experiments in Ohmic L-mode
plasmas have been performed. The properties of the toroidal carbon impurity rota-
tion vφ,C in limited plasmas are studied in stationary condition over a wide range
of plasma parameters. The observed carbon velocity is of the order of the deu-
terium diamagnetic drift velocity and up to 1/5 of the deuterium thermal velocity.
It is directed in opposite direction to the plasma current, and its profile reverses
when reversing the plasma current. The angular velocity profile is found to be flat
or hollow inside the sawtooth inversion radius and linearly decreasing toward the
plasma edge. The flattening effect of the sawtooth activity is furthermore demon-
strated in current profile tailoring experiments using ECRH. The rotation profile
is observed to peak consistently with the modified sawtooth inversion radius. The
plasma edge velocity is measured with high spatial resolution indicating that, close
to the limiter, the rotation is close to zero or even slightly co-current. The exper-
imental evidence of low edge rotation suggests that the angular momentum can
not simply diffuse to the plasma interior from an edge source. We find that for
quasi-circular plasmas the maximum carbon velocity scales as vφ,max ∝ Ti/Ip over
a significant range of plasma densities (1.4< ne <3.7·1019 m−3) and edge safety
factors (3.2< qa <12). The neoclassical theory of toroidal rotation in the low
vφ/vth limit quantitatively and qualitatively disagrees with the experimental ob-
servation. An alternative empirical equation for the angular momentum flux, able
to reproduce the measured stationary rotation profile outside the sawtooth inver-
sion radius, is given.

The edge magnetic configuration is expected to significantly change the plasma
rotation properties [141]. The characterisation of the toroidal and poloidal ro-
tation in Ohmic and ECRH H-mode plasmas is also of fundamental importance.
So far, only very preliminary rotation measurements have been obtained in these
regimes. We therefore suggest a future systematic scan of basic plasma param-
eters in different regimes. Such measurements will hopefully provide a better
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understanding of momentum generation and of the spontaneous component of
toroidal rotation.

Relaxations in the toroidal velocity are commonly observed in TCV Ohmic plas-
mas. Large magnetic islands cause large losses of angular momentum by flattening
the rotation profile and braking the plasma. The stationary angular velocity pro-
file is restored in a typical timescale of 100–200 ms after the disappearance of
the MHD mode. These observations provide experimental evidence of the sponta-
neous torque spinning the plasma in tokamak devices.

A phenomenological momentum transport model is employed to simulate the
rotation profiles during toroidal spin-up and rotation inversion observed in Ohmic
plasmas at high plasma current above a certain density threshold. The simulations
well reproduce the experimental features. Transport coefficients, such as the mo-
mentum diffusivity Dφ are inferred and compared with neoclassical predictions.
Three main results were obtained. First, it is found that the experimental Dφ is
from 10 to more than 100 times larger that the neoclassical predictions. This re-
sult extends the observation of anomalous momentum transport found H-mode
plasmas [101, 102, 115]. Second, assuming that the total angular momentum
is conserved on a short time scale the simulations of the rotation inversion sug-
gest the presence an edge friction needed to account for stationary rotation the
edge. Third, the momentum source distribution must extend radially up to the
core plasma and cannot be only localised at the plasma edge.
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