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Abstract

It is believed that electromagnetic aspects play a crucial role in turbulent transport
of finite beta tokamaks driven by microinstabilities. Recent studies have revealed the
existence of an electromagnetic mode called Alfvén-ITG (AITG). Nevertheless in this
study, the magnetic field fluctuations were modelled by taking into account only the
perpendicular component of the fluctuating B-field.

The present work is an attempt to formulate the problem to include the parallel
component of the fluctuating B-field and extend the existing code accordingly. It is
expected that this would make possible the study of much larger plasma beta effects and
to study higher perturbation frequencies and their mode structure. The growth rates
thus obtained may serve as estimates of linear transport coefficients and for future bench
marking of the (then) global electromagnetic, gyrokinetic, time evolution codes (PIC or
otherwise).

1 Introduction

Finite (3, electromagnetic effects are considered as one of the fundamental issues in transport
ensuing in hot toroidal plasmas. The paradigm of electromagnetic drift wave turbulence is a
saturated state of linear mode evolution and their nonlinear coupling. Presence of pressure
gradients, drifting orbits (which couple neighbouring flux surfaces), trapped particles (banana
width) and their resonances demand that a simplest nontrivial model will have to be necessarily
global (radially extended) and kinetic. To this end, a technique of gyrokinetic change of variables
was employed by P.J.Catto et al[l] with eikonal or spectral ansatz whereas a self-consistent
and energy conserving theoretical framework was provided by T. S. Hahm et al[2] based on
Hamiltonian & Lie transformations, among others, resulting in gyro-kinetic equations and gyro-
averaged Maxwell’s equations for finite-5 plasmas.

While on one hand, a combination of above said gyro-kinetic formalism, present day par-
ticle simulation techniques and rapidly growing computing capabilities have made it possible
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to develop time evolving linear & non-linear electrostatic (low ) & electromagnetic (ninite o)
codes, on the other hand, the need to develop a global, spectral approach to the problem of
electromagnetic drift waves has also become necessary. There are two main reasons (i) the bal-
looning representation along the field lines is truely “local” and valid for only large n—numbers,
whereas, large wavelength (low n) modes and radial mode coupling effects could result in strong
transport (ii) to gain confidence on their nonlinear predictability, it becomes necessary to bench-
mark the time evolution codes with a linear model which is global, fully electromagnetic (both
parallel and perpendicular B—field fluctuations), with finite larmor radius (FLR) effects to all
orders and banana-width physics.

In the past there have been a few attempts [3, 4] to develop (electrostatic) global, spectral
code in toroidal geometry. Unfortunately, those formulations are only valid up to second order in
banana-width and do not take into account any FLR effects. One such model which overcomes
the above said problems and computes gyrokinetic growth rate and global eigenmode structures
for electrostatic drift waves for both cylinder [5] and torus [6] was developed by Brunner et al.
Later, this code was extended to include low but finite [ effects by incorporating parallel vector
potential (perpendicular magnetic field) fluctuations in the gyro-kinetic equations and parallel
component of Ampere’s law for current fluctuations. In this model, ions were fully gyro-kinetic
and electrons were modelled as drift-kinetic [7].

The aim of the present work is to attempt to generalize the formulation used in Refs.[5, 6, 7]
to incorporate perpendicular vector potential (parallel magnetic field) fluctuations in the gyro-
kinetic equations and close the system by invoking perpendicular component of Ampere’s law.
In the present work, while only fully passing ions and electrons are considered, both species
are modelled as gyro-kinetic. Hence the model should be valid for relatively large 5 values and
wide range of frequencies well above ion temperature gradient modes. Here, it is presented in
a form suitable to implement in the already existing code EM-GLOGYSTO[5, 6, 7].

2 Starting Equations

To describe hot toroidal plasmas, the collionless Vlasov equations and Maxwell equations are
used. Since our approach is spectral, the full distribution function f;(r,v,t) of species j is lin-
earized about an suitable equilibrium fo; = fo;(r, v) such that f;(r,v,t) = fo;(r,v) +fj(r,v,t)
with the assumption that f] /foj < 1. Retaining terms up to first order, we get ;

D 0 q;
Di foj(r,v) =0 where Di Ea-l-r-V—i-#j(va)-Vv (1)
u.t.p. u.t.p.
and
D f-(rvt)z—ﬂ(f)—{—vxﬁ)-Vf- (2)
Dt . R m; V05
u.t.p.

Here u.t.p implies unperturbed trajectories of particles, B = B ¢ is the equilibrium toroidal
magnetic field, E and B are the perturbed electric and magnetic fields, ¢; and m; are the
electric charge and mass of the species respectively. Expressing E and B in terms of @ and
A and defining the following change of variables (r,v) — (r,& = v2/2, 1 = v% /2B) and using
particle canonical angular momentum for species j, i.e., ¥o; = [t X (A+m;v/q;)| = Yv+m;rve/q;,
one can write fo;(r,v) = fo,;(r,&, p, o). Here cylindrical co-ordinate r = (r, ¢, z) has been
introduced and ¢ = rAy is the poloidal flux function per unit radian. Such a transformation
would enable one to express fy; in terms of single particle constants of motion. Thus V. fo;



term on 7.n.8 O KQ.(2) becomes

m;TVg 0 fojy V_Laijw m;réy 0fo; (3)

q; 3%;’) 0/3 B ou g Oty

VVij(ra 57 I°2 wOj) =V (1 +
o=y

where fojy = fo;(¥0; = 1) and é,4 is the toroidal unit vector. To obtain Eq.(3), fo,; is Taylor
expanded to first order in {m;rv,/q;} around vp; = 1. Then, the following ordering is used :

gyro — ordering : <1, kiop;~0(), kjow; ~ QLj,

Wej Leq
transport — orderi 8<<(9 (4)
ransport — ordering : — —

where kIl, kﬁ L or; are perpendicular and parallel perturbation scales and Larmor radius of the
species j respectively and L., is a typical equilibrium scale length. Using large aspect ratio
equilibrium, rewriting f; in Eqgs.(2), using the change of variables defined by:

P, 9| (1 Ve g ) 9w
fi =", +<Pm]!< va> 0¢

.0 Ay
+ f(w( — o d)) = L2V, fy,

9
m;B Ou m; Qpj (5)

Yoj =y

invoking gyro-ordering & transport-ordering and finally using some standard vector algebra,
we arrive at

D
Dt

0) _ G | 9fojw O “HafowA 1
hy’(r,v,t) = mj[ o 8t+ o V+Q] Vi foj

&y - v] ( —v-A)+0(e) (6)

u.t.p P

In Egs.(5-6), we have introduced the following definitions: €Q,; = w.;B,/B, w.; = ¢;B/m;,
B, = |V|/r and hg_o) is the zeroth order term of the perturbative series in the “inverse gyro-

frequency expansion” of the nonadiabatic part h; = h,g-o) 1 h,(l) L L p? Note that since

i
D/Dt ~ O(w;), only h;_o) is retained which is independent of w.; and hence the gyro-angle
(defined below). In the rest of this presentation hg_o) is referred simply as h;. Eq.(6) is our
starting equation.

3 Gyro-Averaging & Gauge

For a large aspect ratio tokamak geometry, v = v, (é,cosa+ €gsina) 4 v €, where unit vectors
(o, €9, €4) define the toroidal co-ordinates and « is the gyro-angle. We define gyro-averaging a

7

quantity “Q” as
2n

1
<Q>= % daQ(c;..)

In Eq.(6), the terms in square brackets ([..]) on the r.h.s. are all equilibrium quantities and are
independent of a. Thus only the potentials are to be averaged. Similarly, on the Lh.s, h; is
independent of «, hence, only D/Dt|,,, is to be gyro-averaged. Therefore,

D

Dt

9
OR

gyro—averaging D

8+( ¢\l + Vaj)
= — v)1e Vyi) *
Dt |||| dj

ot

u.t.p u.t.g



where vq; = (V] /2 + ’Uﬁ)éz/(T’U)cj), u.r.g. 1mplies unperturoed trajectory oj guiaing centers kv
defined by R =r + v x ¢ /w,;. Therefore,

~ 1 2

<(,5—V-A>=% do [gﬁ(r[a],t)—v-[&(r[a],t)}
0
r:R—VXéH/wcj

Since @(r[e],t) and A(r[a],t) are unknown functions, the gyro-averaging is performed by first
Fourier decomposing these functions, then representing the particle co-ordinate r by gyro-center
R and remembering that

1

Jp(z) = o

27
/ daexpli(zsina — pa)]
0

We choose the following gauge for A = (121”, AL) = (AH,AG) With the above said procedure,
one obtains the following gyro-kinetic equation:

hi(R,v,b) = — <ﬂ>

m;

D
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(@(k; )Jo(kLors) — v A () Jo(kLows) + L%“LAa(k; )Jl(kLng)> + O(e) (7)

Solution to Eq.(7) is obtained by Green function technique (unit source solution say P) [8]. An
explicit form of P is obtained analytically by the method of characteristics of u.t.g and then
using a perturbative technique for the guiding center velocity [9]. Morever, the unit source
solution, P, to Eq.(7) is independent of the type of perturbation (electrostaic or electromag-
netic) and solely depends on the considered equilibrium. We assume for equilibrium fy;, a local
Maxwellian of the form

_N®) o &
(m)w YT /my)

mj

ij(ga:u" ¢) = fMJ(gaw) =

so that 0fy;/0Ou = 0 by choice and density profile N(1) is independent of the species type j.
Thus, the solution to Eq.(7) is :

hiR,v,w) = — (%) /dkexp k- R (w—w)) (1 Pj) X
(0l = 0 ) dhsons) + 10 Aoi) i (haen)) £ 06 (®)

Here, k = K €, + kg g + kg €, and k = (2/Ap) k,, with Ap = p, — p; which defines the radial

U2 .
domain, ky = n/r and ks = m/p; w is the eigenvalue and wj = wy; |1+ L (% — 3) -+ miv

Vitnj 2 ”Zhj
with wn; = (T;VnInNkg)/(¢;B) is the diamagnetic drift frequency; n; = (dInT;)/(dInN).
Note also that since the large aspect ratio equilibria considered are axisymmetric, toroidal
mode numer n can be fixed and the problem is effectively two dimensional in (p, ) or (k, ky).

To obtain density fluctuations 7i;(r; w) and current densities fluctuations j;(r; w) and jy(r; w),l
one needs to go from g.c. co-ordinate R to particle co-ordinate r using R = r + v x € /w,;,
replace h; using Eq.(5) and the integrate over v keeping in mind the gyro-angle integration over

a. This last integration yields additional Bessel functions.



‘1hus, 1n real space r, I0or species 7, we Iinally have:

¢+/dkeXka-r /dv% (w—w}) (tPy) X
{ [gb(k;) — vy s )} Jolwrg) + L%ULAG(IQ )JO(‘TLj)Jl(ij)}]

/dkexp k-r /devfMj (w—w}) (¢1P;) x

{1006) — 048106)] (o) + 102 A0 o o) ] )

/dkexp k- /devfMj (w—w}) (¢1P;) x

2

{L% [@(k;) - UIIAH(k; )} Jo(zrj)Ji (L) — %ULAG(kﬂJf(ﬂTLj)}] where z1; = kior;

4 Closure and Eigen Value Matrix

Equations are finally closed by invoking quasineutrality condition and Ampere’s law.
~ 1 e ~ 1 ~ ~
> i(r;w) = 0; %V‘jA” ==Y i %Vifle == Joj (10)
J J J

Thus we have 4 (four) unknowns w, ¢(r), A (r), A, (r) and 3 (three) equations Eqs.(10). This
eigenvalue problem is conveniently solved in Fourier space. We adopt the following two dimen-
sional Fourier convention:

Pu 2w
fk) = 1 / dp/ dOf(r)exp(—tkp — tmB) (Fourier — Transform)
0

f(r)= /dk exp(tk -r)f(k) = Z exp(tkp +vmb) fom (Fourier — Decomposition)

Kym

where Ap = p, — p;. By Fourier decomposing the potentials in Eq.(10) and then taking Fourier
transform,we obtain a convolution matrix in fourier space. If we assume a hydrogen-like plasma
with 2 species (ions and electrons):

( ZM{E@,k,k' ZM;finakyk’ ZMéﬁo,k,k' ) ( P \

J=ie J=i.e J=ie

N AL ~
Z M E MY E M i
Z AHQD,k,k’ L A”A”,k,k’ 4 A”Ag,k,k’ AH,kl

" j=ire j=ie j=ie =0

i i 43V .
\ Z M.Zlgcﬁ,k,k’ Z MAQAH,k,k' Z MAGA(,,k,k' / K Apw
J=1e

j=t,e j=t,e

where k = (k,m) and k' = (k’,m'). Numerically, for each species, each of the of these sub-
matrices shown above, is a 2D-band matrix with sub and super diagonals. Note also that the
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Laplacian 1or the parallel and perpendicular Ampere’s law 1S added to the appropriate matrix
elements above. This matrix is symmetric about the diagonal. Hence we write down below the
diagonal and upper diaogonal elements only. Matrix elements are as follows:

. 1

Pu ,
Fp.kk — A—p/ dpexp(—L(/i — K )p) X Oép(s m! T+ eXp Z

pi

~ . 1 Pu , N ~
Mia e = 75/ @“Mﬂw—mmeWMm—mmgyu

w,k K =

~ K./I
M;Aa,kk, = / dpexp(—u(k — K')p) X k’ [exp Z

a exp(1(m —m')0)
dpexp —u(k = K)p) X | = +
B pu

e P exp(t(m — m')0) o
MGa wae = —A—p/ dpexp(—u(k — £')p) X [ ) ZP:I,,C

pi

~e 1 Pu K LeXp(L(m _ m’)ﬁ_) )
Mg = A—p/ dpexp(—t(k — £')p) x Hl ST,
P

ol 7(p)
3 1, v? . ) v?2
Since MAHA”kk, MAHAHkk, MAHA”kk, we have
MG apee = &, ) dpexp(—(k — £')p) X [exp ZI{] (11)
1
~ o2 1 Pu m/2 T(p)
Ve - - _ ot 12 i
M Ao Ap /pl dpexp(—(k — K')p) (ff 7 ) (quMO)
e 1 [P exp(—t(k —K)p) P
~ 1 Pu K)I . .
MA'”AG,k,k’ = _A—p lel’ eXp(_L(’% - K’) ) kl eXp( ( —m )0) Z V;),i
P >
M 1/%“L (2l K)p) > 2 | explulm —m)0) Y0,
~ o~ [ P — J— — X i
Ajde kil = T Ap Pr(p) PV T IR | S . Tre
Si MEYS = M + MY, h
mee AgAg kK Apdg ki T M A Ay ke W have
i 1 pu , K" N -
M A = Ao dpexp(—u(k — K')p) X 2 exp(t(m —m')0) Z W,
PJp n
~ 1 [P K2 —exp
MG, G e = “Ap ; dpexp(—i(k — £')p) X iz Z ] where
vmazx; 2
i 1 / i (p) vﬁde exp V] N1 IO,j _'NQIl,j
ERCTT P ) G S

UMaz; 2 Y i)
P \/2— 3 V}jav; €Xp w2 (p) Di
thh,j(p) —vmaz;(p) th,j p 1 P'=p—(m—m’)



~ 1 UL g\ V) m NJW Lo NJW .

l l I 1¥vo, 2VV1,

Wp,J \/2— / dev” €xXp — 02 (p) JDj ’
thh]( ) —vmaz; (p) th,j \P i

and

p'=p—(m—m’)

2

j _ V1lmaz,j(p) 2"+1d UiL J2 \J ’ J ,
n,j Ul exp — 22 () o (T14) p(xt]) P’(‘rt])

~V1lmaz,j(p) th] p

2

A Y1maw,i(p) v
Voj = / vi"“dm exp — (ﬁ) JO(ij)Jl (ij)Jp(ij)Jp’ (xég) (13)

~Vlmaz,j(p) Uth,j

. Vlmasit) v2 , ,
Whj =/ v dv | exp — (2 7 L( ))Jf(ij)Jp(xtj)Jp’(mtj)

Y.Lmaz,j(p) Uth,j

We have introduced the following definitions: v mag,j(p) = min(v)|/v/€, Vmaa,;) Wthh is “trapped
particle exclusion” from w independent perpendicular veloc1ty integrals namely, I, ;, v, 9 Vi ’H
= 1— y/¢/(1 +¢) is the fraction of passing particles; I pj, V;f], V;,l’j are w — dependent

parallel integrals; z,; = k1gs(v]/2 + vff)/(wev)), N = w— wy [1 + (0;/2) (v /v ;) — 3) |5

N} = wn, 1/ (203, ;) and D! =< wyj(p) > (ngs —m' — p)(v) [vn;) — w where < wy;(p) >=
vin,j(p)/(rgs) is the average transit frequency of the species j.

5 Conclusion

The matrix equation above is a global, electromagnetic, gyro-kinetic, 2D formulation which
should be able to through some light into the radial structure of the eigenmodes, apart from

predicting the growth rates of modes with frequencies much higher than regular toroidal ITG
modes or Alfvén-ITG’s.
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