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Abstract

One of the key issues to achieve magnetically controlled fusion in tokamaks is the
problem of energy and particles confinement. In the last ten years, a great deal of
work has been done to study the poloidal rotations of the plasma that are induced by
strong equilibrium electric fields. It is indeed observed that these rotations improve
the energy and particles confinement.

It is theoretically widely believed that microinstabilities are the source of the
anomalous transport. The question of how strong equilibrium electric fields affect
microinstabilities must thus be addressed. We undertook the study of this phe-
nomenon using a kinetic, linear, spectral code, resolving the full two-dimensional
poloidal plane.

Results show that E x B rotations have a strong stabilizing effect on microinsta-
bilities. Moreover, a study of the stabilization mechanism has allowed us to discover
that the value of the equilibrium electric field is as important as the value of its
first derivative. We also observed that the second derivative does not exhibit any
relevant effect.

We then studied the combined effect of ' x B rotations and negative magnetic
shears. The results did not show any particular behavior of the negative magnetic
shear cases. Eventually, we conducted an experimental comparison with the Asdex

Upgrade tokamak in Garching.



Version abrégée

La question du confinement des particules et de ’énérgie dans les tokamaks est
cruciale pour la réussite du projet de la fusion. Au cours de la derniére décennie,
un grand intérét a été porté aux rotations poloidales du plasma, dues & de forts
champs éléctriques d’équilibre. On observe en effet, qu’en présence de ces rotations,
le confinement des particules et de ’énérgie est fortement amélioré.

Il est théoriquement et généralement admis que les microinstabilités sont & P’origine
du transport anormal. La question de savoir comment les forts champs éléctriques
d’equilibre influent sur les microinstabilités est donc intéressante. Nous avons en-
trepris d’étudier ce phénomeéne au moyen d’un code cinétique, linéaire, spectral et
résolvant les deux dimensions du plan poloidal.

Les résultats montrent que que les rotations F x B ont un fort effet stabilisant sur
les microinstabilités. Par ailleurs, une étude relative au mécanisme de stabilisation
a permis de constater que la valeur du champ éléctrique est aussi importante que la
valeur de sa premiere dérivée. Par contre, la seconde dérivée semble n’avoir aucun
effet.

Nous avons également étudié 1’effet des rotations E' x B au cours d’une inversion
du cisaillement magnétique. Cela n’a permis de distinguer aucun comportement
particulier des cas a cisaillement négatif. Pour finir, une comparaison expérimentale

avec le tokamak Asdex Upgrade de Garching a été menée & bien.
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Chapter 1

Introduction

1.1 For the Innocent Eye

The wish for a clean and inexhaustible source of energy has led man to study the
process called “fusion”. Fusion is the reaction by which two light atoms combine
to form a heavier one, releasing a large amount of energy along the way. There are

many such reactions, one example being:
D+D— Het+n (1.1)

where two deuterium (D) atoms combine to produce a helium (He?) atom and a
fast neutron (n). Here we see why fusion is an excellent candidate to be a “clean and
inexhaustible” source of energy. Indeed, only deuterium is needed as an input and
it is widely available among the oceans for millions of years. Moreover, the reaction
produces helium, which is a neutral gas, and a fast neutron, which is the real source
of the energy. None of these is polluting.

So far, so good, but as everyone knows, there is no such thing as a free lunch.
Where does the problem lurk ? Well, reactions such as (1.1) take place at the
enjoyable room temperature, but only very slowly. In order to recover some useful
energy, the reaction must be heated to the not so enjoyable temperature of several
million degrees. And here come the problems: how do you store anything so hot ?

Physicists have thought of different solutions. The one of interest for us is called

“magnetic confinement”. The idea is simple: at the given temperature of several
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10 CHAPTER 1. INTRODUCTION

million degrees, all atoms are ionized, which means that electrons are split from the
kernel of neutrons and protons. This fact has an interesting consequence: the gas
becomes a plasma, that is a bath of charged particles. And here comes the idea: as
charged particles see magnetic fields, why not try to create a “magnetic bottle” ?

That is precisely one of the solutions which is currently tried worldwide.

As physicists are highly creative creatures, the “magnetic bottles” come in vari-
ous shapes and sizes. The one which will entertain us for the following tens of pages
is called “tokamak” and to put it simply, would look, if you could see magnetic

fields, like a tire.

But this is not the end of the story: these magnetic bottles, whatever their shape
and size, are never perfectly waterproof. This means there is a loss of particles and
energy. Unfortunately, it is more than a minor defect: up to now it has prevented
fusion plasmas to burn on their own. In other words, it has not yet been possible
to have an output of energy larger than the input with a fusion reaction. Well, the
previous statement is not quite true: it has been possible, but only without control,

that is with the hydrogen bomb. But this is another story.

What you still need to know is that this transport of energy and particles is not
well explained by classical theories and is thus called “anomalous”. It is believed
to be caused by some unstable eigenmodes of the plasma, which are called micro-
instabilities. But micro-instabilities are by no means easy to observe in experiments,

thus we only have theoretical conjectures for the moment.

However, in recent years experiments have shown that the creation of internal
transport barriers can strongly reduce this anomalous transport. How these trans-
port barriers are generated is not very clear, but a wide consensus attribute them to
the existence of a strong radial electric field in the plasma. Although there is some
experimental evidence of this, no theoretical model explains simply the mechanism

by which the strong electric field can reduce transport.

At this point you should know enough to ask yourself: if strong radial elec-
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tric fields reduce the anomalous transport, which is supposedly caused by micro-
instabilities, could we investigate with theoretical tools the effect of the strong elec-
tric field on the micro-instabilities ? There we are: it is what we have tried to do in

this PhD work, with two simple models and a somehow reduced physics.

1.2 To Get More into the Details

As written in the first part, which was intended for the non specialist reader, micro-
instabilities such as the Ion Temperature Gradient (ITG) modes, the Trapped Ion
or Electron Modes (TIM and TEM) are widely held responsible for the anomalous
transport observed in tokamaks. These modes can get unstable using the free energy
available in the system, which arises from the inhomogeneities of the plasma. The
linear stability of these modes has been thoroughly studied, first through dispersion
relations [1]-[2], then with ballooning representations [3]-[7] and eventually with
global codes [8]-[10]

As also already said, some evidence has been recently noticed that E x B flows
could be responsible for the creation of Internal Transport Barriers (ITB) in toka-
maks, thus improving the confinement [11]. If so, the £ x B flows should strongly
affect the spectrum of micro-instabilities. There are many questions related to E x B
flows, for instance, how is in first place generated the strong radial electric field ?
or how do the non-linear saturation mechanism lead to a new steady state of the
plasma with £ x B flows 7 We have decided to address a very modest problem:
how do ad hoc E x B flows affect the linear stability of micro-instabilities 7 No
matter how simple this question is, it is nevertheless not too simple and allowed us
to answer some interesting questions, as will be presented later.

Let us begin with a short history of our subject. Detailed informations about
experimental results are to be found in Burrell’s review papers [11]-[13] and in Con-
nor’s review paper [14]. These can also serve as excellent general references for

theory papers. First attempts to study the effect of £ x B flows on ITG modes
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include a linear kinetic model in slab sheared geometry by Staebler and Dominguez
[15]. They observed a stabilization of the ITG modes and claimed a strong influence
of both the first and the second derivative of the fadial electric field. Following
attempts include an hydrodynamic model in slab geometry by Wang, Diamond and
Rosenbluth [16]. Their main result is that a weak sheared flow is destabilizing, but
that strong flows are stabilizing. Their analysis also resulted in the insensitivity of
stabilization to the sign of the first derivative of the flow. Non-linear calculations
to study the generation of £ x B flows and the saturation mechanisms were first
performed by Cohen et al [17]. They used a partially linearized §f algorithm in a
shear slab geometry. They also found a stabilization for strong flows, independent
of the sign of the first derivative, though weakly depending on the sign of the second
derivative of flow. Ballooning simulations include Waltz and al. [18] and Rewoldt
and al.[19], although it must be stressed that Taylor and Wilson [20] have proven
that ballooning transform does not apply formally in the case of a plasma with an
E x B flow. Moreover, there have been insisting claims by Sen et al. [21], [22] that
the only relevant effect in the flow profile is its second derivative. They find that
the first derivative of the E' x B flow is unimportant. Study of the decorrelation
induced by E x B flows has been done by Hahm and Burrell [23]-[25]. A discussion
of the Kelvin-Helmholtz instability can be found in G. Ganguli. He explains that

Landau damping prevents these instabilities from bothering us [26].

The last work that we would like to cite is the closest to our own work: in
1996 Kim and Kishimoto [27] investigated the effect of sheared E x B flows on
the toroidal branch of the ITG modes, using a global linear PIC code with kinetic
ions and adiabatic electrons. They found that the sheared rotation of the plasma
induced a rotation of the ITG mode and a consecutive stabilization of the mode.
They concluded that the stabilization mechanism for the toroidal ITG modes and
the slab-like ones were very different. We will later see that our results fully agree

with their observations and interpretations, but extend their results as we explored
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also non-sheared E x B flows. Nevertheless, they were the first to point out the

qualitative difference that exists between the stabilization mechanisms of the slab

and toroidal ITG modes.

A much larger literature is available, including several papers on the effect of
a toroidal rotation of the plasma or on the influence of the E x B flows on edge

turbulence, but as they are not directly related to our work, we decided to not

mention them.

As we see, there has been already a lot of work done. There remain still some
questions that have not been answered satisfactorily. For instance, what is the main
stabilizing mechanism ? What is relevant in the profile of flow: its first derivative,
its second derivative or maybe its value 7 As most of the models so far addressed
only a slab geometry, the qualitative difference in how E x B flows affect toroidal
and slab ITG modes is to be more extensively studied. We have tried to address
these questions with two different physical models: a fluid model and a gyrokinetic
one, both being linear, spectral, electrostatic and solving the full 2-dimensional
poloidal plane. Our first approach was a simple set of equations where we had
an ion fluid and adiabatic electrons [28]. This had a strong drawback: the lack
of Landau damping allowed plenty of unstable slab-like ITG modes to exist even
in the tokamak geometry. The slab-like modes being almost not affected by the
E x B flows, the results of the fluid model were rather disappointing, although a
strong effect on the toroidal ITG modes could be seen, it was not possible to study
it in details. Our second attempt was much more rewarding: we took Hahm’s [29]
gyrokinetic equation in the presence of a strong radial electric field and solved it
using the formalism developed by Brunner et al. [10]. This formalism solves the
problem of the linear stability of ITG, TIM and TEM modes in the full 2-dimensional
poloidal plane. It includes the effects of finite Larmor radius (FLR) to all orders in

a spectral approach. The results were much more interesting this time.
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1.3 The Results

First of all, let me summarize what is the understood mechanism by which strong
radial electric fields reduce the anomalous transport [11]. If the E x B rotation,
induced by the radial electric field, is sheared, then it should decorrelate the insta-

bility, thus reducing it [14]. A generally accepted estimation of the “shearness” of

ven = (5) 0 (12) (1.2

where Ap, and pAf are the correlation of the ambient turbulence in the radial

the flow is:

and poloidal directions respectively, u(p) is the poloidal velocity and p is the minor
radius.

We will show that there is also a second mechanism of stabilization that is at least
as strong as this one. This mechanism is not due to the shear of the radial electric
field, but to its actual value where the mode localizes. To give a brief explanation,
this second mechanism works as follows: the fact that the poloidal rotation of the
plasma is non vanishing at the radial position where the mode localizes induces
a rotation of the mode. But, as for toroidal ITG modes, their main drive comes
through the region of unfavorable curvature of the magnetic field. Thus, if the mode

is removed from this region, its drive is reduced and it gets stabilized.

Still with an ITG mode, we studied another phenomenon, which is usually sum-
moned to explain ITB: the inversion of magnetic shear. Although Brunner [10]
showed that this had no dramatic effect on linear micro-instabilities, we have in-
cluded a study of this effect combined with poloidal flows. Our results will show
that, in a linear model, no great synergy between E x B flows and negative magnetic
shear can be observed. Indeed, the effect of flows will be seen as the strongest on
positive magnetic shear cases.

Besides, we have also made a comparison with a shot from the Asdex Upgrade

(AUG) tokamak in Garching. In this ITB shot, we took the experimental profiles
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for all the equilibrium quantities, including the radial electric field, and found a
good agreement between our calculations and the experimental data. Of course, as
our model is very simple (for instance, it misses the electromagnetic effects), this -
agreement might be more due to luck than to good physics. A definitive answer to

this doubt can only brought by simulating more experimental shots.

1.4 Structure of the Work

After this introduction, you will find the fluid model, whose equations and results
have been cast in the single chapter two, as they were not very interesting. In chapter
three, the gyrokinetic equations will be presented, first in a general geometry, then
in the special case of a tokamak with passing particles first and trapped particles
then. A short discussion of the numerical implementation follows. Chapter four
contains the core of this work, the gyrokinetic results. Finally, a conclusion will put

an end to this four years work.
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Chapter 2

Fluid Model and Results

Let us begin with the fluid model. Although the results were not thrilling, this
model was important to me for two reasons: it was my first contact with the micro-
instabilities plasma physics and my first contact with numerical methods and their
coding on computers. Besides, it was the first attempt to address globally the study

of the effect of £ x B flows on linear ITG modes.

2.1 Equations

The plasma is modeled by an ion fluid and adiabatic electrons. Considering electro-
static perturbations the system is closed using the quasi-neutrality condition. The
equations are simplified using the gyrokinetic ordering [29] and resolved globally

within a spectral approach.

The ion fluid is described by the equations of continuity and motion (without
viscosity) that are closed assuming that the perturbed pressure is isobaric. Moreover,
we assume an ad hoc equilibrium state; this allows us to choose arbitrary profiles for
ion equilibrium pressure, electron temperature and density and to assume that the

time dependence of the perturbed quantities is exp(—iwt) with w € C, the so-called

17
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spectral approach. Our equations read:

. Te
we = @V (nov) (2.1)
_ 1
wp = 5[V xVpo e (2.2)
1 e
wyy, = —Oop+— 2.3
i = dipt o (2.3)
1 .
V=uetyg [e” x V¢ + z%quﬁ + Py x Vp (2.4)

Equation (2.1) is the continuity equation coupled with the quasi-neutrality condition,
where ¢ is the electrostatic perturbation, T, is the electron temperature, ng is the
equilibrium density, e is the proton charge and v is the fluid velocity. Equation
(2.2) is the closure equation, where p is the perturbed pressure, B is the modulus
of the magnetic field, p, is the equilibrium pressure and e; = B/B. Equations (2.3)
and (2.4) are the equations of motion, where ) is the perturbed parallel velocity,
m; is the ion mass, 9 = (e - V), V. =V —¢(9) and w; = eB/m,; is the ion-
cyclotron frequency. Equation (2.4) has to be inserted in equation (2.1) and then
Eqgs. (2.1)-(2.3) form a complete system for the unknowns {@, v, p}.

So far our equations are valid whatever the geometry is, but in order to include
the sheared poloidal flow we now restrict ourselves to large aspect ratio tokamaks.
We assume a very simple geometry: concentric circular flux surfaces, with the fol-

lowing magnetic field:

__B i
B=r0P (e“’ " Ba(p) ea) &5)

where R is the major radius, r(p) = R + pcos(#) is the cylindrical radius, By is the
magnetic field on the axis, e, is the unit vector along the toroidal angle, p € [0, a
is the minor radius, g,(p) is the safety factor, which is chosen arbitrarily, and ey is
the unit vector along the poloidal angle. We assume that a/R < 1.

We now introduce the poloidal sheared F x B flow by assuming that our equi-
librium state does have a poloidal sheared rotation ug(p)es. This equilibrium ve-

locity can be chosen arbitrarily. Moreover, we retain it only on the left-hand
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side of Egs.(2.1)-(2.3), which corresponds to retaining only the leading contribu-
tion in the Hahm kinetic equations [29]. Thus, the effect of flow is to transform
iw — i-w — ug(p)(;0) in the left-hand side of Eqs.(2.1)-(2.3). The flow profile is
normalized with respect to the ion thermal velocity multiplied by a Mach number,

i.e. ug(p) = Mach - vy, - Up(p) with @y(p) € [-1,1].

We may write the local dispersion relation, including sheared poloidal flow as:

0=14+—20 [1—--£-~] |:(kJ_p}'J)2— ("""i)2+-<—“’2‘5—?—] (2.6)

w — koug w — koug w — kg w — koug

where w}; = (cikg/wei)(din(no)/dp), with ¢z = T,/mi, wy = (c2ko/we)(din(po)/dp),
pL, = Cs/Wei, kg = m/py (with m being the poloidal wave number) and < wy; >=
(2¢%kg/Rwe;) is the average magnetic drift frequency. Each quantity is evaluated
at some local point py. We can see, by looking at (2.6) that the effect of uy in the
dispersion relation can only be to shift the real part of w, i.e. changing the frequency,
but not the growth rate of the instability. Therefore, the effect of uy cannot be

interpreted locally and really requires a global resolution of the equations.

2.2 Numerical Implementation

We come now to the numerical resolution of the equations. First of all, we cast
the (2.1)-(2.3) set of equations in a variational form. By this we mean the follow-
ing procedure: first multiply each equation (2.1)-(2.3) with an arbitrary function
(respectively ¢, p and 7). Then integrate each equation over the whole plasma,
integrating by parts and using the Gauss theorem. As is evident from a physical
standpoint, we impose the Dirichlet border conditions on the electrostatic perturba-

tion and choose the {q‘i;, P, 7y} functions such that every written symbol makes sense
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and is well defined. The resulting equations are:

E€Ng , ~ Ng B _ ) . @ .
w/n [Te o+ devl‘f’ ' Vl‘f’l dz = L [mofu"V¢ +zBV¢ x Vé e||] dz

; 4 G
+/s; [aEVp X V- e"] dz

w/s;[p;ﬁ] dz = /{;[ﬁ%p"Vpo X Vq&-e"] dzx (2.7

" . 1 . ; B
w fn [y d= = L l—’tmmovuvup—1Evnvu¢] dz

where () stands for the whole plasma and z stands for pRdpdfde.

The following step is the use of linear finite elements. This means that we are
restricting the functional space in which we choose the {4, 3, o} . As we have
restricted the set of equations (2.1)-(2.3) to the (2.5) geometry (in which the ¢

angle is ignorable), we use the following ansatz:

N
F(.0,0,0) =) D fn exp(+imd + ing — iwt)ie(p) (2:8)
k=1 meZ
-~ N -~
F(0,0,0,8) =D " fruk exp(—imb — ing + iwt) i (p) (2.9)
k=1 meZ

where f € {¢,p,v,} and fe{dp, 9} and n € Z is fixed. The ;(p) are the basis
functions that we choose as linear finite elements on a regular mesh. The f,.; and
fmk are the unknowns to be computed.

The last step is to substitute (2.8) and (2.9) in (2.7), which leads to the a

generalized eigenvalue problem:

Ay = Bwy (2.10)

where A and B are real matrices, w is the generalized eigenvalue and y is the corre-
sponding eigenmode. It includes the three set of unknowns {¢mk, Vymk, Pmr}. This
discrete form allows a resolution of the complete spectrum of the instability. The
implementation of the equations was done in Fortran 90, using Lapack routines. The
code was tested and run on the following platforms: on the Silicon Graphics R10000

processor, on the Sun Microsystems Sparc Ultra-2 processor and on the Cray J90
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supercomputer processor. A typical run (to determine the whole spectrum) lasts
between 15 minutes to 1 hour on a workstation.

We did a few validations of our code, the most important being a benchmark in
a special case: given the appropriate equilibrium profiles, the analytical equations
reduce to the Bessel equation, which allowed us to have a hard test of convergence
for our code. A softer benchmark was the comparison with the dispersion relation
(2.6): without including the E'x B flows, the discrepancy between the local dispersion
relation and our global code was of 10% to 20%, as expected from Brunner’s work.

Now that we have a code and confidence in it, let us see what the results are.

2.3 Results

Let us first describe a typical result (¢ = 0.5 [m], R = 2 [m], B = 1 [Tesla),
n=>5,Te=Ti="15 [keV], ¢;(p) € [1,7] and g, = 4 where the mode amplitude
is maximum), without flow. The spectrum of the instability has some recurrent
patterns. It has many unstable modes and it is possible to divide it into two different

sorts: the slab-like and the toroidal modes, as shown in Fig.2.1. The slab-like
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Figure 2.1: Part of the spectrum for a typical case, Wporm = a—;&:
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modes are the ones that “survive” to a cylindrical limit (R — oo with Rg,(p)
and ng,(p) being fixed), while toroidal modes need the curvature of magnetic field
to exist and disappear in a cylindrical limit. As seen in Fig.2.1, there are many
slab modes and just a few toroidal ones. This is a feature of the fluid model,
which misses Landau damping that would stabilize most of these slab-like modes.
The qualitative difference between toroidal and slab-like ITG modes is to be seen

in Fig.2.2, where we have plotted the most unstable toroidal and slab-like modes.
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Figure 2.2: Poloidal shape of the most unstable slab-like and toroidal modes

Clearly the toroidal mode does balloon, that is it localizes in the region of unfavorable
magnetic curvature, while the slab-like mode is only weakly sensitive to the magnetic
curvature. This is easily understood by looking at Eq.(2.6): the slab-like mode does
only need the (kjc,)” term to exist, while the toroidal mode does need the < wg; >
term (which is the average magnetic drift frequency) to exist.

Including poloidal flow strongly stabilizes the toroidal modes, but only weakly
affects the slab-like modes. Even with very small values of Mach number, poloidal
flow tears the toroidal modes apart and stabilizes them. As seen in Fig.2.3, the
toroidal modes are strongly stabilized and disappear before Mach number reaches
0.1; in fact, in this figure, only the first four modes are toroidal ones, the others are
slab-like ones. But after toroidal modes have been suppressed, the slab-like ones are

still unstable and they are not too much affected by poloidal flow. Therefore, as an
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artifact of our fluid model (absence of Landau damping), the maximum stabilization
that can be observed mainly depends on the gap that exists between slab and toroidal
modes in the absence of flow.

As the effect of flow is weak on slab-like modes and as the spectrum always con-
tains plenty of such modes, we have never been able to observe complete stabilization
of all ITG modes. Therefore, it must be stressed that the criterium Yexp ~ Ymaz
(Eq. 1.2) for full stabilization does not fit our model, as can be seen in Fig.2.3. The

value of ygxp being a function of Mach number, we have plotted a line at the value

v/ o

- 2.2
D=y /K [Zloo ]

norm x10™*

0 0.2 0.4 0.6 0 0.2 0.4 0.6
Mach number Mach number

Figure 2.3: Effect of poloidal flow.

of Mach number for which Yygxp = Ymas, i.6. there should be no more unstable
modes beyond this line if the criterium was to be true. In order to evaluate vgxp,
we have used Apy = k, and pAf# = kg, where {k,, ks} are averaged over the most
unstable mode.

Nevertheless, the poloidal flow does not only have an effect on the growth rate
of the mode, but also strongly affects its radial structure, diminishing the extent
of the convective cells. Therefore it exhibits two different behaviors, both tending
to reduce transport. A linear estimate for the transport coefficient D = vy/k? is
shown in Fig.2.3, where D is reduced by more than a factor two. To compute D,

we average k) over the mode, i.e. k2 = (V ¢*- V. ¢)/(¢d*¢).
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We have investigated different shapes for the profile of poloidal flow and have ob-
served that the final overall stabilization of the instability is not strongly dependent
on the shape of this profile. But qualitatively, the structure of the mode strongly
depends on the shape of the profile. An example is provided by the comparison of
a flow which is zero where the mode amplitude is maximal (radially) but has shear
there, with a flow which is non-vanishing where the mode amplitude is maximal and
has the same shear. In the first case, one observes a “tilt” of the mode around the
point where the flow is zero (“tilt” in the poloidal plane). In the second case, one
observes a shift of the ballooning region, in the direction of rotation of the plasma
(shift in the poloidal plane). Thus, as the mode without flow has no up-down sym-
metry, the effect of flow is also not symmetric with respect to a change in sign of
Mach number. It is important also to remember that the different profiles could not
be investigated in great detail, as the toroidal modes were lost into the slab modes

sea, already for small values of Mach number.

We can also say that the main drives for stabilization in our model are the
value and the first derivative of ug(p)/p. The second derivative of this quantity (the

so-called curvature of effective flow) is irrelevant, and this is irrespective of its sign.

We have also studied the effect of negative magnetic shear with or without flow.
The scan in magnetic shear has been done like this: fix a point py where the mode
amplitude is radially maximal, fix the value of g¢;(pp) and vary the g, profile in
order to change value of (pod,qs(p0))/qs(po). The magnetic shear does not exhibit a
systematic effect (see Fig.2.4), it does stabilizes very quickly a single toroidal mode,
but at the same time it is destabilizing another one. This kind of behavior seems
recurrent and does not result in an overall stabilization. Nevertheless, the transport
coefficient D is more smoothly affected (see Fig.2.4); it is slightly smaller for negative

than for positive shear; its highest value is met by the shearless case.

The combined effects of magnetic shear and poloidal flows are shown in Fig.2.5.

The first line shows the evolution of the overall maximum growth rate, for the values
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{+1,0,—1} of the magnetic shear at the spot py where the mode amplitude is the
largest; Mach number is varied from —0.5 to 0.5. The second line shows the linear
estimate for transport D for the same parameters. As seen in the first line, the effect
of poloidal flow is greater for the positive value of magnetic shear. The second line
shows that the combination of flow and negative magnetic shear reduces by about a
factor four the linear estimate for transport, compared to the most unfavorable case
(i.e. shearless without flow). It should be stressed that, as already explained, most
of the points in Fig.2.5 represent slab modes and not toroidal modes. This should

be kept in mind for later, when we will present the results of the kinetic code.

2.4 Conclusion

We are now done with the fluid model. Let us summarize what we wrote. A global
fluid model has been coded in order to study effects of poloidal F x B flows as
well as negative magnetic shear. The main drawback of the fluid model is that it
exhibits plenty of slab-like modes, which are not strongly affected by poloidal flows.
Therefore results show that poloidal flow has an important effect on ITG, but do
not demonstrate complete stabilization. Moreover, negative magnetic shear does not
present a systematic effect on stabilization. Nevertheless, a substantial reduction of
mixing length estimate for transport has been observed.

It is important, in our opinion, to use a global model for the study of flow,
because, as we have seen, flow shows no effect on the growth rate in a local dispersion
relation and as shown by Taylor et al. [20], it cannot be thoroughly studied within
a ballooning representation.

Time now to move to the more exciting kinetic model.



Chapter 3

Gyrokinetic Model

The simple way to go beyond the limitations of the fluid model was the use of a
gyrokinetic model. The plasma is modeled by gyrokinetic ions with full FLR effects
and adiabatic electrons. We linearize the gyrokinetic equation for ions, including a
strong equilibrium electric field. Then the quasi-neutrality approximation is used
to couple the ions to the electrons, which are considered adiabatic. This results
in an eigenvalue integral equation for the ITG modes with strong electric fields.
The spectral problem is solved in the full two-dimensional poloidal plane for a large

aspect ratio tokamak.

3.1 General geometry

The first step is to include strong electric fields in the gyrokinetic formalism. This
was done by Hahm [29] with the use of Hamiltonian mechanics in non-canonical
variables and Lie transform formalism. We solve this new gyrokinetic equation

using a perturbation method, as we are interested in the linear stability problem.

In [29], Hahm used the variables {R,, o, u, v, t}, being the guiding center position,
Larmor rotation angle, magnetic moment, parallel velocity and time, respectively.
But to simplify our linear calculations, we have decided to work with an “energy”

variable ¢ instead of the parallel velocity v, because, as we will see later, at the

27
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lowest order in perturbation, it is a constant. We define it as:

m

€ = epy + muB + 5

(vf + u?) (3.1)

where e and m are the ion charge and mass respectively, ¢, is the potential for the
strong electric field, B is the modulus of the magnetic field, u is the sheared E x B
flow:

1

u:= ~§§B X V(}SQ (32)

The second step is to apply an electrostatic perturbation < d¢ > to the equilib-
rium plasma; the notation < --- > represents an averaging over «, which appears

via the Lie transform formalism. Given this, it is easily shown that:
é=—eR-V[<dp> (R, put) (3.3)
where V = dg and we have [29]:

: 1
R =y +u
€+ +eB;|‘

[mpLVB +m (v"e" i 1.1) v (v“e” + u)] (3.4)
where Bff = B + (m/e)e - rot(v e +u) and ey = B/B. It is possible to show, using
the Lie transform formalism, that:
e ~
B 30, ) = [ ([F+ —=860,F + f] - 6(R + pr, ~ x)dRdadpdy,  (3.5)

where x is the position of the particle and not the position of the guiding centers and
with the following definitions: 6¢ = §¢— < 6¢ > and § (---) is the Dirac distribution.

With the {R, a, u,¢,t} variables, the linearized gyrokinetic equation reads:
Btf-l-R—Vf:-[%(BxV<6¢>)~VF+s‘3€F‘| (3.6)

where f is the first order perturbation part of the distribution function and F is the
equilibrium part. We choose F' to be a Maxwellian.

Eq.(3.6) can be formally solved by integrating over time along the equilibrium
trajectories. To simplify the expressions, we first single out the adiabatic part of f,

by defining the function g:

gi=f—-e<dép>0.F (3.7)
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which is the non-adiabatic part of the first order perturbation of the distribution
function. We also use the fact that it is possible to write the electrostatic perturba-

tion < d¢ > as [10]:

<66> (B ) = expl—ivt) [ dk [I(hupr)6d)expic- B (39)

with w € C representing the spectral approach and where d¢ (k) is the Fourier trans-
form of the potential d¢(R, e, i), i.e. the electrostatic perturbation not averaged
over . The averaging over « is represented in the Bessel function.

Then the formal solution of Eq.(3.6) is:
eF

i

g = dk [J()(k]_,OL) exp (ik - R(t) — iwt) (w — w*) iP - 6¢(k)] (3.9)
RS

where T; is the ion equilibrium temperature, J; is the Bessel function, k; the com-
ponent of k which is perpendicular to the magnetic field, p, is the ion Larmor radius

and we have defined the following differential operator:
v T
W= ——p [en-V (InF)][e,- V] (3.10)

where e, and e, are the normal and binormal unit vectors respectively, defined with
respect to the flux surfaces and the field lines of the magnetic field.

The propagator P is defined as [10]:

PR, k,e,w) = /t dt'exp [ik - (R(t') — R(t)) — iw (t' - 1)]

= f_t dt' exp [z j:i (k R(t") - w) dt"} (3.11)

At this point, we have a formal solution to the perturbation calculation. It is worth
noting that this formal solution is nowhere explicitly modified by the strong electric
fields. In fact, this solution is exactly the same as the one obtained by Brunner et al.
(10]. The only effect of the strong electric field is to modify the equations of motion
of the guiding centers, thus modifying the trajectories, which explicitly appear in
Eq.(3.11). Thus, all the details of the numerical resolution of the problem will be
the same as in [10]. We only need to compute an explicit formula for the propagator

with strong electric fields.
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3.2 Large aspect ratio tokamak

We have restricted ourselves to the case of a large aspect ratio tokamak, with circular

concentric flux surfaces. The magnetic field is taken as:

_p o _b__
B0y =B (e“’ " Rots (p) ee) 12

where R, is the major radius, r(p) = R+ pcos(f) is the cylindrical radius, By is the
magnetic field on the axis, e, is the unit vector along the toroidal angle, p € [0, q] is
the minor radius, 6 is the geometric poloidal angle, g,(p) is the safety factor, which
is chosen arbitrarily, and ey is the unit vector along the poloidal angle. We assume
that a/Ry < 1.

The last step before the explicit computation of the propagator, is the determi-
nation of the equilibrium trajectories of the guiding centers, i.e. the computation
of R(#'). To solve the equations of motion, we use an iterative method, considering
that the drifts are a correction to the unperturbed trajectories. In this geometry, the

equilibrium equations of motion for the guiding centers read [Egs.(3.4) and (3.12)):

2
p = —wpsinf + ;‘:1’052 sin @

_ 2

0 = @ — D cosh — 1;2((2 (3.13)
¢ = wys(p)

where w; := v)/Roqs(p) is the poloidal transit frequency and &, := w; + u(p)/p,
wei is the ion cyclotron frequency, {p, 8, ¢} are the toroidal variables, and vp is the

magnetic drift:

1
Yp = m (B{],U; o+ 1)”2) (314)

and u(p) is obtained through (3.2) and (3.12):

u = u(p) [1 -+ é cos 6] €y (3.15)

From now on we will only consider highly passing ions and in order to solve

the equations of motion, we will make the assumption that the parallel velocity is
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constant: vj(t) = v)(tp) Vt. Solving iteratively Eqs.(3.13) yields:

u2
p(t) —p(t) = c% (vD - R{iwci) [cos(@gt") — cos(t)]
i ~ 7 u2 ! UD N ~ 4 . -
() —0(t) = @t —t) - o (' —t) — o [sin(wst") — sin(wet)] (3.16)

P(t) —o(t) = wgs(t' —t)

These equations are what we were seeking: we can now safely proceed to the explicit
computation of the propagator.
Before going further, we would like to point out that we have in fact used a

toroidal wave decomposition rather than the standard plane wave representation.

Thus, Eq.(3.8) should read:

/ dk [éé(k) exp(ik - R)] = z 5$(k,m} exp [z (kg—ﬂ) p+imb + incp] (3.17)
3 k,meZ op

where Ap = (Prmaz = Pmin) a0d [Pmin, Praz) are the boundary within which we solve
the problem. m and n are the poloidal and toroidal wave numbers, respectively, and
n € Z is fixed because the problem is axisymmetric. This decomposition implies an
approximation on the geometry, which implications are fully discussed in [9].

Therefore, using Eq.(3.11), the iterative integration of the guiding centers tra-
jectories and (3.17), it can be shown that the propagator becomes:

exp [i(p — p) (0 + 0)]
i(y — w+ pay)

PO) = Jp(2)Jy(2) (3.18)

p.p' €L

where J, are the Bessel functions and we have used the following definitions:

z = (k?l)z_l_(v — )2+(mv9)2 5
Ap d.':? P Rowei Pt

2 u

" 2\ 1 u?
e = (kA_P) @ (vD - RDWci) i

sinf = (-@) =

P

Yy = MW+ ngsws —m
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where k| := (m + ng,)/(Rogs). Eq.(3.18) is all we needed: it is the expression
of the propagator in presence of a strong electric field. The set of equations is
now complete: using (3.5), (3.7), (3.9), (3.18), the quasi-neutrality approximation
and the adiabatic electrons, we can produce an eigenvalue integral equation which
considers the full 2-D poloidal plane. It can be solved to determine the spectrum of

the ITG modes in the framework of gyrokinetic theory. The details are to be found
in [10].

3.3 Trapped Ions

In the previous formulation, we assumed that the parallel velocity was a constant,
which has been shown [10] to be a very good approximation for passing ions. In this
section we will develop the model a bit further in order to allow for trapped ions.
Previous equations remain valid up to Eq.(3.15) included. Again, we will use exactly
the same steps made in [10], having basically only to add a change of variables.
Let us start with the equations of motion of the equilibrium. Removing the drifts

from Eq.(3.13), we get:

p =0
6 = vy/Roqs(p) +ulp)/p (3.20)
¢ = /R

The question now is how to model the evolution of v. As is shown in Hahm’s paper

[29], the time evolution of v is given by:
U = —pey V"B +u (e" X rot (v"e" + l.l)) (3.21)

This expression is already simplified, as we have not written the terms that vanish
due to the following: {¢o, u?} are only functions of p and the operator e - V| does

only produce derivatives in {p, 0}.
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We will now show that the second term in the right handside of Eq.(3.21) can

be neglected. Using Eq.(3.12), it is easy to show that:

2 5
) (£

2
+u (e x rot (vjey + u)) ~ —Mach (%Z’-) sin 0 (3.22)

where we have used the following normalization: u(p) ~ Mach-vy;. Eq.(3.22) clearly

shows that that as long as:

Mach < p/Roqs (3.23)

we can neglect the second term in the right handside of Eq.(3.21). Therefore, we

simply will consider the following equation for the parallel velocity:
v = —pey - VB (3.24)

The idea now is to simplify Eq.(3.20) with a change of variables. Trying to

recover what we had without flow, we chose to use:

v =y + % “gs(p) - Ry (3.25)

which leads to the following equations:

o= 9
6 = vj/Rog,(p) (3.26)
]' ! t
W'(t) = §v||2+,uB = W'(t,) Vt

where W'(t) is an integral of motion and we can call it the energy. It is easy to prove
that W'(t) = 0. We have thus obtained equations of motion that are exactly like the
ones without flow, but in the new variable Ul'l. Therefore we can derive equivalents
to all the formulas first obtained by Brunner et al. [10]. Let us go through some of
the most important.

First of all, the distinction between trapped and passing ions is summarized by

the following quantity:
2= W' — By (1 — p/Ry)
2uBop/ Ro

(3.27)
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and when x? > 1 we are dealing with passing particles, while with x* < 1 we are
considering trapped ions.

Second, we can compute the fraction of particles which are trapped and passing:
this fraction will be a function of the Mach number, as could have been expected.

The fraction of trapped ions ¢ is thus:

adln] 1= /ﬂ Py

= ag-exp[—(u-gs- Ro/p)*/2T}] (3.28)

where §2; represents the domain of only trapped ions and ay is the fraction of trapped
particles without flow. We see that an increasing flow, whatever its sign, will de-
crease the number of trapped particles. But this effect remains small within the
approximation (3.23).

Now, we would like to say a word about the invariant p,. As tokamaks are
axisymmetric, the variable ¢ is therefore cyclic and its associated component in the
fundamental form of Hamiltonian mechanics must be a constant [33]. In our case

[29], this simply gives:

polt) = p+ 0l — () v (3.29)

ci
and we have the expression for the invariant with E x B flows.

The only remaining modification to be done is in the precessional drift. Indeed,
for the equations of motion, we did exactly like Brunner [10], assuming that all
trapped ions are deeply trapped, which allows to solve iteratively the equations of
motion in the new parallel velocity. Let us now have a look at the precessional
drift. Taking the equations of motion in the old variable vy (3.20), we can compute
the precessional drift 7 < ¢ >, where 7 is the poloidal revolution period (banana
period). The algebra is in no way new and pretty long, with the apparition of the

complete elliptic integrals along the way, so we present the final result only:

T<P>=[T<P>|yp—T (&g&(m) + O [u(p)?] (3.30)
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where [T < ¢ >]y . stands for the precessional drift with No Flow and we will not
consider the O[u(p)?], due to the condition (3.23). This is it, we now have a complete
model for trapped ions with E x B flows. The only differences with respect to

Brunner’s work [10] are Egs.(3.28) and (3.30).

3.4 Numerical Implementation

To give a resume, we have solved the linearized gyrokinetic equation for ions, in
a spectral approach. This solution coupled with the adiabatic electrons gives rise
to an integral equation for the eigenmodes of the electrostatic potential. The free
input data parameters for our problem are: the profiles of equilibrium quantities,
the parameters of the equilibrium geometry, the toroidal wave number n, and the
profile of the E x B sheared poloidal flow u. Given these, the task is to find the
eigenmodes of the plasma, i.e. find the values of w for which there is a non-trivial
solution 8¢ to the integral equation.

We will not discuss in details the numerical approach, because it is rigorously
the same as the one used by Brunner [10]. Indeed, we did not start from scratch,
but had simply to modify the already existing and extensively benchmarked [30]
Brunner’s code: GLOGYSTO. The modifications we had to include did not request
a modification of any of the numerical tools used. To put it simply, they only changed
the function we had to integrate. The main modification comes from a symmetry
breaking, that occurs in the integration over v, due to the flow. Indeed, the original
formulation did an explicit use of the v — —v symmetry in the precalculation part
(10]. We therefore had to, roughly speaking, double the memory use. Altogether,
doing things properly, this did not result in a problem.

It must also be stressed that Brunner’s code includes the possibility to study both
adiabatic and trapped electrons, with a bounce averaged equation for the trapped
ones. This part did not change, because we did not consider the effect of E x B flows

on electrons, as it is smaller than the one on ions by a mass ratio factor. Therefore,
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although we did not present the equation, we have the possibility to include trapped
electrons in our system [10].

Nevertheless, for those not acquainted with Brunner’s work, we give here a brief
account of the numerical methods. As noted in Eq.(3.17), the two space dimensions
are decomposed on the Fourier functions basis. For the determination of the signif-
icant Fourier components to include in the computation, one should read Brunner,
but the main argument remains naturally the convergence. The radial integration is
performed on an equidistant mesh using the FFT algorithm. The velocity integrals
are not performed on the whole R?, but reduced to a sphere of radius n - v,,; where
n € N~ 5. The extended trapezoidal rule is used for this integration.

At this point, there are two questions that need to be answered. Does the inclu-

sion of E x B flows deteriorate the numerical convergence ? Are the observed effects
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Figure 3.1: No strong modification of the mode in the Fourier space when E x B flows
are included. This case corresponds to a very strong physical effect: a stabilization
by a factor three.

of E x B flows physical or numerical ? This last question is answered extensively
in Chapter 4: Gyrokinetic Results, where we do a benchmark between our spectral
code and a PIC code, which is a completely different numerical approach. As dis-
cussed later on in more details, the effect of E' x B flows are the same in the spectral

and PIC codes, therefore we can trust our model. The answer to the first question
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can convincingly be met by the Fig.3.1, in which we see an eigenmode in the Fourier
space. As the figure demonstrate, inclusion of E x B flow does not affect much the
extent of the Fourier space required. Nevertheless, the presented inclusion of flow
has a very strong stabilizing effect (factor three) and a large Doppler shift of the
frequency.

There are two methods to find the eigenvalues in the complex plane. In fact, our

problem, after discretization, can be written like this:
> Mij(w) - 5¢; =0 (3.31)
J

Therefore, our task is simply to find the zeros of the analytical function f(w) :=
det(M). This is done using two different methods, depending on the number of
eigenvalues present in a region of the complex plane C. If the number of zeros is
small, typically less than three, there is a very fast and efficient method based on the
Nyquist theorem [9], [31]. It usually requires the sampling of f on eight to twenty
points on a Jordan curve enclosing the eigenvalues. Otherwise, we need to do a
rectangular scan of C, and then plot the contour lines for R(f) = 0 and S(f) = 0:
the intersections of these contour lines are our eigenvalues. This method requires
normally a sampling of f on a mesh of 25 x 25 = 625 points. As we see, there
is more than an order of magnitude difference between the two methods, but one

cannot always avoid using the scan.

Let us now say a word about the computer implementation. The GLOGYSTO
code, originally written in Fortran 77, has been upgraded to Fortran 90 for the
author convenience and the sake of portability. NAG routines are used for the FFT
routines and most of the special functions, while LAPACK routines are used for
the matrix calculations. The code was used on the following platforms successfully:
on the Silicon Graphics R10000 processor, on the Sun Microsystems Sparc Ultra-2
processor and on the Cray J90 supercomputer processor. There exists also a parallel

version of the code, but most of the runs were performed using the single processor
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version due to a surcharge of the EPFL parallel machine.



Chapter 4

Gyrokinetic Results

Now that we have formulated the equations and coded them, there are several inter-

esting studies that we can perform. This chapter will present the following studies:
e effect of different profiles of E x B
e effect of E x B flows in combination with magnetic shear
e experimental comparison with the Asdex Upgrade tokamak

We would like also to point out that, although we did include the analytical calcu-
lations for the study of Trapped Ion Modes under the effect of E x B flows in this

PhD, we did not have the time to run any case with TIM modes.

4.1 Various Profiles of E x B flows

In this section we will study how various profiles of F x B poloidal flows affect the
ITG toroidal modes. To make it short, we will see that the shear of the poloidal
rotation velocity has a stabilizing effect, but in no way is this effect stronger than
the one due to the value of the poloidal rotation velocity. We will also see that
the value of the second derivative of the poloidal rotation velocity is an irrelevant
quantity.

For this study, we chose the following parameters: a = 0.21[m}, Ry = 1.19[m),
By = 1[Tesla), T. = T; = 1[keV], the ions were hydrogen, ¢, € [1,5] and ¢, ~ 2

39



40 CHAPTER 4. GYROKINETIC RESULTS

where the mode amplitude is maximum. The parameters are set so that the ITG
toroidal modes are much more unstable than the ITG slab-like modes that exist even
in toroidal geometry. In this study we are only interested in ITG toroidal modes.
We have now to decide what value of n we want to study. It seems to us natural
to be mainly interested in the most unstable n of our system. We have therefore

made a scan in n in order to find the most unstable eigenmode, results being plotted
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Figure 4.1: Scan in n to find the most unstable eigenmode of the system.

in Fig.4.1. Clearly, the most unstable mode is given by n = 7, thus we studied only
this mode. This might look like an awkwardly low value of n, but it must be stressed
that as our calculations are global, we can impose the value of py, but the value of
k, is given by the results of the calculations and we know that the most unstable
toroidal ITG mode will have k; - pr, = 0.5, thus the concept of “high n” is relative
to the plasma studied.

Now we come to the choice of the E x B profile. As seen in Eq.(1.2) and in the
definition of @; := wy + u(p)/p (see Eq.(3.13)), the important quantity is u(p)/p.

Therefore, here is how we chose the profile of E x B poloidal flow:

u(s)
s

= Mach * vg; [ug + w18 + u232] (4.1)

where vy,; is the ion thermal velocity and s = p/a is the normalized radial variable.
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This allows us to study separately the effect of constant flow, constant shear of flow
and non constant shear of flow.

It is well known that the radial profile of the ITG toroidal modes is determined
by the logarithmic derivative of the ion temperature and the safety factor, the modes
trying to maximize the drive of the temperature gradient, while minimizing their
k. It is also very well known that the ITG toroidal modes do balloon in the region
of unfavorable magnetic curvature, that is around @ ~ 0. From now on, we will use
{$0,6,} to name the normalized radius and poloidal angle where the mode amplitude

is maximum.

We can now describe the shapes of u(s) that we considered. There are three basic
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Figure 4.2: The three different shapes of E x B flow: u(s)/s and u(s)

cases and they are chosen starting with the constant poloidal rotation velocity. We
want u(s)/s to be equal to 1 and therefore, we took: ug =1, u; = 0, up = 0. we will

call this profile “constant flow”. Then, we want to “normalize” the values of the first
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and second derivatives, therefore we choose profiles such that d,(u(s)/s) = 1 and
92(u(s)/s) = 1 everywhere. Therefore, the second shape, that we will call “constant
shear”, is thus given by: uy = —s,, u; = 1, uy = 0; the flow vanishes at s,, but it has
constant shear. And the third shape, that we will call “non constant shear”, is given
by: up = 3s2, uy = —$,, up = 3. The flow and its constant shear both vanish at s,,
but the profile being parabolic, the second derivative of flow is not vanishing there.
The three profiles are plotted in Fig.4.2. For each of them, the “driving terms” (the

value of u(s)/s, the first derivative of u(s)/s and the second derivative of u(s)/s

respectively) have all the same value at s,: Mach - vy;.

Let us first see the effect of the E x B flow on the frequency w and growth
rate v of a toroidal ITG mode. Results are shown in Fig.4.3 and Fig.4.4 where
we can compare the different profiles of flow. The evolution of the frequencies is
easily understood: for the constant flow case, we see a simple Doppler shift of the
frequency, while for the other two cases we see that the frequency is unaffected. This
is normal, as for these two cases there is no effective value of flow at s,. Let us now
have a look at the growth rates. We clearly see that the most stabilizing effect is due
to the constant flow profile, while the constant shear is also strongly stabilizing. On
the other hand, the second derivative of flow is completely ineffective: it does not
at all affect the mode. We will explain the mechanism that leads to the observed

stabilizations, but we would first offer a validation of our results.

We have two validations for these results: a comparison with a local dispersion
relation and a benchmark with a global PIC code (Fig.4.5). Let us begin with the
local dispersion relation. A kinetic local dispersion relation has been derived by
Brunner [10] for the study of the ITG modes without flow. The introduction of flow
can simply be seen as a Doppler shift in the frequency, given by Mach - vy - kg - u(s,)
Therefore, in cases where u(s,) = 0, one expects no variation of the frequency
and this is exactly what is observed for both the constant shear case and non-

constant shear case. For the constant flow case, one expects a Doppler shift and one
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Figure 4.3: Frequency as a function of Mach number, wnorm = v3,;/[wea?]. The
"circles’ stand for the 'constant flow’, the ’squares’ for the ’constant shear’ and the
'triangles’ for the 'non-constant shear’.

can compare the global spectral code with the dispersion relation. This is done in
Fig.4.5. To have a benchmark for our growth rates, we did a comparison with a PIC
code [32], modified by L. Villard to include E x B flows. The results of the PIC
code are also shown in Fig.4.5. They are in excellent qualitative agreement with the
results of the spectral code. The values of the frequencies are perfectly matching,
while the values of the growth rates have a perfectly similar functional dependence
on the Mach number, although the values are only in an agreement of 20%. This
discrepancy does exist even for a vanishing Mach number and is simply explained
by the different approximations used by both codes. For instance, the PIC code
does not have an exact resolution of the linearized gyrokinetic equation to all orders
in Larmor, while the spectral code does. For a detailed discussion of these issues
see [30]. It is simply important to know that this discrepancy is not due to E x B
flows. We can also add that we chose our physical parameters in order to have

only a very unstable toroidal ITG mode and no slab-like or TIM modes, that is we
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Figure 4.5: Benchmark with local dispersion relation and PIC code.

adjusted the parameters so to have wy < w, where wy, is the bounce frequency. The
PIC code allowed a verification of that, as it includes both the passing and trapped
ions dynamics. It showed that for this case, runs with and without trapped ions

produced exactly the same modes.
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One legitimate question is whether we are following one particular mode in our
scans in Mach number or if we are checking the whole complex plane. To this
question, it must be answered that checking the “whole” complex plane is by no
means possible, but the comparison with the PIC code, which is only able to produce
the most unstable ITG mode in the system, shows that there are no new unstable
modes popping out. This is normal, as we chose our parameters so that there would
be only a strongly unstable ITG toroidal mode, while there are some other modes,
but much less unstable. Therefore in Fig.4.3 and Fig.4.4 it must be considered that

we plot the evolution of the most unstable mode.

Now, we would like to discuss the mechanism of stabilization. In Fig.4.6 we show
the effect of E x B flows on the poloidal contour plots of the electrostatic potential.
The constant flow case is presented in the left column, while the constant shear case
is in the right column. As one sees, there is not much qualitative difference between
the two cases, the constant shear case needing simply a larger value of the Mach
number. Before going further, it is important to stress that due to a convention
in the code, a positive Mach number refers to plasma rotation in the clockwise

direction.

Let us begin with the “constant flow” case: left column of Fig.4.6. It is obvious
that the mode is simply rotated along with the plasma, that is the region 6, where the
mode balloons is moved. The consequence of which is to move the mode maximum
amplitude region away from the unfavorable magnetic curvature region, reducing
therefore the instability. A negative Mach number means a poloidal flow going
upward on the external side of the plasma. Thus, for low negative values of Mach
number, §, is first moved to a more unfavorable position, thus destabilizing the ITG.
But, for stronger Mach number, 6, moves further, leaving the unfavorable region,
finally producing a strong stabilization of the toroidal ITG. This effect is naturally
only effective for toroidal ITG modes, as the unfavorable magnetic curvature is for

them necessary, while slab ITG modes can live without it.
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Figure 4.6: Contours of ITG mode in the poloidal plane for various Mach numbers.
On the left is the Constant Flow case, while on the right is the Constant Shear case.
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Now, let us have a look at he “constant shear” profile, that is the right column
of Fig.4.6. It is difficult to see much difference with the “constant flow” case. It
looks like if the mode, being global, had to choose between one of the sides of the
flow and chose the external rotation, thus being affected like by the value of flow.
The main difference being now that of course, the value of flow is not the same as
before, resulting in different values of Mach numbers. It must be stressed that this
result is in complete agreement with the observations of Kim and Kishimoto [27]:
they also observed that a sheared poloidal E x B flow does affect the value of 6,,
therefore stabilizing the toroidal ITG mode. Indeed, the right column of Fig.4.6
looks very much alike their own figures. But they did not investigate the effect of a

non-sheared E x B flow.

Now, coming back to Fig.4.4, we see that the “non constant shear” has clearly
no relevant effect. This is in contradiction with most models, but assuming that
our explanation of the mechanism of stabilization is correct (that is: the mode is
stabilized because it is removed from the region of unfavorable magnetic curvature),
then the non-effect of non-constant shear is obvious, as looking at Fig.4.2 clearly

shows that the value of flow is almost zero everywhere for this case.

Now we would like to briefly describe the effect of the E x B flow on k,,
and kj that we can estimate by averaging over the eigenmode: k2 = (V d¢* -
V.16¢)/(6¢*6¢) and kﬁ = (V16¢*-V|04)/(6¢*68). The results are plotted in Fig.4.7.
We see that the variations of k. and k) are exactly matching the variations of v:
when the mode gets stabilized, both k; and k) are increasing and for the small region
where the mode gets more unstable, both k; and k are decreasing. Although the
absolute increase in k, is small, it nevertheless goes in the “good direction”, that is

it tends to reduce the linear estimate for the diffusion coefficient D = v/k?%.
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Figure 4.7: k) and k; as functions of Mach number. The ’circles’ stand for the
‘constant flow’ and the ’triangles’ for the ’constant shear’.

4.2 Various Magnetic Shears

It is often claimed that negative magnetic shear should be a main component of
the ITB creation. Nevertheless, Brunner noticed [10] that with our model negative
magnetic shear on its own does not exhibit a spectacular effect, but of course, that
was done without £ x B flows. Now the question arises, can F x B flows interact
with a negative magnetic shear so as to produce a multiplicative effect ?

In order to answer this question, we have chosen the following physical system:
a = 0.5[m], Ry = 2[m], By = 1[Tesla], T, = T; = 2.13[keV], the ions are hydrogen,
¢s(s,) = 1.5 and the most unstable mode is found for n = 10. Then, as we did in
the fluid case, we have kept the value of ¢,(s,) constant while changing the value of
magnetic shear (simply called shear from now on) (s,'dsgs(s,))/¢s(s,). We considered
the following values for the shear: {—1,0,+1}. This study, without E x B flows, had
been already done by Brunner [10]. The qualitative nature of the modes changes
for the three cases as is to be observed in Fig.4.8. The positive shear case clearly
exhibits a toroidal nature, while the negative shear mode does not balloon and is
therefore more of a slab nature. As expected, the vanishing shear case is somewhere

in between the two other cases.
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Figure 4.8: Poloidal contours of the ITG modes for the three considered values of
magnetic shear.

We now have to choose the profile of £ x B flow that will interest us: we decided
to study the effect of the “constant shear” (Eq.4.2) profile on the various values of
shear, because it is the most popular one in the literature. In Fig.4.9 we present the

evolution of the complete spectrum for increasing values of Mach number.

Before going further, a few comments are mandatory. First, to produce these
results, we were obliged to use the “complete scan” method to find the eigenvalues
(see the Numerical Implementation section). Moreover, each of the sub-plots in

Fig.4.9 required many scans to be produced. To make it short, it must be stressed

that these results used a lot of computer resources and took a lot of time to produce.
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Figure 4.9: Evolution of the complete spectrum in the complex plane (in units of
Wnorm) @8 a function of Mach number, for the three magnetic shear cases. Each '+’
represents an eigenvalue.

Let us now discuss the results. As is easily observed, the negative shear case
is the one presenting the largest number of eigenmodes. This can be understood
due to the slab-like nature of these modes. Besides, these modes are clearly less
unstable than the other two cases modes, even without flow. But it must also be
observed that the effect of £ x B flows in the negative shear case is small. On the
other hand, the positive shear case has only a few unstable modes, most of which
are quickly stabilized. The no shear case has also only a few unstable modes, most
of which are also quickly stabilized, but the most unstable mode in this case is not
very strongly affected by flow. These comments are summarized in Fig.4.10, where

we plotted only the evolution of the most unstable mode, for the three considered
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Figure 4.10: Evolution of the most unstable mode for the three considered values
of magnetic shear, as a function of Mach number. Circles, squares and diamonds
respectively represent the negative, zero and positive magnetic shear cases.

cases. One clearly sees that the negative shear mode stays almost unaffected, while
the positive magnetic shear mode is strongly damped. The different evolutions of
the frequencies are to be understood by the fact that the radial localization of the
modes is not exactly the same for the various shears and therefore the value of flow

seen by the mode is slightly different in each case.

How can we understand the observed differences ? If our explanation of the
stabilizing mechanism has to be correct, then the differences can be understood in
the following way: the positive shear case is a toroidal ITG mode, as it is removed
from the region of unfavorable magnetic curvature, its drive is reduced and the mode
gets stabilized. On the other hand, the slab-like nature of the negative shear mode
allows it to survive without the magnetic curvature, therefore a rotation of this mode
will not affect much its growth rate. The conclusion of this study is therefore that
there is no synergy between negative shear and F x B flows.

We would like to say a last word about what could happen if we took negative
Mach numbers. The answer is ’nothing particular’. Indeed, as we learned with
the first results, there is not much difference on stabilization for different signs of

Mach number, the orders of magnitude being exactly the same. Moreover, our
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interpretation of why the negative magnetic shear mode is not strongly affected
is that, because of its slab-like nature, its rotation in the poloidal plane does not
affect much its drive. This would remain true even if we rotated it in the opposite
direction. Nevertheless, with more time, one could complete the presented results,

running a few negative Mach numbers cases.

4.3 Asdex Upgrade Comparison

So far we had only academic cases with ad-hoc profiles, which in itself is not a
problem for me, but many people are eager to see comparisons with experiments.
And to be honest, it is certainly interesting to test how good such a simple model
as ours can do to catch the important physics. We have therefore decided to study
an experimental configuration with our global spectral code. To achieve this, we
have collaborated with people of the Asdex Upgrade (AUG) tokamak, in Garching.
In particular, the following results would never have been possible without the kind
cooperation of Arthur Peeters and Sibylle Giinter of the Max Planck Gesellschaft.
Thanks to them.

There are two main features to keep in mind for this experimental case. First
the shot had an Internal Transport Barrier diagnosed by the AUG experimentalists,
which means that the confinement was improved. As we claim that E x B flows can
stabilize microinstabilities, it is thus a good case for us. Second, this case is an ITG
mode destabilized by trapped electrons. It is not a pure TEM, because it is still
on the frequency side of the ITG modes, but without trapped electrons it would be

completely stable.

4.3.1 Equilibrium

The first step to perform for this comparison is to find an AUG shot which suits our
needs. We had a choice of several AUG shots where experimentalists had diagnosed

an Internal Transport Barrier (ITB). After a little investigation we found a shot
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Figure 4.11: Important equilibrium profiles of Asdex Upgrade

which seemed to be an excellent candidate. The experimental reconstructed profiles
were introduced as input parameters in our code. The critical profiles are to be
seen in Fig.(4.11). The following parameters are also important: a = 0.51[m),
R, = 1.65[m], B, = 2.61[Tesla], T. = 4.56[keV], T; = 13.72[keV] and the ions are
deuterium. One must still decide which n to study: we did a scan in n and took the

most unstable mode, which resulted to be for n = 15.

These profiles seemed to be smooth enough to avoid numerical problems and
had perfectly adequate values of 7. and 7;. Nevertheless, at the beginning we ran
into some problems. Indeed, we were first not able to locate any unstable modes,

because we had not included the trapped electrons into our calculations. In the
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Figure 4.12: Spectrum of the AUG case (without £ x B flows) with and without
trapped electrons (TE). The circles and squares are the results of the local dispersion
relation, with 7 = T, /T; varying from 1 to 0.3 for both cases: with and without TE.
the triangles are the evolution of the most unstable global mode without TE and
with 7 varying from 1 to 0.4. Finally the diamond is the most unstable global mode
with TE included, for the experimental value of 7 = 0.332. Variations of 7 are
obtained through the variation of 7.

somehow too complex Fig.4.12, we explain what happens: the experiment has a
value of 7 = T,/T; = 0.332, that is the ion temperature is roughly three times the
electron temperature. Using this value, we did not find any unstable modes, even
without E x B flows. Thus we decided to start with 7 = 1 (increasing the electron
temperature T,) and we were then able to find unstable modes. Starting with these
modes, we progressively reduced the electron temperature 7, until we reached the
experimental value of 7. This resulted in a fast stabilization of the modes. Hopefully,
the inclusion of trapped electron effects, starting with 7 = 1 and evolving to 7 = 0.3,
allowed us to find unstable modes even at the experimental value of 7.

This discussion is not meaningless, because it is important to remember that up
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to now we did only study how E x B flows affected the pure ITG modes. This is
a case where the main driving force for the instability are the trapped electrons,
although this is not a trapped electron mode, as the sign of the frequency did not

change.

4.3.2 Diagnostics

This part is due to Arthur Peeters of the IPP Garching. I thank him for taking the
time to write the following lines, but of course, I do assume the complete responsi-

bility for what is written here.

Sektr 15
Figure 4.13: Shape of the Asdex Upgrade Tokamak

Electron temperatures are determined with a super-Heterodyne radiometer that
measures the emission of electron cyclotron waves for which the plasma is optically
thick and therefore the emitted power is proportional to the temperature. The

radiometer has a total of 60 channels with different frequencies and consequently
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can measure the electron temperature at 60 different positions in the plasma.

The density is obtained from a combined system of lithium beams and an inter-
ferometer system. An injected beam of lithium atoms is used to measure the density
in the edge of the plasma, whereas the interferometer measure the line averaged den-
sity over 8 chords in the plasma and is therefore more sensitive to the central plasma
density. The signals of both diagnostics are then used in a combined reconstruction

of the density profile

The effective charge is obtained from the emitted Bremsstrahlung of the plasma.
A range in the visible light is used to prevent the pick up of line radiation and
the diagnostic has a total of 16 chords. The information of other diagnostics (for

instance the measured density) is used to calculate the effective charge.

Ion temperature as well as rotation velocities are obtained using Charge Exchange
Recombination Spectroscopy. This diagnostic measures the line radiation emitted by
charged ions (mostly Carbon) that have received an electron through the collisions
with a neutral Deuterium atom. The latter atoms are injected into the plasma for
heating. The broadening of the line gives information on the temperature and the
Doppler shift can be used to obtain the rotation velocity. The diagnostic measures
these quantities at 16 positions in the plasma. The poloidal rotation measurement
has rather large error bars and therefore the radial electric field is usually calculated

(from the radial force balance) using the neoclassical poloidal rotation.

The g-profile is obtained from a diagnostic that uses the Motion Stark Effect
to measure the direction of the magnetic field. A full equilibrium reconstruction is

used to transform this information in a q-profile.

The electron temperature and density have typical error bars of around 5%. The
ion temperature and the rotation velocities are typically determined within 10% in
these cases. Typical error on the safety factor is hard to give. It varies in radius
and depends a little on how much you believe in the reconstruction. Let us guess

it is around 0.2. For our calculations, however, the largest errors can be expected
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in the derived quantities such as the gradient length of the ion temperature and
the £ x B rotation velocity. Of course one fits the ion temperature measurements
with a smooth curve and then takes the derivative of the smooth curve to obtain
the gradient length. The error on this length is then difficult to asses. In principle
one could say it is infinite since one can draw curves with an arbitrary gradient
length in a certain point which however go through all the measurement points.
In some sense the smooth curve is common sense but not necessarily demanded
by the measurements. One can only asses the error bars in the gradient lengths
already assuming that the working hypothesis of a smooth curve is justified.The
values are o.k. within 20% (educated guess). The largest error is in the £ x B
shearing rate. This quantity contains second order derivatives of the profiles, and the
poloidal rotation velocity which is not determined very well. Happily this quantity
is dominated by the toroidal rotation velocity (around s = 0.6) which is determined
with some accuracy. Nevertheless, the estimated error can be as large as 40%. All
the error bars given above are rather rough estimates. To some extent, they are

connected with a belief rather than solid physics.

4.3.3 Spectrum

We can now show how the E x B flows affect the AUG spectrum. In Fig.4.14 we
present the complete spectrum of the AUG case, with trapped electrons, for three
increasing values of Mach number. It is clear that the number of modes is decreasing
with increasing Mach number, as is the maximum growth rate. It must be stressed
that in this particular case, the most instable mode is not always the same. This is
due to the fact that the various unstable modes do not have the same radial profile
and thus do not see the same part of the E x B profile. This results in Doppler
shifts of various amplitudes, and the stabilizing mechanisms, whether the value of

flow or its first derivative, are different for each mode.

In Fig.4.15 we present the most unstable mode in the poloidal plane, with and
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Figure 4.14: Complete spectrum of the microinstabilities of the AUG case, for various
value of Mach number: circles are global results without flow, while squares and
triangles represent increasing values of Mach number.
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Figure 4.15: Most unstable mode of the AUG spectrum, without and with £ x B
flow.
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case. Therefore our previous argument to explain stabilization seems no longer
valid. First, let us remember that we are not observing the same mode in the two
pictures: each mode is the most unstable for the given Mach number, but these are
two different modes. Thus, it might be that for one given mode the 6, region changes,
but that the most unstable mode has it always close to 8 ~ 0. Second, we must
remember that the modes we are studying are not pure ITG modes, as if we had not
included the trapped electrons, the spectrum would have been stable. Therefore,
as E' x B flows have been neglected in the construction of the trapped electron
contribution (due to the mass ratio), it is by no means simple to understand how
they affect the present modes. To be clear, the E'x B flows affect only the passing ions
contribution to the mode, but without the trapped electron contribution there would
be no mode. But the passing ions contribution is also essential to the mode, as it is
not a TEM mode, but an I'TG mode destabilized by trapped electrons. Therefore,
it might well be possible that the poloidal structure of the mode is dictated by the
trapped electrons, thus barely affected by E x B flows. But E x B flows still stabilize
the mode, because they reduce the passing ions contribution, which is also essential
to the existence of the mode.

Let us now come to the comparison with the experimental observations. With
our results we seem to observe that for a theoretical value of Mach number close to
0.03:

Machy = 0.03 (4.2)

we will have completely stabilized the AUG spectrum. Now comes the question of
how large is the experimental value of Mach number. It turns out that the measured
Mach number is:

Machg = 0.0635 (4.3)

As a first comment, I would like to say that it was already very good news to
discover that the orders of magnitude were right. Then, I would stress another

point: the theoretical value of Mach number represents the value by which the
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linear microinstabilities should be stabilized, it does not represent a maximum on the
value of Mach number. What I mean is that it would have been more annoying if the
theoretical value had been larger than the experimental one, as then experimentalists
would claim an ITB where theorists would see none. But in our case, there is no
argument why the Mach number could not be larger than the minimal stabilization
value, represented by the theoretical value. Moreover, there are many limitations of
both theory and experiment.

Theory is limited by:

unrealistic shape of the equilibrium, which strictly speaking is not even an

MHD equilibrium

only linear calculations

no electromagnetic effects

the other (less obvious) approximations used in the code
Experimental values must be taken with care:

e an error bar of 20% on the ion temperature gradient

e an error bar of 40% on the E x B flows

These limitations seem more than sufficient as explanations. They even are so
strong, that there is a valid reason to doubt that our results are due to good physics.
The only way to address this doubt would be to simulate more experimental shots,

but this was not possible in the available time.

4.4 Conclusion

The first global and kinetic study of E x B flows on the linear stability of ITG modes

has been presented. It shows that:

e E x B flows have a very strong stabilizing effect on toroidal ITG modes.
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e Only the intensity of the flow and its first derivative have an effect.

e For instance, the second derivative of flow (or curvature of flow) does not have

any relevant effect.
e Negative magnetic shear does not enhance the effect of E x B flows.

e On the contrary, modes with positive magnetic shear are the most sensitive to

E x B flows.

e Computed values are in qualitative and quantitative agreement with the only

simulated experiment.

This closes the results part of this PhD. There remains a lot of work to be done
with this model: the next step already underway is the inclusion of trapped ions
with E x B flows. Then the most important step will be inclusion of electromagnetic
effects in the model and this is already in construction.

I think we can now safely proceed to the general conclusion of the work.
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Chapter 5

Conclusion

We have now reached the end of this four years work. Although this book is already
a summary of my work, I will now summarize this summary. So, we undertook
the study of the effect of E x B flows on linear global microinstabilities. The main
features of this work are: a global resolution, which is needed to study this effect, a
spectral approach and ad-hoc equilibrium quantities.

The main result is that the simple value of the radial electric field is at least as
important as the value of its first derivative. This is a simple linear phenolmenon
which is quite easily understood: toroidal ITG modes need unfavorable magnetic
curvature to exist and the simple value of the radial electric field induces a poloidal
rotation of the plasma and of the mode, thus removing it from its main drive region.

Nevertheless, the usually summoned explanation for stabilization is not invali-
dated: the shear of the radial electric field produces a decorrelation of the mode
structure, thus leading to stabilization. But this mechanism is mainly non-linear,
while our result is simply linear. However, it was nice to find a simple new linear
mechanism for stabilization.

Other results include a study of E' x B flows interaction with negative magnetic
shear, which was not very conclusive. It showed that in our simple model there
is no miraculous effect of a negative magnetic shear. Eventually, we conducted a
comparison with the Asdex Upgrade tokamak in Garching, which produced a good

agreement, although I do have some difficulties in trusting this too much, as our
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model is far too simple to produce any meaningful description of an experiment.
Not to mention the experimental error bars on absolutely critical parameters for our
code.

I would like now to say a word about what remains to be done with this code.
First of all, study of the effect of E x B flows on trapped ion modes. The equations
are ready since a long time and the results almost made it to this PhD, but not
quite ! This will be produced very soon. Then, a very fundamental part of the
physics is missing for the moment: the electromagnetic effects. These effects are
vital, especially for any meaningful comparison with an experiment. Their inclusion
in our model is currently underway by another PhD student. Finally, in a more
general perspective, there remain many open questions about E x B flows: how are
generated the strong radial electric fields ? Does the system non-linearly saturate to
a new steady state 7 And if yes, how is this state different ? But this is altogether

another story.
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