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In large-area radio-frequency (rf) capacitive reactors, the redistribution of rf current to main-
tain current continuity near asymmetric sidewalls causes a perturbation in rf plasma potential to
propagate along the resistive plasma between capacitive sheaths. The damping length of the per-
turbation can be determined by a telegraph equation. Experiments are described using a surface
array of unbiased electrostatic probes in the ground electrode to verify the theoretical model of
the telegraph effect in A. Howling et al., J. Appl. Phys. 96, 5429 (2004). The measured spatial
dependence of the plasma potential rf amplitude and circulating non-ambipolar current agree well
with two-dimensional numerical solutions of the telegraph equation. The rf plasma potential can be
made uniform by using symmetric reactor sidewalls.

PACS numbers: 52.50.Dg, 52.80.Pi, 81.15.Gh

I. INTRODUCTION

Capacitively-coupled parallel plate radio-frequency
(rf) reactors are commonly used for plasma-enhanced
chemical vapor deposition and dry etching of thin films
such as amorphous silicon or silicon oxide. Large area
(> 1 m?) reactors are used for the production of photo-
voltaic solar cells and thin film transistors for flat screen
production. These industrial applications typically re-
quire a uniformity in film thickness to better than +
10% - hence the interest in identifying and understand-
ing causes of plasma nonuniformity in order to suppress
them by improvements in reactor design.

The nonuniformity considered in this paper is due to
the redistribution of rf current in the vicinity of reac-
tor sidewalls to maintain rf current continuity between
asymmetric electrodes. Since the lateral impedance of
the plasma cannot be neglected over the long dimensions
of large-area plasmas, this current redistribution results
in a rf plasma potential perturbation which propagates
inwards from the sidewalls along the plasma between the
capacitive sheaths [1]. This is analogous to signal prop-
agation along the lossy conductor of a transmission line,
hence we call this the 'telegraph effect’ following Schmitt
et al. [2]. The damping length of the perturbation can
be determined with the telegraph equation. The spatial
variation in plasma potential rf amplitude results in lo-
cal non-ambipolar current flow across the sheaths. In this
work, the spatial dependence of the plasma potential rf
amplitude and the non-ambipolar current are both mea-
sured using a surface array of electrostatic probes in the
ground electrode. The experimental results are compared
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with a numerical solution of the telegraph equation for
the rf plasma potential perturbation. An argon plasma
is studied to avoid deposition on the probes and to elimi-
nate extraneous sources of nonuniformity due to reactive
gas plasmas, such as gas depletion in an inappropriate
gas flow distribution [3], or the formation of nonuniform
dust clouds suspended in the plasma [4, 5].

Various electromagnetic modes can cause plasma
nonuniformity. These include the standing wave mode
(associated with high frequencies in large reactors [2, 6~
14]), edge-localized modes at the junction between the
ground and excitation electrodes [1, 9], and the telegraph
effect [1, 2]. All of these modes arise simultaneously in
the wavefield solution for plasma in an asymmetric re-
actor [13]. To avoid standing wave nonuniformity in the
parallel-plate reactor, the rf frequencies used in this work
are low enough, and the reactor small enough, such that
the rf wavelength is much longer than the reactor dimen-
sions, even when the wavelength reduction factor 19, 13]
due to the presence of the plasma is accounted for. Con-
ducting electrode surfaces are therefore equipotential for
the tf, as well as the de, voltages over their whole surface.
To summarize, the experiments are designed to study the
influence of edge asymmetry on plasma potential nonuni-
formity in the absence of other perturbations except for
edge-localized modes.

This paper is organized as follows: Sec. Il describes
the rf plasma reactor, the surface array of electrostatic
probes, and the probe diagnostic method used to measure
the spatial variation in plasma potential rf amplitude. In
Sec. 111, a two-dimensional numerical solution gives the
spatial dependence of the plasma potential rf amplitude
determined by the telegraph equation. The experimental
results are compared with the numerical solution in Sec.
IV before concluding.



II. EXPERIMENTAL ARRANGEMENT

The plasma reactor shown schematically in Fig. 1
is a modified version of an industrial KAI-S type
PlasmaBox® reactor. The 462 mm x 562 mm excitation
electrode, which also serves as the uniform gas shower-
head, is suspended inside the grounded reactor box above
the grounded reactor floor (470 mm x 570 mm) with a
25 mm-high inter-electrode gap. The whole system is
contained within a steel vacuum chamber. Pure argon at
0.1 - 0.5 mbar pressure was used at flowrates of 100 - 400
scem and the reactor was at ambient temperature. The
reactor and probes were made of aluminum; insulator
parts were made of alumina.

For the 1f excitation frequencies used, 27.12 MHz or
40.68 MHz, the free space wavelengths are 11.05 m and
7.37 m respectively. Even with the wavelength reduction
factor of < 3 [9, 13], the effective rf wavelength is suf-
ficiently larger than the electrode lateral dimensions so
that standing wave effects can be neglected as a cause of
plasma nonuniformity in this work where the rf power is
capacitively coupled to the rf electrode backface center
[8]. The absence of standing wave nonuniformity is also
shown by the profile measurements in Sec. IV. The rf
excitation voltage was measured directly at the excita-
tion electrode using a wideband (dc - 100 MHz) voltage
probe.

A. Electrostatic probes and signal acquisition

The ground electrode surface contains 68 planar elec-
trostatic probes in two groups:

a) 47 circular probes (10 mm diameter) in a more-
or-less regular two-dimensional array, within mechanical
constraints, to give an average spatial resolution of about
70 mm over the whole surface of the ground electrode.

b) 21 smaller probes (4 mm diameter) in 3 rows of 7
near two corners and an edge with a 10 mm spacing for
better spatial resolution near to the sidewalls.

The probe arrangement is shown on the base-plane of
the measurement figures, for example, Fig. 8, in Sec. 1V.
Each probe head is isolated from the ground electrode by
an alumina sleeve.

The aim is to compare measurements of the spatial
dependence of the plasma potential rf amplitude with a
numerical solution of the telegraph equation. Measure-
ments of the rf plasma potential in rf plasma reactors
generally require special rf probe techniques or precau-
tions to eliminate stray rf currents and induced rf volt-
ages [15-17]. Furthermore, an array of probes across the
whole plasma area would be impractical and perturbing
in a large-area parallel-plate reactor. In this work, dc cur-
rents and dc voltages are monitored - thereby avoiding
problems of rf measurements - at the ground electrode us-
ing a convenient, non-invasive, surface probe array. Cir-
culating dec currents and dc probe voltages are predicted

as a consequence of the telegraph effect [1] and these dc
values are used here to compare experiment and theory.

In Fig. 1, each probe connection wire has a coaxial
screen connected to ground next to the probe itself. Bf-
fective rf grounding of each probe was assured by the
combined capacitance of the probe head (~ 13 pF) and
its coaxial cable (~ 50 pF). The total capacitance to
ground of each probe is therefore much larger than its
sheath capacitance to the plasma which is less than 1
pF. This rf grounding ensured continuity of the rf current
from plasma to ground via the probes so that the probe
surfaces form an integral part of the ground electrode at
the excitation frequency, with negligible probe rf voltage.
The probe rf current is thus de-coupled from the dc mea-
surement circuit of each probe. The probe capacitance
was judged to be suflicient for this because a supplemen-
tary 1 nF capacitor across the probe connections made
no difference to the dc measurements. A schematic of
the probe array and signal acquisition is shown in Fig.
1. The coaxial cables are led via vacuum feedthroughs
to pairs of electromechanical relays arranged in multi-
plexers (National Instruments (NI) PXI-2503, appropri-
ate for low-level signals) and a high performance 6% digit
multimeter (NI PXI-4070 for dc voltage and de current
measurements) in a PXI crate with a LabVIEW soft-
ware interface. The selected precision for these experi-
ments was 10 nA for the de¢ current measurements, and
10 pV for the dec voltage measurements. Using hardware-
handshaking between the multimeter and multiplexers,
the time for one measurement cycle of all the probes was
about 30 seconds, allowing for relay switching time, ADC
self-calibration, auto-zero time, relay settling, and a 100
ms signal acquisition time window for each measurement
of each probe. The signals were highly reproducible indi-
cating negligible spurious electrical interference, so that
cycle averaging was unnecessary and all the measure-
ments presented are raw data from one-shot acquisitions
with no data smoothing. The per cent relative standard
deviation over ten consecutive acquisition cycles was less
than 2.5% for voltage measurements and 5% for current
measurements with the large probes (3.5 and 7% respec-
tively for the small probes), and this variation was prin-
cipally due to drift in the plasma parameters. The (dc)
saturated ion current measurements were obtained by in-
serting a battery at the multimeter current terminal to
give a -30 V bias on each probe during its measurement
cycle. The polarity of the current flow in this work is
such that net positive ion current from the plasma to the
probe is positive.

The probe surfaces must be conducting since insulat-
ing layers would invalidate dc potential and dc current
measurements. The electrodes and probes were mechan-
ically polished and only exposed to plasmas of argon and
hydrogen. No deposition or probe discoloration was ob-
served after four months of plasma experiments.

<.



B. Probe diagnostic method

The primary aim is to measure the two-dimensional
profile of the variation in the plasma potential rf ampli-
tude, Aty(z,y), due to electrode edge asymmetry, which
will then be used to compare with the two-dimensional
numerical solution of the telegraph equation obtained in
Sec. III. Here we will show that the surface probe de
floating potentials can be used to estimate the spatial
variation in the rf amplitude of the plasma potential [18].
In the previous section it was shown that the probes are
effectively rf-grounded and consequently have no rf volt-
age component. On the other hand, the input impedance
of the digital multimeter for the measurement of dc volt-
age 1s greater than 10 G£2. The measured probe voltage
is therefore the dc floating potential.

Firstly, we briefly revise a conventional model for the
self-rectification voltage across a sheath in presence of rf
excitation [19-22]. For a symmetric reactor with uniform
(unique) plasma potential, and a sinusoidal rf excitation
of amplitude %, s, the plasma potential can be written as

Usym (t) = Usym + u—;-f- cos wt, (1)
making the approximation of purely capacitive sheaths
and negligible transverse plasma impedance for which
/2 is the amplitude of the rf plasma potential, and
Usym is the dc plasma potential. For a rf external circuit
with a de-blocking capacitor, the condition for zero net
conduction current to the ground electrode is that the ion
saturation current equals the time-averaged electron cur-
rent. Using conventional expressions [22] and assuming
a Maxwellian distribution for the electrons, we obtain

sym( /T)>:[isatv (2)

where I3 and 3% are respectively the ion and electron
saturation currents, 7, is the electron temperature in
volts, and the angular brackets signify the time-average
over an rf cycle. Substituting for the plasma potential

Ugym(t) gives
—-Usym ~Upf cOSwi M,
ex; . ex
p< ol A Gl AV e

where the square root term is a commonly-used ratio
of the electron and ion saturated currents. Perform-
1ng the txme-cweragmg by means of the relation Iy(a) =
(1/m) fo exp(tacosf)df, where Iy is the zeroth order
modified Bessel function of the first kind and a the mag-
nitude of the sinusoidal term [23], gives

- Us ym Uy f M _
exp( T. )I"(m) 23m, b )

or, by taking the logarithm,

s T, M,
wum — ToIn|T _ e —0.
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=1, (3)
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This is the self-rectification condition which the dc
plasma potential U, sym must satisfy for zero time-
averaged current density (ambipolarity) everywhere over
the ground electrode in a symmetric reactor. The plasma
potential referenced to ground is the same as the ground
electrode sheath voltage in this model. Since the probe
floating potential measurement also imposes zero dc cur-
rent to each probe, the sheath voltage of the probes is the
same as the ground electrode sheath voltage, hence the
measured probe floating potential with respect to ground
would be zero for all the probes in a symmetric reactor.
The asymptotic expansion Iy(e) = exp( a)/V?2ma gives
a very good approximation [23] when Urp/2 2 5T, (see
Appendix), whereupon Eq. (5) can be rewritten as

i T (g T (0
Usym 5 + 5 ln27r<2Te> 5 111(23 ~0. (6)

To describe a perturbation to the rf plasma potential,
we now introduce a general spatial perturbation, at the
excitation frequency, of complex amplitude v(z) where
z = {z,y}. We will assume that |[v(z)| < iy, so that
this perturbation leaves the plasma potential uniform to
first order (concerning the telegraph effect, this is satis-
fied for nearly-symmetric reactors whose lateral dimen-
sions are much larger than the inter-electrode gap [];
this is why we consider large-area reactors). The mod-
ified plasma potential, U,(z,t), in comparison with Eq.
(1), is

Up(z,t) = U, + u—;-f- coswt + R[V(z) exp(iwt)], (7)
or equivalently,

Up(z,t) = Up + @p(z) cos(wt + 1(z)), (8)

where
Up(z —iurf/2+v( )} (9)

is the rf amplitude (magnitude) of the perturbed plasma
potential. The modified dc plasma potential Up is taken
to be uniform because the d¢ conduction current is much
less than the rf conduction current in the plasma bulk [1];
the uniformity of the plasma dc potential in the presence
of a nonuniform plasma rf potential has also been re-
cently demonstrated experimentally by Perret et al. [24].
Since the conducting ground electrode is equipotential,
the sheath dc voltage is therefore also uniform. In the
presence of any spatial variation of plasma potential rf
amplitude (for example, due to the telegraph or stand-
ing wave effects [18]) it is now impossible to simulta-
neously satisfy the self-rectification condition, Eq. (5),
everywhere on the ground electrode surface. In this case,
there is local non-ambipolarity and dc current will circu-
late within the reactor between the plasma and conduct-
ing electrode surfaces [1, 18, 24, 25]. The net dc current
in the external circuit is still zero, imposed by the de-
blocking capacitor, because the surface integral of the



circulating dc current to each electrode remains zero by
self-adjustment of the dc plasma potential, from Usym to
U,, to maintain global ambipolarity (see Ref. [1]). Local
non-ambipolarity was also measured using surface elec-
trostatic probes by Miimken and Kortshagen [26] in an
inductively coupled plasma, where the non-ambipolarity
was due to nonuniformities in ion density and electron
distribution function. In contrast, the plasma density
and electron temperature in this work are considered uni-
form to first order, and the local non-ambipolarity is due
to nonuniformity of the plasma potential rf amplitude.

The de floating potential of the probes for the per-
turbed plasma potential is no longer zero because the
self-rectification condition in Eq. (5) is locally not satis-
fied for grounded surfaces. Instead, each probe reaches
a dc floating potential, V(z) # 0, different from the
ground electrode, in order to satisfy local ambipolarity
appropriate to the local plasma potential. Re-writing
Eq. (2) for zero dc current to a probe in the presence of
the modified plasma potential, we obtain an expression
for the dc floating potential Vy(z) as follows:

I exp(=[Up(z,t) = Vi (@)l/Te)) = 1™, (10)

where [U,(z,t) — V¢(z)] is the modified sheath potential
at a floating potential probe which replaces the sheath
potential Usyn, (t) in Eq. 2. Repeating the time-averaging
procedure (where all phase information is lost), the local
self-rectification version of Eq. (5) becomes

U,-T, ln[I()(ﬂ];Ef))] -%m(ig—;—) = V(z). (11)

The asymptotic expansion version of Eq. (6) is now

- . T. ﬂp(_al) T. M; &
Up—ip(z) + 5 11127r< T )— 5 ]n<2‘3me> ~ Vi(z).
(12)

Subtracting Eq. (12) from Eq. (6) gives

_ Uy _ - T (T ]

—Vi(z) =~ ap(z)— Tfﬁ—Ugym—Up—-?e In [;%%] (13)
By series expansion, the magnitude of the logarithmic
term is < (T./a,7)|V(z)]; this is an order of magnitude
smaller than |v(z)| for &,y 2 10T, which is the same
condition as for the asymptotic expansion in Eq. (6).
Therefore the logarithmic term can be neglected to first
order in |v(z)| and we finally obtain:

~Vi(z) = Dip(z) — AU, (14)
where
Ay (z) = tp(x) = Gy /2 = |iirg/2+ V(2)] = Uryp/2 (15)

is the perturbation to the plasma potential rf amplitude
of the asymmetric reactor with respect to the case of
symmetric electrodes, and

LU, = Up = Usym (16)

is the uniform, dc level shift of the plasma dc potential
with respect to the case of symmetric electrodes. Note
that only —Vy(z) and Ag,(z) are spatially dependent.
In this way, a {z,y} measurement of the negative of the
measured dc floating potential, -Vf(g), can be used to
compare with the spatial dependence of the perturbation
to plasma potential rf amplitude. This relation will be
used in Sec. IV to compare the —Vj(z) measurements
with the numerical solution of the telegraph equation for
Ay, (z) obtained in Sec. III. The accuracy of the ap-
proximations made above, including the assumption of
sinusoidal sheath voltage, is considered in the Appendix.

The physical principle of the floating probe measure-
ment can be summarized as follows: the ambipolar
sheath at a floating probe fixes the self-rectification re-
lation between the sheath dc and rf voltage components.
The plasma dc potential is uniform, and the floating
probe rf potentials are all zero. Therefore, the spatial
variation of the plasma potential rf amplitude can only be
matched by the spatial variation of the floating probe dc
potential. Consequently, the nonuniformity of the plasma
rf potential can be deduced from the nonuniformity of the
floating probe de potential, which is conveniently mea-
sured. This method has also been used to measure the rf
plasma potential nonuniformity due to the standing wave
effect [18].

Another aim is to use the probe array to measure
the local non-ambipolar dc current, circulating via the
plasma and conducting electrode surfaces, which is in-
herent in the telegraph effect [1]. The digital multimeter
can also be used to measure the probe dc current. As
mentioned above, the rf current flows directly to ground
via the probe-to-ground capacitance, but now dc current
can flow to ground via the low dc-input-impedance of
the multimeter, which maintains the probe dc voltage at
zero. This grounded probe dc current, fgnd, can be cal-
culated from the difference in ion saturation current and
time-averaged electron current to the probe by setting
Vi =0in Eq. (10):

Igna(z) = I = I3 (exp(=Up(z, 1)/ Te))- (17)

Repeating the rf cycle-averaging procedure gives the local
non-ambipolar current

= M; -U p(z
ynale) = 11 [1 ~Vzam exp( T:>10< pT(e_ )ﬂ

(18)
which can be used to compare the grounded probe dc
current measurement fgnd(gg) with the plasma potential
tf amplitude i,(z) from the numerical solution of the
telegraph equation.

Any nonuniform plasma potential rf amplitude (in the
presence of a uniform de plasma potential [24]), whether
due to telegraph [18], standing wave (18, 24, 25] or other
effects, separately or simultaneously, will give rise to cir-
culating dc currents and non-zero floating probe dc po-
tentials.




1II. NUMERICAL MODEL OF THE
TELEGRAPH EFFECT

The previous paper on the telegraph effect (1] used
a one-dimensional Cartesian analytical model to give a
physical description of the phenomena involved. For this,
it was necessary to consider a reactor infinitely long and
uniform in the other dimension. For the rectangular re-
actor used for experiments in this paper, however, the
proximity of the lateral walls and corners have a strong
influence, depending on the value of the damping length,
and so a two-dimensional numerical solution is now nec-
essary. The model in Ref. [1] makes several simplify-
ing assumptions, such as constant sheath width, uniform
plasma density and electron temperature and therefore
does not give a self-consistent treatment of the plasma,
but assumes that the telegraph nonuniformity of the
plasma potential is only a first-order perturbation which
leaves the plasma approximately uniform. The plasma
is treated as a sheet, with no vertical structure, hav-
ing a lateral resistance per square, Hyy = Mol /(Ne€®h)
(where v, is the electron-neutral collision frequency and
h the plasma sheet height), and lateral inductance per
square, Lsy = Ryy/Vm, as shown in the equivalent circuit
schematic of Fig. 2. To maintain rf displacement cur-
rent continuity between the electrode sheaths, the side-
wall sheath rf displacement current generates a lateral rf
sheet conduction current I(z,?) per unit electrode width
in the plasma, integrated over the plasma bulk height h,
which is redistributed to the electrodes via the capacitive
sheaths. This causes a perturbation V(z,t) = v(z)e™?,
where v(z) is a complex amplitude, so that the amplitude
of the perturbed rf plasma potential is

as defined previously in Eq. (9). Note that the ground
sheath voltage is identical to the plasma potential be-
cause the latter is referenced to ground. The magnitude
of the rf voltage across the excitation electrode sheath is
lirg/2 ~ V(z)|. From Fig. 2 and Ref. [1], the equations
for V(z,t) are

I
ng ~ Ryl and V.I= -—C'%V

where ¢’ = 2¢q/d is the parallel combination of ground

and excitation sheath capacitances per unit area [1]. The

voltage perturbation is therefore given by

% av
~ RyC'—

a2 at

which is the two-dimensional telegraph equation. The
lateral rf current flow along the plasma between the
sheaths which isolate the plasma from the electrodes is
analogous to rf current flow along a coaxial cable which
has a lossy central conductor; the sheaths represent the
dielectric medium of the coaxial cable. The name “tele-
graph equation” specifically applies to signal transmis-
sion along a lossy transmission line.

vV =-L (20)

V2V ~ Ly C' =0, (21)

The equation to be solved numerically is
2 ‘
VY = = (z - i)o, (22)

where § is a damping scale-length for the telegraph per-
turbation which can be written as [1}:

\/ szqC’ eV w um (23)

where wy, is the electron plasma frequency and d the
sheath width; the inter-electrode gap is h+2d. A purely
resistive plasma approximation (w/vy, < 1) was made in
Ref. [1] to facilitate an analytical solution. The capac-
itive coupling of the plasma via a sidewall sheath at a
grounded sidewall causes a lateral rf conduction current
perturbation in the plasma

oU, . U - v
P = Z,L:.)Cwau<—;i +v]wall>elwt’

Jt
(24)
where Cyan = €0H/dywau is the wall sheath capacitance
per unit electrode width [1]. Substitution into the equa-
tion for VV in Eq. (20) defines the boundary condition

, LW\ Uy
wall = “Zszquall<l + ZV_) ( 9 + v]wall)’

'm
(25)
where 7 is a normal unit vector directed outwards from
the walls. By substituting the solution for v(z) into Eq.
(19) to obtain @,(z), the telegraph perturbation to the
plasma potential rf amplitude of the asymmetric reactor
with respect to a symmetric reactor can be calculated,
Adip(z) = Up(x) — Urs/2, which is the same as Eq. (15).
The dc plasma potential Uy for a symmetric reac~
tor is given by Eq. (5). The dc plasma potential Up for
the asymmetric reactor is calculated by integrating the
local non-ambipolar current, Eq. (18), over the whole
grounded surface, and adjusting the dc plasma potential
for zero net current as imposed by the dc-blocking ca-
pacitor in the external rf circuit [1]. Hence we obtain
AUP = UP — Usym, which is the same as Eq. (16). The
telegraph model can then be tested against experiment
by comparing the measurement of —Vy(z) with the tele-
graph caleulation of Ad,(z) — AU, via Eq. (14). The
self-bias voltage can also be calculated by adjustment for
zero net current to the excitation electrode [1] and com-
pared with the measured value.

[i = Cwall

wall

wall

RV

IV. PROBE MEASUREMENTS AND
COMPARISON WITH THE TELEGRAPH
MODEL

The measured spatial profile of the perturbation to the
plasma potential rf amplitude is estimated by interpola-
tion of the negative of the probe dc¢ floating potential
measurements, —V;(z). The interpolation method [27]



produces a smooth surface which always goes through
the data points, and extrapolates to the reactor edges.
The figures for the measurements therefore have no fit-
ting parameters and simply represent a surface interpo-
lated from the raw data on a 35 x 35 line grid.

The calculated spatial profile of the perturbation to
the plasma potential rf amplitude is given by the numer-
ical solution of the telegraph equation Eq. (22). The
form of the spatial variation depends only on the damp-
ing scale-length § which is determined by the experimen-
tal parameters via Eq. (23). The excitation angular
frequency is w = 27 f; the electron-neutral collision fre-
quency is proportional to the argon pressure p (using v,
[s~!]~ 6:10%p [mbar]); and the electron plasma frequency
Wpe = (nee?/egm.)t/?, where n, [m™%] is the electron
density. The latter can be inferred approximately from
the probe measurements of saturated ion current den-
sity via Jsat [Anfz] ~ 0.6len.(eT,/M;)/? (the electron
temperature T, is taken to be 2 V; M;[kg] is the argon
ion mass). In terms of the experimental parameters, the
expression for the damping length in Eq. (23) can be
rewritten in convenient units as:

N Jeat[Am ™3] d[mm] (25 ~ 2d)
§lmm] =~ 20\/ FMHz]pimbar] : (26)

The damping length is therefore determined by known or
estimated experimental parameters except for the sheath
width d (substituting for h using h + 2d = 25 mm, the
inter-electrode gap). The sheath width d is therefore a
free parameter for §; its value was chosen to give the
damping length which gave the form of the numerical
solution closest to the measured voltage profiles.

The magnitude of the perturbation is determined by
the current from the sidewall sheath in Eq. (24); it is pro-
portional to the measured rf amplitude of the excitation
electrode voltage, 4,5, and the wall sheath capacitance
per unit electrode width, Cyun = €9H/dyau. This latter
fitting parameter therefore depends on the effective width
of the sidewall sheath, d,,.;; =~ d. This sheath might be
wider than the lateral electrode sheath due to poor con-
tact of the plasma with the sidewall (for example, for
low power plasmas), or narrower due to more intense
edge plasma (for example, due to fringing field effects at
the electrode edges in high power plasmas). In practice,
the best fits to the measured amplitudes were given by
duair = 1.5d for the low power experiments (short §), and
dwair =~ 0.8d for the high power experiments (long &).

In each of Secs. IV A to IVD below, two plasma con-
ditions were chosen to investigate the plasma potential
rf amplitude profile, corresponding to a short and a long
telegraph damping scale-length:

i) Short damping length, § =~ 33 mm. Plasma pa-
rameters: excitation frequency 40.68 MHz, argon pres-
sure 0.5 mbar, measured ion saturation current density
2~ 0.8 Am~? for which the estimated plasma density was
ne = 3.7- 10" m~3. These plasma conditions were ob-
tained for 60 W rf input power and rf voltage amplitude

of 4,y ~ 24 V measured at the excitation electrode. The
sheath widths chosen were d = 4 mm and dy.u = 1.5d,
which is physically reasonable for this very low voltage
plasma.

ii) Long damping length, § ~ 105 mm. Plasma pa-
rameters: excitation frequency 27.12 MHz, argon pres-
sure 0.1 mbar, measured ion saturation current density
~ 1.8 Am™? for which the estimated plasma density was
n. = 8.4 -10'® m~3. These plasma conditions were ob-
tained for 200 W rf input power and rf voltage amplitude
of @y ~ 140 V measured at the excitation electrode. The
sheath widths chosen were d = 2 mm and dy.n = 0.8d
for this higher power plasma.

These two groups of experimental parameters, along
with the fixed estimates for d and dqy, were used for all
the numerical simulations in Secs. IV A to IV D, with no
other fitting parameters.

A. Asymmetric reactor: ground electrode area
larger than the excitation electrode area

The reactor asymmetry shown schematically in Fig.
3 is due to the 25 mm-high grounded sidewalls on all
four sides. The total grounded area is therefore larger
than the excitation electrode area, which is a conven-
tional asymmetry situation in rf plasma processing where
the excitation electrode is commonly placed inside a
grounded enclosure. Ref. [1] considers the same reac-
tor geometry.

Fig. 3(a) shows the negative of the probe dc floating
potential measurements which approximately represent
the spatial variation of the plasma potential rf amplitude
according to Eq. (14). Fig. 3(b) shows the numerical so-
lution of the spatial dependence of the plasma potential
rf amplitude using the telegraph equation and the pa-
rameters described above. The good agreement between
these measured and calculated profiles is an experimental
verification of the telegraph effect in this large area re-
actor. These profiles were obtained for the case of short
damping length, § =33 mm. The plasma potential rf am-
plitude decreases near to the boundaries over a distance
~100 mm = 3§ in order to reduce the rf current den-
sity across the ground electrode sheath - this is necessary
to maintain rf current continuity between the electrodes
when the ground electrode has a larger area [1]. The rel-
ative drop in plasma potential rf amplitude is especially
marked in the corners, Ad,/(4r7/2) = 20%, because of
the influence of the adjacent sidewalls which sharply in-
creases the local area asymmetry over the length-scale of
the telegraph damping length - this is a two-dimensional
effect [18] which is reproduced by the two-dimensional
numerical simulation. As a result, the sheath rf voltage
amplitude at the reactor corners is reduced by = 20% at
the ground electrode, and increased by a similar amount
at the excitation electrode, with respect to the unper-
turbed value, i, /2, at the reactor center [1]. Assuming
local power dissipation proportional to the sum of the



square of the sheath rf voltages, the total power density
at the reactor corners therefore increases by about 4%
with respect to the reactor center. The local power densi-
ties of the individual sheaths at the ground and excitation
electrode corners, however, are respectively ~ 64% and
~ 144% of the central, symmetric sheath power density.
The telegraph effect can therefore cause a significant edge
plasma perturbation for an asymmetric sidewall height
which is only ~ 5% of the electrode width.

We are principally interested in the form and ampli-
tude of the spatial dependence in Eq. (14), although the
dc levels in the figures and the measured and simulated
self-bias voltages given in the caption also correspond
well. The self-bias values are negative as expected for an
excitation electrode smaller than the ground electrode
[28].

Figs. 4(a) and (b) show the corresponding measure-
ment and numerical solution (using Eq. (18)) for the dc
current density J(z) flowing to the ground electrode for
the same plasma conditions as in Fig. 3. This current is
due to local non-ambipolarity caused by an rf amplitude
spatial variation in the presence of a constant dc plasma
potential and the constant potential of a conducting elec-
trode, as shown in Fig. 6 of Ref. [1] for the equivalent
one-dimensional case. There is a net positive ion current
to the ground electrode periphery and sidewalls, com-
pensated by a net electron current to the central region.
The dc current per unit area, J, entering the electrode
normally from the plasma, is the source term for a dc
current per unit width, j,, which flows laterally across
the ground electrode. Continuity of this dc current circu-
lating through the plasma via the conducting electrode
requires that V -7, = J. Circulating dc current was also
observed in a high frequency capacitive reactor where
the rf amplitude spatial variation was due to the stand-
ing wave effect [18, 25]. Global ambipolarity, imposed by
capacitive coupling in the external rf circuit, means that
the surface integral of the dc current J to the ground
electrode (including the sidewall current) must be zero.
This is assured in the numerical solution, Fig. 4(b), by
adjustment of the de plasma potential. Experimentally,
the surface integral interpolated from the measured dc
probe current in Fig. 4(a) is only approximately zero
(ngnd/Eﬁgnd{ = —15%) which indicates the degree of
approximation of the probe method used.

The probe saturated current spatial profile in Fig. 4
(c) would ideally be flat since the experiment is com-
pared with a model which assumes uniform plasma den-
sity and electron temperature. In practice, the per cent
relative standard deviation over the surface interpolated
from the measurements in Fig. 4 (¢) is 14%. The discrep-
ancy between the measurement and the uniform model is
probably due to the approximation inherent in the probe
technique and to the nonuniformity of the plasma itself.

The probe measurements in Fig. 4(a) of the dc cur-
rent circulating between the plasma and the ground elec-
trode agree reasonably well with the predictions of the
telegraph model in Fig. 4(b). In general, however, the

probe current measurements gave less satisfactory com-
parisons with the numerical solutions than the voltage
measurements. This might be because the current mea-
surements are small (~ 60puA for each probe in Fig. 4
{¢)) making them susceptible to stray leakage currents
and to any surface contamination of the probes. Fur-
thermore, comparison of the current measurements with
the numerical solution for the voltage involves a strongly
non-linear relation (Eq. (18)). Therefore, from now on,
only the voltage measurements will be shown since these
represent the most direct comparison with the numerical
solution of the telegraph equation for the voltage.

Figs. 5(a) and (b) show the measurement and numer-
ical solution of the plasma potential rf amplitude spa-
tial dependence for the same reactor geometry as in Fig.
3, but for a long damping length, § =105 mm. Now,
the influence of the area-asymmetry at the corners ex-
tends over almost the whole reactor surface, as seen on
both graphs, because the telegraph perturbation distance
~ 30 = 315 mm is longer than the reactor half-widths.
The relative magnitude of the plasma potential varia-
tion, At/ (trs/2) is again = 20%. The one-dimensional
model [1] also predicts a longer range, but a smaller am-
plitude for the perturbation; the discrepancy is due to
the two-dimensional effect via the influence of the corners
which is correctly accounted for in the two-dimensional
numerical solution. The lower pressure used means that
w/v = 0.284 is no longer much less than one and so
the inductive term in Eqgs. (21) and (22) begins to in-
troduce a spatial oscillation into the borders of the sim-
ulated plasma potential rf amplitude variation in Fig.
5(b). The spatial resolution of the probe array is insuffi-
cient to observe this, but the measurement and numerical
solution are again in general agreement for the form and
amplitude of the rf amplitude spatial dependence. The
shift in the dc plasma potential differs by about 4.5 V
between measurement and numerical solution, and this
is also observed in the 4.5 V discrepancy between the
self-bias values.

B. Inverse asymmetry: ground electrode area
smaller than the excitation electrode area

The asymmetry shown schematically in Fig. 6 is in-
verted with respect to Fig. 3 by adding sidewalls to all
four sides of the excitation electrode. The plasma is now
laterally confined by sidewalls at the excitation electrode
potential instead of ground, and so the effective grounded
area is now smaller than the excitation electrode area.

For comparison with Figs. 3(a} and (b), Figs. 6(a)
and (b) represent the inverse asymmetry measurement
and numerical solution of the spatial dependence of the
plasma potential rf amplitude, for short damping length,
5 =33 mm. The inverted asymmetry means that the
sign of the sidewall current perturbation in the telegraph
model, Eq. (24), is reversed. The observed inversion
of the voltage profile therefore supports the validity of



the telegraph description. Note that both the measure-
ment and numerical solution for inverse asymmetry are
not exact mirror images of Fig. 3 because, although the
sum of the ground and excitation sheath voltages always
equals the applied excitation voltage, the varying phase
of the propagating telegraph mode means that this does
not hold for the sum of their amplitudes. Explicitly, the
perturbation magnitude for the symmetry in Sec. IV A,
Oty = irf/2 + f/(g)] — U,¢/2, is not the exact mir-
ror image of the perturbation magnitude for the inverse
symmetry of this section, At, = }ﬂrf/2 - \7(@)‘ —1,5/2,
because of the phase variation of v(z) with respect to the
rf excitation.

The measured and modeled self-bias values are of sim-
ilar magnitude to the previous reactor symmetry of Fig.
3, but are now positive as expected when the excitation
electrode is larger than the ground electrode [28].

Fig. 7 is the inverse asymmetry version of Fig. 5 for
long damping length, § =105 mm, which also confirms
the inversion of the plasma potential perturbation and
of the self-bias voltage, according to the telegraph ef-
fect. Incidentally, this inversion shows that the dome
profile in Fig. 5 is not associated with the standing-
wave effect, because otherwise the rf excitation voltage
and both sheath voltage perturbations would all have a
central maximum independently of the reactor symmetry
(11, 13]. Conversely, in the telegraph effect, the sheath
voltage perturbations are equal and opposite, with the
central maximum of the sheath voltage occurring at the
larger-area electrode, and a minimum at the smaller-area
electrode, as observed. The only major discrepancy be-
tween measurement and telegraph numerical solution is
again a difference of a few volts in the dc levels of the
plasma potential and self-bias.

C. Symimetric reactor

This is the trivial case for which the telegraph effect
should vanish, leaving no perturbation to the rf plasma
potential, because the sum of the injected ground and
excitation rf currents from the equal-height sidewalls is
zero [1], i.e. the net sidewall current I|yau = 0 in Eq.
(24). All the probe dc voltages, V¢, and dc currents,
jgnd, should then be zero, including the self-bias, and
Eq. (5) satisfied everywhere. The measured perturba-
tions in Fig. 8(a) (short damping length) and (b) (long
damping length) are, on the whole, considerably smaller
than the asymmetric cases in Figs. 3(a), 6(a) and Figs.
5(a), 7(a) respectively, but not zero. This is possibly
due in part to imperfect electrode symmetry: the 12.5
mm sidewall heights are equal on all four sides, but the
ground electrode remains slightly wider than the exci-
tation electrode. The most obvious nonuniformities are
close to the corners in Fig. 8(a): the added sidewalls were
not perfectly aligned, leaving small gaps where spurious,
'parasitic’ plasma could exist.

The measured self-bias for the long-§ plasma, Fig.

8(b), was 0 V as expected for a symmetric reactor. How-
ever, the magnitude of the +2 V self-bias for the short-&
plasma in Fig. 8(a) was no smaller than for the asym-
metric cases, Figs. 3(a) and 6(a). Since the self-bias volt-
age depends on the plasma currents integrated over the
whole surface of both electrodes, it is influenced by any
spurious plasma nonuniformity, such as apparently exists
in the corners of Fig. 8(a). Nevertheless, it seems clear
that accurate symmetrization of the ground and excita-
tion electrodes would help to give a uniform rf plasma po-
tential, as predicted by the telegraph theory. A symmet-
ric electrode design is therefore advantageous for plasma
processing from the point of view of uniform plasma po-
tential and sheath voltages.

D. Quantitative comparison with the telegraph
analytical model

To quantitatively test the telegraph one-dimensional
analytical model in Ref. [1], we consider the line profile
of plasma potential rf amplitude across an axis of the re-
actor (y =0 to 470 mm at x =285 mm) for short damping
length, & ~ 33 mm, using the asymmetric reactor results
in Secs. IV A and IVB. Case A in Fig. 9 superposes
the voltage measurements for the probes closest to this
axis from Fig. 3(a) with the corresponding line profiles
from the two-dimensional solution in Fig. 3(b) and the
one-dimensional analytical solution from Ref. [1] (see be-
low). Case B in Fig. 9 superposes the corresponding line
profiles for the inverse reactor asymmetry from Fig. 6.
All the profiles are set to zero at the electrode center.

These profiles for the short damping length case are
appropriate for comparison with the one-dimensional so-
lution because the electrode half-width of the perpendic-
ular axis, 285 mm, is sufficiently longer than the tele-
graph perturbation distance ~ 3§ =99 mm, so that the
proximity of the lateral walls does not invalidate the as-
sumption of a one-dimensional plasma model [1] along
the short axis. Furthermore, w/vy, = 0.085 < 1 so that
the resistive approximation made for the model in Ref.
[1] is also valid for these plasma conditions. The compar-
ison for the symmetrical reactor of Sec. IV C is not added
to Fig. 9 because the trivial result for zero perturbation
gives no quantitative test of the analytical model.

The one-dimensional resistive model line profile for the
plasma potential rf amplitude is given by the magnitude
of

H

u,(z) = ﬁ——gi [1—-[( cosh(vw)};K

from Ref. [1] Eq. (14), where vy = (1+4)/d. The relevant
parameters for the analytical profiles in Fig. 9, Cases A
and B, are the damping length § = 33 mm, the reactor
half-width L = 235 mm, and the rf excitation amplitude
iy = 24 V. The effective sidewall height in contact with
the plasma is |H| = (25 — 2d)/1.5 mm where d = 4 mm
is the sheath width and the factor 1.5 accounts for the

B (2/~) sinh(yL) + H cosh(v1
(27)



wall effective sheath width, dyey = 1.5d. These param-
eters are identical to those used for the two-dimensional
numerical simulation. For Case A (grounded sidewall),
H = +|H}; and for Case B (sidewall connected to the
excitation electrode), H = —|H]|.

The measurements, the two-dimensional numerical so-
lution and the one-dimensional analytical solution are in
very good agreement in Fig. 9, thus giving a quantitative
confirmation of the telegraph model in Ref. [1].

The long damping length case, § ~ 105 mm, is in-
fluenced by the lateral walls [18] because the telegraph
perturbation distance ~ 34 ~ 315 mm is longer than the
reactor half-widths. The one-dimensional model would
consequently underestimate the size of the measured per-
turbations, whereas the two-dimensional numerical solu-
tion satisfactorily reproduces the experimental results in
Figs. 5 and 7.

Up till now, it has not been considered whether the
edge-localized (fringing field) modes [9], which co-exist
with the telegraph mode [1], are also influencing the mea-
surements of the plasma potential perturbation. The dis-
tinction between the telegraph mode and edge-localized
modes can be deduced as follows: (i) The observed sup-
pression of the plasma potential perturbation due to sym-
metrization of the electrodes is explained by the tele-
graph effect, whereas a fringing field perturbation would
not be strongly reduced by the sidewall symmetrization
[1]; and ii) The plasma potential perturbation is observed
to penetrate far into the reactor interior - depending on
plasma conditions - which can be explained by the tele-
graph mode propagating inwards from asymmetric side-
walls. On the other hand, the fringing field perturbation
does not propagate and remains localized within h/7m < 8
mm of the electrode junction at the sidewall [9]. The
probes are not close enough to the reactor edge to be
strongly influenced by the edge-localized modes.

In conclusion, it is reasonable to assume that the mea-
sured perturbations to the plasma potential rf amplitude
are principally due to the telegraph effect.

E. Surface potential on a dielectric substrate in an
asymmetric reactor

A surprising prediction of the telegraph effect is the
negative surface potential of a thin dielectric substrate,
placed on the ground electrode, when exposed to plasma
in an asymmetric reactor where the ground electrode has
the larger area [1]. If the plasma dc and rf potentials
were uniform, capacitive division of the plasma potential
(which is always positive with respect to all surfaces) be-
tween the sheath capacitance and the dielectric substrate
capacitance would only ever allow for a positive surface
potential.

The surface potential was measured for a 1 mm-thick
glass substrate, 470 mm x 370 mm, positioned cen-
trally on the ground electrode for the conventional re-
actor asymmetry of Sec. IV A. Circular holes were cut

in the glass, aligned with the array of large probes, to
expose the metal probe heads. Since the glass surface is
electrically floating, the probe de floating potential gives
an estimate for the substrate surface potential (this is
only approximate because the rf potential of the glass
surface is not exactly zero - the case of non-zero dielec-
tric thickness is considered in Sec. III E of Ref. {1]). Fig.
10(a) shows this approximate substrate surface potential
measured directly from the probe floating potentials: it
is negative, as predicted by the telegraph effect, over all
the substrate except for its corners. The 50 mm-wide
exposed border of the conducting ground electrode is at
0V.

For comparison, the substrate surface potential can be
calculated from the difference between the uniform dec
plasma potential and the dc self-rectification voltage of
the sheath at the substrate [25]. The dc plasma poten-
tial must be downshifted in presence of the substrate to
guarantee global ambipolarity over the conducting bor-
der of the ground electrode where the rf sheath voltage is
lower due to the telegraph effect. The rf sheath voltage
is larger towards the center of the reactor, following the
telegraph profile, and so the sheath dc self-rectification
voltage above the insulating substrate is now larger than
the dc plasma potential. Their difference therefore pre-
dicts a negative substrate surface potential. The calcu-
lated substrate surface potential in Fig. 10(b) agrees rea-
sonably well with the measurements in Fig. 10(a), which
qualitatively confirms the telegraph model. The mea-
sured and calculated substrate potential, using § ~ 70
mm, is bipolar due to the two-dimensional influence of
the reactor corners extending onto the substrate corners.
The downshift in dc plasma potential also drives the self-
bias downwards to maintain global ambipolarity over the
excitation electrode (see Sec. III C in Ref. [1]), which ex-
plains the measured self-bias decrease from -8 V without
substrate, to -18 V with the substrate.

A spatial variation in dc sheath voltage across the sur-
face of a dielectric substrate in an asymmetric reactor
would result in nonuniform ion energy bombardment,
which could be a critical issue for etch uniformity [25].
According to the simulation performed for Fig. 10(b),
the ion bombardment energy would vary from 67 eV at
the reactor edge to 78 eV at the substrate center, with
a discontinuity in ion energy at the electrode-substrate
boundary of up to 7 eV at the reactor axes. Such a sheath
voltage discontinuity has been experimentally shown to
be accompanied by a lateral electric field over the sub-
strate surface for a few mm at its edge [29)].

A negative substrate surface potential is also confirmed
by measurements of a negative substrate charge using the
same reactor configuration [30]. This negative charge,
inexplicable in terms of a unique plasma potential, cor-
roborates the telegraph effect. Finally, the glass surface
potential was measured to be positive for the inverse
asymmetry of Sec. IV B, as expected from the telegraph
model.



V. CONCLUSIONS

A surface array of unbiased electrostatic probes was
used for experimental verification of the spatial depen-
dence of the plasma potential rf amplitude predicted by
the telegraph effect in a large area, asymmetric capaci-
tive plasma reactor. The telegraph effect is caused by the
redistribution of rf current near asymmetric sidewalls to
maintain rf current continuity between the electrodes -
this causes a rf plasma potential perturbation to propa-
gate laterally across the plasma. The resulting perturba-
tion to the edge plasma can be significant even for side-
wall heights which are much smaller than the electrode
width. The telegraph electromagnetic mode is different
from the standing wave and edge-localized modes [13]
and occurs even at low excitation frequencies.

The negative of the probes’ dc floating potential in
the surface of the ground electrode was shown to give
an approximate measurement of the plasma potential rf
amplitude perturbation which was compared with a two-
dimensional solution of the telegraph equation. The pre-
dictions of the telegraph theory [1, 2] are confirmed by the
probe experiments as follows: i) The spatial dependence
of the plasma potential perturbation given by the numer-
ical solution of the telegraph equation is observed by ex-
periment for both short and long damping lengths. The
spatial profile is inverted when the electrode area asym-
metry is inverted, and the variation is strongly reduced
when the areas are closely symmetric; ii) A circulating
dc current between the plasma and the ground electrode
is observed; iii) The surface potential of a thin dielectric
substrate placed on a grounded, larger-area electrode is
confirmed to be negative.

The practical significance of the telegraph effect was
recently demonstrated by the nonuniformity of film thick-
ness during plasma-enhanced chemical vapor deposition
in an asymmetric large area reactor, as shown in two pa-
pers (31, 32] submitted during the writing of this article.
In conclusion, a symmetric electrode design is advanta-
geous for large-area plasma processing uniformity from
the point of view of uniform plasma potential and sheath
voltages.
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APPENDIX: ACCURACY OF THE UNBIASED
PROBE METHOD

The spatial variation of the probe floating dc negative
potential, —A‘_/f (z), is approximated to the spatial vari-
ation of the plasma potential rf amplitude perturbation,
Niig(z), in Eq. (14) and in the experimental results.
Here, we estimate the accuracy of the successive approx-
imations used in deriving Eq. (14). Consider Eq. (5),
which is exact for a sinusoidal sheath voltage, with the
substitutions X = Usym/Te and = = ip/T. = dip5/2T,.
The rate of change of the sheath dc potential with re-
spect to the sheath rf amplitude, 0X/dz = -0V} /0u,,
is

0X/0z = Iy(z)/To(x) = 1) () /To(x), (A1)
where 1; (z) and Ip(x) are respectively the first and zeroth
orders of the modified Bessel function of the first kind
[23]. From the asymptotic expansion in Eq. 6 we obtain
OX/0x~1—1/2zx for z > 5. (A.2)
The approximation used for the experimental results, Eq.
(14), gives
8X/0x =1 for z > 5. (A.3)
Egs. (A.1) - (A.3) are expressions for the ’constant of
proportionality’ between ‘AV} ‘and Ad,. As shown in
Fig. 11, the approximation —AV; &~ A1, is an overesti-
mate for the first two expressions, but not by more than
10 %.

The sheath voltage has been assumed to be purely si-
nusoidal up till now. To estimate the influence of sheath
voltage harmonics, we use an analytical solution for the
capacitive rf sheath by Lieberman [33] which includes
the second and third voltage harmonics. For this case,
the coswt time dependence in Eq. (1) is replaced by
cos wt+0.123 cos 2wt —~0.042 cos 3wt. Expressions A.1-A.3
are plotted for comparison in Fig. 11 along with a nu-
merical evaluation for 3X/dx accounting for these sheath
voltage harmonics. In conclusion, the spatial variation of
the probe floating dc negative potential, —~AVy(x), ap-
proximately represents the spatial variation of the plasma
potential rf amplitude perturbation, At,(z), even in the
presence of weak harmonics of the sheath rf voltage, to an
estimated accuracy of £10%. This is sufficiently accurate
for this experimental investigation of the telegraph effect,
especially since this is a systematic error which does not
change the form of the measured voltage distributions.
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FIG. 1: Schematic of the reactor, probe array and acquisition
block diagram for dc voltage and dc current measurements.
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FIG. 2: Above: Schematic of the plasma and electrode geom-
etry, showing a half-width L with a grounded sidewall. Below:
Equivalent circuit of the plasma and sheath impedances [1].
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FIG. 3: Top: Schematic of the asymmetric reactor geome-
try (not to scale). The graphs show the perturbation to the
plasma potential rf amplitude with respect to a symmetric
reactor, for short telegraph damping length § = 33 mm: (a)
probe negative dc floating potential measurements (the black
points indicate the data points on the interpolated surface and
the white points show the {x, y} positions of the probes); (b)
numerical solution of the telegraph equation. Rf amplitude
Urg = 24.4 V. The measured and simulated self-bias voltages
are -1.5 V and -1.2 V respectively. Plasma parameters are
given in Sec. 1IV.
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FIG. 4: Dc current density to the ground electrode surface for
the same reactor asymmetry and plasma conditions as in Fig.
3 with the same short telegraph damping length § = 33 mm:
(a) measurements of dc current with unbiased probes; (b)
numerical solution of the telegraph equation; (c) measurement
of the ion saturated current density spatial profile.
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(a) measurement

FIG. 5: For the same reactor asymmetry as in Fig. 3, the
graphs show the perturbation to the plasma potential rf am-
plitude with respect to a symmetric reactor, for plasma con-
ditions with a long telegraph damping length § = 105 mm:
(a) probe negative dc floating potential measurements; (b)
numerical solution of the telegraph equation. Rf amplitude
U, s = 140 V. The measured and simulated self-bias voltages
are -17.5 V and -13 V respectively. Plasma parameters are
given in Sec. IV.



Case B - inverse asymmetry .
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F1G. 6: Top: Schematic of the reactor with inverse asymme-
try compared to Fig. 3 (not to scale). The black rectangles
represent dielectric inserts to prevent parasitic plasma behind
the added sidewalls. The graphs show the perturbation to
the plasma potential rf amplitude with respect to a symmet-
ric reactor, for short telegraph damping length § = 33 mm:
(a) probe negative dc floating potential measurements; (b)
numerical solution of the telegraph equation. Rf amplitude
trs = 23.2 V. The measured and simulated self-bias voltages
are +2 V and +1.5 V respectively. Plasma parameters are
given in Sec. IV.
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(b) telegraph solution £
P

FIG. 7: For the same reactor inverse asymmetry as in Fig. 6,
but for plasma conditions with long damping length & = 105
mm: (a) probe negative dc floating potential measurements;
(b) numerical solution of the telegraph equation. Rf ampli-
tude i, = 141 V. The measured and simulated self-bias volt-
ages are +23 V and +15 V respectively. Plasma parameters
are given in Sec. IV.
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Case C - symmetric
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FIG. 8: Top: Schematic of the reactor with symmetric elec-
trode areas (not to scale). The black rectangles represent di-
electric inserts to prevent parasitic plasma behind the added,
half-height sidewalls. (a) probe negative de floating potential
measurements for short damping length § =33 mm (rf ampli-
tude @,y = 22.2 'V, self-bias voltage +2 V); (b) probe negative
dc floating potential measurements for long damping length
4 =105 mm (rf amplitude i,y = 92 V, self-bias voltage 0 V).
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FIG. 9: Line profiles of the spatial perturbation to the plasma
potential rf amplitude across the reactor short axis for short
damping length § =33 mm. Case A: for the reactor asym-
metry in Sec. IV A; Case B: for the inverse asymmetry in
Sec. IVB. Each graph compares the measurements with the
two-dimensional numerical solution and the one-dimensional
analytical solution {1] of the telegraph equation.
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Case E
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FIG. 10: Top: Schematic of the asymmetric reactor with a
dielectric substrate (not to scale). (a) the measured surface
potential across the ground electrode including the dielec-
tric substrate; (b) the calculated surface potential, using the
two-dimensional numerical solution of the telegraph equation
{with § =70 mm) and the self-rectification condition for the
sheath at the substrate. Rf amplitude @, ; = 140 V.
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FIG. 11: Comparison of the expressions for X /or =
—aV; /i, in Egs. A.1-A.3, and for sheath voltage harmon-
ics. The estimated error in assuming that ~AVy = A, for
the probe measurements is less than +£10%. Low rf power
experiments for § = 33 mm correspond to 5 < z = Up/Te <7
{for T. = 2 V); high rf power experiments for § = 105 mm
correspond to 27 < r < 43.
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