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1 Introduction

Interest in quasiaxisymmetric stellarator (QAS) [1, 2] systems has been sparked by the re-
alisation that though the devices are three dimensional (3D), the magnetic field strength
B spectrum is dominated by a m = 1,n = 0 component. Consequently, the behaviour
of the guiding centre drift orbits which depends only on B in Boozer magnetic coordi-
nates [3] should be very similar to that in a tokamak. Further advantages perceived are
compact aspect ratio, typically less than 4 and no need for Ohmic current so the system
is inherently steady state. However, this type of device can exhibit a large bootstrap
current (BC) at finite 8 which increases the rotational transform as in tokamaks. This
can cause low order resonant surfaces to appear at the edge of the plasma and provide
free energy to drive global external kink modes. The NCSX and CHS-qa Experimen-
tal concepts to test the physics properties of quasiaxisymmetry have been proposed at
PPPL [4] and NIFS [5], respectively. The optimisation of such systems have included
neoclassical transport, a-particle confinement and MHD stability with finite BC. Spe-
cific studies with respect to the effect of the BC on MHD stability have been carried out
previously for fixed boundary equilibria {6, 7]. In this work, we address the impact of
the BC on equilibrium and stability of a 2 field period QAS reactor system when the
plasma boundary is free.

2 The Bootstrap Current Model

The bootstrap current model that we apply is based on a quasianalytic formulation valid
in the collisionless 1/v regime that is succinctly described by Johnson et al. [8] and is
based on previous derivations presented in references therein. The set of equations used
to obtain the BC in the 1/v regime are
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The toroidal current profile that must be provided to the VMEC code is 2nJ(s). The
averaged BC on each surface < j + B > is proportional to the geometric factor G, vis-
cosity coefficients L; and L, found in Ref. [8] and references therein and derivatives of
the pressure and temperature with respect to the toroidal magnetic flux function ®. The
geometric factor depends on the trapped particle fraction f; and the integration of flux
surface average functions with respect to the pitch angle A. The BC in the 1/v limit is
determined by two coupled ordinary differential equations (ODE) along the B-field lines
which are solved using a Fourier technique on each flux surface for each pitch angle.

3 The Resonance Detuning Model

The inversion of the B - V operator to

obtain expressions for the geometric fac-

tor components g; and g4/g; will diverge

at mode rational surfaces and this can
produce artificial discontinuities in the -

BC profile. The singular term from the
B - V operator inversion has the form
(my'(s) — n®'(s)]"! in Boozer magnetic
coordinates [3] To resolve this singular-
ity, we replace it with [9] [my'(s) —
n®'(s)]/{lmy/ (s) — n®'(s)]” + A% }. We
specifically choose A, = [(m+1)¥/(s) —
n®’(s)]A, where m is the poloidal mode
number, 7 is the toroidal mode number,
1 is the poloidal magnetic flux function

and prime (') indicates the derivative of

a flux surface quantity with respect to
s. Then the parameter A? that controls
the detuning becomes dimensionless and
can therefore be applied to any plasma
confinement system regardless of size or
B-field strength.

QAS FLAMENT COIL MODEL. AND MOD-B DISTRIBUTION ON EDGE FLUX SURFACE

Fig. 1. The filamentary coil model of a
2-period QAS reactor device and the mod-
B structure of the plasma-vacuum interface
boundary computed with the VMEC code.



4 Magnetohydrodynamic Equilibria

The free boundary version of the VMEC equilibrium code [10] is applied to investigate
the effects of the bootstrap current on the plasma shape, rotational transform and other
properties. Vacuum magnetic fields are computed using the Biot-Savart Law from cur-
rents of a coil system that has been optimised to obtain a 2-field period QAS reactor
system. The pressure profile chosen in this study as input for VMEC has the form
p(s) = p(0)[1 — s — 0.1(1 — 5'°)]/0.9 that is nearly parabolic but with vanishing gradient
at the edge. The other profile that is required as input is the toroidal plasma curent
2mJ(s) which we obtain by iterating between equilibrium calculations and BC calcula-
tions until a converged profile is achieved. A module of the TERPSICHORE code [11]
has been adapted to compute the BC in the 1 /v limit that solves the ODE’s described
in Section 2 in a Boozer coordinate frame. The filaments and the mod-B contours on
the outermost flux surface computed with the VMEC code are displayed in Fig. 1.

5 Self Consistent MHD Equilibria with Finite Boot-
strap Current

Successive ca,lcula,tions of APPLIGATION OF RESONANT DETUNING ON BOOTSTRAP CURRENT
1.4 T y T T T y y

T

VMEC equilibria and the
bootstrap current typically
take between 8 — 20 iterations
to converge a current profile.
In Fig. 2, we show the BC
profile at 8 = 1.77% for values
of the resonance detuning
parameter A? of 10~%, 1073 ¥
and 1072, For A% = 10~%, the
profile exhibits sharp discon-
tinuities at rational surfaces.
These tend to disappear for
A? = 1073, though the BC pro-
file retains step-like features.

For A? = 10—2, the proﬁle 0 0.1 02 0.3 0.4 0.5 06 07 0.8 X .
S

becomes completely - smooth. Fig. 2. The BC profile in a 2-period QAS reactor with dif-

The integrated BC is virtually ferent values of the resonance detuning parameter

the same for all these values of A2

A2 In Fig. 3, we display the converged BC profiles for several values of 5. For 8 > 3%,
a larger value of A? is required to converge the BC profile. At the highest 8 = 3.78%
achieved, a magnitude of A? = 5.22 x10~2 is required and the integrated current achieved
was significantly smaller than that in the range 8 = 3.25 — 3.5%. The converged profile
may have been achieved by supressing the current near the edge. For 8 > 4%, we
were unable to compute a converged BC profile unlike the conditions previously treated
with fixed boundary QAS calculations where we were able to attain converged BC at
B > 5% [7]. This can be attributed to the fact that not only the BC profile but also the
plasma shape and column position is varying form one iteration to the next. The change



of shape and position of the plasma column with finite 8 and BC is illustrated in Fig. 4.

As B is increased from 0 to
3.25% with the BC set to
zero, the plasma column ex-
hibits a noticeable outward ra-
dial displacement bringing it
closer to the coils. When
the self consistent BC is in-
cluded at 8 = 3.25%, the outer

edge of the vertically elongated 7

up-down symmetric cross sec-
tion does not move. How-
ever, the BC causes the plasma,
shape to become more elon-
gated regardless of cross sec-
tion. Furthermore, the horizon-
tally elongated up-down sym-
metric cross section becomes
distorted into a bomblet shape.
An analysis of the spectrum
of the B-field strength shows
that the dominant component
ism = 1,n = 0 as would
be expected in a QAS sys-
tem (Fig. 5). The distribu-
tion of mod-B near the edge
in Boozer magnetic coordinates
shows that higher order compo-
nents play an important role.
When the boundary flux sur-
face is unwrapped, closed mod-
B contours are observed near
the regions of minimum-B at
the outer edge and maximum-
B on the inner edge. These
effects are displayed in Fig. 6.
For 8 > 3%, the converged
BC profile exhibits discontinu-
ous jumps which are not asso-

BOOTSTRAP CURRENT PROFILES IN 2-PERIOD QAS REACTOR
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1 Fig. 3. The BC profiles for different values of 5.

PLASMA-VACUUM INTERFACE BOUNDARY IN 2-PERIOD QAS

[
R
Fig. 4. The plasma-vacuum interface boundary in the vac-

uum state and at 8 = 3.25% with and without
the BC effect.

ciated with resonant effects at mode rational surfaces. These discontinuities are corre-
lated with jumps in the locations of the maxima of B on adjacent flux surfaces. This
is shown in Figs. 7 and 8 where the mod-B distribution is displayed on surfaces with
5 = 84.5/96 and s = 85.5/96 which have been unwrapped and plotted as a function of
the Boozer poloidal and toroidal angular variables # and ¢, respectively. The positions
of the B-maxima are indicated with the symbol '+' in Figs. 6-8.



6 Ideal MHD Stability Properties

The impact of the BC on the B2 SPEGTRUM IN 2-PERIOD QAS
5 ‘ : . : : .

ideal MHD stability proper- ‘ -

B=325% o0

ties of a 2-period QAS reac-
tor system is investigated with
the TERPSICHORE code [11].
A pseudoplasma treatment of
the vacuum is considered and
therefore a conducting wall
that approaches conformal con-
ditions is prescribed. The pres-
sure profile and the rotational
transform profile obtained with
self consistent BC is presented
in Fig. 9. The most unstable
eigenvalue is plotted in Fig. 10

as a function of 8 which shows -5 o oz o3 0r o5 or o7 os os

1/0

a marginal point at 5 ~ 1.8%. Fig. 5. The leading components of the B? spectrum at
For f > 1.8%, the BC causes B = 3.25% with finite BC.
the critical ¢+ = 1/2 reso-

nant surface to appear in the
plasma. The system then be-
comes susceptible to m/n =
2/1 external kink destabilisa-
tion driven by the free energy
provided by the BC. The five
leading Fourier terms of the ra-
dial component of the displace-
ment vector are displayed in
Fig. 11 at § = 2.25%. This
shows that the mode is indeed
dominated by a m/n = 2/1
component which increases ra-
dially towards the edge of the
plasma that is a characteristic
feature of an external kink.

Mod--B CONTOURS AT THE EDGE IN 2-PERIOD QAS

OD ' 2 4 ' 6 ’ 8 i 0 . 2 "
Fig. 6. The mod-B distribution near the plasma edge.
The dashed lines are B-field traces. = indicates

B-maxima location.

7 Effect of a Vertical Magnetic Field

To counter the outward radial displacement of the plasma column at finite 3, a vertical
magnetic field (VF) can be used. A set of circular coils of radius Ryr = 20m from the
major axis and Zyr = £4m from the midplane with a current Iyp/Igr = 0.2, where
the current in the main helical is Igr = 16.2M A, is applied. In Fig. 12, we present the



plasma-vacuum interface boundary for the cases with and without VF when 8 ~ 3.25%
and a self consistent BC included. The magnitude of the VF roughly restores the plasma,
shape and position of the vacuum state obtained in the absence of the VF. However,
examining the B? spectrum profiles reveals that a significant mirror contribution (m =
0,n = 1) is introduced (Fig. 13) which could spoil confinement properties.

Mod-B STRUCTURE IN A QAS DEVICE ON SURFACE e=84.5/06 WITH
N G S BN e e 2
i Y

Fig. 7. The mod-B distribution at 8 = 3.78%  Fig. 8. The mod-B distribution at 8 = 3.78%
on an unwrapped flux surfaces with s = 84.5/96.  on an unwrapped flux surfaces with s = 85.5/96.

8 Conclusions

We have investigated the im- os ; . ; . , . ; . :
pact of the bootstrap current in /\T(ST—\\
the collisionless 1/v regime on \

the free boundary MHD equi- Nwie
librium and stability proper-
ties of a compact 2-field period
QAS reactor. The mod-B spec-
trum of the system under inver-
stigation is dominated by the
m = 1,7 = 0 component. Fi-
nite J causes the plasma col-

o
n
T

v

PRESSURE —— ROTATIONAL TRASFORM
0
T
i

umn to shift outwards closer to <

the coils. Including a self con-

sistent BC at the same f value B=225%

causes the plasma to become | N , , A . , ‘ e
more elongated in the vertically ~° ' 04 ¢p esor 08 0e

and horizontally up-down sym-
metric cross sections, but only
marginally displacing the col-
umn further outward radially.

Fig. 9. The pressure and ¢ profiles at g = 2.25%.



The horizontally elongated GLOBAL IDEAL MHD STABILITY IN 2-PERIOD QAS
0.012 Y T ¥ T T

cross section becomes distorted

acquiring a bomblet shape. min = 2/1 MODE

0.0t

The application of a vertical
magnetic field with currents
in the VF coils 20% of the ooos ]
main HF coils can restore
the plasma shape and column
position to the vacuum state in
the absence of VF, but tends
to introduce a significant mir-
ror component in the mod-B
spectrumn. The application of ° eoez}
resonant detuning to resolve
singularities in the BC near 0 ; s , : ,
rational magnetic surfaces is ° oo i °5 oo oo o
very effective for 8 < 3%. At
higher § values, the amplitude
of the detuning parameter A2
must be increased to achieve 6,(104 [ RADI»;\L DISPL:?CEMENT'VECTOR'COMPOP;IENTSPE'CTHUMIINQAS '
converged BC profiles, but

with indications that it sup-
presses the magnitude of the
BC towards the edge of the
plasma. Discontinuities in the
BC profile for 3 > 3% can
be attributed to jumps in the
location of the B-maxima on
adjacent flux surfaces. The BC
causes the rotational transform
profile to exceed the critical
value ¢ = 1/2 at 8 =~ 2%
and provides the free energy
to destabilise an external ‘ ’ ' ( ’ ‘

m/n = 2/1 global kink mode. oo oz 05 04 o5 06 o7 o8 08 1
Fig. 11. The leading terms 3f the radial component of the
radial displacement vector profiles at 8 = 2.25%.

7 0.008} p
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Fig. 10. The unstable eigenvalue as a function of 5.

§=2.25%
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1.Introduction

Recently, the possibility of quasi-symmetric stellarators as efficient fusion reactors has
been thoroughly studied [1, 8, 2, 3, 6, 7]. The main idea is to optimize the helical con-
figuration in order to obtain a magnetic topography independent of a certain symmetry
coordinate. Among them there are three main categories: the quasi-axisymmetric (QAS),
the quasi-helically symmetric (QHS) and the quasi-isodynamic. The three types have dif-
ferent symmetry coordinate and different magnetic topography. Particles following mag-
netic field lines in magnetically confined plasmas become trapped when their momentum
is insufficient to overcome a certain value of the magnetic field strength. The interaction
between these particles and the passing ones gives rise to the so-called bootstrap current
(BC). In tokamaks, with their axisymmetry, and in quasi-axisymmetric devices, particles
become trapped mostly in toroidal wells and the resulting BC contributes to increase the
rotational transform. Configurations with more helical symmetry, instead, will have their
trapped particles confined preferably in helical wells which effect will be to decrease the
transform.

QAS and QHS systems have different symmetry and magnetic topography of the magnetic
surfaces, thus, the resulting BC is very different as well as it is its effect on the rotational
transform ¢ and stability.

In this paper we will restrict our calculations to a 3-period QAS based on the NCSX
(Princeton, USA) and 4-period QHS based on the HSX (Wisconsin, USA) systems, both
extrapolated to reactor size. In order to expect a certain configuration to be candidate to
fusion reactor, the 3 should be able to be increased up to values 5%. BC calculations for
increasing values of 3 have been undertaken for both configurations. The relevance of the
asymmetric modes is also studied for both systems. Finally the implications of increasing
3 and non-symmetric modes in the stability of the system are discussed.

2.Calculation of the bootstrap current

MHD momentum balance equation method

Our aim is to describe a method to calculate BC applicable to any reactor-like config-
uration. The calculations are undertaken consistently with the equilibrium in a similar
way as the one followed in [3]. Being at reactor level it is interesting to be working with
relatively high 3, i.e. 3~ 5%. Also high temperatures and densities are required, hence,
it is not unreasonable to consider ions and electrons to be both in the collision-less regime
and same temperature (conditions assumed in our calculations).

The BC is evaluated numerically in the collision-less 1/v regime for a pure electron and
ion plasma with T; = T, as described in [9] and implemented in the TERPSICHORE
code [5]. VMEC equilibria [4] are computed iteratively until the BC converges. Departing
from a zero current specification, the equilibrium is calculated together with an associated,
but inconsistent, BC. This BC is included in the specification of the next equilibrium.
Convergence is achieved when the BC from a particular equilibrium differs from the
previous one within a given tolerance (in our case: (uojp(t)—posp(i—1)) < 0.02[HA/m] ~
16kA). A nearly parabolic pressure profile

P(s) = Bj(1 - s) — 0.1(1 — 519)]
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Figure 2: Left: BC profiles for different values of a., Right: . profiles for different values of
«. Configurations with o < 0.25 cross the m/m=3/2 rational surface, becoming unstable.

which provides a vanishing pressure gradient at the edge, is prescribed. The density profile
is taken to be:
N(s) = (1 —s*)1

in particular with £ = 2 and ¢ = 1. These values can be varied along with the pressure
profile.

The TERPSICHORE code, in which this BC calculations are embedded, transforms the
VMEC output into Boozer coordinates, in which the magnetic field lines are straight.
This allows to have a very useful picture of the topography of the magnetic field surfaces.
Hence, once a BC-consistent equilibrium is obtained with its final consequent iota profile,
we can have an intuitive picture of any magnetic surface and the magnetic field lines
wrapped around it, clarifying the behavior of the trapped and passing particles.

3.Results
QAS

For the 3-period QAS considered convergence was achieved up to /2 = 6. 1%. It can be seen
that increasing 3 increases also the transform (Fig.1 left and right). For the limiting value
of # = 6.1%, ¢ approached dangerously the m/n=3/2 rational surface weakly destabilizing
the configuration (Fig.1 (right)). The system was completely stable for g = 5.3%.
In order to study the effect of the symmetrization of the configuration a parameter «
has been included in the calculations. « ranges from 0 to 1 and multiplies the non-
axisymmetric terms, i.e. n # 0, so @« = 1 would give the actual quasi-axisymmetric
geometry, while & = 0 would be a completely axisymmetric one. The BC profiles (Fig.2
(left)), the ¢ profiles (Fig.2 (right)) and the total BC (Fig.4 (left)) are represented for
different values of «. The total difference between the BC values considering and not
considering the non-symmetric modes is ~ 30%. In fact when only the 25% of the non-
symmetric modes is taken into account the decrease in the total BC is of ~ 13%.

We can visualize the effect of the non-syminetric modes on the magnetic topography
in Fig. 3. It can be seen that the consideration of the n # 0 terms indeed disrupts the



Figure 3: Left:Mod-B contours for a = 0, i.e., completely AS, with 3 = 5.3% and s=0.5.
Center: Mod-B contours for a = 0.25, i.e., the 25% contribution of the non-axisymmetric
modes is considered, with # = 5.3% and s=0.5. Right: Mod-B contours for o = 1.0, i.e.,
completely QAS, with 3 = 5.3% and s=0.5.
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Figure 4: Left: Surface integrated values of BC vs. o. Half of the total difference between
a = Qandl is already achieved when o — 0.25. Center: Mod-B felt by particles following
for o = 0,0.25,1,8 = 5.3% and s=0.5. The effect of the asymunetry is manifested in the
materialization of local maxima within the high field region. Right: Rayleigh quotient vs.
«. The stability limit appears right after o = 0.25, when iota crosses the m/n=3/2 rational
surface (see Fig.2 (right)).

axisymmetric topography. Local maxima are created enabling particles to get trapped in
local helical wells. This is better represented in Fig.4 (center) where the mod-B felt by a
particle following a magnetic field line is sketched. In the figure the maxima of mod-B are
represented, where the effect of the asymmetry is relevant to the BC. When the trapping
involves a long excursion of the trapped particle along the magnetic field line, it is called
toroidal. This gives a BC which enhances the rotational transform. When it is within a
short range in the evolution of the magnetic field line the trapping is called helical and
the result is a contribution to the BC in the direction which decreases .

The figure shows the magnetic field strength felt by a particle for the cases of complete

axisymmetry (a = 0, dot-dash line), full quasi-axisymmetry(cx = 1, dashed line) and
finally when only the 25% of the magnitude of each non-axisymmmetric mode is considered
« = 0.25, solid line). Local maxima and mimima arise in the high field region and behave
like helical traps, in which previously free or toroidally trapped particles may become now
helically trapped. Producing an opposite BC which decreases the total current.
These results show that any model considering only axisymmetric terms could possibly
overestimate the total BC. This turns out to be relevant in stability studies. In fact Fig.4
(right) shows that, for § = 5.3%, the @ = 0 case is unstable and only becomes stable for
@ > (.25, when ¢ falls below 2/3 (see Fig.2(right)).

QHS
A QHS configuration is designed to reduce the effect of toroidicity in the geometry. The
magnetic field spectrum is dominated by the Bmm components. The magnetic field seen
by a particle following a magnetic field line is rapidly varying. The consequent magnetic
wells imply a helical trapping of particles in which the trapped particle excursion along
the field line before bouncing back is very short. This kind of trapping produces a BC
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Figure 5: Left: BC profiles for 8 =2.5, 3 and 3.5%. Calculations with higher values of 3
failed to converge. Right: . profiles for 5 =2.5, 3 and 3.5%.

Figure 6: Left: Mod-B contours for 3 = 2.5%, surface number 82/96 (approximately $=0.85).
Center: Mod-B contours for § = 3.0%, for the same magnetic surface. Right: Mod-B
contours for g = 3.5%, for the same magnetic surface.

in the direction that decreases the rotational transform. The main results obtained for
this configuration are the following: The BC obtained is rather large and in the opposite
direction from the QAS case. As a consequence the alteration of the equilibrium due
to the effect on the transform makes this configuration more difficult to converge. In
particular, when increasing (3, the convergence becomes more and more difficult, and it
has shown to be unreachable for 3 > 3.5%.

Figs.5 (left and right), show the strong dependence of the BC and ¢ on 3. When B is
increased from 2.5 to 3.5% the BC rises 30% in absolute value. As a result the ¢ profile
decreases substantially. However, as can be seen in Figs.6 (left, center and right) for the
surface 82/96 (approximately s=0.85) in this case the change in BC is not so much due to
the change of the mod-B topography in which the only difference is the slight increase of
the local maxima. Insteadm seems to be mostly a result of the fact that a particle close
to the barely trapped limit would encounter a higher density of mod-B maxima when 3
increases. Hence, more helical traps.

To study the relevance of the non-helically symmetric terms, the modes with B,,,, m 5t
n have been multiplied as in the previous case, by a parameter «. When o = 1 the
configuration has the actual QHS geometry while when o = 0 the resulting spectrum is
purely helically symmetric. Our method failed to converge for o < 0.25 (Figs.7 left and
right). However, there is not a significant change in BC due to the non-symmetric modes:
the difference in total BC between o = 0.25 and @ = 1.0 is = 1%. The resulting effect on
¢ 1s also very small.

No stability results have been obtained for QHS at this time.

4.Conclusions

We have investigated the BC in the 1/ regime in quasiaxisymmetric and quasi helically
symmetric systems. In the 3-period QAS, the BC increases ¢ while in the QHS it decreases
it. The method used enables us to visualize the relationship between the BC obtained,
its effect on the i-profile and the way particles would get trapped due to the magnetic
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Figure 7: Left: BC profiles for a =0.25, 0.5 and 1.0 {completely QHS). Calculations failed
to converge for a < 0.25. Right:  profiles for o =0.25, 0.5 and 1.0.

geometry. It is shown how toroidally and helically trapped particles would give BC in
opposite directions and how they combine to give the total BC.

In QAS, convergence has been achieved for 5 < 6.1% with fixed boundary VMEC equi-
librium. In QHS, our calculations failed to converge for 3 > 3.5%. In the lattercase, an
increase of the absolute value of the BC of nearly 40% at s=0.85 is observed. The mod-B
maps, show that this is mainly due not to any major change in the magnetic topography
but on the change in the ¢, since a particle following a magnetic field line would encounter
a greater amount of helical traps.

The relevance of the non-symmetric modes in the calculation of the BC has also been
studied for both quasi-symmetric systems. In the 3-period QAS the non-symmetric modes
seem to be indeed relevant since, when not included in the calculations, the BC drops by
27%. In fact if only 25% of the magnitud of each non-symmetric mode is considered, the
change in the magnetic topography of the magnetic surface is enough to alter the trapping
of particles in such a way that the BC decreases 13%. For the QHS, on the other hand,
the supression of the non-symmetric modes does not seem to affect significantly the BC.
However, convergence could not be achieved when less than 25% of the magnitude of each
of these modes was considered.

Finally the stability of the systems has also been investigated. In the 3-period QAS, the
configuration was stable for 3 ~ 5%, but when 3 was pushed up to around 6% the increase
in the BC also incremented ¢ which approached the m/n=3/2 rational surface, making
the equilibrium weakly unstable. As for the symmetry studies, the consideration of only
symmetric modes when 8 = 5.3%, would give an unstable equilibrium. Nevertheless,
even if only slightly more than 25% of the nagnitude of each non-symmetric mode was
considered, the effect on the magnetic geometry, the trapping of particles, and its conse-
quent decrease of the BC, was sufficient to decrease the ¢ below the m/n=3/2 threshold,
stabilizing the configuration.

Stability calculations for the QHS system will be addressed in the future.
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3D Full Wave Propagation Code for Cold Plasma
P.Popovich, W.A Cooper, L.Villard

Centre de Recherches en Physique des Plasmas,
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A new solver for low-frequency electromagnetic (E/M) perturbations in general three-
dimensional plasma configurations is presented (LEMan). The studies of the E/M wave
propagation in stellarators in Alfvén and ICRF ranges of frequency demonstrate a large
variety of possible approximations, plasma models and approaches to solve the propaga-
tion problem [1, 2. 3]. The interest in this research is explained by the need for tools for
the analysis of the radio-frequency heating, stability and current-drive in stellarators. We
are developing a code for the numerical simulation of small E/M perturbations excited
with antenna currents in 3D inhomogeneous plasma configurations. As required for the
low-frequency propagation studies, no assumption is made on the wavelength relative to
the characteristic gradient lengths and the problem is solved globally. The frequency
range is limited by the numerical resolution because the discretization should allow for at
least several grid points per wavelength, which is hard to afford at high frequency.

Rather than using the traditional field formulation of the Maxwell equation

— 4
VxVxE—ke E =ik e  ko=w/e (1)

—
we reformulate it in terms of the E/M potentials (A, ¢):

47—
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The reason for using the potential formulation is the so-called numerical pollution
effect. It has been shown that the discretization of the Maxwell equation applying stan-
dard finite element method introduces unphysical solutions that are very hard to "filter”
from the physical solution [4]. In the case of cubic finite elements these spurious solutions
appear even at arbitrarily fine mesh. The potential formulation (2), on the contrary,
guarantees a pollution-free numerical solution.

To solve the equations (2) we first multiply them by arbitrary test functions F G
correspondingly and then integrate over the calculation domain including the vacuum
region. The results presented here are obtained with the fixed-boundary version of the
code, without the vacuum, but the formulation of the wave problem is general and does
not change for a free-boundary case. The integration in the plasma is done over magnetic
surfaces and in vacuum — over pseudo-surfaces. The first pseudo-surface coincides with
the plasma-vacuum interface, and the last one — with the wall. After integration by parts

only the first-order derivatives of A and ¢ remain:

de{ (Vx FY(Vx A) = (V-F)V-A)+k2F (¢ &)+ ik F - (¢ -w)]
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The wave-plasma interaction is described here by the dielectric tensor ¢. At present.
we have implemented the full cold plasina model [5]. Despite being simple. this model.
however, can give an insight on the structure of the Alfvén continuum and discrete modes
and simulate mode conversion effects (conversion to the short wavelength oscillations
appearing at the Alfvén resonant surfaces). The antenna is modeled by specifying the
volume density of external helical divergence-free currents TCIt and charges p,.,; in the
vacuum or inside the plasma.

The magnetic equilibrium configuration is first produced with the VMEC code [6]. Tt
is then transformed to the Boozer magnetic coordinates [7] using the TERPSICHORE
code [8]. LEMan has an interface to TERPSICHORE and uses Boozer angles as poloidal
and toroidal coordinates.

To simplify the boundary conditions and the analysis of the results, we have chosen
an orthogonal basis for the vector potential representation, formed by the directions of
the magnetic field, the normal to the surface, and the binormal direction. These three
components of 4 and the scalar potential ¢ constitute the actual unknowns of the equa-
tion. With this choice, the boundary conditions on the conducting shell take a very simple
form:

Ap(s =1,0,0) =0,  As=10¢) =0 $ls=10¢) =0 (4)

The discretization of the equation is made by decomposing these unknown functions
over a finite set of one-dimensional functions: Fourier decomposition in poloidal and
toroidal angles and finite elements in the radial direction. Standard linear "hat” functions
and Hermite cubics have been implemented.

—
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where £ = (n.0.]), 6.¢ are the Boozer angles, 1, (s) are the radial basis functions (this
representation is slightly miore complicated for Hermite cubic basis functions, Ay and
i, being two-component vectors, but we do not show it here for simplicity). The same
decomposition is applied to the test functions F, (. Using Fourier transform in both
angles may be particularly efficient in the case of Alfvén waves because the condition
for the Alfvén resonance and mode conversion is satisfied on the magnetic surfaces [9]. at
least in axisymmetric configurations, and the number of Fourier modes needed to describe
the solution may be relatively small in this case.

The discretized equation should be satisfied with any arbitrary functions ? (| so this
condition gives us the final equation in a simple matrix form:

M-A=J (6)
where A = {A;™"} and J is the antenna contribution. Each element of the matrix M is

a volume integral:

3 .
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7] . .
where 1y = 8. us = 8, u3 = ¢, while the labe} e implies that no derivative is performed.
o

The analytical expressions for the coefficients Cjjer/(s, 6, @) in general 3D geometry
are composed of a very large number of terms (thousands!) and are hard to write down



even for the cold plasma model. In order to simplify the coding and avoid mistakes
when expanding the expressions. we use symbolic manipulation software (Mathematica).
It generates a Fortran code that can then be directly used for the numerical evaluation
of the terms. The coeflicients Cyjri (s, 6, @) store the inforimation about the equilibrium
quantities (metric elements, magnetic field) and the dielectric tensor, but do not depend
on the perturbations. This fact is used to optimize the evaluation of the volume integrals.
Instead of calculating the integrals (7) directly in real space, the equilibrium coefficients
Cijerr(s. 0. ¢) are first Fourier-transformed in the poloidal and toroidal angles. This lim-
its the number of 3D integrals to be evaluated by the number of equilibrium Fourier
modes, which is usually much smaller than the number of all possible combinations of the
perturbed mode pairs (m,n), (m’,n’). The integrals (7) are thus reduced to 1D radial in-
tegrals of the sums of Fourier coefficients. Only one equilibrium Fourier mode contributes
to the sum for each given combination (m.n, m’,n’). This method is considerably faster
than evaluation of the volume integrals in real space for each perturbation mode. For ex-
ample. for a simple 3D case tested a run for one antenna frequency takes only 90 seconds
instead of 10 hours for the algorithm with real-space integral evaluation.

Specific loop optimisation for the vector processor computing (on the NEC' SX5) has
lielped to further reduce the matrix construction time. The largest fraction of the runtime
(typically, 80% for a 3D configuration) is thus spent on the sparse matrix solution. One
can hope then that improving the plasma model may not lead to a dramatic increase in
runtime. Typically, the time needed for a 2D run is about 10-100 seconds: a fully 3D
configuration with 100 radial nodes and 100 Fourier (m,n) harmonics requires about
1000 seconds at 3-3.5 GHops and about 10 Gb of memory.

A power balance is used for the self-consistency check of the numerical solution. It
can be easily verified that the variational form (3) exactly corresponds to the energy
conservation law, except for the terms with V- A While the exact solution of the Eq. (2)
can be divergence-free under certain conditions, the numerical solution can only converge
to it, but the value of the divergence is finite. Indeed, a combination of the two equations
in (2) results in the Laplace equation for the ¥ - e V3V - Z) = 0 (for the divergence-
free antenna currents). Therefore, if the divergence is imposed to be zero on the domain
boundary, the exact solution is divergence-free everywhere. The value of V - Y and its
contribution to the power balance can thus be used as an estimate for the convergence
of the numerical results. Another two values used for the convergence check are relative
averaged local and global power balances.

ba= [ |94 vy 1] av
Q Q

- ~ ()
()1 = [ ’Pplasma<3) - Pant,(s) - Iijl‘ux(*S)’dS ‘
4]

ég = (Ppla,s7nu(1) - Pan,t(l)) /Pplasma<1)

Here, Pyasma(s) is the total power absorbed in the plasma between the magnetic axis
and the magnetic flux surface labeled s, F,,;(s) is the power coupled in the antenna
inside this surface and iS5y, is the inward power flux through this surface. The real part
of these variables corresponds to the reactive power, the imaginary part is the resistive
power. As the classical cold plasma dielectric tensor does not include resistivity. we model
it by introducing a small imaginary part in the frequency.

In Fig.1, a convergence study is presented for a typical 2D configuration (2D is chosen
to be able to go further in the mumber of radial grid points and Fourier modes).
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Figure 1. a) Convergence with the radial mesh size Ng, the number of Fourier harmonics fized (Nay =

21), b) Convergence with the number of Fourier modes Ny, the radial mesh size fived (Nyy = 200).

These results are obtained using Hermite cubics for radial discretization with a uniform
grid. The mesh size less than 30 nodes does not allow to resolve the short wavelength
oscillations near the Alfvén resonant surface. Increasing the Ng, d; and §, values converge
very fast up to a radial mesh size of 100 points and then do not improve much because of
the finite number of Fourier modes Ny, and the imperfections of the underlying numerical
equilibrium. The plot on the right shows exponential convergence with Fourier mode
numbers up to 13 and then, again, finite limit due to the equilibrium imprecision and
fixed Np. In all the cases analysed, the global energy balance was much easier to satisfy
than either é, or §; even with very poor numerical resolution.

The code has been previously tested in 1D configurations (comparisons with analyti-
cal results) and in 2D (comparison with a 2D LION code [10]). The mode spectrum of a
cylinder is completely reproduced in the large aspect ratio limit. The results for an ax-
isymmetric configuration are in a good agreement with the LION results [11]. 1D and 2D
results are relatively easy to interpret. Unfortunately, in 3D geometry, the results become
very hard to analyse because of the 3D coupling between virtually all the harmonics. As
a result of coupling of both poloidal and toroidal modes, the spectrum differs significantly
from the corresponding picture in the cylindrical geometry and the modes are impossible
to decouple (hence, the eigenmodes are immersed in the Alfvén continuum and are hard
to identify). Before applying the code to a fully 3D 2-period QAS stellarator [12], we
have studied simpler configurations. In order to get a qualitative idea of the mode struc-
ture and main couplings we have first studied different limits of the QAS configuration
with the same ¢ per period profile. Starting from a straight cylinder (approximated by
a torus with R/a = 100) and adding different equilibrium modes we could separate the
coupling mechanisms and limit the number of coupled harmonics. This makes it easier to
identify the main perturbation modes in these relatively simple cases and compare them
with the cylindrical branches. For example, a frequency scan for a cylinder with ellip-
tical cross section (dominant equilibrium modes (m.n) = (0.0), (£2,0)) shows that the
coupling between even poloidal harmonics results in the formation of the gaps near the
crossing of the corresponding circular cylinder branches of the continuum. As a result of
the coupling a global eigenmode appear in the gap, the Ellipticity Induced Alfvén eigen-
mode (EAE). Because of the symmetry of the equilibrium, even and odd poloidal modes
are cdecoupled. Similarly, a mirror-like configuration (large aspect ratio "bumpy’ torus)



with dominant (0.0), (0,£60) has a gap formed due to the coupling between different
toroidal harmonics, multiples of 60. Gap modes, the Mirror Induced Eigenmodes (MAE).
are again present in the plasma response scan. The same holds for the equilibrium with
helical symmetry. Helical equilibria are a very convenient way of testing the 3D structure
of the code, having the advantage of allowing simple analysis of the results. On the one
hand. it is a fully 3D configuration that is solved in a square box of Fourier components,
without any assumption on the symmetry of the equilibrium. On the other hand. this
helical symmetry allows us to select only a few coupled modes and compare them with
the corresponding cylindrical branches.

The next configuration is an axisymmetric equilibrium, a torus of the same aspect
ratio as QAS and the same g profile (all the n # 0 modes in the QAS equilibrium are
forced to 0). A frequency scan for this configuration shows several gaps and eigenmodes.
The easiest to identify are the eigenmodes due to the coupling between modes (-2,2) and
(-6,2) (c); (-3.2) and (-5,2) (d): (-4.2) and (-3,2) (e). Even distant poloidal modes m = -2
and m = —6 are coupled because of the strong shaping of the QAS.

L N bed | |
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Figure 2. a) Mode siructure for a cylinder with the same q profile as the QAS, b) normalized plasma
response. c)-e) wavefields (A, [a.u]) at f=56.0, 28.9 and 12.8 kHz.

And, finally, a frequency scan has been performed for the fully 3D QAS configuration
(aspect ratio of approximately 3.5). As expected, the mode coupling structure becomes
very complicated and hard to analyse. All the gaps become ‘closed’, e.g. they are im-
mersed in the Alfvén continuum of the other branches. However. a comparison with the
cylindrical continunm can still be helpful (Fig.3). For example, we see that the cylindri-
cal branches (-9.4) and (-7,2) cross at s 0.7, which is close to the surface of maximum
amplitude of these modes at f=48.5kHz in the QAS. The (-3,2) mode appears to have an
Alfvén resonance surface at s=0.55, close to its cylindrical position.

Summary and conclusions

A new 3D solver for E/M wave propagation has been developed and applied to 2D
and 3D configurations. The full wave equation in terms of E/M potentials is solved in a
general numerical 3D equilibrium, provided with the VMEC and TERPSICHORE codes.
The Boozer coordinate system is used. Discretization is done with Fourier decomposition
in poloidal and toroidal angles and finite elements (linear and cubic) radially. A power
balance is used for the self-consistency check of the results. It also provides a measure



for the convergence estimate. The relative errors in the power balance and the V - 1
contribution decrease with the radial mesh size and the number of Fourier harmonics.
The global power balance is very easily satisfied (8, = 107%) even at very low numerical
resolutions. Due to the optimised algorithm of equilibrinm coefficient evaluation in Fourier
space. the matrix construction time is largely decreased. This makes it possible to perform
a frequency scan for fully 3D configurations in a reasonable time. Several spectra have
been analysed for various equilibria with different symmetries and effects of different
tvpes of mode coupling presented (gap formations, presence of discrete eigenmodes). The
analysis in the 3D QAS stellarator geometry is complicated by the coupling of m and n
modes, but a comparison with the corresponding cylindrical branches still proves to he
useful and hLelps to distinguish the main modes and mode conversion surfaces.
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Figure 3. a) Mode structure for a cylinder with the same q profile as the QAS. b) normalized plasma

response. ¢) wavefields (A, fau]) at f=48.5 kHz. Only dominant Fourier harmonics are shown.
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