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ABSTRACT

Expressions for the neoclassical resistivity and the bootstrap current coefficients in terms
of aspect ratio and collisionality are widely used in simulating toroidal axisymmetric equi-
libria and transport evolution. The formulae used are in most cases based on works done
15 to 20 years ago, where the results have been obtained for large aspect ratio, small or
very large collisionality, or with a reduced collision operator. The best formulae to date
and to our knowledge are due to Hirshman et al [S. P. Hirshman, Phys. Fluids 31 (1988)
3150] for arbitrary aspect ratio in the banana regime and Hinton-Hazeltine [F. L. Hinton
and R. D. Hazeltine, Rev. Mod. Phys. 48 (1976) 239] for large aspect ratio and arbitrary
collisionality regime. A code solving the Fokker-Planck equation with the full collision op-
erator and including the variation along the magnetic field line, coupled with the adjoint
function formalism, has been used to calculate these coefficients in arbitrary equilibrium
and collisionality regimes. The coefficients have been obtained for a wide variety of plasma
and equilibrium parameters and a comprehensive set of formulae, which have been fitted to
the code results within 5%, is proposed for evaluating the neoclassical conductivity and the
bootstrap current coefficients. This extends previous works and also highlights inaccuracies
in the previous formulae in this wide plasma parameter space.
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I. INTRODUCTION

The transport parallel to the magnetic field lines is believed to be well described by
neoclassical theory. The neoclassical resistivity and booststrap current are widely used to
analyze experimental data and to design new experiments. The recent progress on advanced
scenarios and steady-state operation has emphasized the importance of the bootstrap cur-
rent in equilibrium calculation and its alignement with the equilibrium current. New modes,
namely the neoclassical tearing modes, destabilized by the modification of the local boot-
strap current around a magnetic island, have been observed [Ref. 3 and references therein].
Relatively simple formulae for the neoclassical resistivity and bootstrap current exist!:24
which are valid for low inverse aspect ratio, e<1, and arbitrary collisionality Vex, OT for
arbitrary plasma equilibrium and low collisionality. In Ref. 4, Harris has derived simple
formulae connecting these two limits using Refs. 1 and 2. This enabled one to study any
configuration®, as near the center one has typically e<1 and Vex~1, at mid-radius v,,<1 and
at the plasma edge e<1 and v.,~1, even in reactor-like plasmas. A recent improvement has
been to solve a set of multi-species fluid equations using the three odd velocity moments of
the Fokker-Planck equation®, following the work of Hirshman, using interpolation formulae
for viscosity moments from low and large collisionality regimes. In this way one obtains
the resistivity and bootstrap current for arbitrary shape and collisionality, in addition to
multi-species effects. However, as a set of equations have to be solved in a specific code,
NCLASS, it is not of convenient use for rapid experimental diagnostics or tokamak design
over a wide range of parameters. Also it does not use the full collision operator which can
lead to errors up to 20% as mentioned in Ref. 6 and first shown in Ref. 7. This is why
we have extended the work published in Refs. 8, 9 in order to have a complete, accurate
and analytical set of formulae for the neoclassical resistivity and all the bootstrap current
coefficients.

The model is briefly presented in Sec. 2 and the results are given in Sec. 3.

II. PHYSICS MODEL

The code CQLP solves the Fokker-Planck equation using the linearized operator on a
magnetic flux surface, including the advection parallel to the magnetic field. It does not make

any assumption on the ratio of the collision frequency to the bounce frequency. Moreover the



code uses the magnetic geometry as calculated by a toroidal equilibrium code and therefore
uses the exact axisymmetric magnetic configuration of the flux surface. One has to solve

the linearized Fokker-Planck equation for arbitrary € and v, (Ref. 2, Eq. (5.21-24))
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and where v, = 2T?/m, and €, = q,B,/m, are the thermal velocity and the cyclotron
frequency of species o, I(¢) = RB, and b= B/B. Note that we do not take into account
the modifications due to potato orbits and therefore our results should be slightly modified
near the magnetic axis according to Ref. 10. Following the work in Ref. 11 adapted to this
problem in Ref. 7 and also described in Ref. 8, one can solve the following adjoint equations

(using the same notations as in Ref. 8):
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Then the flux surface averaged parallel current is given by:
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where we have used T;/ZT, = (1/R,e — 1) with R, = p./p, and the coefficients are obtained

from the adjoint functions x. and x;:
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where h(z) = z7(10erf(z) — 10zerf'(z) — 422 erf(v)], veo = 3v7/(4Zi7.), vio =
3\/7r—/2-/ (273), and Lz ce ~ ([ xeCL.), L3z ei ~ {J xeC,). The code solves Eq. (3) for the
electron adjoint function, using Maxwellian background ions of charge Z for the e-i collision
contribution, and Eq. (4) for the ions. Then the coefficients, Eqs. (7-11) are computed using
the solutions x. and x;. Changing the flux surface considered or the plasma equilibrium,

one can vary the aspect ratio or the trapped fraction f;, where f, is defined as:

1o f=1o Sy [P __AdA
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We have used this exact definition, but an approximate and fairly accurate value can be
obtained from simpler terms as described in Ref. 12. Also varying the temperature and
density, one can change the collisionality regime from the banana regime to v,, > 1, where
Vex = 0.012 nesg Zegs qR/€3/?T2,,.,. Finally, we have varied the ion charge Z, to obtain the
dependence on Zess. The results obtained with CQLP for the coefficients Eqs. (7-11) in
this three-dimensional parameter space are given in the next Section, as well as the formulae
used to fit the results in terms of f;, e, and Zg¢s. The code CQL3D has also been modified
to solve the bounce-averaged version of Egs. (3-11) and compute in the collisionless limit
the coefficients. As this reduces to solving a 2-D problem in the velocity space, the results
are more accurate and much faster to obtain and it gives a benchmark for CQLP in the

limit v, < 0.01.



III. RESULTS

We have solved Eqgs. (3-4) over a wide variety of equilibria, trapped fraction fr (e
on different flux surfaces), and collisionalities in order to determine accurately the fitted
formulae for the neoclassical resistivity op.,, and the boostrap current coefficient L31, L3,
L34 and (, relative to the pressure, the electron and the ion temperature gradients, Eqgs.
(7-11). Some of the different equilibria considered are shown in Fig. 1. These range from
circular low § and large aspect ratio to high 8 small aspect ratio and highly elongated
plasma, with low and high triangularities. Therefore same values of € as well as f; have been
studied in different toroidal equilibria.

First, following the work in Ref. 1, we show in Fig. 2 that the trapped fraction f; is a
good parameter to encapsulate the geometrical effects on conductivity in the collisionless
limit. In Fig. 2(a), we show the neoclassical conductivity obtained by CQL3D, using the
bounce-averaged version of Eqs. (3, 7), versus the square root of the inverse aspect ratio «.
As one can see clearly, 0,., depends not only on € but also on other equilibrium parameters.
On the other hand, when plotted versus f;, then all the points are well-aligned and o,
depends only on f;. The same is obtained for the boostrap current coefficients, within 1%,
which shows that f; does represent the effective trapped fraction for non-circular and finite
e equilibria.

Different options have been used to include finite collisionality effects in the
formulae>*%', but mostly the coefficients in the formulae have been modified. As f; is
a very good parameter in the collisionless limit, it seems better to change only f; as a func-
tion of ve, if possible. In this way one can first find the polynomial dependence of oy,,,
Ls1, L3z and & on f; in the collisionless limit using CQL3D, which is faster and more accu-
rate. And then determine the effective trapped fraction f;(ve.) for finite collisionality, while
keeping the coefficient of the'polynomials independent of v,,. This procedure is also easier
to find an analytic formula valid for arbitrary f; and v.., as one does essentially two 1-D
fits, instead of one 2-D fit. Finally it is interesting as one naturally obtains the effect of
collisionality on the fraction of trapped particles. This procedure was shown to be possible
for ope, and L3; in Re.f. 9. Since then we have made more detailed calculations and also
modified the code to solve Eq. (4) for the ions.

In the banana regime, the results of CQL3D for the coefficient £33 confirm the inaccuracy

of the formulae of Refs. 1, 6, which is more significant at small values of Z, as shown in



Fig. 3. This is due to the complexity of this term, which consists of two contributions of
opposite signs, L33 ¢, and L3z ¢, Eq. (9), each of which having different contributions from
the small and large v regions as shown in Fig. 4. In particular the term L3, ., has its main
contribution from the high energy tail in the region v/vy, ~ 2, and therefore it explains
the discrepancies, in agreement with the results of Ref. 13. The term (¥ is similar to the
term L35 . and we also find about 20% differences between the exact solution of Egs. (4,
9) and the formula in Ref. 1 in the banana regime. Moreover it can be inferred from Fig.
4 that both terms will have a different collisionality dependence as their main contribution
come from different v region. Increasing collisionality modifies first the small v region and
therefore modifies first L35 ;. This is shown in Fig. 5 where both terms, £35 .. and L35 e,
are plotted vs. v, Of course, the limit at high collisionality of L3, is zero and therefore
L32_ce = - L3g_¢; Tor ve, > 10. We also show our fit and the fit derived in Ref. 4 from the
formulae in Refs. 1, 2. We see that the peculiar dependence of L3, on v,., as it even changes
sign, is easier determined by the simple v, dependence of L35 .. and L35 ;. This is why we
have separated the coefficient L3, into two terms having different collisionality dependence,
that is different effective trapped fractions. The analytical fits to the results of CQL3D and
CQLP, valid for arbitrary f;, ve, and Z are given as follows:
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i
with q being the safety factor, densities in m~3 and temperatures in eV. We have tested
different definitions of v, and v;,, using some averaged poloidal magnetic field instead of
rB/qR and/or some function of f; instead of €3/2 for example. However the simple definition
used here with the combination of Rg and ¢~%/2, Eq. (18b, c), gives the best overlap of the
results of the different equilibria at same values of f; and v.., as shown in Figs. 5, 6 and
7(a). We see also from Egs. (14b,16b) that L34 is indeed almost equal to L1, except at very
large ve«, as seen in Fig. 6 and in agreement with Ref. 2. This is why we only had to change
slightly the collisionality dependence of ft3elf #» as it can be shown, using the bounce-averaged
equations, that L£34=»L3; in the collisionless limit.

Finally we have not used the same structure for the coefficient ¢v. First it should be
emphasized that the actual coeflicient for the ion temperature gradient is £34Q¢. Second, as
seen in Fig. 7(a), the coefficient has a very sharp v,, dependence, which is very sensitive
also to f; as shown in Fig. 7(b). It is therefore not possible to decouple the f; and v,
dependences as is done for the other coefficients. This is why we have modified the formula
proposed by Harris? such as to reproduce the correct results in the banana regime, Eq.
(17a), as well as in the plateau region, and such as to have a function of f, rather than ¢ in

order to be valid for any axisymmetric geometry.
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FIGURES

FIG. 1. Examples of different equilibria used in this paper.
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IV. CONCLUSION

We have extended the work of Refs. 1, 2 in solving Eqs. (3-4) using the exact Fokker-
Planck operator and without any approximation on the plasma geometry or collisionality.
In this way we have been able to accurately determine the neoclassical resistivity and the

coefficients for the bootstrap current which allows one to calculate:

+L + L3 O———| |
By TRy thu )

where the coeflicients are given in Eqs. (13-17) as functions of f;, Eq. (12), e and v,

(]l[B) = (an(E”B) (@/))pe |:£31 D alnp OlnTe al’nTZ:I

Eq. (18), and Z. Note that the parallel current can also be written as follows, assuming
Olnne /0y = dlnn,; | Ovy:
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As L312L34~—0.5, L33~0.2, A~—0.5, and R,.~0.5, one sees that the coefficient of the

bootstrap current driven by the density gradient is about -0.5, while it is around -0.15 for T},
and -0.1 for T;. Therefore density gradients are more efficient in driving bootstrap current,
which can be significant for the neoclassical tearing modes as mentioned in Ref. 3.

For multi-species cases, a comparison of our formulae with the results of the NCLASS
code should enable one to determine the correct form of the value of Z, instead of Z, if, to
be used in our formulae, in the same way as mentioned in Ref. 2. Such a comparison would
also determine the effect of the potato orbits near the magnetic axis and indicate how f;

should be adapted there.
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FIG. 2. Neoclassical conductivity as obtained by CQL3D, normalized to the Spitzer conduc-
tivity, vs. (a) square root of the inverse aspect ratio, and (b) trapped fraction f;. The different

symbols refer to different equilibria in all the Figures.
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FIG. 3. Boostrap current coefficient L35 vs f; for different charge number Z in the collisionless
limit (CQL3D). The solid lines are obtained from Egs. (15) with fi%f® = %5 = fi- The dashed
lines are obtained from Hirshman’s formulal.
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FIG. 4. Velocity dependence, normalized to vi, = /2T /me., of the integrands of L35 _ce, solid

lines, and L32_e;, dashed lines, for low (solid circles) and high (open squares) collisionality cases.
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FIG. 5. Boostrap current coefficient L£32 = L32_¢e + L32_¢; vs. collisionality .. The solid lines
are obtained from Egs. (15). For Eqgs. (15b) and (15c), the terms £1.2/(140.5Z) have been added

respectively.
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FIG. 6. The coefficients L31, open circles, and L34, crosses, vs. collisionality v, as obtained

with CQLP. The solid line correspond to Eq. (14) and the dashed line to Eq. (16).
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FIG. 7. (a) Coefficient (X for three different values of f; vs. v;.. The solid lines correspond to
Eq. (17) and they are reproduced on the 3D plot. (b) 3D view of the coefficient (¥ in terms of fi
and v;, for Z=1. Note that the sharp rise depends strongly on both f; and v;,.
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