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Abstract

In the scope of the study of low-frequency electrostatic microinstabilities in
tokamak plasmas, attention has been focused on the effect of trapped ions.
The ballooning transform has been applied to the gyrokinetic equation, for
the case of a large aspect ratio plasma with circular magnetic surfaces. A new
eigenvalue code has been developed to solve the resulting integral equation, for
the case of adiabatic electrons and full ion dynamics, thus taking into account
both circulating and trapped ions. The goal has been to assess the validity of
the ballooning transform for trapped ion modes. A scan over the parameter
kepr has been carried out to determine a lower threshold for applicability of
the ballooning representation. Illustrative results of trapped ion modes (TIM)
are presented, together with the comparison with the ones obtained using a
global gyrokinetic code, for low toroidal wave numbers, and a local kinetic

dispersion relation.
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I. INTRODUCTION

Low-frequency microturbulence is commonly believed to be responsible for anomalous
transport of heat and particles in tokamaks. Attention is focused here on ion temperature
gradient (ITG) driven instabilities and in particular on the effects of trapped ion motion on
such microinstabilities.

Previous linear calculations using the ballooning approximation did not deal with trapped
ions modes (TIM) [1], [2]. Calculations including also the trapped ion effects have been done
using a WKB approach, equivalent to the ballooning transform, in [3]. More recently global
gyrokinetic calculations have shown the destabilizing effect of trapped ions [4], [5].

The aim of the present work has been to assess the validity of the ballooning representation
[6], [7] to describe full ion dynamics, thus taking into account both circulating and trapped
particles, for the limit case of low toroidal wave numbers and broad temperature profiles.
A general derivation of the eigenvalue equation in a toroidal, axisymmetric system, is given
for a large aspect ratio, low 3 plasma. Electrons are considered adiabatic while the response
of the ions is described by means of the gyrokinetic equation. Following the method presented
by Dong et al. in [1], the ballooning transform has been applied to the gyrokinetic equation
which is then solved separately for the two populations of circulating and trapped particles.
The quasi-neutrality condition, which is the appropriate equation to describe low-frequency
electrostatic perturbations, gives thus rise to a one-dimensional integral equation, which is
numerically solved by means of the finite elements method. Technical details are presented
in Sec. II. Alocal kinetic dispersion relation allowing to model the effects of trapped ions is
also derived in Sec. IID, in order to provide a comparison.

The rest of the article is organized as follows. Sec. III provides some details on the numerical
methods employed. Results from the ballooning calgulations together with a comparison
with the local kinetic dispersion relation and with computations from a global gyrokinetic
spectral code [4], are presented in Sec.IV. Finally, the concluding remarks are drawn in

Sec.V.



II. PHYSICAL MODEL

The effect of a low-frequency electrostatic perturbation on a low 3 tokamak plasma is
studied. Attention is focused on the ion dynamics, described by means of the gyrokinetic
equation , electrons being considered adiabatic. The quasi-neutrality condition provides the
closure equation.

We consider an axisymmetric equilibrium with circular concentric magnetic surfaces; re-
straining the study to a large aspect ratio configuration, the magnetic field in usual toroidal
variables (p, 6, ¢) assumes the simple form:

E:B(mi%+%), (1)

§
with amplitude B = By (1 — ecos 8), By being the magnetic field on the axis, e = p/R < 1
the inverse aspect ratio, R and p € [0,a] the major and minor radius of the tokamak; g,
is the safety factor. Applying this large aspect ratio approximation, only the lowest order

non-vanishing terms with respect to € are retained.

A. Gyrokinetic equation in ballooning approximation

The ballooning transform [8] has been applied to the electrostatic potential ®:

D(p,0,0) = S (p,0 + p27) exp{in S(p, 8+ p27,¢)}, (2)

p=—00
where 6 + p2m = 6, defines the ballooning angle or extended poloidal angle (6, € R ); n is
the toroidal wave number and the eikonal function has the form S = ¢,(p) 0, +¢ .
Adopting the same formalism for the nonadiabatic part of the perturbed distribution func-
tion g, we obtain the gyrokinetic equation in ballooning representation, which, to the lowest
order in €, reads :

9 _w 9
at Rqs 891,

— ikgvg, (cosf, — § 6, sin 91,)} G(p,Op;t)=

K 0 | OF iky kivi\ .
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Where § is the magnetic shear, vy, is the magnetic drift velocity, Fys is the Maxwellian
distribution function, w,; = ¢;B/m; is the ion cyclotron frequency and k=nVS.
Introducing the solution of the gyrokinetic ballooning equation into the quasi-neutrality
equation , an integral Fredholm equation of the second kind is obtained, which is then
solved by means of the finite elements method. Distinct approaches have to be used to
solve equation (3) for circulating and trapped ions, the first having approximately constant
parallel velocity v while the velocity of the latter depends on the bouncing motion.

From now on, to simplify the notation of the ballooning angle, we will drop the subscript

denoting it by 6.

B. Passing ions

To solve the gyrokinetic ballooning equation for circulating ions we considered parallel
velocity as constant and we followed the method presented in the article by Dong et al. [1].
The nonadiabatic part of the perturbed ion density assumes the form of the following integral

equation
=2 [ ap k,0) 69), (4)
T, J-x
the kernel of which, in dimensionless units, reads
- —iw 12
'.___".1_‘_/0 e ¥ _ g2 2 ., =
K(6,0") = 7 _Oodt " ewp{ sz |6 | T3 fo exp T a)

3 2n; i O e u’ "2
R 2 -0, 5
X[“”’ 2" 1T a ( TTral 20vae)) Tl (5)

To derive this expression we introduced a new variable:

gRwa| 19 -8

(7 Y|

t =

) (6)

where w,; = —(ks T;)/(q; B L) , Ly, is the density gradient scale length and vy = /2T;/m;
is the ion thermal velocity. The other definitions we established in (5) are the following :

u = (kgpr qs)/(\/ien), pL = Vs /we being the ions Larmor radius, e, = L,,/R,n; = L, /L,
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(sinf —sin#))(5+ 1) — §(¢' cos @' — G cos )
g -6 ’

vY=7(0) =V2kepr 1+ (30)2, A =(6), (7)

a=1+2i¢,

. . / . » .
Iy, I, are modified Bessel functions of argument (IE-ZE) In previous expressions frequencies

have been normalized to |w,;| and velocities to vy; .

C. Trapped ions

For trapped ions the procedure to solve the gyrokinetic ballooning equation (3) is more
complicated due to the fact that parallel velocity cannot be considered constant anymore
and in particular changes its sign during the bouncing motion. We choose in that case a
more convenient system of velocity space coordinates, (€, K2, ), where € is the energy , o

the sign of parallel velocity and instead of the magnetic moment u, we define:

2_E—pBy(l-¢)
R™ = )
2uBg e

In terms of these variables the trapped particles motion is confined between velocity reflection
points or turning points 6; 5 corresponding to k% = sin?(#/2). In the ballooning formalism
there is then an infinite number of pairs of turning points, so that for each @ only the
surrounding pair has to be considered.

The nonadiabatic part of the trapped ion density in terms of our variables can formally be

written:

Ti 5 0 1
L= [Tde [Lakt () T X ol ®)

where g7 is the nonadiabatic distribution function for trapped ions having velocity alyyl,
Jo is the Bessel function of zeroth order, having argument {(6) = 2kgpr+/E(1 + (56)2) and
J is the Jacobian of the transformation,

Ve€

7= (1 — e+ 2¢k2)2 /K2 — sin? (9/2)
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To derive the solution of equation (3) we followed the method described in [2], making a

variable transformation to a “quasi-time” ,

Ry,
-, 9
Tonl ©)

the advantage is that ¢ is in this way defined in the interval [—m «]; here w, =

t(0) = 2wy dH’

mVeE/(2R g, K(K)) is the frequency of the trapped ion bouncing motion.

An explicit form for g¥' has been obtained for the chosen large aspect ratio configuration:

o = Pu 5 {exp i1 - oRO)) oL
a(—=1)* i
_QC(OS;)F exp {—io (Tt + R(6))} [z:l-lr + l—A_‘—F] } (10)

This expression is in dimensionless form, energy € being normalized to v? and frequen-
cies to |wyi|, so that w* = 14 7;(2€ — 3/2) while the normalized bounce frequency reads
wy = TVeE[(2u K(K)); u is defined as in the previous section.

In deriving (10) we made use of a Fourier series in terms of the variable ¢, the coefficients of

which A7, are explicitly defined as
1 T ! io R(0' S0y ,—1i
A7 == [ dt C (@) €m0 b(gr) e

= g_w_” dg’ Rqs

= 91 &7 RO §(g') e=itHe)
[, ot JolC(@)) R B0 e (11)

The other definitions introduced in (10) are listed below.

A

t@) =t == %%%, B = arcsin (i— sin g),

ké’ﬁLQs\/—Q_g ~ E(K’) A 9 .9
R(#) = i (2 +43) (E (B,k) — F(B,K) K(F.:)) - 239\/& — sin (0/2)] , (12)
I= m;‘e_gz((n) w + @”LTQ’\S—[‘C/—ZE [(48(k* = 1) = 1) K (k) + (2 + 49) E (k)] .

F(8,K) and E(B, k), are elliptic integrals of the first and second kind, respectively, while
K(k) and E(K) are the complete ones. In deriving previous expressions, we took advantage
of the functional relations between the elliptic integrals which, for periodic amplitude of the

integrals, allowed us to introduce again the poloidal angle, denoted by 6 € [—7, 7).
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D. Local dispersion relation

To supply a comparison, a local kinetic dispersion relation has been derived from the
quasi-neutrality equation . As we did for the ballooning case, we considered quasi-adiabatic
electrons, while the nonadiabatic response of ions is the local solution of the gyrokinetic
ballooning equation , obtained from (3) with the standard procedure of taking the local
approximation ky = —Riq(b%).

The nonadiabatic part of the distribution function, h assumes then the form :

h:ﬁFMCU—CU*i [1“"771,('02/2—3/2)] JO kva_
2 w = wai = kyy Wei

) &(9), (13)

with w,; defined as in previous subsections and

vi
— 2
Wai = —E€p Wi (—é— -+ ’U” .

The resulting local kinetic dispersion relation, including also trapped ions, reads:
[1+T—T(apPP+OzTPT)]:O. (14)

Here ar ~ v/2¢ and ap =1 — ar, are respectively the ratios of trapped and passing ions,

and P? is defined as follows

: 1 oo o0 _otjg W ky [1+n(v?/2 —3/2)]
Pﬂ=—/ d / duy Jo2(k v?/2 y  eer (1
Vam o B T () e w = wa; — 05 vy j=rr (19)

with 6p = 1 and d7 = 0 ; the trapped particle effects are described by omitting the kyv| term,

which models bounce averaging. The expression above is in dimensionless units, velocities
have been normalized to ion thermal velocity vy,; = 1/T;/m;, wave number kj to Ly, ky to

pr and frequencies to vy;/ Ly,.

III. NUMERICAL METHOD

The eigenvalue integral equation resulting from quasi-neutrality equation has been nu-
merically solved with the finite elements method. The integration interval has been dis-

cretized into a mesh of N equidistant points and the electrostatic potential ] projected on

7



a basis of linearly independent piecewise constant functions, {1;(6)};=o...~-

The quasi-neutrality equation can then formally be written as:
N
> Mg (w) ¢ = 0, (16)
j=1
where the matrix M** is the sum over all species contributions,
Mtot —_ Melectrons + Madiab. ons +ap MPions + MTions. (17)

Here the nonadiabatic contribution of passing ions has been weighted by their fraction,
ap =~ 1 — /2¢ ; as regards trapped ions, the nonadiabatic part of the density is automarti-
cally weighted, as integrations in velocity space have been performed only over the trapped
particles domain, i.e. for values of K2 : 0 < K2 < 1.

The matrices for adiabatic electrons and of the adiabatic fraction of ions, read:

M electrons _ __1_ Jfodiab. ions’ (18)
T
Mygiobions — ¢ k| j >= / " / do’ Y (8) ¥;(0) = A9 by, (19)

where 7 = T, /T; and Af is the mesh step.
For the case of nonadiabatic passing ions, the discretization procedure is straightforward,

projecting (4) on finite elements, leads to the matrix :
Pions / - Br+1 O+t / ’
MEims = < k| K(0,8;5w) | > = /9 dQ/B o' K(6,¢'; ). (20)
& '

The case of trapped ions is more delicate to treat. First of all, we computed equation (10) in
the deeply trapped particles approximation, which corresponds to assume K < 1 and § < 1,
applying then the final expressions for all values of k?. Expanding in (12) the ballooning
angle around 6y = p27 and the elliptic integrals for K ~ 0, up to terms of the order O(k?),

leads to the following expressions:

. ) f
t(6) = 2 arcsin <§E> ,

R(6) = M [(25+1)(8/2) — 25 6] /w2~ (8/2)%, (21)



u koprgs V'€
P=—— (1+K*/4) w4+ 22202
2/eE /4w NoT:

The deeply trapped ion density (8) has then been projected on finite elements, formally :

(28 - 3/4)k2 +1].

M =< kRl |5 > . (22)

This operation involved the projection of Fourier coefficients (11) on finite elements:

P 2wy [ ’ R, / io R(8') —ilt(¢') = / - o
=2 [ a0 Jo(C(8)) e e D b0 6= A7 ¢, (23)
T 6 oyl j=1 j=1
2&)}; 0'j+1 Rqs ; N ’
o _ 20 do' ! io R(6") ilt(6")
=y, W o @) e
1 t(01j+1) . .
= dt o' (¢ io R(0'(t)) —ilt
L i e o

The coefficients are finally rewritten for numerical implementation in terms of the poloidal

angle, 4, so that the final form reads:

Al ;= % /t(t;j;'ﬂ) dt Jo (((9(15) + p27r)) exp {z oR (é(t) +p27r)} e it (25)

Attention had to be paid to the integration intervals in the ballooning angle variable,
as only the values included between turning points should be considered; although the
discretization covered the whole poloidal domain, integrations have been performed only
over finite elements falling internally to the couples of turning points, more precisely

6 C [mam(@l, gj), min(0j+1, 92)]

IV. RESULTS

To assess the validity of the ballooning representation for TIM, we carried out a scan over
the parameter kgp;, and we made a comparison with results from the local kinetic dispersion
relation (14) and from global gyrokinetic computations [4].

We considered a deuterium plasma containing 63% of trapped ions.

The ballooning computations have been performed such that the modes fall in the trapped
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ion regime, i.e. frequencies of the order of the average ion bounce frequency w ~< wy >.
The chosen set of parameters is: € = 0.2, 7, = 10.0, 7 = 1.0, ¢, = 1.0, § = 1.0, ¢, = 1.5,
for which < wy >~ 0.42 (value normalized with respect to |w.|/kgpr.) The scan has been
performed for values of kgpr between 0.07 and 1.0.

Different eigenmode structures of TIM are plotted in Fig.1, for two values of the parameter,
kopr = 0.9 (frame a) and kypy, = 0.07 (frame b). Full and dashed lines respectively represent
real and imaginary part of the electrostatic potential, as a function of the poloidal ballooning
angle. It can be seen how for higher values of the parameter kgp;, the mode shows a good
localization around 8, = 0 and is spanning the only fundamental interval [—m,7]. For low
values, instead, the mode is more extended and its amplitude in the intervals surrounding
the fundamental one, is comparable to the central amplitude, so that the mode starts to
assume a periodic structure rather then ballooning . For the chosen set of parameters the
value kgpy = 0.07 thus represents a threshold, beyond which ballooning looses its validity .
As regards the comparison with global results, it is first of all important to point out that
global modes having different toroidal wave numbers and Larmor radii, but the same value of
kopr, = nqspr/p, are iso-dynamical in the frame of the lowest order ballooning approxima-
tion. As our purpose was to test the limits of applicability of the ballooning representation,
we focused our attention to the case of low toroidal wave numbers, n < 15, and large Larmor
radius. Some computations for an iso-dynamical case, having larger n and smaller Larmor
radius, have been carried out for comparison.

Computations with the global gyrokinetic spectral code [4] , named GLOGYSTO, have been
performed choosing the magnetic geometry (1) with: R = 1.5 m, @ = 0.5 m and a safety
factor profile gs(s) = 1. +2.3155%, s = p/a being the normalized radial variable . The
radial location corresponding to the chosen aspect ratio is s, = 0.6. Profiles have been
chosen such that logarithmic derivatives are maximum at s = sg ; in particular, temperature

profiles (identical for the two species) and density profiles have been taken of the form:

1o

T(s) aAsy s — 30) N(s) ( als,
Xp ( tanh , N, Xp

. _ _ S — 8o
Too al Aon T tanh A ), (26)
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with Asp = 0.3, Lo = 0.15m, As, = 0.05, Ly = 1.5m. We would like to highlight
that a particularly broad temperature gradient profile has been chosen to test limits of the
ballooning approximation in the case of not very localized modes.

The iso-dynamical scenarios have been obtained considering two different values of magnetic

field and Ty (temperature at sp) :

By =1.T, Ty = 5.keV : large Larmor radius, a/p; = 48.94, 27)
By =2.T, Ty = 1.keV : small Larmor radius, a/p; = 218.85.

Computations of the dispersion relation (14) were obviously performed choosing the same
set of parameters as for ballooning ; moreover kj ~ 1/Rg,.

The comparison of real frequencies and growth rates, normalized with respect to |w.;|/kspz,
for the three codes is shown in Fig.2. The full line represents gyrokinetic ballooning results,
dotted and dashed lines correspond to global gyrokinetic modes for the two iso-dynamical
cases, respectively a/p;, = 48.94 and a/p;, = 218.85; labels above global modes symbols
denote the values of the corresponding toroidal wave number. The local kinetic dispersion
relation is drawn with a dash-dotted line.

The first remark to be made is that local computations show the presence of just one un-
stable mode, in the chosen regime, while from the global code distinct modes are found (for
the small Larmor radius scenario, only the mode for which the growth rate peaks is shown).
Good agreement between local and ballooning results is obtained. As regards global results,
ballooning is able to better reproduce modes having higher toroidal wave number, as ex-
pected, while there is an evident discrepancy with the low n iso-dynamical scenario results:
growth rates computed with the ballooning code are overestimated with respect to global
ones of a factor 3 — 4 for low n and ~ 1.7 for high n. The discrepancy for very low values of
n is of the same order as in the comparison presented in [9] for ITG modes without trapped
ions. As regards the higher n global mode, the observed slight disagreement of ballooning
results can be due to the high value of 7, as previous studies on ITG showed a divergent

behaviour of ballooning and global mode growth rates curves for increasing »; [9] .
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'The growth rate peaks around kgpy, > 0.5 for both of the local results and around a slightly
lower value for the global modes.

Some eigenmode structures, referring to the plot of Fig.2, are presented in the following
figures. Fig.3 shows a comparison of the global mode n = 3 (frame a) and the most un-
stable global mode, n = 8 (frame b), for the iso-dynamical state a/p;, = 48.94 . Plots on
the left side show the radial dependence of poloidal mode Fourier components; on top axis
the position of mode rational surfaces, for which m = n g, is reported. On the right side
the mode structure in the poloidal plane, is shown. Those modes exhibit a typical TIM
structure, i.e. only slightly ballooning and they are radially quite extended, being localized
between magnetic surfaces s = 0.4 and s = 0.8. Note that the mode n = 8, compared with
mode n = 3, is better centered around s = sy = 0.6 and coherent radial structures can be
distinguished in the unfavorable curvature region, where the mode balloons.

Fig.4 highlights the different eigenmode structure for kgp;, = 0.66 of a ballooning trapped
ion mode (frame a) and the corresponding mode, obtained by only computing the circulating
ions response (frame b). The values of normalized growth rates are respectively v = 0.465,
for the TIM and ~y = 0.535, for the mode without trapped ions ( |w.i|/kepr, = 3.26 - 10%s71).
This points out that trapped ions have a stabilising effect , which is evident even for high

values of kgpy, i.e. for frequencies well above the ion bounce frequency.

V. CONCLUSIONS

The effect of trapped ions on microinstabilities due to temperature gradients has been
analysed by means of solving the gyrokinetic equation in ballooning approximation , for
full ions dynamics. Differently from previous computations, the finite elements method,
combined with a decomposition in a Fourier series, has been used to solve the resulting
eigenvalue integral equation.

Results have been obtained from the new eigenvalue code. In particular the applicability

of the ballooning transform to ion temperature gradient driven modes has been tested in
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the limit case of low toroidal wave numbers and broad temperature gradient profiles; some
computations for an iso-dynamical scenario with higher toroidal wave numbers have been
done for benchmark.

Results from a scan over the parameter kgp; proved that there is a lower threshold in
kepr , i.e. toroidal wave number, above which ballooning representation is applicable. Be-
low this value, trapped ion modes become poloidally extended and the ballooning structure
gives place to a nearly periodic one, so that the model is not valid anymore. In the region
of parameters where ballooning is applicable there is anyway a discrepancy between mode
growth rates obtained from the global and ballooning codes : with the ballooning repre-
sentation growth rates are overestimated by a factor ~ 1.7 for the higher n iso-dynamical
scenario and by a factor 3 —4 for low toroidal wave numbers (in the regime of parameters we
analyzed). For low values of n, this discrepancy is of the same order as in the comparison
presented in [9] for only circulating ions.

We can then asses that local representations are able to qualitatively reproduce the full ion
dynamics but for a more careful estimate of instability growth rates a global description

seems to be necessary.
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FIGURE CAPTIONS

Fig.1 Comparison of eigenfunctions in terms of the poloidal ballooning angle for kgp;, = 0.9
(a) and kgpy = 0.07 (b) . The other parameters are: € = 0.2, 7, = 10., e, = 1., 7 =
1,5=1.,q =15

Fig.2 Comparison of growth rates (a) and real frequencies (b) of trapped ions modes, as a
function of kppyr , obtained from the gyrokinetic ballooning code (full line), the local
kinetic dispersion relation (dash-dotted line) and the global gyrokinetic code for two
iso-dynamical states: a/p; = 48.94 (dotted lines) and a/p; = 218.85 (dashed line).
Labels above global modes symbols indicate the values of the corresponding toroidal
wave number. In (b) only frequencies of the most unstable global modes, for the
low n case are plotted; the high n iso-dynamical mode frequencies would be nearly

superposed to open circles. Parameters of the ballooning code are the same as in Fig.1.

Fig.3 Comparison of eigenmode structures of global modes n = 3 (a) and n = 8 (b),
referring to Fig.2 . Left plots show the radial dependence of poloidal mode Fourier
components; top axis reports the position of mode rational surfaces, for which m =
n gs. Right plots show the structure in poloidal plane (dash-dotted lines represent the

magnetic surfaces s = 0.2,0.4--).

Fig.4 Comparison of eigenmode structures for the ballooning mode having kgp, = 0.66
with trapped ions (a) and without trapped ions (b). Normalized growth rates are

respectively v = 0.465 and v = 0.535 ( |wii|/kspr = 3.26 - 105571).
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FIG.3 Falchetto
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