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ABSTRACT 

A systematic procedure to identify the plasma equilibrium response to the poloidal field coil 

voltages has been applied to the JT-60U tokamak. The required response was predicted with a 

high accuracy by a state space model derived from first principles. The ab initio derivation of 

linearised plasma equilibrium response models is re-examined using an approach standard in 

analytical mechanics. A symmetric formulation is naturally obtained, removing a previous 

weakness in such models. RZIP, a rigid current distribution model, is re-derived using this 

approach and is compared with the new experimental plasma equilibrium response data 

obtained from Ohmic and NBI discharges in the JT-60U tokamak. In order to remove any bias 

from the comparison between modelled and measured plasma responses, the electromagnetic 

response model without plasma was first carefully tuned against experimental data, using a 

parametric approach, for which purpose different cost functions for quantifying model 

agreement were explored. This approach additionally provides new indications of the accuracy 

to which various plasma parameters are known, and to the ordering of physical effects. Having 

taken these precautions when tuning the plasmaless model, an empirical estimate of the plasma 

self-inductance, the plasma resistance and its radial derivative could be established and 

compared with initial assumptions. Off-line tuning of the JT-60U controller is presented as an 

example of the improvements which might be obtained by using such a model of the plasma 

equilibrium response. 
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1. INTRODUCTION 

The design and operation of next generation tokamaks will require accurate models of the 

dynamic plasma equilibrium response to poloidal field (PF) coil voltages. These models are 

needed to predict the behaviour during all types of operation and have particular relevance to 

the design of an effective feedback control system. The plasma equilibrium control system for a 

tokamak fusion reactor will have to be operated within stringent tolerances (for instance the 

plasma boundary should be constrained to within a few centimetres) and must be able to avoid 

current saturation of the superconducting PF coils and over-actuation of the PF coil power 

supplies. Typically, the electromagnetic part of the control system will act to regulate a set of 

plasma equilibrium parameters at pre-set values whilst controlling the instability of the vertical 

position. Modern model-based control methodologies can best address such issues. 

There are many methods of constructing linearised plasma equilibrium models in a form 

suitable for feedback control design, typified by the CREATE-L deformable plasma response 

model [1], the DPM deformable plasma response model [2] and the RZIP rigid current 

displacement model [3]. Until recently there was no way of deciding whether these models are 

sufficiently accurate. The main restriction to the critical analysis of the suitability of a model 

was that the experiments always had to be performed in the presence of the stabilising vertical 

position control loop. In practice this meant that the predicted behaviour of the model was 

significantly influenced by the control loop and information was partly concealed [4, 5]. 

In order to remedy the problem of only having access to closed loop data for comparison with 

models, a series of identification experiments was performed on the Tokamak à Configuration 

Variable (TCV) [3, 6]. By taking data for the system identification inside the control loop, an 

open-loop model of TCV (i.e. a model of the TCV dynamic response without the control loop) 

was created purely from closed-loop experimental data. 

The identified open-loop model was compared with two tokamak models, CREATE-L and 

RZIP. The main conclusion of this work on TCV was that the models tested were both 

reasonably accurate in predicting the dynamic response of TCV. 

This work left several outstanding issues unresolved which fall into four broad categories, all 

addressed by this present paper: 

• Most linearised tokamak models do not consider both energy and flux conservation in a 

consistent manner; 
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• TCV is a relatively small tokamak with a plasma temperature of about 1keV in an 

Ohmically heated mode; there may be higher-temperature phenomena not apparent in 

TCV which become important for larger machines, such as large edge currents; 

• The method used to quantify model accuracy was ad hoc and as such was difficult to 

justify; 

• Previous identification experiments did not discuss tuning the electromagnetic model in 

the case of disagreement. 

A new formulation of the RZIP rigid current displacement model, created in order to address 

the issues of flux and energy conservation, is outlined in Section 2 and derived in detail in 

Appendix A. The new method of derivation by considering the Lagrangian of the system is 

standard in analytical mechanics and incorporates resistive effects in a simple and natural way, 

yet makes minimal assumptions. The resulting model supercedes the previously derived RZIP 

model [3]. All of the previously used linear tokamak models can, in principle, be derived using 

the Lagrangian method, and so can be expressed in the same framework. The existence of a 

general form for all models that satisfy a few basic assumptions, supports the grey-box 

modelling approach outlined in previous work [3]. By grey-box modelling we refer to an 

approach in which a priori knowledge of a system is used to define a certain structure, so that 

experimental information is used to refine the knowledge of parameters in the chosen model 

structure. In using this grey-box modelling technique it was assumed that substantial parts of 

the model description are accurate, especially those parts which are based on the 

electromagnetic description of the tokamak. Consequently, only those few values in the model 

which are dominated by the plasma behaviour were chosen for optimisation.  

The possibility that the positive result on TCV was limited to a relatively small and cool plasma 

has been eliminated by a series of identification experiments carried out on the JT-60U 

tokamak [7]. This tokamak has a much larger plasma cross-section (4m2 vs. 0.5m2), a much 

larger plasma current (2.7MA vs. 1MA) and a higher plasma energy content than TCV. 

Apart from its size, the JT-60U PF system differs from TCV in three significant respects. In 

normal plasma operation the current in the PF coils is controlled, not the voltage. The 43 coils 

present in the JT-60U PF coil system are connected as 5 independently powered, composite 

coil-sets, each designed to control a different plasma equilibrium property. Finally, the time-

scale of the vertical instability is much longer, of order one second as opposed to a few tens of 
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milliseconds for the reported TCV experiments. The JT-60U tokamak and the generation of its 

plasmaless (i.e. purely electromagnetic) RZIP model are detailed in Section 3.   

The identification experiments were carried out in two phases, experiments without plasma and 

experiments with plasma. The design and application of the plasmaless experiment are 

described in Section 4.  

An advance over previous work is an attempt to fine-tune the plasmaless model to agree better 

with the available experimental data. The method of improving the basic model by using the 

plasmaless results, is described in Section 5. The agreement is quantified by defining a cost-

function which compares the difference between the model predictions and the experimental 

data. The final method described in this paper was arrived at after an exhaustive iterative 

process, and is the result of a judgement of the best compromise between functionality and 

methodological purity. 

The plasma experiments are detailed in Section 6. These experiments were carried out with 

Ohmically heated discharges as well as discharges heated by additional Neutral Beam Injection, 

allowing generalisation of the results from TCV to a more reactor-relevant plasma. Section 7 

presents the grey-box adjustment of the plasma model, using the same method as Section 5. 

In Section 8 we demonstrate that the grey-box RZIP model accurately reproduces the closed-

loop behaviour of JT-60U by comparison with experiment. As an illustration of the benefits of 

this model it is shown that a controller tuned with this model can counteract undesirable closed 

loop behaviour, specifically some observed coil-set cross couplings. Section 9 discusses the 

implications of our results for assessing the model uncertainty. We conclude in Section 10. 
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2. MODELLING 

Low-order accurate models of the dynamic response of tokamak equilibria are needed for the 

design of multi-variable model-based tokamak controllers. By rigorously defining a simple 

lumped-parameter linear tokamak equilibrium model from a clear set of assumptions, we 

facilitate comparisons with data from open-loop system identification experiments. Present 

low-order tokamak modelling methods often rely on equations separately derived using 

assumptions that are not necessarily consistent. As a result, these models do not explicitly 

conserve energy or flux. To address this we derive a tokamak model from a minimal set of 

assumptions within a Langrangian formalism, obtaining a model that conserves flux, 

momentum and energy. The details of this derivation are presented in Appendix A. The 

resulting equations are found to have the same structure as those derived in the previous work, 

given the same choice of the total plasma current, the tokamak vessel and coil currents, and the 

plasma vertical and radial position as system states. 

We make a small number of initial assumptions: 

• axisymmetric geometry, 

• the plasma has negligible mass, and so is in a permanent equilibrium state, 

• the system may be perturbed about that equilibrium, 

• poloidal currents in the plasma and structure may be ignored. 

The linearised structure circuit equation, plasma circuit equation, and plasma force balance 

equations can be represented in the following form: 

 uxx =Ρ+Μ &  (2.1) 

where x is the state vector 
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u is the vector of inputs (coil voltages), and Μ and Ρ are square coefficient matrices. pI  is the 

total plasma current, z and R are the plasma vertical and radial position respectively, and sI  is 

the vector of structure currents TT
passive

T
coils II ][  where we have split the structure into active 

(coils that can have an applied voltage), and passive (the vacuum vessel, baffle etc.). The 
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vacuum vessel is described by a set of rectangular current-carrying elements. The full form of 

equation (2.1) is given in equation (A.12). The superscript (0) refers to the equilibrium value 

about which the system is linearised so that 0=x  is the equilibrium state. 

The methodology used to derive equation (A.12) does not assume the rigid current 

displacement of the plasma. However, a fully deformable model may have further states 

resulting in different dynamics. These may affect the growth rate and may or may not be 

observable from outside the plasma. Such a model is expressed by equation (A.12) by including 

such effects through the quantity WT. These equations have a comparable structure to the 

equations used in previous work [3], but the two coefficient matrices Μ and Ρ are now 

symmetric. 

Equation (2.1) can be expressed in state-space form: 

 
DuCxy

BuAxx

+=
+=&

. 

Here, y is the vector of outputs. Considering the magnetic field probe and flux probe outputs as 

functions of the currents in the tokamak provides the output matrix C and feed-forward matrix 

D . Substituting (2.1) into the state-space equation gives the matrix of coefficients A , and the 

control matrix B ; 
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As can be seen in equation (A.12), the bottom right-hand four terms of Μ and three terms of Ρ 

contain the only purely plasma response terms. All other terms are dominated by the fixed 

structure of the tokamak.  

From a minimal set of assumptions we have derived a linear, time invariant model in state-

space form. All linearised tokamak models with the same choice of states can be expressed in 

this structural form. Within this formalism we can derive all models that assume toroidal 

symmetry, neglect poloidal currents and perturb about an MHD equilibrium. 

Further to these general assumptions, the RZIP variant of the model also makes the rigid 

current displacement assumption, namely that the normalised current profile is independent of 

movements in the R and z directions and of changes in the value of the plasma current. This 

allows simple and direct calculation of the plasma mutual inductance and self-inductance 

derivatives but explicitly excludes deformation of the plasma equilibrium.  
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Presented later in this paper is an investigation of the effect of varying different sets of 

coefficients in the circuit equations, as in previous work [3]. 
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3. THE NOMINAL MODEL OF JT-60U 

The JT-60U tokamak is the second largest operational tokamak with major radius 3.2m, minor 

radius 0.95m, toroidal magnetic field 4.5T, plasma current 2.7MA. Figure 1 shows a poloidal 

cross-section of the tokamak and illustrates the position of the poloidal field (PF) coils, as well 

as the outline of the vacuum vessel and limiter. There are 43 separate PF coils connected in 

series as five independently powered PF coil-sets, labelled differently on the figure. They 

provide poloidal flux (F coil-set), vertical field (V coil-set), horizontal field (H coil-set), 

divertor field (D coil-set) and a field to control the plasma cross-sectional triangularity (T coil-

set). Most of the 5 coil-sets are only weakly coupled to each other but some produce a net 

poloidal flux and are therefore magnetically coupled by construction. The plasma elongation is 

controlled indirectly in JT-60U by a combination of PF coil currents. Figure 1 indicates the 

vacuum flux contours produced by a constant current in the T coil-set (responsible for 

controlling the plasma triangularity). The plasma equilibrium surfaces are also shown for one of 

the discharges used in this work (E35023). 

JT-60U is equipped with a full set of magnetic diagnostics, also indicated in Fig. 1. Fifteen flux 

loops are positioned on the vacuum vessel. 19 tangential poloidal field probes are positioned 

close to the vacuum vessel or the divertor baffle plate and 18 normal poloidal field probes are 

similarly located. 

The JT-60U control system is non-linear and operates by controlling 5 control parameters with 

the 5 coil-sets. These controlled parameters are chosen to be the vertical plasma position (Z), 

the radial plasma position (R), the triangularity (δ), the plasma current (Ip) and the height of 

the X-point from the divertor (Xp) and they are primarily controlled by the H, V, T, F and D 

coil-sets respectively. These parameters are estimated in real time by a set of non-linear 

expressions optimised by regression from the input-output examples in an equilibrium database 

[7]. 

The basic electromagnetic model of JT-60U was generated from information taken from 

construction blueprints and other machine design descriptions.  
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4. PLASMALESS EXPERIMENTS 

4.1. Low frequency calibration 

The first stage in producing the validated model of JT-60U is to ensure that the purely 

electromagnetic description (or plasmaless model) is accurate. As such, an initial calibration 

was performed to check the DC characteristics of the model against the JT-60U data. 

The data used for this were pre-existing plasmaless pulses, in which each PF coil-set current is 

ramped up, held constant and then ramped down, in turn. The effective PF coil resistances 

were obtained from the flat-top currents and the steady voltages, while the effective inductance 

was obtained from the ramp-up and ramp-down of the coil-set currents. The values obtained 

from this data were slightly different from the nominal values of the model, mostly because the 

connection leads to the power supplies are not accounted for in the nominal model. This 

approach to correcting the nominal values is sensitive to small offsets in the voltage 

measurements which can have a significant effect on the estimated resistance. However, these 

pulses do allow checking of the flux-loop and poloidal field probe positions under conditions 

where the currents in the passive structures are negligible. The flux loop responses agreed with 

the predicted values to better than 1% and the poloidal field probe disagreement had a 

distribution width of about 1.5%. A small number of probes were well outside this normal 

distribution of agreement and these were not used in our subsequent analysis. This check 

validates the excellent consistency between the PF current and diagnostic calibrations, but not 

the dynamic input-output responses of the electromagnetic model. 

The vacuum vessel loop resistance was fixed at 160µΩ, which was deduced from prior 

estimates made on JT-60U. 

4.2. Identification experiment design 

The next step was to proceed with the system identification of the plasmaless model of JT-

60U. This allows checking of the dynamic response of the electromagnetic model, including the 

interactions between the PF coil-sets and the vacuum vessel. The nominal model was used to 

predict the transfer function of JT-60U and it was decided that the frequency range of interest 

would be about 1-50 Hz, although it was also necessary to consider the upper resolution limit 

of the diagnostic systems. The 5 frequencies chosen as suitable were 1.25Hz, 3.2Hz, 7.5Hz, 

19Hz and 43Hz, selected so that none have common low harmonics. A measurement is defined 

by the stimulation of each of the 5 coil-sets with a sinusoidal voltage signal. During a single 

measurement each coil was simultaneously excited by a different one of the 5 different 
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frequencies and no coil was stimulated by the same frequency twice. The frequency used at 

each coil was then changed for the next measurement but still taken from the same set of 

frequencies. A preliminary closed-loop model was used to estimate the response to the 

command currents so that the power supply voltage demand limits were respected. Each 

measurement lasted about one second and it was possible to perform 3 experiments in a single 

pulse, completing the 5 measurements required in two pulses.  

Assuming a linear response, analysis of the signals allows determination of the contribution of 

each coil-set to each diagnostic signal (i.e. a frequency of 1.25Hz in a diagnostic signal must be 

due to the 1.25Hz components in the PF coils).  

The data analysis follows the method described in [6]. The frequency components in each 

signal are estimated by a least squares fit of the data to a basis set of sine and cosine waves at 

the five experimental frequencies, plus first- and zero-order terms to remove any measurement 

drifts or offsets. This fit proves extremely accurate with minimal noise or harmonics left as a 

residual. From the sine and cosine coefficients the magnitude and phase of the signal at each 

frequency are calculated and define a complex amplitude for each frequency component of the 

signal. For each frequency ωn, we define a complex column vector of inputs u(ωn) as the vector 

of the complex amplitudes of the voltages (inputs) applied to each of the 5 coil-sets. Similarly 

we define a complex column vector of all of the diagnostic signal responses (outputs), y(ωn).  

The measurements are grouped together such that U(ωn)=[u1(ωn) u2(ωn) … uk(ωn)], where the 

subscript on u refers to each of the k separate measurements. We similarly define an output 

matrix Y(ωn). The transfer function G(ωn) is defined by the input-output mapping, Y(ωn) = 

G(ωn)U(ωn). We estimate the plant transfer function G(ωn) through the simple relationship 

G(ωn) = Y(ωn)U
-1(ωn).       (4.1) 

An important indicator of the quality of the experiment is the condition number of the matrix 

U(ωn), since the matrix must be inverted. 

The signal to noise ratio of the diagnostic responses was excellent, due to the continuous 

excitation of the system and the pulse length available on JT-60U. The amplitude of the 

response at harmonics of the driven frequencies and at intermediate frequencies was verified to 

be negligible compared with the amplitudes at the driven frequencies, confirming the excellent 

approximation to linearity of the response and the adequacy of the signal to noise ratio. The 

result of these first experiments is a set of transfer functions (the complex responses of 
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amplitude and phase) at the five frequencies, between the five PF coil-set voltages and all other 

signals. RZIP models these responses, so model and experiment can be directly compared. 
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5. OPTIMISATION OF THE PLASMALESS MODEL 

The results of the experiment and the predictions from RZIP were found to be in excellent but 

imperfect agreement. We therefore attempted to use the information in the experiments to 

improve the fit of the model to the data. This was done by quantifying the disagreement 

between the model and the data using a cost function and changing certain model parameters 

to minimise the disagreement. 

Another optimisation approach had been developed on TCV [8] which applied techniques of 

triangulation to find the globally minimal set of changes to all the physical properties of the 

TCV model to reduce the discrepancies of the measurements at very low frequency. This was 

not considered possible on JT-60U because the coil-sets contain multiple coils and allowing all 

coils, diagnostics and gains to be variable would lead to an ill-defined optimum with only five 

different voltage inputs. Although the alternative TCV approach led to a simple perturbation of 

the device geometry (i.e. the machine implied by the modifications is still a tokamak), the 

method we have used on JT-60U does not necessarily lead to a physically consistent solution. 

However the very small modifications made, principally to the PF coil-set parameters, make us 

confident that the final model is extremely close to the real device. Note also that we have 

chosen not to modify the positions of the flux-loops and poloidal field probes, since these had 

been established very precisely and since the DC calibration already showed satisfactory 

agreement. 

5.1. Choice of cost function 

There is no universally applicable cost function because the data are noisy and the best cost 

function for model optimisation for control purposes may be less suitable for investigation of  

the physical assumptions of the model. 

There are two sets of data that can be used for comparison with the model (the transfer 

functions and the direct diagnostic measurements) and two approaches to quantifying the 

model-data error (the maximum model error, which we refer to as the H∞ model error, and the 

root mean square of the error, referred to as the χ2 error). The input to the cost function is the 

set of differences (ε) between the experimental data and the model predictions. The differences 

must be normalised to take into consideration different quantities and orders of magnitude in 

the measurements. Quantifying the agreement in terms of the χ2  is a popular metric while 

minimising the H∞ model error has a specific link to robust controller design. The permutations 

permit four possible approaches, described in more detail in Appendix B. Once this choice of 
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cost functions is made, the optimisation can be handled in several ways. In principle, it can be 

fully automated, but we found that many parameters showed almost no influence on the cost 

function. Rather than make large changes to these parameters to reduce the cost function by 

small amounts, we chose to leave the model parameters close to their nominal values unless 

there were clear indications to modify the values. In this way the relative ordering of the 

physical effects was respected, and the model parameters remained at their nominal values 

unless there was significant reason to change them. 

5.2. Single parameter scans of the plasmaless data 

A single parameter scan of selected electromagnetic model parameters was made in a specific 

order and those parameters which appeared to generate the largest improvement to the cost 

functions were manually modified (a visual gradient descent). The order selected was:  

• the self-inductances of the PF coil-sets 

• the PF coil resistances 

• the mutual inductances of the PF coil-sets 

• the vessel eigenmode description. 

Figure 2 shows the single parameter scans of the four cost functions for all the elements of the 

5x5 PF coil-set mutual inductance matrix (maintaining symmetry) and for each of the five PF 

coil-set resistances. The self-inductances and resistances were varied by ±12% of their central 

values. The mutual inductances were varied by ±0.12 in the coupling coefficient 

jjii

ij
ij MM

M
k = . The central values in the figure are those of the tuned model and so the 

cost functions are fairly centred around zero variation. Simply projecting the single parameter 

scans was justified by inspecting several parameter pairs and finding little correlation in the 

error surface, as well as converging to the same solution after different attempts. This 

complicated figure demonstrates three important features which we will consider in turn:  

• There is a considerable difference in the sensitivity of the four cost functions to variations 

in the different parameters, 

• there is a considerable difference in the behaviour of the cost functions themselves, creating 

difficulty defining a unique optimum, 
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• the level of consistency between cost functions for the inductance calculations is greater 

than that for the resistances. 

The values of the minima for the two χ2 cost functions are consistent to within 1 or 2% for all 

of the inductance matrix elements. This 1-2% precision is impressive and would be difficult to 

obtain using other techniques. The H∞ cost functions derived from the measurements (blue 'o') 

and from the transfer functions (green diamonds) do not always agree with each other so well, 

do not always agree with the χ2 minima and are much broader than the χ2 minima for some 

cases. This difference of behaviour led to some confusion during the initial optimisation. This is 

now understood in terms of the presence of outliers in the set of model-experiment differences. 

The H∞ cost function is dominated by the worst agreement between the model and the data. 

Using this cost function to optimise the model will necessarily move the model to minimise this 

maximum difference and the optimum is therefore dominated by any outliers, whether valid or 

invalid. The minimum is also less well defined since making the greatest number of points 

slightly better or slightly worse has no effect on this cost function. As such, this cost function is 

excessively conservative for our physics purpose. The χ2 cost functions are also sensitive to the 

outliers, but their effect is minimised by the large number of data points showing good 

agreement. The broader H∞ cost function also implies that the exact tuning of the model is less 

critical in the presence of statistical disturbances. 

The cost function based on the direct measurements is better behaved than that based on the 

transfer function. The latter is found via an inversion of the voltage matrix U in Equation (4.1), 

which leads us to conclude that an experiment designed with a diagonal matrix U should show 

no difference between the two cost functions and would be optimal. Our result implies that if 

the matrix U is not diagonal, then the effect of outliers on G will tend to be worsened. In the 

present plasmaless experiment, the condition numbers of the 5x5 U(ωn) matrices for the five 

driving frequencies were 8.7, 8.1, 5.5, 7, 16, in order of increasing frequency. The coupling 

between the coils was due to the presence of current feedback control loops on each PF coil-

set. These acted to oppose the currents induced at the frequency of the voltages applied to 

other coil-sets.  

When varying the parameters to optimise the model, we chose to centre the χ2 cost functions. 

The tuned model is as such a physics-oriented model on the basis of the previous argument, 

searching for an optimum which represents the whole data set. Figure 2 illustrates that the H∞ 

model is not identical to this best fit model. For most parameters, the difference is small, but 
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for some it is significant. The observation that the tuning required to optimise the χ2 cost 

function is much closer to the nominal model also suggests that the H∞ tuning is being biased 

by inadequacies in the data. We conclude that the choice of the best model for physics 

purposes should be based on the χ2 cost function, but that the resulting model is not necessarily 

the best model for robust controller design. This result also implies that the experiments 

required to derive a best worst-case error model are in fact more delicate to perform, since any 

measurement with excessive noise will punish that cost function but will be averaged over all 

available measurements in the ‘physics’ model. When deriving an optimal model for controller 

design, the whole set of available data should not be used. Rather, only the input-output 

transfer functions to the controlled variables should be considered, since only these particular 

transfer functions are important to the controller. 

The experiments performed did not include frequency components low enough to allow the 

detailed resolution of the coil resistances, resulting in a difference in precision between the Μ-

matrix elements and the Ρ-matrix elements. The coils behaved almost inductively for all chosen 

frequencies, leading to flat minima for the Ρ-matrix elements, even with the 10-times expanded 

vertical scale of the resistance cost functions in Fig. 2. In retrospect, for identification 

purposes, the frequency range should have covered a lower range. However the frequencies 

covered are those most important for controller design. 

5.3. Results of the optimisation 

It was found that the nominal model fits the data better if the coil-set self inductances are 

modified by +23%, -4%, +2%, +1% and +24% for PF coil-sets D, F, T, V and H respectively. 

The two large positive corrections are understood as correcting for significant external coil 

impedances in the cables, power supplies and connections for the D and H-coils and the 

remaining corrections can be attributed to small errors in the DC calibration.  

The optimal PF coil-set resistances were found to be quite different from the values calculated 

by the DC calibration. However as mentioned before, the DC results were sensitive to offsets 

in voltage measurements and the AC tuning shows a flat minimum. 

Only some values in the PF coil-set mutual inductance matrix, involving the H coil-set, needed 

to be adjusted to show an improved fit to the experimental data as most of the coil-sets are 

only weakly coupled by design. The largest change to a coupling coefficient was 2.7%, 

between the D and H coils. Those mutual inductances were small in the nominal model and so 
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large relative modifications are not unreasonable. This series of successive tuning of three sets 

of parameters did not have to be iterated. 

5.4. Finer Tuning 

We next checked whether the nominal poloidal probe angles could be tuned. The errors 

between model and experiment were checked for the lowest frequency (presumably least 

perturbed by the shell current uncertainties) as the angle of the probes were moved from their 

nominal values to minimise the error according to the χ2 metric. 13 of the 39 probes used were 

uncorrected. 14 probes were corrected by 1-2 degrees, 11 probes were corrected by 3-5 

degrees and one probe was adjusted by 8 degrees. Only those probes obviously perpendicular 

to the field of a particular PF coil-set were considered for correction, since for this scenario the 

correction is the least sensitive to gain errors.   

Finally, the vessel eigenmodes were corrected to take into account any differences between the 

nominal filament model and the physical vacuum vessel. The approach was the same as for the 

PF coil impedances and the adjustments to the inductance and resistance were small, ranging 

from -5% to +10%. 

5.5. Quality of the model 

The experimental results comprise the set of the 5 frequency responses of 57 validated signals 

(15 fluxes, 19 tangential magnetic field probes, 18 normal magnetic field probes and 5 PF coil-

set currents) for each of the 5 PF coil-set voltage inputs. Each response has an amplitude and a 

phase with respect to the driving voltage. Figure 3 shows a representative set of four 

experimental responses (+) and the modelled responses using the nominal model (black solid 

line), the model with the PF coil-set impedances adjusted (blue dashed line) and with the 

poloidal probe angles adjusted and the vessel eigenmodes adjusted (red dotted line).  

The top left response (the response of the tangential probe #3 to the T coil-set voltage) is the 

most common quality of result (160 out of a total of 285 responses), with the models barely 

differing from each other and in good agreement with the data by eye.  

The top right response (tangential probe #4 to T coil-set) shows a case of poor agreement (12 

out of 285 responses) in which the experimental data lie relatively far from the nominal and 

adjusted models, although the smoothness of the experimental data suggests that the measured 

responses are more accurate than the difference with respect to the model. These responses 

were considered as suspect and were rejected from the model tuning. More information would 

be required to identify the probable cause of these 12 systematic disagreements. 
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The lower left response (tangential probe #5 to D coil-set) shows an improvement by eye to 

the agreement when adjusting the PF coil-set parameters and was found in 103 out of 285 

cases.  

Finally, the lower right response (flux loop #13 to F coil-set) shows an improvement when the 

vessel eigenmodes are adjusted, representing only 10 out of the 285 cases.  

We conclude that by eye and in terms of the cost functions, over 30% of the transfer functions 

are improved by this optimisation approach, which calibrates the external impedances of the PF 

coil-set. The modifications to the vessel eigenmodes gave little visible improvement. 

Following this model calibration or model tuning method, we have obtained our optimised 

plasmaless electromagnetic model. 

5.6. Possible reasons for discrepancies between the model and the data 

The basic electromagnetic model of JT-60U was generated from the nominal parameters. Good 

agreement was obtained when initially comparing our experimental plasma responses with our 

modelling. However, some specific inconsistencies beyond the apparent error distribution led 

us to re-examine the assumptions made in the electromagnetic model. 

One possible correction involves the assumption that a current would be uniformly distributed 

across the cross-section of a coil. The JT-60U PF coils are constructed from horizontal stacks 

of plates which are the width of the coil and there are non-centred cooling pipes in the coils. 

This implies that the current centroid is not necessarily centred in the coil cross-section. The 

nominal model was adjusted to take account of these effects. The skin effect in the PF 

conductors was also considered but discarded as small. If present it would have had a tendency 

to make the apparent coil inductance a function of the driving frequency, which was not found. 

The coupling of the PF coils to any metallic structures other than the vacuum vessel was also 

ignored. Other candidates for modifying the nominal electromagnetic model are the metallic 

casing of the toroidal field coils and any non-axisymmetric structures near the magnetic probes. 

Other small corrections can be attributed to three dimensional eddy currents affecting the 

localised pick-up probes, to the distribution of the calibration gains, to the finite size of the 

magnetic probes and so on. All these effects can be lumped together as model imperfections 

since the model does not perfectly represent the data. The tuned plasmaless model is therefore 

one which represents reality better than the nominal model. If the plasmaless model is not 

tuned, we might be tempted to modify plasma response terms to compensate for these effects 

and draw incorrect conclusions. 
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6. EXPERIMENTS WITH PLASMA 

This section describes the measurement of the linearised plasma equilibrium response of two 

particular JT-60U equilibria with and without additional heating.  

6.1. Ohmically heated plasma 

The magnetic flux surfaces of one Ohmic equilibrium are illustrated in Figure 1 (black lines). 

The plasma conditions were: Ip=1.2MA, κ=1.33, δ=0.28, q95=3.9, β=0.06, li=1.2, Lp=5.54µH 

and ne=2x1019m-3.  The identification frequencies were chosen to be 3, 7, 16, 35 and 80Hz. We 

increased the frequencies from those used in the plasmaless experiment because we expected 

the region of interest of the transfer function in the presence of a plasma to be at higher 

frequencies and we had previously found adequate signal-to-noise at 43Hz. However, as 

mentioned in Section 5, the frequency range would ideally have been extended lower as well. 

Rather than modulate the power supply demand signals, the reference signals for the five 

control parameters used on JT-60U were modulated. These parameters are: the plasma current 

(Ip), the major radius (R), the vertical position (Z), the triangularity (δ) and the X-point height 

(Xp). The amplitudes of the control parameter variations were chosen to provide a significant 

signal on the measurements, without excessively perturbing the operation, and chosen to 

reduce with frequency to avoid excessive voltage demand signals. Typical values for the 

control parameter excursions were: 10-50kA for Ip, 2-5cm for R, 2-5cm for Z, 0.05-0.1 for δ 

and 3-5cm for Xp. These parameters are estimated in real time by a set of non-linear 

expressions optimised by regression from an equilibrium database. For this work, during which 

the plasma was modulated in quasi-stationary conditions, a locally linearised form of these 

estimator expressions was used. This linearised estimator was successfully validated against the 

experimental values. The data required were obtained in JT-60U discharges E35009 and 

E35023. 

For the five frequencies, the condition numbers of the five U(ωn) matrices were 31, 21, 9.7, 13, 

44, somewhat higher than for the plasmaless experiments but assumed to be sufficiently low to 

avoid excessive noise propagation in the inversion. 

The resulting experimental response measurement matrix G(ωn) is again large, including the 

complex response of all the magnetic probes, flux loops, poloidal currents and the linearised 

estimators of the control parameters, a total of 62 variables. These responses can be directly 

compared with the responses predicted by different models, as in the plasmaless case. 
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6.2. NBI heated plasma 

Two more sets of experiments were carried out in the presence of 12MW of Neutral Beam 

Injection heating (discharges E35561, E35574). The aim was to determine the effects of 

decreasing the edge resistance of the plasma and possibly increasing the magnitude of the 

currents driven by the control transients. The plasma equilibrium was similar (Ip=1.19MA, 

q95=2.9, κ=1.44, δ=0.23, li=1.01, βp=0.41, Lp=5.34µH) and the experimental technique was the 

same. The increase in the electron temperature at the edge was smaller than hoped for since the 

discharge remained in L-mode with only Te=2.5keV on axis, although the value of βp was 

significantly greater. The result cannot therefore be considered definitive concerning the 

importance of edge conductivity. However, the experiments were analysed identically and 

provide substantial confirmation of the results of the purely Ohmic discharge.  
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7. OPTIMISATION OF THE PLASMA MODEL 

In this section the techniques of Section 5 are used to optimise the RZIP plasma model with 

respect to the two JT-60U equilibria described above. 

7.1. Comparison of nominal models and experimental data 

The RZIP models were created for the Ohmic and NBI heated data and compared with the 

experimental responses for the probes. The modelled growth rate of the vertical instability for 

these plasmas is about 3s-1. The PF coils have a significant stabilising influence in JT-60U, since 

the growth rate obtained by only considering the stabilisation by the currents induced in the 

vacuum vessel is about 60s-1. The agreement between the model and the experimental data for 

the 285 transfer functions to the direct measurements can be divided into the 4 classes 

illustrated in Fig. 4. This figure shows the amplitude and phase of the plasmaless data, Ohmic 

data and NBI data, and their respective models generated with the tuned plasmaless model and 

assuming zero plasma resistance. 

In the first case (class A, top left) the experimental data with and without plasma are 

indistinguishable from one another and the model predictions coincide with each other and the 

data. This class of measurement is generally dominated by a particular coil-set current and the 

plasma barely perturbs the measurement. The data will apparently agree well with all plasma 

models, as long as the plasmaless model is accurate. 

In the second case (class B, bottom left), the plasma data and the plasmaless data are very 

different in both amplitude and phase, and the plasma and plasmaless models agree well with 

their respective data. These measurements are sensitive to the plasma model.  

The third category (class C, top right) is one in which the plasmaless model is reasonably close 

to the data, but the plasma model is not as close to the plasma data as in the good cases.  

The fourth category (class D, bottom left) corresponds to data in which the plasmaless data 

and plasma data are similar, as are their respective models, but show serious disagreement. 

These cases are candidates for examining the calibration and geometrical data of the 

diagnostics themselves, or indicate a serious shortcoming of the plasmaless model. The fact 

that only a few of these cases were found, and that they appeared to be obvious exceptions 

leads us to suspect the diagnostic rather than the electromagnetic model of the tokamak. There 

were no data in which the raw measurements differed significantly between the Ohmic and NBI 

plasmas and indeed the Ohmic and NBI models were always relatively close. 
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Inspecting the total data, we can approximately divide all the measurements into these four 

classes, bearing in mind that the transitions are essentially continuous between them. The result 

of this inspection is: 

• Class A : 86 good cases, 6 more noisy cases 

• Class B : 144 good cases, 31 more noisy cases 

• Class C : only 6 cases 

• Class D : only 8 cases 

7.2. Optimising the plasma model 

Next we evaluated the parameter sensitivity of the plasma-related matrix elements of the RZIP 

model for two plasma discharges. We chose to adjust only those transfer functions which had 

been seen by eye to vary significantly in the presence of plasma and which also showed good 

agreement in the plasmaless case. This procedure avoided using the plasma terms in the Μ and 

Ρ matrices to correct any residual insufficiencies in the plasmaless model. We followed the 

same approach as for the plasmaless model and Fig. 5 shows the variation of the two χ2 cost 

functions for the Ohmic discharge after approximate tuning for different plasma-related matrix 

elements of the Μ and Ρ matrices of Equation (A.12). The cost functions are much less well 

defined than in the plasmaless case, demonstrated by the range of the horizontal axis scale 

(relative correction) changing from 0.5 to 1.5 and the reduced variation of the χ2 measure in 

spite of the axis compression. The nominal model modifications made to obtain this figure are 

detailed in Table 1. The subscript z refers to the state z(Ip0), R to R(Ip0), I to Ip, and the PF 

coil name (D, F, T etc.) to the coil current state. So for example ΜII refers to the bottom right 

hand element of the Μ matrix in equation (A.12). 

Table 1: Tuning of the most important plasma-related elements of the RZIP model. 

Matrix elements Significance Nominal value / tuned value 

Μzz Vertical instability coefficient 5.1 10-7 / 5.6 10-7 

ΜRR Radial position coefficient -7.6 10-7 / -9.2 10-7 

ΜII Plasma self-inductance 7.46 10-6 / unchanged 

ΜRI R-Ip coupling 2.0 10-6 / 1.8 10-6 

ΜzI z-Ip coupling 0 / unchanged 

ΜzR R-z coupling 2.4 10-8 / unchanged 
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ΜI, DFTVH Mutual inductances between PF currents 
and plasma  

unchanged 

ΡII Plasma resistance 0.37µΩ / 8.8µΩ 

ΡRI Radial derivative of the plasma resistance 0.15µΩ / 0.03µΩ 

 

The radial field second derivative, Μzz, only had to be slightly corrected, taking the open 

growth rate of this equilibrium from 2.82 seconds for the nominal model to 3.3 seconds for the 

tuned model. The curvature of the cost function implies a localisation of the optimum to better 

than +/-20%. The plasma inductance, ΜII is more precisely determined, +/-3%, and unchanged 

with respect to the nominal model. The radial position parameter, ΜRR, had to be increased by 

about 15%. The z-Ip coupling, ΜzI is predicted to be zero in the model and any non-zero value 

worsened the agreement. The R-z coupling, ΜzR, did not have to be modified. The mutual 

inductances between the PF coil-sets and the plasma current, ΜI, DFTVH, were accurately 

estimated by the model and did not have to be tuned. The plasma resistance, ΡII, was estimated 

to be 8.8µΩ by the tuning method, compared with 0.37 µΩ estimated from the experimental 

slow rate of poloidal flux consumption. The strong change suggests that care must be taken in 

making the common assumption of negligible plasma resistance. The radial derivative of the 

plasma resistance, ΡRI, is non-zero from the tuning, but remains small, around 0.03µΩ/m, 

compared with the predicted value for a rigid distribution shift if the plasma area and 

temperature remain constant, suggesting that this is not a suitable assumption. 

The significant difference between the measured effective plasma resistance during the AC 

stimulation experiments and the effective DC plasma resistance from the rate of poloidal flux 

consumption is in agreement with a simple skin-effect model. The current profile was 

approximated as 20 concentric rings and the local conductivity was assumed proportional to 

the measured temperature profile to the power of 1.5. The response of the plasma current to 

modulations of the surface voltage is then explored as a function of frequency. The effective 

plasma inductance varies by only +/-2.5% over the frequencies used in the experiment and 

remains close to the "slow" inductance. However, the effective plasma resistance varied by a 

factor of 10, from 6 to 58µΩ, in agreement with the tuned value of about 8.8µΩ, compared 

with the "slow" value of 0.37µΩ. The RZIP model cannot be readily modified, by virtue of its 

structure, to take into consideration the diffusive plasma skin effect and an effective resistance 

is the best approximation, valid over a range of frequencies of interest. 
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These individual measurements which are relatively insensitive to the presence of the plasma do 

contain valid information on the plasma parameters, but are dominated by the vacuum field of 

the PF coil-set currents. Instead of looking at the flux probe and magnetic field probe 

measurements, we can examine the control parameters to see if the separation between 

plasmaless or plasma models and data is increased. 
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8. CLOSED LOOP COMPARISONS 

8.1. Closed-loop simulation 

It is interesting to see whether the validated open-loop tokamak model, when combined with a 

model of the controller, can successfully simulate the closed-loop response in the time-domain. 

The controller used in the flat-top regime controls the vertical instability, and is designed to 

track the five parameters, R, Z, Ip, Xp and d . These parameters are determined in real-time by 

the state estimator from a combination of normal and tangential poloidal magnetic field probe 

measurements, the D and T coil currents and the plasma current. For the closed-loop 

simulation we constructed an RZIP model linearised about the flat-top of Ohmic discharge 

E35023, at 3.9 seconds. The estimator was linearised about the same point and incorporated 

into the C-matrix. The optimal grey-box model was used. 

A simulation of shot E34993 was made, this shot being an Ohmic shot similar to the others but 

not used in the identification experiments or the grey-box modelling. As such it is a completely 

independent data set, suitable for comparison. The equilibrium values of the coil voltages, coil 

currents, and control variables, were defined as the average values between 3.7-3.9 seconds, 

before stimulation of the reference signal began. 

Figure 6 shows schematically how the simulated and measured data were generated. Figure 7 

shows the results of the simulation compared with the experimental data. The reference signal 

is shown as a thin red line, the actual experimental response as a thick green line, and the 

simulation as a noisier thin black line. Linear trends and offsets have been removed for clarity, 

although they were small. The closed-loop simulation of the estimator parameters response is 

extremely good. The response of the coil voltages and currents are similarly well-modelled. 

8.2. Controller tuning 

Given the validity of the closed loop simulation, we were able to perform control studies based 

on this model. To check the efficacy of the nominal controller, a simulation was made using 

square-wave excitation in the control variable reference waveforms. Some cross-coupling 

between different control variables was observed, which was ameliorated by simply adjusting 

the off-diagonal terms in the controller matrices, which are zero in the presently used JT-60U 

controller. The results of this exercise are shown in Figure 8. The undesired transient cross-

coupling has been significantly reduced for some cases, especially the influence of the 

triangularity change on the X-point height and plasma current, as well as the plasma current 
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change on the X-point height and the vertical position. None of the cross-couplings were 

worsened. 
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9. ESTIMATING STRUCTURED MODEL UNCERTAINTY FOR THE PLASMA 

EQUILIBRIUM RESPONSE MODEL 

One aim of developing an accurate plasma equilibrium response model is to provide a platform 

for optimal robust feedback controller design. Modern controller design methods provide 

optimal performance while guaranteeing stability over a prescribed range of uncertainties in the 

underlying model. Specifying the model uncertainty is therefore an essential part of the model 

based controller design process [9]. It is possible to quantify the model uncertainty in two 

ways, as unstructured uncertainty or as structured uncertainty. The former approach, taken in 

the H�  robust controller design process, is described in detail in Appendix B, and essentially 

takes the maximum error of the transfer function in the frequency domain. 

From physical considerations we can estimate the accuracy of elements in the Μ matrix of the 

dynamic model. The A and B state space matrices are not simply related to the underlying 

circuit equations (Eq. 2.1), due to the required inversion of the Μ matrix. This inversion 

effectively propagates any uncertainties in the Μ matrix (Eq. 2.3) throughout the A and B 

matrices, and therefore through the transfer function. 

The work presented in Chapters 6 and 8 gives us new insight into assessing structured model 

uncertainty. In fact, the χ2 variation as different elements of the underlying model structure are 

varied, Figs. 2 and 5, provide us with exactly what is needed. The second derivative of the χ2 

variation tells us how well our set of experimental measurements can tie down particular 

coefficients, under realistic conditions. Specifically, comparing Fig. 2 with Fig. 5 tells us how 

the accuracy of those coefficients which are independent of the plasma compares with the 

accuracy of the plasma-related coefficients. Inspection of these two figures reveals that 

assigning a general model uncertainty to the determining matrix coefficients would 

underestimate our ability to estimate the plasmaless coefficients and would seriously 

overestimate the precision of the plasma-related coefficients. Using this new information could 

in theory permit the design of a feedback controller which does not need to assume that the PF 

coil inductances, for example, are as badly known as the vertical instability growth rate, which 

can evolve significantly during a discharge, especially during equilibrium perturbations. 

The model uncertainty estimated in this way is independent of the presence of a supporting 

experiment and can be used to investigate the effectiveness of a proposed diagnostic set in 

determining the model. Assuming the accuracy of the nominal model, we can calculate the 

responses for an ideal experiment, and then see how well-defined the cost function minima are. 
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This gives an understanding of how strongly the various model parameters affect the diagnostic 

measurements. 

As support for these qualitative remarks, we have inspected all the groups of coefficients in the 

determining matrices and suggest an approximation of their uncertainties, shown in Table 2. 

These suggestions take into account the present experiment’s imprecision in estimating the coil 

resistance, for example, and include the possibility of spatial imhomogeneity for the plasma 

terms. The important point is the difference between the assumed precision of the structure-

related parameters and the precision of the plasma parameters.  

Table 2 Estimates of appropriate model coupling coefficient uncertainties. The uncertainty is 

defined by the relative change in the coefficient required to make the cost function change by 

20%. 

Equation element Uncertainty  

PF coil self inductance 2% 

PF coil mutual inductance coupling coefficient (absolute change 
in the coupling) 

0.006 

PF coil resistance 20% 

Vessel eigenmode inductance, resistance 10% 

PF to vessel mutual inductance (absolute change in the 
coupling) 

0.05 

Plasma inductance 10% 

PF/vessel to plasma mutual inductance 10% 

Vertical field weighted curvature 25% 

Shafranov factor (Bv/Ip term) 25% 

Radius-current coupling 50% 

Plasma resistance (with respect to an estimate considering skin 
effect) 

100% 

Radial derivative of plasma resistance 200% 

Radial-to-vertical motion coupling 50% 
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10. CONCLUSIONS  

This paper has extended previous work on linearised model development and comparison with 

experiment by applying to the JT-60U tokamak a systematic procedure to identify the plasma 

equilibrium response to the poloidal field coil voltages. The required response was predicted 

with a high accuracy by a state space model derived from first principles.  The original TCV 

work on experimentally identifying the plasma equilibrium response has been repeated on the 

larger and hotter JT-60U tokamak with a quite different PF coil system. The identified model 

has been compared with an improved derivation of the rigid current displacement model, which 

respects the symmetry of the determining equations. The modelling approach used, standard in 

analytical mechanics, is applicable to all linearised plasma equilibrium response models and has 

a structure which is independent of the physical assumptions made to describe the plasma 

response. Thus all linearised plasma equilibrium response models that have the same choice of 

states are members of the same model class, but have differing coefficients. This implies that 

adjustment of these models to fit experimental data, giving a tuned or calibrated model, 

provides the tuned response of any of the other models with the same choice of states. Starting 

with a pure rigid current displacement model is therefore simple and effective. 

The approach used for tuning the plasmaless model of JT-60U has proven to be powerful 

although care must taken to define a suitable cost function. The results indicate an extremely 

wide range of sensitivity to variations in different coupling coefficients in the plasmaless model. 

The same approach was used for tuning the plasma terms to agree with the experimental 

results for Ohmic and NBI plasmas, again obtaining an estimate of the precision obtainable. 

The variation in model sensitivity to the model parameters is important when defining the 

assumed uncertainties in a model used for feedback controller design. 

The assumption of unstructured uncertainty results in an excessively conservative cost function 

for some terms, when compared with the demonstrated accuracy of the model. Other terms, 

particularly the plasma-dependent terms, should be considered as less certain. 

Understanding the incorporation of experimental findings into a better description of the 

system uncertainties will be the subject of future work. It is tempting to speculate that the 

model optimisation approach described in this paper would be especially advantageous when 

applied to the less well modelled case of varying-saturation iron cored tokamaks such as JET. 
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The creation of a tuned plasma response model will allow design of tokamak plasma 

controllers with improved performance and robustness characteristics, for instance elimination 

of cross-soupling between certain plasma control parameters. 
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A. DERIVATION OF THE RZIP LINEARISED MODEL 

In this model we assume that the tokamak system is fully described by the toroidal current 

density in the plasma and surrounding structure. A cylindrical co-ordinate system (R, z, φ) is 

used. We describe the plasma by a small number of degrees of freedom: the current profile, the 

plasma current, the plasma thermal energy, and the plasma position. 

We make a number of initial assumptions: 

• all quantities are independent of the toroidal angle φ (axisymmetry), 

• the plasma has negligible mass, 

• the plasma reaches an equilibrium state instantaneously, 

• the system may be perturbed about that equilibrium, 

• poloidal currents in the plasma and structure may be ignored, 

• plasma transport effects can be ignored, 

• the equilibrium PF-coil currents are constant.  

The tokamak's physical structure can be classified into two sections, the active structure and 

the passive structure. The active structure is the coil system, to which we can externally apply 

voltages, whilst no voltages are applied to the plasma or the passive structure. The passive 

structure therefore carries induced eddy currents. This model considers the different parts of 

the tokamak separately. The continuous conducting parts of all the structure are discretised 

into a number of toroidal elements each with an individual toroidal current. The poloidal 

elements of the currents in the coils and passive structure are taken to be zero. 

These assumptions yield a set of four non-linear differential equations, which can be linearised 

about a given tokamak equilibrium. 

A.1.  Derivation of the model equations by a Lagrangian method 

Here we use the following notation: 

• δα is a small variation in α from a static equilibrium α0 such that α = α0 + δα; 

• α&  is the continuous time derivative  
dα
dt

 of α;  

• 
0ε

α
∂
∂

 is the derivative 
ε
α

∂
∂

  evaluated at equilibrium. 
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The total plasma current will be represented by Ip, and the currents in the structure elements 

will be represented by the vector Is. In the case of JT-60U 

TT
passiveHVTFDs IIIIIII ][= , where the quantity Ix is the current in coil x, and the 

Ipassive is the vector of currents flowing through the elements of the passive structure. The 

voltages applied to the structure elements will be represented by the vector Vs. The equilibrium 

plasma current density distribution jφ is estimated by an inverse equilibrium reconstruction 

code. 

The plasma radial position R is defined by a current-weighted average of plasma element radial 

positions [10], 

 ,
dSj

dSjr

R

plasma

plasma

∫

∫
=  (A.1) 

where S is the plasma cross-section, and r is the major radial coordinate. The vertical position z 

is defined similarly. 

We define the effective plasma self inductance Lp via the equivalent energy of the total current 

distribution; 

 ∫∫=
plasma

kikikipp dSdSjMjIL
2

1

2

1 2 , (A.2) 

where Mik is the mutual inductance between two elements i and k, for i different to k, and the 

self inductance of element i for i = k. The effective mutual inductance matrix between the 

plasma and structure Mps is 

 ∫=
plasma

isisispsp dSIMjIMI , (A.3) 

where Mis is the mutual inductance between an element i and the vector of structure element 

currents. 

We define WT as the thermal energy of the plasma. 
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A.2.  Choice of generalised co-ordinates 

In the derivation of the tokamak governing equations, we will use (Qs, Qp, R, z) as our 

generalised co-ordinates. The quantities R and z are, respectively, the plasma radial and vertical 

position. The quantities Qs and Qp represent the charge which has flowed since time t0 through 

the structure and the plasma respectively. These constitute generalised co-ordinates in the 

classical theory [11]. It is easy to see that the corresponding currents are Is = Q
.

s and Ip = Q
.

p . 

A.3.  Derivation of the model equations 

The Lagrangian, L, of a system is defined as 

 L = T - V 

where T is the generalised kinetic energy of the system and V is the generalised potential 

energy of the system.  

For our system we can write 

 
spspppss

T
s IMIILILIT ++= 2

2

1

2

1

 (A.4)
 

 Ts
T
s WVQV −−=

.
 

This gives the expression for the Lagrangian  

 Tspspppss
T
s WIMIILILIL +++= 2

2

1

2

1
 (A.5)  

The power dissipated in the system is due to the structure and plasma resistances (Ωs, Ωp 

respectively) and is given by
 

 
∫∫ Ω−Ω−=

)(

)(

)(

)(

1

0

1

0

tQ

tQ

ppp

tQ

tQ

ss
T
s

p

p

s

s

dQI
dt

d
dQI

dt

d
P

 (A.6)
 

The power is (by definition) the rate of change of the energy needed to move the charge over 

the potential difference due to the resistance. 

 The Euler-Lagrange equation for a generalised co-ordinate qi is 

 q

P

q

L

q

L

dt

d
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 The equations for each generalised co-ordinate are then: 
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• (Qs) The structure flux conservation equation 
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• (Qp) The plasma flux conservation equation 
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• (z) The vertical force balance equation 
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• (R) The radial force balance equation 
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The methodology used to derive equations (A.6) to (A.9) does not assume the rigid current 

displacement of the plasma. These equations have a comparable structure to the equations used 

in previous work [3]. A plasmaless model will simply have all the plasma-related terms equal to 

zero, resulting in a purely electromagnetic model. 

A.4.  Linearisation of equations 

The equations derived have the variables (R, z, Ip, Is). However, for consistency with earlier 

work [3] we use the products (RIp
0, zIp

0). The quantities (R, z, Ip) are simply related to (RIp
0, 

zIp
0, Ip). In consideration of this, we can define a state vector x using these quantities; 
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The four physics equations are therefore linearised in x  about the fixed point 00 =x , to give 

four linear equations in x  and x& . These linear matrices can then be cast in the standard state-

space model form 
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BuAxx

+=
+=&

. (A.11) 
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A.5.  The state-space model of a Tokamak 

The linearised structure circuit equation, plasma circuit equation, and plasma force balance 

equations can be represented as follows; 
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Here the plasma internal energy TW  is allowed to vary with an introduced variable α , that is 

independent of the states. For clarity we have taken TW  and the plasma current distribution j  

to be invariant under translation in z (and so therefore are the plasma resistance and self-

inductance), though it is not strictly necessary at this stage. This is of the required form 

uxx =Ρ+Μ & . Considering the magnetic field probe and flux probe outputs as functions of the 

currents in the tokamak provides the output matrix C and feed-forward matrix D . Comparing 

(A.12) with (A.11) gives the matrix of coefficients A , and the control matrix B : 

 
1

1

−

−

Μ=

ΡΜ−=

B

A
. (A.13) 

Note the symmetry of M and R, which implies that hysteresis is not a feature of the plasma 

model. This is a necessary consequence of the formalism used. A brief inspection shows that R 

and the bottom right-hand four terms of M contain the only purely plasma response terms. 
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From a minimal set of assumptions we have derived a linear, time invariant model in state-

space form. All linearised tokamak models with the same choice of states can be expressed in 

this structural form. Within this formalism we can derive all models that assume toroidal 

symmetry and perturb about an MHD equilibrium. 

A.6.  Approximations 

Further to the assumptions detailed in Section A.1, the RZIP model also assumes a rigid 

current displacement, namely that the normalised current profile is independent of movements 

in the R and z directions and of changes in plasma current. This allows us to calculate the 

plasma mutual and self-inductance derivatives simply and directly. 

For example, the radial derivative of the mutual inductance between two plasma elements f and 

g, 
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A pure rigid current displacement assumption fixes the two radius relations as 
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Given this assumption we can approximate 0=
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WT . 

The poloidal beta (the ratio between averaged kinetic and magnetic pressures) is defined as 
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where p is the pressure in the plasma, S is the plasma cross-section, and  

 Ba =
µ0 Ip

l
 

where l is the poloidal circumference of the plasma. 

If we take ∫=
plasma

T pdVW  (where V is volume), then by writing RdSdV π2=  we can substitute 

for pβ , immediately giving  

 2
20 ppT RI

l

S
W βπµ= . 



 39 

From this expression we may take pβα =  in (A.12) and the values for the derivatives of TW . 

Note that this results in perturbative terms in pβ&  on the right hand side of equation (A.12). 

In practice we find that an excellent approximation to the plasma self inductance defined in 

equation (A.2) is 
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from which we can simply calculate the positional derivatives. We use this expression simply 

for its ease of calculation. If we were to use a formula for pL  that included the internal 

inductance il  as an independent variable, such as 

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is the minor radius, this would also result in terms in il
&  on the right hand side of equation 

(A.12). Strictly speaking, allowing il  to vary would change the current profile, which is a 

violation of the rigid current distribution assumption. 
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B. ESTIMATING MODELLING UNCERTAINTY 

B.1.  The choice of cost function 

Parametric or grey-box modelling allows certain model parameters to be adjusted until the 

discrepancy between observed and predicted data is minimised. In this sense the resulting grey-

box model is optimal. Of course it becomes necessary to quantify the model-data discrepancy 

(by means of a cost function) so that minimisation is possible. The appropriate choice of cost 

function will depend on the intended model application. 

For our particular case we are considering a system that has outputs measured in many 

different units at different magnitudes, from milli-Teslas to mega-Ampères. Consequently it is 

necessary to define a cost function that is equally responsive to all outputs regardless of unit. 

There are many possible ways of achieving this. Also the plant response varies in magnitude 

significantly over the experimental frequency range. A suitable cost function should equally 

weight the response at all frequencies (given a sufficiently good signal to noise ratio) as 

different significant physical effects are important at different frequencies. 

Ultimately there are two intended applications for the grey-box model. Firstly we intend to use 

it to refine our understanding of the importance of various physical effects in the tokamak. 

Secondly, we require that the model is suitable for robust controller design. Fitting the whole 

available data is useful for the former application, worst-case bounds on the model error are 

useful for the latter purpose. 

These two applications suggest different curve-fitting approaches. A cost function based on a 

statistical approach is described in B.2, and is considered suitable for the first application of 

physical modelling. A contrasting cost function is described in B.3, suitable for robust 

controller design, employing a number of concepts from modern control theory. 

B.2.  Model error estimation for physical modelling 

A first quantification of the model error is derived simply from the distances between the data 

points and the model approximation, for all available data points. These distances have to be 

normalised to an estimate of the likely error, which is difficult to provide. We consider that the 

root mean square of the difference between the model and data should provide a simple 

estimate of the uncertainty, avoiding the frequent cases where either the model or the 

measurement is close to zero. This weighted error has an upper bound of 2.0, corresponding to 

the case where the model and data are equal in amplitude and π apart in phase. One cost 

function is therefore defined as: 
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where id  is a data point and im  is the corresponding model prediction. 

For the data and the model we can either take the raw data measurements, or the transfer 

functions. Before evaluating the cost function, outliers are removed, defined as points with a 

normalised error greater than 1.5. 

B.3.  Model error estimation for robust control 

The infinity norm ||.||∞ is well understood and commonly employed in control literature [12] as 

a useful method of quantifying multi-input multi-output modelling uncertainty. Here we 

establish its relation to the singular value decomposition to demonstrate its significance as the 

worst case energy gain of a system. The infinity norm is then applied to the estimation of 

modelling uncertainty, with regard to its interpretation as the worst case energy gain. 

The singular value decomposition 

For any m × p complex matrix Q, there exist m × m and p × p unitary matrices Y and U such 

that 

 Q = Y
Σ 0

0 0

 

 
 

 

 
 U *  (B.1) 

where Σ = diag(σ1, …, σr) with σ1 � σ2 � … � σr > 0, r � min(m,p). Expression 2.1 is the 

singular value decomposition of Q. A proof of existence can be found in [13]. 

Letting ui and yi be the rows and columns of U and Y, we can express Q in terms of the dyadic 

expansion 

 Q = σ iyiui
*

i =1

r

∑
 

 
  
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 
   

 Since U is unitary, ui
*uj = δ ij , uj is mapped by Q into  

 
Quj = σ iyiui

*

i=1

r

∑
 

 
  

 

 
  u j = σ jy j . 

We can therefore regard the matrix Q as a linear mapping from vector space pC to mC  defined 

by 
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 QuuCCQ mp →→ :: . 

The set of columns of the singular-vector matrices U and Y respectively define orthogonal 

bases for the domain pC  and range mC  of Q. For this choice of bases, the mapping Q takes 

the jth basis vector uj of pC  to a vector lying in the direction of the jth basis yj of mC . If we 

restrict Q to the one-dimensional complex subspace spanned by uj, the corresponding singular 

value σj can be regarded as a gain factor for the restriction map Q|uj [12]. 

The maximum singular value σ  is clearly just 

 σ(Q) = σ1(Q) . 

The infinity norm as the worst case energy gain 

 Suppose we have the transfer function  

 y = Gu,     G ∈ℜH∞
+ , p×m . 

We can define the infinity norm of G as 

 
G ∞ = max

u≠0

Gu 2

u 2

 . 

where we use the standard L2[0,�] norm, where if u(t) is a square integrable time function, 

then 

 
u(t) 2 = u

0

∞

∫ * (t)u(t) dt < ∞  

represents the energy in the signal u(t). By Parseval's theorem we have 

 u(t) 2 = u( jω ) 2  . 

Intuitively therefore the infinity norm is the worst case energy gain. 

It is possible to show [12] 

 
G ∞ = sup

ω
σ(G( jω ))

. 

Model uncertainty 

We can use these definitions to quantify and interpret an unstructured model error. We can 

represent the modelling uncertainty E in an additive way, 

 )()(ˆ)( ωωω jEjGjG =− , 
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where G is the 'true' system and Ĝ  is the model of the system. A useful measure of the severity 

of this error is the infinity norm, as it measures the worst case energy gain due to the modelling 

uncertainty: 

 E ∞ =
(G − G

^

)u
2

u 2

 (B.2) 

As such the infinity norm of the additive model error is a candidate choice of cost function for 

grey-box modelling, since it assumes no structure for the modelling uncertainty and treats the 

modelling uncertainty in a consistent and intuitive way. However, this representation tends to 

weight the low-frequency errors more heavily, since the higher gains at low frequency lead to 

larger absolute errors. 

Alternatively a relative or multiplicative form can be used, 

 )())(()( ωωω jGjIjG ∆+=
)

. 

We quantify the model error with the infinity norm of ∆ , which describes the magnitude of the 

relative model error in a worst case energy gain sense. 

The relative form of model error is advantageous for our application since it is not biased 

towards errors at low-frequency. 

Calculation of the model error 

Given the model error representation 

 )())(()( ωωω jGjIjG ∆+=
)

 

we wish to find Ĝ  such that 
∞

∆ is minimised. If G  has full column rank (almost 

everywhere), there exists a spectral factor ∞ℜ∈ HM  with ∞
− ℜ∈ HM 1  such that 

~~ MMGG = . Here we use the adjoint system )(~ ωjGG T −= . 

For any Ĝ , defining ~1~ ))(ˆ( GGGGG −−=∆  gives GIG )(ˆ ∆+=  and 
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so we have a conservative estimate of the model error 
∞

∆ . 

We calculate M simply via the singular value decomposition of GG ~ . 
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 ,*~ VYGG Σ=  

with Y, V unitary, and since GG ~  is symmetric, .VY =  

Thus we can write (since Y is unitary and Σ is positive definite) 
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Comparison with ~~ MMGG =  gives *2
1

YYM Σ= . 

Thus a suitable choice of cost function for robust controller design, that will not be biased 

towards any particular frequency range, is given by 
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−≤∆ MGG  

Output scaling 

Since the plant under consideration has outputs in different units, we introduce a scaling factor 

S on G such that each element of SG is of the same order. 

We calculate S by 
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This calculation is predicated on the assumption that our plant inputs are all of the same order. 

If output scaling is to be considered, the matrices SG  and GS ˆ  are to be used throughout 

instead of the plant and plant model respectively. If this is done the effect of the choice of 

output units on the model error estimate will be reduced. 

 

 


