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Abstract

The ideal magnetohydrodynamic stability properties of a three-field pe-
riod stellarator with quasiaxial symmetry features proposed by Garabedian
and Ku (Phys. Plasmas 6, 645 (1999)) are investigated. The stability limit im-
posed by local ballooning and Mercier modes allows 3 ~ 5.3% to be achieved
by tailoring the pressure profile. For this system, the global external kink
modes are shown to be stable. To demonstrate this, we have developed a

sequence of configurations that varies from the reference system proposed to
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the equivalent axisymmetric tokamak. A scan of kink stability reveals that
the configuration with a plasma boundary shape that corresponds to 80% of
the basic three-period stellarator and 20% of the tokamak becomes marginal
to global external modes. The normal magnetic field line curvature and the
local magnetic shear play crucial roles in the stability properties. The lo-
cal magnetic shear develops a helical stripe with increasing three-dimensional
plasma deformation that inhibits the formation of global structures. The nor-
mal magnetic field line curvature, however, becomes locally amplified by the
three-dimensional plasma deformation in regions where the local magnetic
shear vanishes. As a result, the susceptibility to localized ballooning mode

destabilization is enhanced.
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I. INTRODUCTION

Stellarator magnetic confinement systems have been considered as
attractive options for nuclear fusion reactors because steady state op-
eration without disruptions can be realised in a straightforward man-
ner. Their main drawback, however, has been the poor confinement of
the alpha particles that may be insufficient to guarantee self sustained
plasma burn. This issue has been successfully resolved with the devel-
opment of the Wendelstein VII-X concept! that has spurred increased
interest in more compact stellarator systems that also benefit from
advanced physics properties with respect to energetic particle confine-
ment, magnetohydrodynamic (MHD) stability and plasma exhaust,
as well as technical realizability with modular coils. In particular,
we focus on devices that are three-dimensional (3D)but in which the
magnetic field structure retains symmetry properties similar to those
of a tokamak. This is referred to as quasiaxisymmetry.2—5

In this paper, we examine a compact three-field period stellarator
configuration proposed by Garabedian and Ku’ in which half of the
rotational transform is produced by a bootstrap-like plasma current
and the other half is supplied externally though 3D plasma shaping
effects. They refer to the configuration as a quasiaxially symmetric
system. It should be noted, nevertheless, that there is a substantial
mirror field component that improves the stability at the expense of
neoclassical transport. The predicted energetic particle confinement
time is half that of a comparable two-field period device which dis-
plays a much higher level of quasiaxisymmetry. Increasing the aspect
ratio, however, can improve the symmetry properties of the B-field
structure.” The 3D ideal ballooning stability of the device was exam-
ined with a pressure profile given by p(s) = p(0)(1 — s!*)? to yield a
B = 4% limit. Here s is a radial variable proportional to the toroidal
magnetic flux (and thus the volume) enclosed.

We extend the investigation of the stability properties of this three-
period configuration in this work. We tailor the pressure profile so that
it approaches marginal stability with respect to ballooning modes on



all the flux surfaces and demonstrate that the 8 limit imposed by
the local modes reaches 5.3%. We subsequently examine the global
external ideal MHD kink stability properties with respect to period-
icity breaking structures and with respect to periodicity preserving
structures that destroy the stellarator symmetry. This second class
of instability includes the vertical displacement modes. In stellarator
systems with finite current, Fu et al. have demonstrated that the ex-
ternal poloidal flux generated through the 3D distortion of the plasma
shape exerts a strong stabilizing influence on vertical displacement,
motion.® We investigate a sequence of configurations where we relax
the shaping of the plasma to recover the equivalent axisymmetric toka-
mak. In this procedure, we fix the pressure profile corresponding to
the near marginal ballooning stable profile of the fully 3D case, but
alter the pressure on axis p(0) to maintain § ~ 5.3%. We also fix the
prescribed toroidal plasma current profile but vary the total toroidal
plasma current to maintain the maximimum value of the rotational
transform in the plasma at ¢4, =~ 0.484. The shape of the rotational
transform profile varies somewhat in the sequence that encompasses
the 3D compact stellarator proposed in Ref. 7 and the corresponding
equivalent tokamak.

The conditions of marginal stability of the compact three-period
stellarator with quasiaxial symmetry features with respect to local
ballooning modes is discussed in Sec. II.In Sec. III, a sequence of con-
figurations that varies from this compact stellarator to the equivalent
axisymmetric tokamak is developed. The global ideal MHD stability
properties of the sequence is examined in Sec. IV. The impact of the
magnetic field line curvature and the local magnetic shear on global

and local stability is analyzed in Sec. V, followed by the conclusions
in Sec.VIL.

II. CONDITIONS OF MARGINAL LOCAL STABILITY

We apply the fixed boundary version of the VMEC code to compute



3D equilibria with nested magnetic flux surfaces.’ The inputs required
for this code are the Fourier spectrum of the plasma boundary surface
reported in Ref. 7, the pressure profile and the toroidal plasma current
profile. A hollow toroidal plasma current with a finite edge gradient
that models the bootstrap effect is prescribed as

2nJ'(s) = 2w J(1)[0.9(1 — s) + 20s°(1 — s)]/1.45, (1)

where the magnitude of the current is specified by 27J(1). A typical
profile is presented in Fig.1. The pressure profile is initially prescribed
as

p(s) = p(0)(1 - %)° (2)
and the volume average (3 is defined as
_ 2po S dizp
b= [d3zB? - (3)

The local modules of the 3D TERPSICHORE stability code described
in Ref. 10 are used to evaluate the ballooning eigenvalue and the
Mercier criterion on each flux surface. The pressure profile is sub-
sequently adjusted to satisfy the ballooning stability criteria on each
flux surface. The initial and marginally stable p(s) profiles and the
corresponding rotational transform profiles are displayed in Fig. 2.
The Mercier criteria for the ballooning stable profiles also predict sta-
bility except on a few isolated surfaces located close to mode rational
contours. We interpret this as potential magnetic island formation
rather than a strict stability limit.

III. SEQUENCE OF CONFIGURATIONS

The mod-B? distribution for five configurations of the sequence is
shown in Fig. 3 on three different cross sections encompassing the ax-
1Isymmetric and the fully 3D systems under study. The reference case
ballooning marginal p(s) and 27 J'(s) profiles are fixed in this sequence
while p(0) and 27J(1) are altered to keep 8 ~ 5.3% and taq =~ 0.484,
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respectively. In Fig. 4, the normalized toroidal plasma current 2wJ(1)
is plotted as a function of the plasma shaping parameter T'. It shows
that the reference case has half the toroidal current of the equivalent
tokamak. This underlies the statement that about half the rotational
transform in the reference case is supplied by the plasma current and
the other half by the 3D plasma shaping effect. The «(s) profiles for
cases with several values of T are also displayed to illustrate that
there is a small variation from case to case. A Fourier analysis of B2
in Boozer magnetic coordinates!! for a nearly axisymmetric configura-
tion obtained with T'= 1/4 and for the T' = 1 reference case is shown
in Fig. 5. Though the leading component is axisymmetric for T' = 1,
there is a significant mirror term contribution also.

IV. GLOBAL EXTERNAL STABILITY

The global modules of the 3D TERPSICHORE code!? are applied
to explore the external kink stability properties of the sequence of
configurations described in Sec. III. An axisymmetric conducting wall
of aspect ratio unity is prescribed to undertake the external mode
study as illustrated for the 7' = 1 and T = 1/4 configurations in
Fig. 6. The wall is sufficiently far from the plasma-vacuum interface
to simulate the conditions of a wall at infinity. We concentrate in this
work on three global mode structures, namely, the periodicity breaking
m/n = 3/1 external kink, the periodicity preserving m/n = 7/3 ex-
ternal kink which breaks the stellarator symmetry and the m/n = 1/0
vertical displacement motion. The vertical m/n = 1/0 instability is
actually coupled to the m/n = 7/3 external kink (it is a member of
the same family'®!%), but which component dominates depends on the
plasma shaping. The global unstable eigenvalues as a function of the
plasma shaping parameter T are displayed in Fig. 7. At 8 ~ 5/3%,
the m/n = 7/3 and m/n = 3/1 external kink modes yield similar
marginal stability conditions that correspond to the configuration ob-
tained with T' ~ 0.8. The vertical displacement mode dominates the



m/n = 7/3 external kink for T' < 0.4 and predicts marginal stability
for T ~ 0.6. The leading Fourier amplitudes of the radial compo-
nent of the perturbed displacement vector as a function of the radial
variable s are shown in Fig. 8 for the T = 0.25 configuration. The
vertical instability has an eigenvalue A = —0.007, making it the most
unstable member of its family. It should be noted, nevertheless, that
this mode still retains a nonnegligible helical m/n = 7/3 contribu-
tion. The second most unstable member of the family is dominated
by n = 3 components (with m = 7 the largest) and has an eigenvalue
A = —0.0047. For the T = 0.79 configuration, the leading Fourier am-
plitudes of the radial component of the perturbed displacement vector
versus s for the periodicity breaking m/n = 3/1 and the stellarator
symmetry breaking m/n = 7/3 external kinks are displayed in Fig. 9.
This configuration is nearly marginal as manifested by the magnitude
of the eigenvalues A = —0.0001 and A = —0.0002 associated with the
m/n = 3/1 and m/n = 7/3 dominated structures, respectively. The
perturbed pressure distribution dp (dp = —p'(s)€ + Vs, where £ is the
perturbed displacement vector) for the stellarator symmetry breaking
m/n = 1/0 vertical displacement motion that constitutes the most
unstable mode of the n = 0 family (A = —0.007) for the "= 0.25 con-
figuration is compared in the top row of Fig. 10 with the second most
unstable mode of this family (A = —0.0047) which is an external kink
structure dominated by a m/n = 7/3 component. Also compared is
the dp distribution from a periodicity breaking instability dominated
by am/n = 3/1 structure with that of a stellarator symmetry instabil-
ity dominated by a m/n = 7/3 structure that preserves the periodicity
of the underlying equilibrium state for the near marginally stable sys-
tem obtained with T' = 0.79. This is displayed in the upper-middle
row of Fig. 10.

V. DISCUSSION

To attempt to understand the physical mechanisms that govern



the stability properties of compact stellarator systems with quasiaxial
symmetry features, we analyze the interaction of the pressure gradi-
ent with the normal magnetic field line curvature 2p'(s),/gk + Vs and
the local magnetic shear term ,/gS 15,16 which constitute fundamen-
tal destabilizing and stabilizing contributions, respectively, for MHD
instabilities. The Jacobian of the transformation to Boozer coordi-
nates is denoted by ,/g. The normal curvature and the local shear
distributions on a toroidal magnetic flux surface near mid-volume for
the nearly axisymmetric configuration obtained with 7" = 1/4 is com-
pared with that of the reference case given by T' =1 in the lower half
of Fig. 10. On the inside edge of the flux surface, the 2p'(s),/gk - Vs
distribution is fairly uniform, positive and shows a weak toroidal mod-
ulation. On the outside edge of the torus, on the other hand, this
distribution evolves from quasi uniform with a value around —1 for
the T = 1/4 case to strongly modulated toroidally with a value that
reaches —2 for the T' = 1 case as seen in the lower-middle row of
Fig. 10. The outside edge of the up-down symmetric cross section that
is bean shaped aligns with the most negative and thus destabilizing
values of 2p'(s),/gk + Vs. The toroidal average, however, is compara-
ble in both cases. For the comparison of the corresponding local shear
distributions shown in the bottom row of Fig. 10, we concentrate on
the outside edge of the torus where the curvature is destabilizing. We
see that the ,/gS distribution for the T = 1/4 case displays a weak
helical modulation with values oscillating between 0 and —0.3. For
the T' = 1 reference system, the ,/gS distribution develops a sharp
helical stripe which varies between —0.5 and —1.5 in magnitude. In
between the stripes, there is a broad domain where the local magnetic
shear becomes nearly vanishing. From the perusal of the structures of
2¢'(s)\/g9k - Vs and ,/gS for the weakly 3D T' = 1/4 and the reference
T =1 configurations, one can anticipate that the large negative heli-
cal stripe of /g5 would inhibit the formation of instability structures
that extend beyond one equilibrium field period. This is confirmed
by the results presented in Fig. 7. Furthermore, mode structures that
can concentrate within the region in which the 3D deformation of the
plasma on the one hand enhances the negative value of 2p/(s)/gk + Vs
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and on the other drives /g5 to vanish can become increasingly desta-
bilized. As verification, we plot the ballooning eigenvalue profiles for
different configurations of the sequence considered in Fig. 11. The
localized ballooning modes, which are nearly marginal for the refer-
ence 1" = 1 system, become strongly stabilized in the outer half of the
plasma volume as the 3D shaping is relaxed at fixed 8 = 5.3%.

VI. CONCLUSIONS

We have investigated the local and global ideal MHD stability prop-
erties of a compact three-field period stellarator system with quasiaxial
symmetry features proposed by Garabedian and Ku.” Localized bal-
looning instabilities predict a limiting 8 ~ 5.3% when the pressure
profile is tailored to approach marginal conditions nearly uniformly
on all the flux surfaces. A sequence of configurations has been devel-
oped by linearly varying the magnitude of the nonaxisymmetric com-
ponents of the Fourier spectrum the describes the plasma boundary
shape. The global external kink stability investigation has revealed
that the axisymmetric limit of this sequence is unstable and that the
helical deformation of the plasma has a stabilizing impact. The config-
uration for which the magnitude of the nonaxisymmetric components
of the boundary spectrum corresponds to 80% of the basic system
described in Ref. 7 becomes marginal with respect to external kinks.
For vertical displacement motion stability, the corresponding shaping
factor is 60%.

The helical deformation of the plasma deteriorates the stability
with respect to local ballooning modes but improves it with respect
to global external kinks. The 3D shaping of the plasma causes the
interaction of the pressure gradient with the normal magnetic field
line curvature to increase in toroidally local regions on the outside
edge of the torus which coincide with vanishing conditions of the local
magnetic shear. On the other hand, the normal cuvature on average is
unchanged around the torus while the local magnetic shear develops



a helical stripe of significant magnitude that inhibits the formation
of instability structures that extend beyond one field period. This
accounts for the seemingly conflicting effects of helical plasma shaping
on local and global ideal MHD stability predictions in 3D magnetic
confinement systems.
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Table 1: Fourier decomposition of the boundary of the configuration sequence. T
varies from 0 to 1. The poloidal mode number is m, the toroidal mode number is n
and L = 3 is the number of field periods of the system.
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Figures

FIG.1.
FIG.2.
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FIG.5.

FIG.6.

FIG.7.

FI1G.8.

FIG.9.

The prescribed toroidal plasma current profile.

The initial pressure profile (o), the pressure profile adjusted to satisfy balloon-
ing stability (o) (top) and the corresponding rotational transform ¢ profiles
(bottom).

The mod-B? distribution in Boozer magnetic coordinates for the configurations
withT =0,7 =025, 7T =0.5,T = 0.7 and T = 1 from top to bottom,
respectively, on cross sections with toroidal angle ¢ = 0 (left) at the beginning
of a field period, with ¢ = 7/6 (middle) at 1/4 of a period and with ¢ = 7/3
(right) at mid-period at 8 ~ 5.3%.

The normalized toroidal plasma current as a function of 7" (top) and the ¢
profiles for T'=0, T = 0.5, T = 0.79 and T = 1 (bottom).

The leading Fourier amplitudes of B? for a nearly axisymmetric configuration
with T' = 1/4 (top) and for the reference system obtained with 7' = 1 (bottom).
For the By, component, its value on axis has been subtracted. The reference
case has a dominant axisymmteric and a significant mirror contribution.

The plasma boundary shape (solid line) and the prescribed axisymmetric con-
ducting wall (dotted line) for the reference system obtained with T = 1 (top)
and for the more nearly axisymmetric cross section obtained with T' = 1/4
(bottom) on cross sections at the beginning of a field period (right), at 1/4 of
a field period (middle) and at mid-period (right).

The global external kink eigenvalues as a function of the plasma shaping pa-
rameter T for structures dominated by the periodicity breaking m/n = 3/1
component, by the periodicity preserving but stellarator symmetry breaking
m/n = 7/3 component and by the vertical displacement m/n = 1/0 motion.

The leading Fourier amplitudes of the radial component of the displacement
vector as a function of the radial variable s that correspond to stellarator
symmetry breaking structures dominated by a m/n = 1/0 vertical motion
(top) and by a m/n = 7/3 external kink (bottom) for the configuration with
T =0.25.

The leading Fourier amplitudes of the radial component of the displacement
vector as a function of the radial variable s corresponding to periodicity break-
ing m/n = 3/1 dominant structures (top) and to stellarator symmetry break-

ing m/n = 7/3 external kink structures (bottom) for the configuration with
T =0.79.
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FIG.10.

FIG.11.

The perturbed pressure distribution on a toroidal magnetic surface near the
edge of the plasma for a nearly axisymmetric system at 8 = 5.3% obtained
with T = 0.25 (top row) from unstable stellarator symmetry breaking m/n =
1/0 vertical motion structures (left) and m/n = 7/3 external kink structures
(right). The corresponding distribution for the nearly marginal case obtained
with T = 0.79 (upper-middle row) from periodicity breaking m/n = 3/1
external kink structures (left) and stellarator symmetry breaking m/n = 7/3
external kink structures (right). The 2p'(s),/gk + V's (lower-middle row) and
/95 (bottom row) distributions on a toroidal toroidal magnetic flux surface
near mid-volume at 8 = 5.3% for a nearly axisymmetric configuration obtained
with T = 1/4 (left) and for the T = 1 reference case (right).

The ballooning eigenvalue profiles with a pressure profile adjusted to satisfy
marginal stability conditions for the reference configuration obtained with T' =
1 and for the configurations with T'=0.79, T = 0.5, T = 0.25 and T = 0.
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