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Abstract

A numerical method is proposed to evaluate gradients on non-uniform, non-orthogo-
nal 3D structured meshes of hexahedra, as commonly used by finite volume methods.
The method uses isoparametric transforms on tetrahedra to evaluate the gradient
on a regular mesh and transform it back to the general mesh. It provides second-
order accuracy, even on highly non-orthogonal meshes. Results of stationary 3D
numerical simulations of a DC plasma torch, making use of the proposed method,

are presented.
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1 Introduction

Finite volume methods (FVM) are widely used for solving conservation equa-
tions, such as the Navier-Stokes equations in CFD. Using FVM, one typically
integrates in space the partial differential equation in conservative form, so
that the divergence term is transformed into the surface integral of the field’s
flux on the cell sides. How the fluxes are calculated is unspecified by the FVM,
as long as they satisfy two principles: conservation and consistency [1]. The
former requires that the flux from cell C; to neighbour cell C; through their
common side is opposite to the flux from Cj to C;. The latter, roughly speak-
ing, requires that the numerical error on the flux evaluation is O(h), if h is
the size of the largest cell in the mesh. While evaluation of the diffusive fluxes
requires the gradients on the cell sides, any source terms, if themselves ex-
pressed as function of some gradients, may require a cell-centered evaluation

of the gradients.

In the context of a plasma torch [2] simulation, we used an existing CFD code
(3], to which an electromagnetic part was added. The code uses the Peyret-
Taylor integral formula [4] to compute side-centered gradients and a finite
difference formula for cell-centered gradients. For non-orthogonal meshes, it
quickly appeared that a better gradient evaluation was needed to solve for the
electrical potential and evaluate Ohmic heating, which appears as a source
term in the energy equation and is proportional to the squared gradient of the
electric potential. The difficulty with these quantities originates from strong
non-linearities: the electric conductivity, which is a coefficient in a Poisson-
like equation determining the electric potential, depends strongly (sometimes

exponentially) on the temperature.



Several studies deal with this problem from scratch, see for example Hyman
and Shashkov [5,6] (and references therein) or Hermeline [7]. To use the results
of these studies for the gradient evaluation would have resulted in a major code
rewrite, which we considered inacceptable, since we only sought to improve the
method to compute the gradients. We later found out that another method
(called the path integral method) was developed by Wesseling et al. [8]. This
method considers the integral of the gradient on a straight line. On the one
hand, this integral is equal to the difference of the field values at the path
extremities (chosen to be cell centres around the point where the gradient
is evaluated), and on the other hand, the integral can be approximated by
the dot product of the gradient with the vector Jjoining the path extremities.
Thus, an equation for the component of the unknown gradient along the path
is obtained, and by considering other paths, one builds a linear system for the

complete gradient.

In the following, a numerical method based on isoparametric transforms to
calculate cell-centered and surface-centered gradients on general structured
meshes is presented. Results using this method are compared with those
obtained with the Peyret-Taylor formula, and with the method developed
by Wesseling et al.. Usage and benefits of the improved gradient evaluation
method for the simulation of a 3D plasma torch are shown, and implementa-

tion issues are discussed.

2 Numerical method

A general (non-orthogonal, non-equidistant) 3D structured mesh of hexahedra

is considered. In this case, the cells can be logically indexed by three indices



(¢,4,k). Let ¥ ik De the centre of the cell (4, j, k). The discrete values ¢; gk
are the numerical approximations, at the cell centres, of a continuous field ®.
Our objective is to find an expression for V(% k) (cell-centered gradient)

and V¢(i7; ) (gradient at one of the cell surface centres).

It is well known [9] that using V¢(ZY,,) to compute V(7% ix) (or vice-versa)
employing some kind of interpolation may lead to numerical instabilities. It
is thus necessary to perform the two calculations independently, and we will

show how isoparametric transforms can be used for both calculations.

2.1 General statement of the problem

Whether cell-centered or surface-centered, the problem can be stated in the
same way: given a ‘central’ point &y, six points Zy,...,Zs around #,, and the
values ¢;, 1 = 0,...,6 of the discrete field ¢ at those points, find Vo(Zy).

Cell-centered and surface-centered gradients differ in the choice of the Z;'s.

In the case of a cell-centered gradient evaluation, the points considered are sim-
ply 27, and its six nearest neighbour cell centres (%, gk Tijet e Tijpsr):
The field values are directly known at those points. In the case of a surface-
centered gradient, the ‘central’ point is a surface centre, while the other six
points are the corners of that surface and the two centres of the cells shar-
ing that surface. Nevertheless, one must first interpolate ¢ at the five points
located on the surface, since ¢ is known only at cell centres. Figure 1 shows

a cell and one of its neighbours, along with some of the points used for the

gradient calculations.

Given this set of seven points and field values, we show how to use isopara-



metric transforms to estimate the gradient at the ‘central’ point.
2.2 Isoparametric transforms

Generally speaking, the isoparametric transform, 7{u, v, w), that maps a (regu-
lar) polyhedron in (u, v, w) coordinates to its (irregular) counterpart in (z, y, 2)

coordinates may be written:
u,v,w) = Y Nylu,v,w) 7%, (1)

where 7 is the number of vertices of the polyhedron and the {%} its vertices
in (z,y, 2) coordinates [10,11]. The functions N, are to be determined using
some interpolation ensuring that the vertices of the regular polyhedron are
transformed to {7} }. As in the finite element method, (1) is also used to
interpolate ¢:

o0, ,1) = 3 N v,) 672, )

a=

Then, using (2), one relates V¢ in (u,v,w) coordinates and (z,y, z) coordi-

nates through the transposed Jacobian matrix .J. We have in fact:

V¢ =J'V¢

,Y,2 u,v,w

2.3 Gradient evaluation

While one cannot write an isoparametric transform mapping the octahedron
defined by the seven points considered, it is possible to partition these points
in two sets defining two tetrahedra. The procedure to evaluate V¢(Z,), given
(Zo, ..., Zs; Po, - - -, 06), is then as follows. We consider a first tetrahedron de-

fined by four points (including Z) from the seven given points, and the isopara-



metric transform it defines. Using (3), we obtain a first estimation of the gradi-
ent at Zo, say V¢("). We proceed similarly for a second tetrahedron, defined by
Zp and the remaining three points not used for the first tetrahedron, yielding

a second gradient estimation V¢®. Finally, we average these two estimates:
V(&) = 5(Vol + Vo). (4)

To define the first tetrahedron, in the case of a cell-centered gradient, one
would choose the lower-indices neighbours, while for the surface-centered gra-
dient, one would choose two consecutive side corners and one of the two cell

centres.

Let us show in detail how the computation is performed for the first tetra-
hedron, which has vertices 77},...,7] (chosen from (%, ...,7s) as explained
above), following the notation of (1). For the two tetrahedra, we take Ty = Zp.

We assume that the isoparametric transform is of the form
Z(u,v,w) = @ + dou + d3v + dyw (5)
and is determined by the conditions:

#(0,0,0) = 7} #(0,1,0) =73

Z(1,0,0) =7, £(0,0,1) =7

meaning that, for example, the vertex (v = 0,v = 0,w = 0) of the regular

tetrahedron is mapped to 7y. This yields:
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which allows the determination of the N, functions of (1):

MNuv,w)=1-u—v—w Ni(u,v,w) =v

Ny(u,v,w) =u Ny(u,v,w) = w.
The Jacobian matrix of the isoparametric transform thus defined is given by
T
J= [62 ’ 53 y 64] . (6)

We now express the gradient of ¢ in the (u,v,w) coordinates, using (2) and

its derivatives. Writing ¢; = ¢(7}), ¢ € {1,...,4}, we obtain:

o6 8¢ ¢

"621052~¢1, %—¢3~¢1, g = % o (7)
Finally, recalling (3) and using (7), we have
$2 — &
(1) — 71
vé z,Y,% = 3 — 1| - (8)
s — ¢
! ]
One proceeds similarly to compute V¢® | the only difference being in the
values of 73,7y and 7y, which are now the three points from (&, ... , Tg) not
used yet.

2.4 Test cases

The quality of the numerical gradient evaluation has been assessed by testing
it on various given fields ¢ with analytically known gradient. The quality

measures used are the mean absolute and relative errors for a cell-centered



gradient evaluation using the Peyret-Taylor method (PT) and the proposed

isoparametric transform method (ITM), respectively.

For example, we considered a single block domain with a ‘I’ shaped mesh,
for the field ¢(z,y,2) = exp ( — (2 +y? + zz)). This mesh is irregular, and
strongly non-orthogonal at the L crease. To increase the difficulty, the mesh
was ‘shaken’, the term designating a random displacement of the interior mesh

nodes, see also Fig. 4.

Figure 2 shows the average relative and absolute errors of the gradient eval-
uation for a 3D L-shaped domain of unit extension in each direction. Figure
3 shows the same results obtained on the ‘shaken’ mesh. In each cell, the

absolute and relative errors are defined by

(Ve)?
(v¢)§nalytic

€abs = '(V¢)2 - (v¢)indﬁic

, 9)

: (10)

€rel — !1 -

The Peyret-Taylor method shows linear convergence on the regular mesh, and
fails to converge on the shaken mesh, whereas ITM exhibits quadratic con-
vergence in both cases. Figures 4 shows a cut (at z = 0.5) of (V¢)? on the

‘shaken’ L mesh.

2.5 An electric arc test case

In this section, we present a numerical simulation of a plasma torch. A plasma
torch is a device in which an electric arc is established between two co-axial
electrodes. The main feature of the case considered here is the fact that the arc

column is subject to a cross-flow, that can only be studied by 3D computations.



Due to the cross-flow and intense Ohmic heating, the gas at the torch exit can
be used for thermal spraying by introducing a powder into the flow, where it

melts before coating a surface facing the exit (see figure 5).

Under the assumption of local thermodynamic equilibrium, a hydrodynamic
model is used to describe the flow inside the torch, and we solve the Navier-
Stokes equations together with a Poisson-like equation for the electric poten-
tial, V - (6V¢@) = 0, where ¢ and ¢ stand for the electric conductivity and
potential, respectively. Fluid and electric parts are coupled through Ohmic
heating (energy source term of the form o(V¢)?), Lorentz force (momentum
source term) and temperature (electric conductivity strongly depends on tem-

perature) [12,13].

A current density profile, ¢V, is given on the boundaries corresponding to
the electrodes, while the electric potential is set to zero on the remaining
boundaries. For the flow, subsonic inlet and outlet boundary conditions are
specified, along with no-slip conditions on the walls. Temperature profiles are

imposed on the solid walls.

Using the original Peyret-Taylor formula to evaluate gradients, we quickly
ran into severe problems appearing first in the electric potential in regions
with strong mesh non-orthogonality. The poor evaluation of the cell-centered
gradient of the electric potential at these locations typically resulted in an
overestimated Ohmic heating. This in turn had dramatic consequences on the
Navier-Stokes part due to the strong non-linear dependence of the electric
conductivity on the temperature. Once the evaluation of the gradient of the
electric potential was improved, unrealistic temperatures were observed at the

same locations due to an inadequate evaluation of the heat flux. All these fail-



ures were related to non-orthogonal meshes and the elliptic parts of the system
(for which fluxes depend on gradients). It should be stressed that this inad-
equacy of the method cannot be overcome by just performing more iteration
steps in the hope to bring the system to convergence; a poorly approximated

Ohmic heating term renders any such attempt futile.

We present here a 600 A plasma torch simulation, with 30 standard litres per
minutes Argon at inflow at atmospheric pressure. Figure 6 shows the squared
electric current density near the cathode, after 200 iterations, using the Peyret-
Taylor formula. The obviously wrong current density obtained is typical of the

above-mentioned problems with gradient evaluation.

Using the proposed ITM method, we were able to converge the calculation,
and to obtain a numerical solution which makes sense. Figure 8 displays the
computed temperature field. For this current, one obtains temperature levels
and velocities (around 400 m/s) at the torch exit that are consistent with
measurements [14]. The high temperatures near the cathode tip, even though
in agreement with experiments are somewhat questionable due to the the
simplified physical model employed for the cathode tip region. In particular,

radiation transport and non-equilibrium sheaths [15,16] are ignored.

The decribed numerical simulation was obtained on a mesh of 14 blocks con-
taining in total half a million grid points. Using 14 processors on an Origin
3000 computer, the simulation took approximately 2 days of elapsed time.
More details about the modeling and the peculiarities of such simulations can

be found in [17].
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3 Discussion

As illustrated in Section 2.4, on non-orthogonal meshes, the isoparametric
transform method yields second-order accuracy, while the Peyret-Taylor method
leads to first order only. On the corresponding shaken meshes, the isoparamet-

ric transform method retains almost second-order accuracy.

For a regular, orthogonal mesh, the isoparametric transform procedure re-
duces to a standard central difference formula. In fact, the two methods share
the same approach: first, estimate the gradient in each direction around the
central point (this is where the geometry, whether simply distances in 1D or
a Jacobian matrix in 3D, is taken into account), and then average these esti-
mates to remove first order errors. Although there are multiple ways to build
two tetrahedra from the set of seven points considered (section 2.1), numerical
experiments showed that no significant difference occurred from one choice or
the other, as long as lower/higher indices points (e. g. I%_, gk and I5.; . .) are

not in the same tetrahedron.

To assess the efficiency of the numerical method, it is important to compare
execution time and memory requirements. Since the isoparametric transform
method uses two (inverted) Jacobians per gradient evaluation, it is desirable
to precompute and st;(;re J~! for each transform. This allows the determina-
tion of the gradients at the same computational costs as the standard central
difference method, but at the price of increased memory requirements (18 reals

per gradient evaluation per grid point).

Comparing the ITM method with the path integral method of Wesseling et

al. [8] shows that the methods are equivalent in terms of numerical precision.
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But the path integral method is computationally more efficient, since it only
requires the evaluation of one 3 X 3 matrix per gradient calculation, instead

of two 3 x 3 matrices for the I'TM method.

The use of the path integral method becomes delicate at some very specific
cells, as for example corner cells in multi block meshes, see Fig. 7. In these
cells, one must be careful to use suitable values in the ghost cells, otherwise the
conservativity principle will not be satisfied. In the example of Fig. 7 (a typical
configuration of the mesh in the plasma torch), this may be problematic for
the corner ghost cell, which is degenerate. For these cases, it may be easier
to forget simply the contributions associated with these points in the path
integral method, so that the unknown points are not used at all, at the expense

of a slightly less precise formula.

The ITM method offers for these cases the elegant solution of using wedge-
shaped or tetrahedral isoparametric elements for the interpolation. The I'TM
method thus never makes use of unknown values (or values generated to es-
timate unknown values). In the 2D schema of figure 7, this is represented by

using the gray triangle on the right, instead of a quadrilateral.

To conclude, some remarks based on our experience are in order. For 3D
configurations, the use of the path integral method to compute all gradients
requires the storage of 36 reals per cell (3 side-centered gradients and 1 cell-
centered). However, the use of this method is only required for some cells
located at the most non-orthogonal parts of the mesh, often located near
block interfaces where the mesh cannot always be made orthogonal. It is then
computationally advantageous, and relatively simple to implement, to use the

Peyret-Taylor formula for most cells of a block, and to use the path integral or

12



ITM method only for the outermost cells, each time recomputing the matrices
used. This brings the benefits of the improved gradient evaluation where it is

needed, at no memory costs and at marginally higher execution times.

4 Conclusion

We proposed a method using two isoparametric transforms on tetrahedra to
evaluate the gradient of a scalar field, at the cell centre or centre of cell side, of
a general (non-orthogonal) 3D structured mesh. The method provides second-
order accuracy and is fast, at the expense of a higher memory cost. Its use
for flows that require special care for the gradients evaluations is shown. The
presented case is a stationary 3D simulation of a plasma torch operated a 600
A and atmospheric pressure, and for which the elliptical part of the equations
used to model the flow is critical. While no solution could be obtained for
this case using a simple gradient evaluation method, a converged solution was

obtained with the isoparametric transform method.
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Fig. 1. Two cells of a mesh, showing cell centres o, where field value is known, and
points where ¢ is interpolated o (used for surface-centered gradient). Not all nearest

neighbour cell centres are shown, but all points used to estimate the side-centered

gradient are shown (for the gray side).

Fig. 2. Relative (solid line) and absolute (dotted line) errors on the gradient eval-
uation for I'TM (crosses) and Peyret-Taylor (circles) formulas. The mesh used was

L-shaped, having 24 x 12 x 12, 36 x 18 x 18, 48 x 24 x 24, 72 x 36 x 36 and 96 x 48 x 48

cells.
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Fig. 3. Relative (solid line) and absolute (dotted line) errors on the gradient evalu-
ation for ITM (crosses) and Peyret-Taylor (circles) formulas on a shaken L-shaped

mesh.
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Fig. 4. Comparison between Peyret-Taylor (left) and ITM (right) evaluation of
(Ve)? at cells centre, when ¢(x,y,z) = exp(—z? — y? — z?%). On such a plot, the

I'TM result cannot be distinguished from the analytical one.
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Fig. 5. Schema of a plasma torch used for thermal spraying; only the inside of the
torch is modelled. Note that, while the electrodes have the cylindrical symmetry,

this is not true for the arc column [18].
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Fig. 6. Cut of the squared electric current density in the torch, after 200 it-

erations, using the Peyret-Taylor formula, showing problems where the mesh is

non-orthogonal.
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Fig. 7. On the left, a 2D case of three blocks having a point in common. Only the
gray block is considered on the right, where the ghost cells are delimited by broken
lines. The triangle represents the polygon used to interpolate the field value at the

block corner.

Fig. 8. Cut of the temperature, in Kelvins, in the symmetry plane of a 600 A torch,

with 30 standard litres per minute Argon at inflow.
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