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Abstract

We present the first global linear study of electrostatic drift waves in two
realistic quasi-symmetric configurations, namely the Quasi-Axially symmet-
ric Stellarator with three fields periods (QAS3) and the Helically Symmetric
eXperiment (HSX). Effects of the shape of the plasma on the growth rate and
frequency of the Ion Temperature Gradient driven mode are investigated by
varying the quasi-symmetric configurations to an equivalent symmetric sys-
tem. The calculations have been performed with the 3D global gyrokinetic
code EUTERPE in the magnetic configurations provided by the MHD equi-
librium code VMEC. We assume gyrokinetic ions and adiabatic electrons. In
QAS3, results show that the drift waves are mainly affected by the global
magnetic shear and barely by the shape of the plasma or the local magnetic
shear. They are then very close to those obtained for a tokamak. On the
other hand, results for the HSX configuration, show a clear 3D effect, namely
a strong toroidal variation of the drift wave mode structure. This variation
is a clear structure of the 3D plasma shape. However, first results show that

the growth rate of the ITG driven mode is largely unaffected by this effect.
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I. INTRODUCTION

It is now commonly accepted that the turbulence resulting from the nonlinear saturation
of microinstabilities, particularly Ion Temperature Gradient (ITG) driven modes, plays an
important role in the anomalous transport observed in tokamaks [1,2]. Theoretically and ex-
perimentally, they have been studied intensively for axisymmetric magnetic configurations
(tokamaks), whereas for other configurations (2D systems with helical symmetry, full 3D
systems) the neoclassical theory has been the main focus of transport studies. In a plasma
characterized by an averaged plasma, pressure (p) much smaller than the averaged magnetic
pressure (B?), drift waves are essentially ion acoustic waves destabilized by the inhomo-
geneities of the plasma [3]. They are characterized by a low frequency, w < IMHz < (,
and a long parallel wavelength w/kj > vy,; the ion cyclotron frequency is Q ~ 100 MHz
in a typical fusion reactor and only long parallel wavelengths can avoid strong ion Landau
damping due to wave-ion interaction. Here, vy,; and k)| denote the thermal velocity of the
ions and the parallel component to the magnetic field of the wave vector E, respectively.

The lack of symmetry is the main problem of a full 3D configuration, small neoclassical
transport and confinement of « particles, which are a minimum requirement for a reactor,
are very difficult to achieve. In order to recover the good neoclassical confinement properties
of symmetric configurations, quasi-symmetric (QS) systems have been proposed [4]. Several
projects based on this principle are currently developed, for example the Helically Symmetric
eXperiment (HSX) at the University of Wisconsin [5] and the National Compact Stellarator
eXperiment (NCSX) [6] a quasi-axisymmetric stellarator at the Princeton Plasma Physics
Laboratory. While good neoclassical properties are expected within the next generation of
stellarators, the currently operating devices are characterized by a strong neoclassical trans-
port. However, in contrast with tokamaks, there is no experimental evidence of anomalous
transport in the plasma core in these devices. Transport in stellarators is currently well
explained with the help of the neoclassical theory except near the edge of the configura-

tions where turbulence occurs [9]. This explains the small number of theoretical studies on



anomalous transport in these devices [10~16]. As the stellarator experiments become larger
and more expensive the theory ought to prepare interpretation tools even if, in the best case,
they will not be needed. Since the development of these tools will take several years it is now
time to address the question of anomalous transport in alternative magnetic confinement
systems by starting to study related drift waves.

To serve this interest we have developed the first global gyrokinetic code EUTERPE
[17,18], aimed at the investigation of linear drift wave stability in general toroidal equilibria
with nested magnetic surfaces. Indeed, it should be noted that all the above mentioned
works reduce a full 3D problem to a one-dimensional problem where the potential is com-
puted only along one magnetic field line. With such a local model each magnetic field line
is independent, the coupling between magnetic surfaces and the coupling between magnetic
field lines along a given magnetic surface are neglected. In other words, this model does not
treat perpendicular propagation fully adequately. Also as pointed out by Kendl [15], finding
the most unstable mode with such a model is very expensive, because a large number of
magnetic field lines need to be taken into account in order to cover completely the configu-
ration. Only with a global approach can such a problem be solved in a straightforward and
transparent way.

Villard [19] was the first to develop a global linear gyrokinetic code for a non-tokamak
configuration. He adapted the 2D axisymmetric GYGLES code [20] to a 2D helically sym-
metric geometry. He identified a new class of ITG driven modes, the so-called “Helical-ITG”
mode which is driven by the drift induced by the helical geometry. Hatzky [21] has also mod-
ified the GYGLES code, and has adapted it to a 2D-reduced model of the W7-X stellarator,
a bumpy configuration which is characterized by a poloidal symmetry. Both new versions of
GYGLES gave us a better understanding of drift waves in non-tokamak geometry, further-
more the helical version of GYGLES allowed us to validate the 3D features of the EUTERPE
code [18].

The basic properties of drift waves have defined the physical model used during this

work. The plasma is modeled by gyrokinetic ions and adiabatic electrons, and we follow
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the linear time evolution of quasi-neutral electrostatic perturbations of the local Maxwellian
distribution function in a 3D magnetic configuration. With such a model, there is no physics
induced by the electrons, we particularly miss the important destabilizing effects related to
the electrons trapped in the local magnetic mirrors resulting from the inhomogeneity of the
magnetic field [22]. However, in a first approach we will use this simple model because the
computational cost of a full kinetic description of electrons in a 3D configuration nowadays
is too expensive.

We present here the first global gyrokinetic linear study of ITG driven modes for two real-
istic 3D configurations, namely the Quasi-Axially symmetric Stellarator with three fields pe-
riods (QAS3) [23] and HSX. Both are 3D configurations characterized by a quasi-symmetric
magnetic field. In both configurations, we have investigated the effects of the 3D shape on
the linear stability of the ITG driven mode. We have then developed a sequence of configu-
rations which vary from the quasi-symmetric systems to the corresponding symmetric ones.
The magnetic geometries were provided by the MHD equilibrium code VMEC [24].

This paper is organized as follows : In section II, the physical model is presented and the
effects of a 3D magnetic field on the ITG driven mode are presented in section III. In section
IV, the main numerical features of the EUTERPE code are briefly described, more details
are given inf refs. [17,20,18], we only present here more precisely the mapping procedure
between the EUTERPE code and the VMEC code in appendix A. The results are given in

section V, followed by the conclusions in section VI.

II. PHYSICAL MODEL

For a 3D static equilibrium with nested magnetic surfaces, i.e. the magnetic fluxes are
only function of the normalized radial variable s, the equilibrium magnetic field B can be

written in contravariant form as follows [24] :

— —

B =V x Vx(s) + V&(s) x V6*, (1)



where 2mx(s) and 27 ®(s) are respectively the poloidal and toroidal fluxes enclosed between
the magnetic axis (s = 0 where Vy = 0) and the magnetic surface labeled s. ¢ is the
geometric toroidal angle and 6* the poloidal angle which makes the magnetic field lines
straight. In such an equilibrium, the magnetic field lines are wound round the magnetic
surfaces and their direction is given by h=F8 /B, where B is the amplitude of the magnetic

field. We can define the normalized radial variable s as :
s =&/, (2)

where 27®, is the value of the toroidal flux at the edge of the plasma (at s = 1). The
coordinates (s, 0%, ¢) define the PEST-1 system of magnetic coordinates [25].

By definition in the PEST-1 coordinates, the rotational transform : which measures the
helical twist of the magnetic field lines, 27 is the poloidal angle traversed by a magnetic

field line after one toroidal transit, is given by :

dx/ds _B-ve¢ )
d®/ds ~ B.Vy

I
M
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where g is the so-called safety factor. The magnetic shear 3,

. sdg
S—‘:;d—s, (4)

measures the variation of the safety factor from magnetic surfaces to magnetic surfaces.

We assume a collisionless neutral static plasma where the equilibrium ion density n, is
equal to the electron density, T; and T, are the equilibrium ion and electron temperatures,
respectively, and the thermal velocity of the ions is given by vy; = \/m where m; is
the ion mass. The ion cyclotron frequency is given by Q = ¢;B/m;, where g; is the ion
charge. In such a plasma, particles are freely streaming along the magnetic field lines and
we assume that the plasma is homogeneous along the magnetic field lines, i.e. B- ﬁT{i,e} =0
and B - ﬁno = 0.

Within the gyrokinetic model and neglecting pressure effects, the equations for the par-

ticle guiding centers are given by [26,20,27] :



dR - vj+vi/2. VB

— =vh+ : (5)
dt Q B

dv 1 .= -

d

_CE =0, (7)

where R, v and p denote the position, the parallel component of the velocity of the guiding
center and the first adiabatic invariant 4 = v2 /2B, respectively. Here, v, is the perpendicu-
lar component of the velocity. The position R of the guiding center is related to the particle
position £by : ¥ = R+ 7 x H/ §2. The first term on the right-hand side of eq. (5) describes
the motion of the guiding center along the magnetic field lines, the second one is the drift
velocity, ¥4, caused by the inhomogeneity of the magnetic field and the curvature of the
magnetic field lines. The gyrokinetic ordering [26] implies vy/vi; = O(ep = p/Lp), where p
is the ion Larmor radius and Lp is the scale length of the magnetic variation, Lz = B/|VB].

The perturbed part f of the ion distribution function evolves linearly according to :

d . 3 _ <E>X§afo %7 29

8fc 1 08fo\,z »_ VB

- (UHB—U”‘FE’ULM (E) - h x B
where (E) denotes the gyro-averaged electric field.
The perturbed ion density n; is then given by :

— b ~ a — o 5 —
ni(F,t) = / [f(R, o 1y 1) + 2 éﬁ] 5(F — &+ 5)BdBdadvdy. 9)
m;vy V1

Here, a is the gyro-angle and we have ¢ = ¢ — (@), where (@) is the gyroaveraged potential :

@ o) = o [ dao@(F -+ (10)

Note that the gyro-averaged electric field in eq. (8) is given by (E) = —V{(4).

In the limit (k1 p)? < 1, the perturbed ion density n; becomes [20]:

ni(Z,t) = / F(B, v, 1, 1)0%(B — & + §) BdRdadvydu + V.. - [%%qﬁ] : (11)



Nevertheless, even when (k. p) < 1, Fivaz and Brunner have shown that this approximation
seems to have only little effect on the growth rate and frequency of the ITG driven mode
[20,22].

Assuming the electron response to be adiabatic, the system of equations is closed invoking

quasi-neutrality and the Poisson equation reads :

€T =

7 p—V,- [g—gzﬁﬂé] = /f(ff, ||, V1, t)53(§ — T+ ﬁ)Bdédadv,ldu. (12)

The equations governing the ions (5-8) and the above Poisson equation (12) coupled with
equation (10) constitute the final system of equations of our model.

In contrast with axisymmetric configurations, in a 3D geometry the equations of motion
of the guiding centers do not conserve an additional integral of motion, like the toroidal
canonical angular momentum in a tokamak [20]. Here, the equilibrium ion distribution
function fo must be chosen following other criteria. Using the conditions B- ﬁT, =0 and

B. 677,0 = 0, we choose fy as a local Maxwellian,

fo(vp, v, 8) = —no(sl@exp (~lw) . (13)

(277)3/27)t3hi 2 Utth‘ ()

III. EFFECTS OF A 3D MAGNETIC FIELD ON THE ITG DRIVEN MODE

In tokamaks, global results [22,20] have shown that the toroidal ITG mode is character-
ized by several poloidal wave numbers m centered around ng, with ¢ the value of the safety
factor where the toroidal ITG mode amplitude is peaking, the most unstable mode being
characterized by kj ~ 0. The coupling between the different poloidal wave numbers m is
resulting from the spatial structure of B along a magnetic surface. In a simple geometry, a

circular large aspect ratio tokamak, it is given in first approximation by [22] :

1 1 r
B0 ) ~ B0) (1 + R—Ocos(G)) . (14)

Particularly, the cos(f) term creates a (m,m + 1) coupling between the different poloidal

components, i.e. it creates a coupling between the poloidal wavenumbers m and m + 1.
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In contrast, the slab ITG is almost entirely characterized by one poloidal wavenumber m.
This mode is insensitive to the drift frequency and is then slightly affected by the magnetic
structure of the geometry.

We can try to extrapolate these results obtained in a very simple 2D configuration to the
3D systems. In such systems, obviously, the modulus of the magnetic field B is a function of
the 3 coordinates (s,8*, ). The spectrum of B provides us information about the expected

couplings in a 3D system. Considering a magnetic field B =", By (8) cos(m'8* +n'¢p),

m! nt
we assume that the amplitude of the B,y ,/(s) coefficients is related to the intensity of the
coupling between the (m,n) and the (m + m',n + n') components of the ITG driven mode.
We will denote this coupling ((m,n), (m + m',n +n')).

In a preliminary study [18] performed in a tokamak perturbed by a L=2 helical boundary
deformation with Ny, = 4 numbers of field periods [28], we have been able to validate this
assumption. In this configuration, the spectrum of B is dominated by the By, Bson,e,
and B sy, Fourier coefficients, the By g coefficient is characteristic of a tokamak. We then
obtained a 3D ITG driven mode characterized by several toroidal modes numbers satisfying
mod(n — n', 2Npe,) = 0. However, it should be noted that the coupling resulting from the
helical deformation was weak compared to the coupling induced by the toroidal effects, i.e.

the effects of the B; o Fourier harmonic. The amplitude of the couplings ((m, n), (m+m/, n+

n')) are not directly proportional to the amplitudes of the B, . (s) coefficients.

IV. NUMERICAL IMPLEMENTATION

With the current computational resources, the linearized 3D gyrokinetic equations (5-
8,10,12) have to be solved numerically using an improved version of the PIC method, the
so-called 0 f method {29,30,20,27]. Nowadays it is the less expensive scheme in comparison
with other ones which require to mesh all the phase space. At ¢t =0, the particle weights are
initialized randomly and the positions and velocities are chosen according to the equilibrium

density and temperature profiles.



The 3D gyrokinetic Poisson equation (12) is solved using finite elements [31]. However,
as the ITG driven modes are characterized by kj/k; < 1, we want to use a system of
coordinates for the electrostatic potential where this condition R - €7¢ ~ 0 will be easily
expressed. Hence, a magnetic system of coordinates seems to be the most natural choice for
the representation of electrostatic potential ¢. Furthermore, with such coordinates the grid
is aligned with the magnetic surfaces and the convergence to the solution is then significantly
increased [20]. However, the differential operators are diverging near the magnetic axis. With
the finite element method, these singularities are usually well handled, but the integration
of the equations of motion in such coordinates is cumbersome near the magnetic axis.

To avoid such difficulties, we express the particle position and velocity in the toroidal
system of coordinates (R, ¢, Z). Furthermore, the computation of the gyroaveraged potential
{¢) (eq. 10) becomes straightforward in this system of coordinates [32]. Therefore, working
with two systems of coordinates, a magnetic one for the electrostatic potential ¢ and the
toroidal one for the particles, we have to transform from one system to the other. This is
easily done if we choose one coordinate to be the same in the two systems, because one
of the equations defining the transformation of coordinates becomes trivial. Practically,
the 3D transformation is reduced to a 2D problem. We then choose the PEST-1 system
of coordinates (s, 8", ) [25] for the representation of the electrostatic potential ¢. Details
of the mapping procedure between the toroidal and the PEST-1 coordinates are given in
appendix A.

We can further take advantage of the interchange nature of the ITG driven modes by
implementing the extraction of the ballooning phase factor [20]. In a 3D configuration,
the global ITG driven mode is characterized by several poloidal and toroidal wavenumbers.
However, the condition k) ~ 0 implies that the dominant poloidal wavenumber my is related
to the dominant toroidal wavenumber ny by mg ~ —ngq. Following [20], we can rewrite the

electrostatic potential as :

B(s,0%,0,8) = Re (§(s,0°, 0,650 9)) (15)



where ¢ is the extracted potential and S the ballooning phase factor is given by :
S(6%, 9) = meb* + ngep. (16)

Here, my and ng are integer numbers which are both input parameters of the code, the
ballooning phase S and the extracted electrostatic potential <;~5 are then periodic functions
of #* and ¢. Usually, we choose mg = —ngq(s), with g(so) the safety factor at s = sy where
the ion temperature gradient peaks. As we solve only the slow spatial variation ¢ of the
potential, the total number of grid points and particles is almost independent of the poloidal
and toroidal wavenumbers mgy and ny. Hence, even for large values of mg and ng simulations
remain accessible.

Lastly, the right-hand side of the discretized Poisson equation (eq. 11) is Fourier filtered
in the poloidal and toroidal directions [20,27]. Generally, we only keep the poloidal and
toroidal harmonics characterized by low values of kj and, as we have seen in sec. III,
the harmonics resulting from the coupling induced by the magnetic field, the shape and
width of the Fourier filter being a function of the configuration. The filter is then an
important parameter of our simulations because it will govern the physics induced in our

configurations.

V. RESULTS

We present here the results obtained by EUTERPE in both realistic configurations,
QAS3 and HSX. Note that during all our studies, the pressure effects are neglected, 8 = 0,
the equilibrium ion density ng and the electron temperature T,(s) = T;(so) are constant.

The equilibrium ion density ng is constant and we choose the equilibrium ion temperature

T :
1 dT; Sy — 8
il 1 S h-—2 X X0 17
T ds, K COS (—————ASX ) , (17)
where s, is a normalized radial variable defined with the poloidal flux s, = 1/x/Xs, Xo is

the value of the poloidal flux at the edge of the plasma. With the help of eqs (2) and (3),
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sy 1s related to s by :

with xo = fol ds'i(s').

The results presented here were obtained with 8 x 10® particles and 64 grid points on each
direction (s, 6*,¢). One run requires =~ 25 cpu-hours with 64 processors of a CRAY T3E
and =~ 35 cpu-hours with 32 processors on a ORIGIN 2000. With the current throughput
of these computers, such a run then requires =~ 5 days on the T3E and ~ 3 days on the
ORIGIN.

We first investigate the global linear stability of the ITG driven mode in the realistic
QAS3 configuration [23]. This configuration, shown in fig 1, is one of the possible candi-
dates for the compact hybrid configuration experiment presently developed at the Princeton
Plasma Physics Laboratory [6]. Note that in contrast with the 3D quasi-axisymmetric con-
figurations [33] which are characterized by a magnetic field similar to those of a tokamak,
i.e. a spectrum of B dominated by the B;o component, the magnetic structure of QAS3
shown in Fig. 2 has also a strong By 1xn,., component, the so-called mirror field component.

For this spectrum, we define the following filter :
(mia nj) - (mO + i,no - ijer)ai - [_6) 6]7.7 = [_47 4]’ (18)

where (m;,n;) denote the toroidal and poloidal wavenumbers kept during the simulations
and Nper is the number of field periods, Ny, = 3. Figure 2 shows also that QAS3 has
negative shear §, the safety factor being then a decreasing function of s. We choose an
lon temperature gradient peaking at sy = 0.34 where ¢(sp) = 3, kr = 5, As, = 0.21,
§(so) = —0.43 and p(sp) = lem.

With the above parameters, the dispersion relation computed by EUTERPE over one
period of the configuration is represented in Fig. 3. Here, the maximum growth rate is not
obtained with n = 8 where k£, p ~ 0.5, but with n = 12. This effect is due to the negative

shear of the configuration and has already been observed in tokamaks [22]. Furthermore,
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Figs. 4 and 1 show that the ITG driven mode is ballooning along all the torus in the outer
part of the configuration, the so-called region of unfavorable curvature. In this region, the
amplitude of the magnetic field is only slightly varying along the toroidal direction. Here, the
coupling resulting from the By,1xn,,, Fourier harmonic is weak compared with the coupling
induced by the toroidal effects, i.e. the effects of the B Fourier harmonic. Therefore, as
shown in fig 5, this mode is almost characterized by only one toroidal wavenumber as in a
tokamak. We have also verified that the most unstable mode n = 12 was not affected by
trapped particles. In our case, the modes obtained with and without the mirror term (eq. 6)
in the equations of motion are identical, the frequency and the growth rate are not affected
by trapped ions.

In QAS3, the properties of the ITG driven mode seem then to be very similar to those
obtained in a tokamak. These results agree qualitatively with the local linear kinetic results
obtained by Rewoldt [16].

To validate this feature of QAS3, we develop a sequence of configurations obtained by

linearly varying the nonaxisymmetric Fourier coefficients of the surface of the plasma [36] :

Rp(s=1)= Z Ry (s = 1) cos(m'0 — Npe,n'v) +

m',n'=0
T Z R (s = 1) cos(m'0 — Npern'v)
m! ' #£0
Zr(s=1)= Z Zmy (s = 1) sin(m'0 — Npe,n'v) +
m/,n'=0
T Z Zmt g (8 = 1) sin(m'0 — Npern'v)
m! n'#0

where Ry (s = 1) and Zp (s = 1) are the Fourier coefficients describing the edge of
QAS3, T is a scalar. When T' = 0, we obtain a pure axisymmetric configuration, the so-
called equivalent tokamak. For all the configurations, we fix the safety factor profile (Fig.
2) and we almost keep the same number of Larmor radii along the s-axis by adjusting the
value of the ion temperature at s = sg.

The dispersion relation measured in the equivalent tokamak is also represented in Fig. 3,

the frequencies and growth rates are very close to the values measured in QAS3. In Figure
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6, the frequencies and growth rates of the modes n = 8 and n = 12 are plotted as a function
of T = (0.,0.25,0.5,0.75,1). It shows that for both modes the frequency and growth rate
are only slightly affected by the variation of the shape of the plasma. Here again, as shown
in Fig. 7, the ITG driven mode n = 8 is ballooning around the torus in the outer part of all
the configurations. The main properties of the ITG driven mode in QAS3 are governed by
the global magnetic shear § of the configuration.

However, our global results contradict the ballooning model which predicts a strong
influence of the local magnetic shear [34,35] on the stability of drift waves in stellarators
[15], a feature which is also known from global MHD stability [36]. In figure 8 we show the
very pronounced distribution of the local shear in the QAS3 configuration. Not much of this
structure can, however, be detected in the wave field of the ITG driven mode, Fig. 9, in
contrast to MHD global instability. Furthermore, as already mentioned, the frequency and
growth rate do almost not depend on T and hence neither on the local shear.

The HSX device shown in Fig. 10 is a helical axis stellarator with 4 field periods with
quasi-helical symmetry. The spectrum of the magnetic field in HSX is dominated by the
Bi1,1xn,., Fourier coefficient, B ~ B(s,0* — Nj, ). The rotational transform is mainly
provided by the helical magnetic field and is rather flat, ¢(s = 1)/¢(s = 0) ~ 0.95.

The ion temperature gradient peaks in the middle of the configuration, at s; = 0.25
where g(so) = 0.96 and p(s¢) = 0.21cm = (a)/71, where (a) is the averaged minor radius of
the configuration. We choose As, = 0.21 and 7 = 5.

Due to the strong helical symmetry of the magnetic field, we keep only the following

poloidal and toroidal wavenumbers :
(mi, ’I’Lj) = (m() + ’i, Ng — iner);i = [—6, 6]

Figure 11 shows the mode (mg, ng) = (-9, 8) obtained by EUTERPE with these parameters
over one period of the configuration. In contrast with QAS3, the structure of the ITG driven
mode is here characterized by a strong toroidal variation |max(¢(¢ = 7/Nper))|/Imax(¢p(p =

0))| & 1.5. This property of the mode does not seem to be related to the magnetic structure
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of HSX and neither to the trapped ion effects. Indeed, we obtain a similar toroidal variation
of the mode by keeping only the mg and ng wavenumbers, the couplings induced by the
magnetic field being then forbidden. Similarly, results are identical without the mirror term
(eq. 6) in the equations of motion of the particles.

In order to understand this feature of HSX, we study the influence of the shape of the
plasma by varying the configuration from a quasi-helically to a helically symmetric system.
This transformation is achieved by increasing the number of field periods N, while the aspect
ratio per period is kept constant [37]. The Fourier components of the plasma surface of the

final helically symmetric configuration are such that :

er;,m—l = an,m~1’

er;,m+1 = "Riz,mﬂ-

Here, we choose the following transformation :

f _ pHSX
Rup = 2mn " me_ (v nasx) | Y,
3 N;bfer _ ng}gx D ,
er:zn - Zgix HSX
e = g (= ) + 2

Roo/N = Rg[§¥* INE3X

per

where NJ,. = 100 is the number of field periods of the final configuration and the super-
script #5% denotes the parameters describing the plasma surface of the HSX configuration.
However, the g profiles vary during the transformation, we then have to adjust the values
of ny to keep kj constant from a configuration to another one.

Figures 12 and 13 show the shape on the ITG driven modes with N = 35 and N = 100.
Note that we obtain a helical-ITG mode when N = 100. The growth rate is almost constant
while the frequency is an increasing function of N. Here again, these results were obtained
by keeping the same number of Larmor radii between s = 0 and s = 1. In Figs. 14 and 15,
we plot the modulus of the extracted potential ¢ along the magnetic surface s, and compare

its shape with those of the amplitude of the magnetic field and the Jacobian Vg . When
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N =100, the helical symmetry of the configuration is very well preserved by the EUTERPE
code, the modulus of ¢ is very well aligned with the amplitude of the magnetic field and the
Jacobian. With HSX, the effects of the helical symmetry of the configuration are also well
shown. But the toroidal variation of ¢ does not seem to be correlated with the shape of B.
However, it reaches its maximum (the central spot around ¢ = 7/4 and 6* = 1) where \/g"
is minimum. We represent the values of the Jacobian and B along the same magnetic surface
in Fig. 16. The structure of the ITG driven mode results from the combined effects of N
which is strongly varying along the toroidal direction and the almost helical magnetic field.
With N = 35, we can observe the transition between the quasi-helical and helical systems.
Here the mode is still strongly helical, but its shape is also affected by the difference of
structure between the Jacobian and the amplitude of the magnetic field.

HSX being characterized by a helical magnetic axis, the structure of the Jacobian results
from the variation of the position of the magnetic axis along the toroidal direction. As shown
in Fig. 11, the poloidal plane is centered around R = 1.45m at ¢ = 0 whereas it is centered
around R = 1.05m at ¢ = 7/Npe,. The curvature drifts are then stronger at the middle of
the period. However, the effects of this feature of HSX on the frequency and growth rate of

the ITG driven mode are not clearly established and require further simulations.

VI. CONCLUSIONS

We have investigated the linear stability properties of the ITG driven modes in two
different 3D configurations with the help of the 3D global gyrokinetic code EUTERPE. Our
model based on gyrokinetic ions and adiabatic electrons has revealed an interesting feature
of the electrostatic ITG instability. In the QAS3 configuration, results do not show a strong
effect resulting from the 3D geometry on the growth rate, the frequency and the shape of the
ITG driven mode. Here, the ITG driven mode is ballooning in the outer part of the torus
where the amplitude of the magnetic field is almost constant along the toroidal direction.

The results are then similar to those of a tokamak. Furthermore, in contrast with ballooning
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predictions, the influence of the local shear on ITG instability is weak whereas of global
shear is strong. This is largely because of the nature of the global ITG driven mode which
is characterized by a long parallel wavelength and & p = O(1). Furthermore the gradient of
temperature lies in the perpendicular plane to the magnetic field. Therefore, the resulting
global ITG driven modes are more sensitive to the variation of B in the perpendicular plane
than along the magnetic field lines. On the other hand, HSX which is not dominated by
toroidal effects has shown a clear and new 3D effect related to the 3D shape of the plasma,
i.e. the variation of the centrifugal force along the magnetic field lines. However, here again,
this effect on the growth rate of the ITG driven mode has turned out to be weak. Further
simulations are required to validate this point.

However, the physical model needs to be improved by including a non adiabatic response
of the electrons [38,22], because with our current model we miss all the important desta-
bilizing effects due to trapped electrons. Furthermore, we should include the effects of an
equilibrium radial electric field [39] which, in tokamaks, has been shown to have a strong
stabilizing influence on the ITG driven mode.
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of the Ecole Polytechnique Fédérale de Lausanne.

APPENDIX A: MAPPING FROM TOROIDAL TO VMEC COORDINATES

The equilibrium magnetic field (1) and all other magnetic quantities required by the gy-
rokinetic equations are provided by the 3D equilibrium code VMEC [24]. They are computed
in the (s, u,v) system of coordinates, where s is given by eq. (2), v = ¢ is the geometric
toroidal angle and u the poloidal variable is related to 6* by [40] :

0" =u+ A(s,u,v), (A1)
where A is a periodic function of u and v with zero average over a magnetic surface.
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The position of a guiding center (R, ¢, Z) is expressed in the VMEC coordinates (s, u, v)

as
R= Z Ry (8) cos(mu — niv), (A2)
Y = v, (A3)
Z = Z Z . (8) sin{mu — nLv), (A4)

with L the number of field periods of the configuration. The number of Fourier harmonics
m and n are both input parameters of VMEC.

The VMEC code computes the R,,, ,,(s) and Z,, ,,(s) Fourier harmonics on a finite number
of magnetic surfaces s;,4 = 1..Ny, the Ry, ,(s) and Z,, »(s) are only discrete functions of s.

It computes also the Ny Ay, , Fourier harmonics, the ) function being given by :
A(s, u,v) Z Amn(s) sin{mu — nLv). (A5)

As particles are pushed in (R, ¢, Z), we thus need to invert the system of three equations
(A2-A4). We pre-compute all these required quantities and store them on each point of a
(R, ¢, Z) grid which encloses the plasma. Hence, using linear interpolation, we can easily
and efficiently compute all the equilibrium quantities needed by the gyrokinetic equations.

Let us denote (R, ¢y, Z,) the coordinates of the grid point where we want to compute
the VMEC quantities required by the EUTERPE code. We want to find the (sg, ug,v,)
coordinates such that (Ry, g, Z5) = Z(s4,ug,v,), where Z is the 3D nonlinear function
constituted by the equations (A2-A4).

We proceed as follows : we first define a equidistant mesh in 6, the geometric poloidal

angle, of Ny grid points :

O = (k—1) k= 1..Np, (A6)

Ng -1
and a 2D mesh (s;,6;); @ = 1..Ns, k = 1..Ny of N; X Ny points. In the poloidal plane

@y = vy = const, with the help of eqs. (A2-A4), we compute the position of the N, x Ny

grid points, denoted {R;, Z;x}
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R = Z Ry n(si) cos(mu,, — nLv,), (A7)

m,n

Zig = Z Zmn(8i) sin(mu;  — nLv,), (A8)

m,n

where u; 4 is such that

1 Zik = Zazis(vy)
] — _ 1 i,k azris\ Vg —
&(uik) = O — tan (Ri,k - Rams(vg)> 0. (A9)

In other words, for a given magnetic surface s; and a given value of 6, we have to compute
the root of the function £ defined above. We then have to invert the eqs. (A2-A4). Here,
however, we have reduced the 3D problem into a 1D problem, the function ¢ is only a

function of u. The root is computed using the Newton-Raphson method [41], we choose 6y

as initial guess. We now rewrite eqs (A7-A8) as :

Ri,k = Ramis(vg) + ﬁ(sia eka Ug) COS(H]C), (A]-O)

Zi,k = Zawis(vg) -+ ﬁ(Si, Hk, ’Ug) sin(ﬁk), (All)

where 5(s;, 0k, v,) is computed for all the N; x Ny points and is simply given by :

p(si, O, vg) = \/(Ri,k - Raxis(vg))Q + (Zig — Zawis(vg))2~ (A12)

We can define a new system of coordinates (5,6, v) and the grid point (R, ¢4, Z,) can

be expressed in these coordinates as :

Ry = Raais(vg) + p(sg, 04, vg) cos(fy), (A13)

Zg = Zagis(vg) + B84, 04, vg) sin(6y). (Al4)

Following eq. (A12), one obtains

[)9 = \/(Rg - Raxis(vg))2 + (Zg - Zamis(vg))Q- (A15)

We now want to find the four points on the grid (s;, 6x) surrounding (Ry, Z,). Denoting

I the poloidal index such that 6; < 8, < 6y, we easily find the four neighbours given by :
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p(s5,00,v9) < Bg< B(Sj41, 01, v) (A16)

P83, 0141, 09) < Pg< B(Sj41, 11, Vg)- (A17)

Finally, along the magnetic surfaces s; and s;;1, we compute the roots of

1 ( Z(85, 1, vg) = Zaais v )>
u.=6—tan1( 2L =) =0 AlS
f( J) 9 R(sj,ug,vg) — Rawz‘s(vg) ( )

and

B Z(S‘ 1, Ug, U )—Zam's(’u )
Uiry) =0 -—tan1< P ) =0 AlS
f( J+1) 9 R(8j+1,um vg) - Ramis(vg) ( )

which gives us two points at (s;,u;) and (s;11,u;41) aligned with the grid point (R, 4, Z,).
Indeed, the three points are all characterized by 6§ = 6, and then belong to the 8, = const
line.

We compute the required values F at (R, gy, Z,) using a simple linear interpolation
between (s;, u;) and (s;4+1,u;41). With VMEC, however, some quantities like the harmonics

of the magnetic field B, ,(s) are only computed at the middle of a interval [s;, s;41]. We also

approximate them at s; and s;4, using a linear interpolation, i.e. By n(s;) = (Bm,n(sj_%) +
Binn(sj41))/2. The final value F at (Ry, ¢y, Z,) is given by :
F(Ry, 09, Zg) = (1 — w)F (s, u;,2,) + WF (8541, Uj11,Vg) (A20)

with

ﬁg - ﬁ(sja 05]7 'Ug)
p(8541,09,v9) — p(s5, 09, vg)

w =

We can easily test the accuracy of the procedure by taking F = R (eq. A2) and compare
this value with R,. With N, = 97 and N, = 128, the relative error, (F — R,)/R,, is less than
1%. Note that we compute s, using the above equation.With this algorithm, computations
are performed only on the IV; discrete magnetic surfaces s; computed by VMEC. It is an
important feature, because the computations of the roots of the ¢ function are generally
only possible on the discrete magnetic surfaces s;. Interpolations along s are then only

performed at the end of the process. Furthermore, the (g, 6, ¢) system of coordinates being
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a polar system of coordinates centered around the magnetic axis, we also avoid the problem
encountered around the magnetic axis by the direct resolution described above.

If the grid point (R, ¢, Z,) is outside the plasma, the relations (A16) and (A17) are
not verified. We then linearly extrapolate the required values F from the two last discrete
magnetic surfaces sy,—; and sy,.

We do not store the PEST-1 poloidal variable 6* on the (R, ¢, Z) grid. With this system
of coordinates, a linear interpolation would give wrong results at the magnetic axis (6* is
not unique) and around the line §* = 0, i.e. where 6* goes from 27 to 0. With the help
of eqs. (A9) and (Al), we easily compute the value of 6* on the points of the (s;, ;) grid.
For every poloidal plane, we then store these values of §*. Hence, in EUTERPE, when
we need to compute the PEST-1 poloidal coordinate of a particle 0;, we compute first the
value of s, using the (R, ¢, Z) grid. Then, still using linear interpolation, we compute the
corresponding 6, with the help of this (s, 6, ¢) grid.

This algorithm has proven to be relatively robust even with realistic configurations like
QAS3 or HSX. Generally, we choose a (R,¢,Z) grid of 100 x 65 x 100 points. If the
VMEC equilibrium is well converged, the number of points where it fails is smaller than
10. Usually, they are located near the edge of the configuration. With such refractory
points, we compute the required magnetic quantities using a bilinear interpolation on the

(R, p = const, Z) mesh.
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FIGURE CAPTIONS

Fig.1 Contour of the electrostatic potential over one period of QAS3. We show here the
mode my = —24,ny = 8 at s = sp. Some magnetic surfaces intersections with poloidal
planes (dashed lines) and some magnetic field lines (continuous lines) are also repre-

sented.

Fig.2 Amplitude of the largest Fourier harmonics By, as a function of s (Byg is omit-
ted) for QAS3 (left) and the safety factor ¢ and the logarithmic derivative of the ion

temperature profile as function of s (right).

Fig.3 Frequency and growth rate of the ITG driven mode measured in QAS3 and the

equivalent tokamak (7" = 0) as function of ny.

Fig.4 Level surfaces of the electrostatic potential ¢ measured at ¢ = 0,0.33,0.65 and 7/3
in QAS3 with my = —24 and ng = 8.

Fig.5 Spectrum of the electrostatic potential ¢ (right) measured at s = sy for QAS3. The

spectrum is centered around (mq, ny) = (—24, 8).

Fig.6 Frequency and growth rate of the ITG driven modes ny = 12 and ny = 8 measured

as function of 7.

Fig.7 Level surfaces of the electrostatic potential ¢ measured at ¢ = 0 (top) and 7/3

(bottom) as a function of T with my = —24 and ny = 8.
Fig.8 Distribution of local shear in QAS3 at s = 5.

Fig.9 Contour of the amplitude of the extracted potential ¢ and the local shear (continuous

lines) as a function of ¢ (denoted v) and 6* at s = sy for T = 0,0.5 and QAS3.
Fig.10 Same as in Fig. 1, but in HSX. We show here the node mg = —9,ng = 8 at s = 5.

Fig.11 Level surfaces of the electrostatic potential ¢ in HSX. We show the mode m, =
—9,n9 = 8 at ¢ = 0 (right), 7/2Npe, (top), 7/Nper (left) and 37/2N,e, (bottom).
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Fig.12 Same as in Fig. 11, but with N = 35.
Fig.13 Same as in Fig. 11, but with N = 100.

Fig.14 Amplitude of the extracted potential gZ and B (continuous lines) as a function of ¢
(denoted v) and 6* measured at s = sy with N = 4 (HSX), N = 35 and N = 100.

Fig.15 Amplitude of the extracted potential ¢ and /9" (continuous lines) measured at
§ = so with N =4 (HSX), N =35 and N = 100.

Fig.16 Amplitude of B and ,/g* at s = s as a function of #* and ¢ in HSX,

25



FIGURES

FIG.1 Jost

X [m]

26



[a.u.]

0.15

FIG.2 Jost

O0.1p

0.05¢

27

— - =1/T dT/ds

02 04




FIG.3 Jost

] | |

© © <
[,-vl 000t ®

16

14

12

!
0
-

o
[,-vl000k. 4

28



FIG.4 Jost

v=0.33 v=0.65 vV =7/3
N . 1sf 1.5
N -~ \\ ‘ —
NS - - -
\ ‘\Kr\:\\ 1 \{\’(‘\\\\\ 1 MEaS N
b AN - =G
\\\\\ \\ 0.5 \\\\ / \W\\\ 0.5 |l L - :\-_\\\\\
W\ \\ \ Yy @ \ { ! ﬁﬁ AN
NNER X . My W ollt!! ﬁa”\
M %\I“ N W ity ‘gf—'// /
i %’"’ osp Wy | Coshi it 2"
Wbl YR T R 2
: NS — T
IR ST o Es
l\\ P/ -
7z,
W -1.5 1.5
3 4 3 4 3 4
R [m] R [m] R [m]

29




FIG.5 Jost

e
i

=
e

06 .

&
™

FET of :;;{s:tsa} T
o
EN
I

30



FIG.6 Jost

(e} o]
[,-vloook, @

0.75

0.5

0.25

n0=12
8

|
|
|
: |
; |
] !
!
!
1t}

«©
oi

©
ol

~

o
[,-vl 0001, 4

!
N
oi

0.75

0.5

0.25

31



FIG.7 Jost

T=0 v=0 T=0.25 v=0 T=0.5v=0 T=0.75 v=0 T=1v=0
£ (= (73 17,3 N
. ~ Pl AN TN
| ,{/’—5\\\\ 1 ||/ //‘\\\\\\ 1 1 "\\§\ 1 \\/:§\\\ 1 \Q\\’; vh\Q\\
0 7 RN A "\ LT M\ i R AR
I h P TN Y Wy
m W Iy, ! \\\ ly | | | N Y
heogmooop 0 g &0 pto#m o Wl gn
'l i by & no /,u
A L ol 1l o I 1 . L
Wy th¥ 1/ ,'|,M/// el //// ey 7 {’,’\ 7
W<z -1 N -1 I\| */7/ -1 N ///// -1 / ’../ 4
=~ = - N 7 C=F
3 4 3 4 3 4 3 4 3 4
T=0 v=n/3 T=0.25 v=n/3 T=0.5 v=n/3 T=0.75 v=n/3 T=1 v=n/3
7, "x —
/f\\\ 1 @ :\ 1 - ~ 1 = 1 T~
TR RN 1, X RN 11,7=X
| M [V IRaENONN / N I, "N /, - X
W TSN PR INN NN TN
I AN N -\ ] REWY l ” AN ‘ | N
! w i ) I y BN NITEE " AN
ll[l Ih 0 |||| H’ 0 ||( ’ II) |||l| "’;}/1 ll -///
P I:‘l\ﬁi 7 i '\l'\dyﬁ’/ 2
Vil 1 Y A w7 Ny W\l oz
‘\\34// Sf W22 4Nz 48T AN
3 4 3 4 3 4 3 4 3 4
R [m] R[m] R [m] R [m] R [m]

32



FIG.8 Jost

Y [m]

33



FIG.9 Jost

QAS3

34



Zmj

0‘_‘2 s A 7

FIG.10 Jost

35



Z[m]

FIG.11 Jost

HSX ® = 0.0034 Q™" y=0.0033 Q"

0.25

0.2

0.15

0.1

0.05

-0.25

0.9

36



FIG.12 Jost

0.0036 0"

0.00383 Q7" y=

N=35 0=

0.25
0.2r
0.15

=015
-0.21

-0.251

10.9

10.8

10.7

10.5 10.6
R [m]

0.4

37



Z[m]

FI1(G.13 Jost

N=100 w = 0.00476Q71, yv= 0.0032071

30.3

38



FIG.14 Jost

HSX N =100

39



FIG.15 Jost

HEX

N =100

0 002 004 006

40



1Bl [a.u.]

1BI

FIG.16 Jost

9‘1?2 {a.u.l

41

Jacohian




