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ABSTRACT

Using the standard approach of neoclassical theory, a set of relatively simple kinetic
equations has been obtained, suited for an implementation in a numerical code to compute
a related set of distribution functions. The transport coefficients are then expressed by simple
integrals of these functions and they can be easily computed numerically. The code CQL3D,
which uses the full collision operator and considers the realistic axisymmetric configuration
of the magnetic surfaces, has been modified to solve the bounce-averaged version of these
equations. The coefficients have then been computed for a wide variety of equilibrium
parameters, highlighting interesting features of the influence of geometry at small aspect
ratio. Differences with the most recent formulas for the ion neoclassical heat conductivity
are pointed out. A set of formulas, which fit the code results, is proposed to easily evaluate
all the neoclassical transport coefficients in the banana regime, at all aspect ratios, in general
axisymmetric equilibria. This work extends to all the other transport coefficients, at least
in the banana regime, the work of Sauter et al. [O. Sauter, C. Angioni and Y. R. Lin-
Liu, Phys. Plasmas 6 2834 (1999)] which evaluates the neoclassical conductivity and all
the bootstrap current coefficients. Tentative formulas for arbitrary collisionality regime are
suggested, obtained adapting the results of Hinton and Hazeltine [F. L. Hinton and R. D.
Hazeltine, Rev. Mod. Phys. 48, 239 (1976)].
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I. INTRODUCTION

Recent improvements in neoclassical transport theory are almost completely dedicated to
parallel transport. In particular, in Ref. 1, we have computed the neoclassical conductivity
and all the bootstrap current coeflicients, taking into account the full collision operator and
including the advection parallel to the magnetic field, considering the realistic axisymmetric
magnetic configuration of the flux surface. We have given relatively simple formulas valid for
general axisymmetric equilibria and arbitrary collisionality regimes. For the other transport
coefficients, improvements have been done only for the ion thermal conductivity in the
banana regime®~® and for various collision frequencies®. All these latter results, however,
use an approximated version of the collision operator, usually following the expansion of
Hirshman and Sigmar?. For all the other transport coefficients the only formulas available
at small aspect ratio are those in Ref. 9, valid in the banana regime, which use the analytical
values of the transport coefficients at ¢ = 1 and the values at large aspect ratio of Ref. 10
to obtain a set of formulas with a linear interpolation between these two limits, which
should be valid also at small aspect ratio. In the more recent investigations on the ion
thermal conductivity?~>, the intermediate aspect ratio corrections show a difference with
the results of Ref. 9 of almost a factor of two. In this sense a complete investigation of
the small aspect ratio corrections for all the neoclassical transport coefficients, taking into
account the full collision operator, is necessary. It is well known that the neoclassical theory
can not explain the perpendicular transport in tokamaks, however a precise computation
is useful in order to allow a correct evaluation of the anomalous contribution by means of
the comparison with the experimental data. This is becoming even more important with
the recent improved confinement modes of operation, with internal transport barriers and
relatively small anomalous transport.

In Sec. II we describe the approach to obtain the linear drift-kinetic equations suitable
for implementation in a Fokker-Planck code and the expressions to compute the transport

coefficients as simple integrals of the distribution functions. The related bounce-averaged



equations in the banana regime are then obtained, and the Lorentz model is investigated
analytically. In Sec. III we show the numerical results for the banana regime, computed
with the Fokker-Planck code CQL3D®, which solves the linearized drift kinetic bounce-
averaged equation with the full collision operator and considering the realistic axisymmetric
configuration of the magnetic surfaces. Some benchmarks are considered to validate the
results, and the comparison with some previous numerical and analytical results is shown.
In Sec. IV we give a set of formulas which fit our numerical results and allow to easily
evaluate all the neoclassical transport coefficients in general axisymmetric equilibria for
arbitrary aspect ratio and ion charge in the banana regime. Tentative formulas for arbitrary

collisionality regime are then suggested in the last subsection.

II. KINETIC THEORY
A. Transport Coefficients

Our approach follows the standard neoclassical theory, in particular the one of Ref.
2. Definitions of thermodynamic forces and fluxes are only slightly different. We begin

considering the Linearized Drift Kinetic Fokker-Planck equations, Ref. 2, Egs. (5.21-24):
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and where v}, = 2T2?/m, and Q, = q,B/m, are the thermal velocity and the cyclotron

frequency of species o, I(¢)) = RBy, b = B/B, and (®) is the flux surface averaged elec-



trostatic potential. Similar to the derivation presented in Ref. 2, we perform the following

transformation of the distribution functions:
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( ) denotes the flux surface average, fi. is the Spitzer function and K;(v) is a function of
the magnetic poloidal flux ¢ which will be determined later; F, = Ej + Fy(g;ni)~" is the
so-called “effective electric field” and F;) is the friction force between ions and electrons.

For the new distribution functions H, and H;, the LDK equations can be written in the

following “canonical” form:
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where we have introduced the flux surface averaged thermodynamic forces, as follows:
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The conjugated neoclassical thermodynamic fluxes are identified in the expression of the

linearized entropy production?, and can be defined as follows:
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where I'; and @, are the particle and heat fluxes of species o, jj, is the total parallel electric
current, j)s is the so-called Spitzer current and J\\r: is the ion contribution to the so-called
“return current”. The flux surface average (jjr;B) is related to the function K;(¢)) by the

following equation:

(irB) = @ Ki(¢){B?).

Note that ion and electron forces and fluxes are mutually dependent:
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The transport coefficients linearly relate forces with fluxes, B,,, = 3, L2 A, . To easily
identify the role of each transport coefficient, we show the complete relation between electron

and ion forces and fluxes in the following form:
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We now perform the second transformation:
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The LDK equations for the new distribution functions are:
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Note that now all the coefficients of the thermodynamic forces in the source terms can be

evaluated analytically!!:
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As the equations are linear and the thermodynamic forces can be treated as independent, we
can write the unknown function G, for the electrons as a linear combination in the following
form: Ge = 3, genAen. For the set of functions ge,, Eq. (7) can be decoupled, leading to

the following set of equations:

U B+ Vgen — Cio(gen) = —Clo(Yenfes),  n=1,2,3,4. (10)
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In the same way, introducing G; = 3, ginAin in Eq. (8) for the ions, we obtain:
v b Vgir - Cfi(gi1) = —Birfo, (11a)
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We look now at the definitions of the thermodynamic fluxes, Eqs.(3) and (4); a simple

calculation shows that for the electrons we can write:
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Analogously the ion fluxes read:
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At this point we can identify the transport coefficients:
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In this way we have obtained a simple set of expressions to compute all the neoclassical
transport coefficients, once we have solved the drift-kinetic equations, Eqs. (10) and (11),
to obtain the distribution functions g, and g;,. We see that every expression is composed
of the sum of two terms: the first one is an integral that can be computed analytically and
that, for some coefficients, is identically zero; the second one has an integrand in which the
only term to be computed numerically is the distribution function g., or g;,. Note that
in the banana regime the first term, computed analytically, gives directly the value of the
transport coefficient at € = 1, when all the particles are trapped; the second term gives the
reduction of transport due to the presence of passing particles. In Appendix A we show that

Eqgs. (12) and Egs. (13) satisfy the Onsager relations of symmetry as expected.
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B. Banana Regime: Bounce-Averaged Equations

When the collision frequency ve; is much smaller than the bounce frequency v}, the

distribution functions g., can be expanded as follows:

Vi Voi\ 2
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and analogously for the ion distribution functions. A somewhat standard derivation21°
shows that the functions g, are independent of the poloidal angle 6, and that they are
zero in the trapped particle region of velocity space.

In the passing particle region, the functions g2, satisfy the following bounce-averaged equa-

tions:
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where o = v /|v) | and where we have introduced the set of functions C? (v, B), defined as

follows:
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The analytical expressions of these functions can easily be obtained from Eqgs. (9). Note that
(BCJ4(v,B)) = (BC},(v, B)), so that the functions g% and g% solve the same equation in
the banana regime; in particular it follows that £44 = £,4: this is a consequence of our choice
of thermodynamic forces and fluxes. We see that at ¢ = 1, when all the particles are trapped,
the distribution functions g2, are zero everywhere, and the first terms in the expressions for
the transport coeflicients, Egs. (12) and (13), give directly the entire coefficient. The code
CQL3D has been modified to solve Eqgs. (14) in general axisymmetric equilibria and with

the full collision operator.



C. Lorentz Model

For the Lorentz gas model, Z; >> 1, the set of Egs. (14a) is solved analytically®!2. In fact,
as collisions between electrons can be neglected, the collision operator can be approximated

by the pitch-angle scattering operator:
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The solutions of Eqgs. (14a) in this approximation can be written in the following form:
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where A= (1-¢?)/B , A;=1/Bpm,, and H(z) is the Heaviside function. Introducing Eq.
(15) in the expressions for the coefficients Eqgs. (12), all the electron transport coefficients

can be written as integrals in the absolute value of velocity v:
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The integrals of v can easily be computed analytically, and the results have been compared
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with Ref. 2, Eqs. (5.121), (5.124 - 5.130), finding a complete agreement. As the Lorentz
model coefficients will be used not only as a benchmark for the results of CQL3D, but also to
analyze the results of the code with the full collision operator and in different axisymmetric
configurations, we report all the electron transport coefficients, which can be written in the

following simple form:
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and where we have introduced two definitions for the trapped fraction:
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The second one, f;, is the usual definition for the trapped particle fraction®. Note that the
integral T can easily be evaluated using the formulas in Ref. 13. The definitions adopted
for the poloidal gyroradius pe, and the electron collision time 7, are the same as in Ref. 2,
Eq. (5.122) and Eq. (5.4) respectively. Note that the flux surface averaged integrals I,

I3 and I33 which appear in the results of Ref. 2 can be reduced to only the two trapped

fractions, Egs. (18), with the following relations:

Fa=gBBNS,  Ls=3h o= SBAB A (19)

We see therefore that all the coefficients in the Lorentz model depend essentially on f¢ and
ft. We shall show in the next Sections that in the general case this property remains true,
namely that all the equilibrium effects on the neoclassical transport coefficients are funstions

of only these two trapped fractions.

ITI. NUMERICAL RESULTS
A. Benchmarks

As the Lorentz model gives an analytical solution, it can be used as a first benchmark
for the numerical results. In Fig. 1 we show the transport coefficients £¢, and L%, relative
to the sources S.; and S.2, Egs. (14), computed by CQL3D in the approximation of the
Lorentz model: very good agreement is obtained for all e. The coefficients in the Figure,
indicated by L7, , are plotted normalized by the relative factors £4 or £; given in Egs. (17).

This normalization for the electron transport cofficients is also kept in Fig. 2 and Fig. 4.

The complete definition of a set of dimensionless coefficients will be given in the next section.
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When the full collision operator is used, the symmetry of the transport matrix gives a second
benchmark of the numerical results: indeed, each off-diagonal coefficient can be computed
in two different ways, L,,,, and L,,,. Note that we have already computed® the neoclassical
resisistivity and the bootstrap current coefficients L3, n = 1,2,4. In Fig. 2(a) we plot the
results for the coefficient £7;, computed solving the kinetic equation with the source S,1,
Egs. (14a,c), n = 1: they are perfectly aligned with the solid line given by Eq. (14a) of Ref.
1, which fits the code results for the bootstrap current coefficient £, hence computed with
the source Se3, Eqs. (14a,c), n = 3. The exact relations between the bootstrap current coef-
ficients defined in Ref. 1 and the transport coefficients defined in this paper will be presented
in the next section. In Fig. 2(b) we plot the two coefficients £, and L5, computed con-
sidering four different equilibria, as shown in Fig. 1 of Ref. 1. The coefficient £¢,, obtained
solving Eq. (14a,c), n = 1, is plotted with symbols, the coefficient LS, obtained solving
Eq. (14a,c), n = 2, is plotted with solid lines: we find a very good agreement between the
two coefficients, within 1% for ¢ > 0.1. We see also that the behaviour of the transport
coefficient strongly depends on the equilibrium at small aspect ratio. Previous formulas,
which give the transport coeflicients with an expansion in powers of €'/2, are correct only
for almost cylindrical equilibria and are of practical interest in general equilibria only for
€ < 0.1: this must be taken into account when comparing with our results. It indicates that
for each transport coefficient an appropriate geometrical parameter, like f; for £5, and L&,

in Fig. 2a, needs to be used instead of ¢, as it will be shown in the next subsection.

B. Comparison with previous results and behaviour at small aspect ratio

As we have said in Sec. I, the most recent investigations on perpendicular neoclassical
transport were dedicated only to the ion thermal conductivity?=%. In Fig. 3 we compare
our results for the coefficient £%,, obtained with an almost cylindrical equilibrium, with the
results of Ref. 4, 5 and 9. For easier comparison with Fig. 1 of Ref. 5, the plotted coefficient

is normalized like in Ref. 5;
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and plotted versus the inverse aspect ratio e. We find good agreement with the results of

Refs. 4 and 5. These results enable to finally resolve the discrepancy between the formulas
given in Refs. 4 and 5, obtained with approximated collision operators. It turns out that
the results with the full collision operator, CQL3D, are in between the previous results.
Note that the plotted formula of Ref. 9 has been modified, keeping in the expression for
the transport coefficient the flux surface average of the magnetic field, which were correctly
computed in the reference to obtain the limit at ¢ = 1, but then not taken into account in

the final formulas.

When different axisymmetric equilibria are considered in the numerical calculations, the
transport coefficients present particular features of the influence of geometry at small aspect
ratio, as already highlighted in Fig. 2b. In Fig. 4 we also show the electron coefficient
L3,, computed with four different equilibria. In Fig. 4a, LS, is plotted versus ¢'/2: we see
differences up to 30% already at ¢ = 0.15. In Fig. 4b we show the same coefficient L%,
divided by the flux surface average (B2 < B~2 >) and plotted versus the trapped particle
fraction f¢, defined in Eq. (18), as suggested by the results of the Lorentz model: the points
are well-aligned at all f2 i.e. at all . The same behaviour is obtained for all the other
transport coefficients: the coefficients must be normalized by a suitable flux surface average
and a correct geometrical parameter must be used to encapsulate the effects of the different
equilibria. Note that the definition of a new trapped particle fraction, f%, Eq. (18), is ef-
fectively necessary, as suggested by the Lorentz model, to correctly describe the geometrical
behaviour of certain coefficients, in particular all the particle and heat conductivities, for

which the usual one, f;, turns out to be inadequate.

12



IV. TRANSPORT COEFFICIENTS FORMULAS

A. Analytical fits to the numerical results for the banana regime

Considering the results of the previous section, we can introduce a set of dimensionless

electron and ion transport coefficients K7,

Lom = LBy (B Ko (ff),  nym=1,2, (21a)
Loy = Ly KE5(f2), n=1,24, (21b)
Lrg = LdB5(B*) | Ku(f),  n=1,2, (21c)
5 = Lo[By*(B")] Ki5(f), (21d)
Ly, = Lo[By*(B?)] K (f), (21e)
12 = L3 Ky (f), (21f)
22 = LalBy(B™*)] Ko (£), (21g)

and analogously all their symmetrics, where £4, £, and £, are defined by Egs. (17); the ion

normalization factors, £4, £; and £, are defined as follows:

2 2 2
i Mibip (dy i i _ TidiTi po
= — —_— = i o = 5 2

The ion-ion collision time 7; is defined in Ref. 2, Eq. (4.24). The dimensionless coefficients
are functions of only one suitable geometrical parameter, i.e. a trapped fraction, which
completely encapsulates the effects of the various equilibria: in this way the code results
for the coefficients K7, can be fitted in terms of the appropriate trapped fraction, f; or
f&, as they perfectly overlap, regardless the equilibrium considered in the calculation, even
highly non-circular and at small aspect ratio. Note that only in this way relatively simple
formulas valid in general axisymmetric equilibria and at all aspect ratios can be given. We
have already computed the neoclassical conductivity and the bootstrap current coefficients,
in Ref. 1, solving the same kinetic equation of Eq. (14a), n = 3, and computing the

transport coefficients with the same integrals given by Eq. (12), n = 3, and Eq. (13),
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n =2, m = 1, which were first obtained using an adjoint formalism'! adapted to calculate
only the bootstrap current: the general kinetic results of Sec. II show however that the
adjoint formulation is not necessary. The relations between the transport coefficient L£g,
and the neoclassical conductivity o,e0, Eq. (13a) in Ref. 1, and between the dimensionless
coefficients K5,,, m = 1,2, 4, and the bootstrap current coefficients £52,, Egs. (14) and (15)

3m»

in Ref. 1, read:

Oneo — 08
53 = T B (Bz), ’Cgm = —‘Cg‘:n‘ (23)
e

The coefficient K7}, is related to the coefficient (v, Eqs. (17a,b) in Ref. 1, by Eq. (26). We
have run the code CQL3D with different equilibria and for the electron coefficients we have
also varied the ion charge, to obtain the dependence on the effective charge Z. Our idea
is that, at least for the electron transport coefficients, an effective charge approximation
for multispecies cases should still be valid: collisions between electrons and main ions, or
between electrons and impurity ions are almost of the same kind, involving basically the
pitch-angle scattering. In any case, the comparison with the results of multispecies codes!4
should enable one to determine the correct form of Z, instead of the usual definition of Z.,
to be used in our formulas, as already mentioned in Ref. 1. For the ions, the presence of
one heavy impurity species leads to collisions between main ions and impurity ions which
involve basically the pitch-angle scattering, and which are completely different from like-
particle collisions. In this case, as shown in Ref. 15, the thermal conductivity computed as
Zeg times the pure ion conductivity is underestimated. Using the results of Ref. 15, which
uses the large aspect ratio limit of Ref. 16, we have generalized our formula for the transport
coefficient L%, to include the effect of a single heavy impurity species in the Pfirsch-Schliiter
regime. We have also adapted the formula for the bootstrap current coefficient (¢ in the
banana regime, Eq. (17a) in Ref. 1, to include the same effect, using the large aspect ratio
limit of Ref. 16, and noting that at € = 1 not only the pure plasma coefficient, but also the
impurity contribution must be equal to zero. The analytical fits to the results of CQL3D

for all the transport coeflicients not already computed in Ref. 1, valid for arbitrary trapped
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fraction and Z, and the modified formula for the bootstrap current coefficient (¥, read as

follows:
5 == —-05Fu(f, (24a)
K12 = 0.75 Fio(ff), (24b)
14 = K4y = —0.5 Fi (f2), (24c)
. 13 V2
52 = — (‘8— + ﬁ) Fan(fh, (24d)
54 = 0.75 Fia(f2), (24e)
be = — Fa(f1), (24f)
0.9 1.9 1.6 0.6
F = (1 - 2 3 _ 4
n(X) = 1+ )X Z+05" T Z705% T ZrosX (25a)
0.6 0.95 0.3 0.05
Fio(X) = (1 X - X2 3 4
2(X) = (14 520X — o5 X+ 7005 T 7050 (25b)
0.11 0.08 0.03
Fy(X)=(1 - X X2 X3
n(X) =0 - X+ 05X Y 70X (25¢)
Fi(X)=(1- 0551+ 15404) X +
(075 X* — 0.7 X* + 05X%) (1+ 292 0), (25d)
. 0.62+ 1.5 1—
a = —]C'i2 = - + ! ft (26)

0.53+C; 1-0.22f, — 0.19f%
where Oy =n;Z%/n;Z? is the usual impurity strength parameter, and index I refers to the
ion impurity species. The factorizations used in Egs. (24) and (25) are such that the Lorentz
limit (Z — oo), the low (f; — 0) and the large aspect ratio (f; — 1) are easily recovered.
Moreover the functions Fj; have values within [0, 1]. Note that Kf; and K¢, as well as K¢,
and K3, have the same functional dependence on their respective trapped fraction. These
relations can be considered as the extension to a general axisymmetric equilibrium at all
aspect ratios of Eqs. (6.28) - (6.30) and Eq. (6.47) in Ref. 2. We have also computed the
coefficient £%,, which is usually not considered, following the weak-coupling approximation,
which neglects the force A;;. For completeness, we give also the fit to the code results for

the transport coefficient K¢;:
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W) =11 +17f-1.2572+044 )7 — 1.

Note that Egs. (6) allow to reduce the number of independent thermodynamic forces form 6
to 4, hence with only 4 conjugated thermodynamic fluxes. Taking the first 3 electron forces
and the second ion force, whose conjugated fluxes have more direct physical meaning and
more direct application in the fluid transport equations, the relations which connect fluxes

with forces read as follows:
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and Z; is the main ion charge number. The condition for the validity of the weak-coupling
approximation is given by Eq. (5.86) in Ref. 2, and is simply F — 1 < 1. Introducing the
dimensionless coefficients K7, this relation reads, consistently with the estimate given in

Ref. 2, Table IV:

1/2 Me 5 T, 3 e 1mi
(“‘") (") uky <L (28)

Zi m; Te
The absolute value of the term K¢, K}, turns out to be smaller then 0.25, which confirms

the validity of the weak coupling approximation in the banana regime. In this way Egs.

(27) are reduced to:

3 T, i
— e _ g [ 12 Az — 1, 2’ 3, 29
Ben mzzl ‘CnmAem ZiTe nd I(@b)nz 2y n ( a,)
g oS, AN
Bi2 = I(wz)lni TZ-;I £4mAem + { 29 — Z,?Te [I(ﬁ)nz]2 644} A'l:2' (29b)

In Figure 5 we compare the code results for the dimensionless transport coefficients X2 .

(symbols) with the algebraic formulas, Egs. (24) and (25), which fit the data, (solid lines).
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B. Tentative formulas for all collisionality regimes

In order to compute the neoclassical transport coefficients at arbitrary collisionality
regime, the non-bounce-averaged kinetic equations, Eqs. (10) and (11), must be solved.
This, as already mentioned, has been done in Ref. 1, to compute the neoclassical resitivity
and all the bootstrap current coefficients, using the code CQLP, which includes the advec-
tion parallel to the magnetic field, without any assumption on the ratio between the collision
frequency and the bounce frequency. In Fig. 6 we compare the formulas of Ref. 1 (solid
lines) with those, valid for all collisionality regimes at large aspect ratio, of Ref. 2, Sec. VI
F, (dashed lines), in which we have replaced the banana limit with the correct results of the
code CQL3D, valid at all aspect ratios: in this way we strictly compare only the dependence
on collisionality, as an important contribution to the difference at arbitrary collisionality
regimes comes directly from the error at the banana limit. The neoclassical resistivity is
shown in Fig. 6(a) and the bootstrap current coefficient £5; in Fig. 6(b), for various values
of the trapped fraction. At large aspect ratio, i.e. at small values of the trapped fraction,
good agreement is found, as it must be expected; instead at larger values of the trapped
fraction, where the results of Ref. 2 can no more be supposed valid, large errors arise, already
at low collisionality. Indeed, the main approximation in the banana-plateau regime, com-
puted in Ref. 17, comes from the model collision operator, obtained keeping only the first
term in an expansion in powers of €/, and leading to the pitch-angle collision operator also
for the like-particle collision operator, hence neglecting the energy scattering collisions: at
small aspect ratio this approximation is no more valid and underestimates the neoclassical
contribution of the transport coefficients®. However both the neoclassical resistivity and the
bootstrap current coefficient £3;, and also the coefficient £3, not shown here, have approx-
imatively the same behaviour at small aspect ratio: the Ref. 2 formulas go down to zero at
smaller values of v, with respect to the rigorous results of Ref. 1. Hence the dependence on
collisionality of all these coefficients at small aspect ratio can be approximatively described

by the formulas of Ref. 2, if the collisional parameter v,, is adequately rescaled in terms of
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the trapped fraction. We see that the simple transformation

L Vax
of x — 1+7ft2

(30)

allows an agreement within 20% for all the bootstrap current coefficients and the neoclassical
resistivity (dashed-dotted lines), when compared with Ref. 1. Hence, following the idea of
Ref. 4, in which a formula valid for all collisionality regimes for the ion heat conductivity is
obtained connecting a new banana limit, valid also at small aspect ratio, with the collisional
dependence of Ref. 2, we suggest to use formulas of Ref. 2, Sec. VI F, replacing the results
of this paper in the limit at v5, = 0. The transport coeflicients K¢,,, m,n = 1,2 and K%,

can be computed at arbitrary collisionality regimes as follows:

e e 5 , ;
n=Hn, 12 = His — 9 i Ky =H5—-5H, + Hua 2 = Hy, (3la)
- Hoe) _ KR & (chn/ bmn)Vaf s
mn — 1/2 3/2 FPS, (31b)
1 + amn + bmnl/a'f* 2 1 + Cmnl/a-f*f
and the coefficients K5,,:
5
Ka=Hy, Ki=H,- 5%21, (31c)
S " N VN P S
n 1+ alnyof* + banaf* 2 1+ Clnllgf*e3/2 1+4+v af* 37
with
1
Fps=1- Fpd=(B7) (B -1, (31e)

(B%) (B2’
and where the coefficients amp, bmn,cmn, and K9 are given in Ref. 2, Table III for the
electron coefficients and below Eq. (6.133) for the ion coefficient. The banana limit values
HED can be computed inverting Egs. (3la,c) and using Egs. (24) and (25). For the ion
heat conducitvity, Kb, and in the presence of one impurity species, the ion collisionality in
Eq. (30) should be modified to v;. (1+1.54 (¢;), according to Ref. 15; also a factor needs to
be added to the second term of Eq. (31b), which can readily be found in Ref. 15. Note that
we have left unchanged the dependence on ¢ for the plateau-collisional regime, computed in

Ref. 18, as we have not enough information at the moment to modify it. However we have
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taken into account, for arbitrary aspect ratio, like in Ref. 4, the complete expression of the

Pfirsch-Schliiter geometrical factor, by means of the terms Fpg and Fl(fg), Egs. (31e).

V. CONCLUSION

We have presented an approach for the neoclassical transport theory which allows to
obtain simple equations suited for implementation in numerical codes in order to compute
all the neoclassical transport coefficients. The code CQL3D, solving the bounce-averaged
linearized drift-kinetic Fokker-Planck equation with the full collision operator, has been
modified to calculate all these coefficients at all aspect ratios of various axisymmetric equi-
libria in the banana regime. Interesting features of the behaviour of the coefficients at small
aspect ratio have been investigated and a set of formulas which fit the numerical results is
proposed, to evaluate any transport coefficient for every axisymmetric equilibrium and at
all aspect ratios. The thermodynamic fluxes:

_Qiy
T; dp’

di Qe dv @By  (ysB)
el = le 7, e2 = = y Be = - ’
Bei =T dp Be T. dp T T, T,

B;»
where T’ is the perpendicular electron particle flux, @, is the electron perpendicular heat
flux, j) and jjs are the parallel electric current and the Spitzer current, and Q; is the ion
perpendicular heat flux, are given by Eqgs. (29), in the weak coupling approximation, whose
validity is confirmed by Eq. (28). Egs. (29) can be reordered, and the thermodynamic

fluxes can be expressed directly in terms of the electron and ion temperature and density

perpendicular gradients and the parallel electric field:

B — e 8lnne+( e L e)alnTe+1—Rpe . Olnn;
en = ~npl a,lp nl n2 a,¢ Rpe nl a¢
1- Rpe e e OInT; e (E”B) _
Rpe ( nl + a£n4) 61)[) n3 <B2> ’ - 172a3:
Qi dy . Olnn, . .\ 0InT, e 1 — Rpe Olnn; . (EyB)
Bis = T dp Q| LG o0 + (L5 + L3) oy + L4 R 00 + L3 By +

; 1-R,? )\ 0lnT;
( ; _c) ur
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where Rye = p./p and Z; is the main ion charge number. The transport coeficients £, in
the banana regime, for general axisymmetric equilibria, are given by Eqgs. (21 - 25) of Sec.
IV in terms of the trapped fractions f; or f2, Eq. (18), and the effective charge number Z.
Extension of this work is to compute the transport coefficients at all collisionality regimes:
note that this has already been done for the neoclassical conductivity and the bootstrap
current coeflicients in Ref. 1. These results, compared with the ones of Ref. 2 and Ref. 4,
have motivated us to propose tentative formulas for all the other transport coefficients, Egs.

(31), valid for arbitrary collisionality regime.
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APPENDIX A:
ONSAGER SYMMETRY OF THE TRANSPORT COEFFICIENTS

The expressions for the transport coefficients given by Eqs. (12) for the electrons and
by Eqgs. (13) for the ions satisfy the Onsager relations of symmetry, as expected?. We begin
with the electron case. In Eq. (12), the first term, £5,) = (J dvYemCl(Yen feo)), is

symmetric directly from the self-adjointness of the collision operator. Hence:

‘Cfnn(l) = (/ dv7em0¢lao(78n feO)) - (/dv7en0¢lao(’76m feO)) = ‘szm(l)‘ (Al)

For the second term, Ef,m(z) = ([ dVGem/ fe0 Clo(Yen foo)), we shall rewrite it in a

symmetric form. Introducing the following notation?, for a generic function f(v),
ft = 1lfle=+1)+ f(oc =-1)] is its even part in o0 = vy [lyy | and  fT =
1[f(o = +1) — f(0 = —1)] is the odd part, so that:

20



oy [B - Vg, — Clo(97,) = —Cl(enfeo),

[y [b - Vg7, — Clolgd) =0, (A2)

(as 00(7enfe0) elaO('YenfeO) and Co('}'enfeo) =0,n= 17213)4))

we can perform the following derivation:

Cin® = ([ 452 Cl(0en fo)) = ([ a2 Cloen fu0)) =

_</ dv?;em [’U” B ) vgen ClO(Qen)]) -
~(f dv = [~gtnln - Yz, - 6 Cha(o)]) =
_</ dvi [ gemClO(gen) gemClO gen ]> -

1
(/ dvﬁ; Gem ClO(Qen))

which is a symmetric expression, using the self-adjointness of the collision operator.
(Note that we have used in this derivation the fact that the operator —v b -V is the adjoint
of the operator v b-V).

Hence we can conclude that:

‘Cﬁnn(z) = /dv— gemCeo gen /dvf Gen eo(gem» = [’gm@), (A'?’)

which shows the symmetry of the coefficients £¢,,
A somewhat analogous calculation can be performed for the ion coefficients £i, and L},

which shows that the two given expressions, Eqs. (13), satisfy the following relation:

1i2 = - gla (A4)

consistently with the result in Ref. 2, Eq. (5.99).
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FIGURES

1H— analytical

L L T T T PN

FIG. 1. Transport coefficients £, and L5, for an almost cylindrical equilibrium, computed by
CQL3D in the approximation of the Lorentz model (circles), and compared with the analytical

results, Eq. (16).
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FIG. 2. Onsager symmetry is correctly respected by the numerical results. (a) The transport
coefficient £f; (symbols), plotted vs f;, is well aligned with the formula (14a) of Ref. 1 for the
bootstrap current coefficient £3; (solid line). The different symbols refer to different equilibria in
all the Figures. Note that the results given by the different equilibria are perfectly overlapped, as
they are plotted vs f; !. (b) Transport coefficient £¢, (symbols) and £, (solid lines) computed
1/2

with four different equilibria, plotted vs €'/“. Note that when the complete coefficients are plotted

vs the inverse aspect ratio, a strong dependence on equilibria appears at small aspect ratio.
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FIG. 3. The ion heat conductivity, transport coefficient £3,, computed by CQL3D with an
almost cylindrical equilibrium, solid circles, normalized like in Eq. (20) and plotted vs ¢, compared
with the formulas of Ref. 9 (modified), HHR 73, solid line, Ref. 4, CH 82, dashed-dotted line, Ref.

5, T 88, dashed line.
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FIG. 4. The transport coefficient £5,, main contribution to the electron heat conductivity,
computed by CQL3D with four different equilibria: (a) the complete coefficient is plotted vs €/,
a strong dependence on the different equilibria appears at small aspect ratio; (b) the coefficient is
divided by an appropriate flux surface average BZ (B~2), and plotted vs the correct geometrical

parameter, ff, which allows to perfectly align all the points of the different equilibria.
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FIG. 5. Computed values of the dimensionless transport coefficients K£7,,, (symbols), compared
with the fitting formulas, Eqs. (24) and (25), (solid lines). (a) Coefficients K¢, plotted vs fg,
(solid symbols), and K{, plotted vs f;, (open symbols). (b) Coefficients K¢, and K§;, plotted vs
f2, (solid symbols), and K§, plotted vs f;, (open symbols). (c) Coefficient K%, plotted vs fg, (solid

symbols). (d) Coefficient K%, plotted vs fg, (solid symbols).

27



FIG. 6. Dependence on collisionality for the transport coefficients oye,, (a), and L5, (b), for
different values of the trapped fraction f;, as given by Ref. 1, (solid lines), by Ref. 2, with the
value at Ve, = 0, banana limit, corrected with the results of Ref. 1, (dashed lines), and still by

Ref. 2, with also the collisional parameter rescaled by Eq. (30), (dashed-dotted lines).
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