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Abstract. Combined interferometer and polarimeter systems, using a single
detecting element per line of sight, are susceptible to perturbation of the interferometric
phase [1] when modulation of the polarization vector is applied. This issue has been
investigated extensively [2] for the case of a rotating elliptically polarized probing
beam, demonstrating that here a perturbation is inevitable. In this article the anology
between this analysis and earlier work is pointed out, and the underlying physics
discussed. It will be demonstrated that schemes have been proposed in which the
perturbation has been avoided or kept well within acceptable limits.

1. Introduction

There is increasing interest in combined interferometer and polarimeter systems for
simultaneous measurement of electron density and poloidal magnetic field in fusion
plasma devices [3]. In recent years sophisticated schemes have been proposed and buils
[4, 5, 6] which require only a single detecting element per line of sight, a goal frequently
accomplished through active modulation of the polarization of the probing wave. It has
however been demonstrated [1, 2] that these schemes are susceptible to a perturbation
of the interferometric measurement. In [2] a general expression is given for a rotating
polarization ellipse with arbitrary ellipticity, leading to the conclusion that with this
type of scheme the perturbation of the interferometric phase is inevitable and can only
be suppressed by electronic filtering at the expense of bandwidth.

In section 2 of this article a link is established between the analysis presented in [2]
and previously published work [6, 7], while in section 3 a physical interpretation of this
mathematical analysis is presented. To conclude, section 4 treats two presently used
experimental techniques which are able to avoid the perturbation of the interferometric
phase by applying a double probing beam.

2. Mathematical description

A description of the polarization state and phase evolution in a combined interferometer
and polarimeter system can be obtained either via the Stokes [2, 8] or the Jones
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(7, 9] formalism. Both formalisms can be applied to analyse the phase perturbation in
combined interferometer and polarimeter systems employing polarization modulation.
While in a recent paper by Segre [2] this type of analysis was given on the basis of the
Stokes formalism, an equivalent analysis based on Jones matrix calculus was presented
in [6] and, in more detail, in [7]. .

It is relatively straightforward, but illustrative, to demonstrate the equivalence of
the results. In [2] the phase perturbation term ¢, is given as the difference of two
arctangents (see Eq.21)

Pm = pp — P, = arctan(S/C) — arctan(S,/C,) (1)

where the notation is modified to stress that ¢, is equal to ¢, in absence of plasma, i.e.
when § = 0 and A = 0. In [6, 7] the above expression has been rearranged (see App.)
to retain only a single arctangent, yielding
SC,—CS,
e )
CC,+ 855,

In this Eq. the Eqs.23 and 24 of [2] can now be substituted, and after some tedious
algebra one obtains

©m = arctan [

©m = arctan
—tand [2 tan X, tan’ x2 + 3 [1+ tan? x, + (1 — tan? x,) cos(24,) ] [tan®xs — 1]]
7 [cos? i, + sin? ¢, tan? x,][1+ ta,rfzxz] + tan § sin(2¢,) tan' x2 [1-tan?y,]

(3)
a result which is equivalent to Eq. 8 of [6],
®m = — arctan
tan(dp/2) [2€a + F[1+ € — (1- ) cos(26)] [o? — 1]] )
[sin?€ + €2 cos2€ ] [1 + a2 ] + tan(de/2) sin(26) a[1 — €2] )
when applying the coordinate transform
£ = Y,—% d® +— —or
a — tanx; = —1/tan x, d¢ +— A (5)
€ +— —tany, dy <— 24

Here the symbols on the left-hand side refer to the notation used in [6, 7] and those
on the right-hand side to the notation in [2]. The factor Z in the first of the above
equations arises because t, in [2] is taken with respect to the coordinate axis parallel to

the magnetic field, whereas ¢ in [6, 7] is taken with respect to the perpendicular axis.

3. Physical interpretation

The complex mathematical expression given above makes an interpretation of the result
somewhat obscure. However, it can be made more intuitive by separating the phase
evolution of the probing and reference beam with respect to a non-rotating (fictive)
reference.
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Figure 1. Behaviour of the phase of the y-component for positive, negative, and zero
ellipticity, as well as for a left-handed circularly polarized wave. In all cases a phase
transition of magnitude = occurs per half a revolution of the polarization vector. The
phase of the signal component along the minor axis of the ellipse determines whether
this transition is positive or negative. In the case where this component is absent (e=0)
the choice is arbitrary since the signal amplitude goes to zero. In the case of circular
polarization, both components have equal amplitude and the transition degenerates.

In all existing polarimetric schemes both the probing and reference waves are passed
through an analyzing polarizer before detection. In general this polarizer is oriented to
select the polarization component parallel to the external magnetic field (henceforth
chosen to be the y—direction), and the phase of this component is determined. If a wave
with rotating linear polarization is detected in this manner, its phase with respect to
the fictive reference would be constant up to the moment when the polarization vector
is oriented exactly perpendicular to the detection-axis (1 = Z). At this point the level
of the detected signal will be zero and its phase undefined. After passage, the phase will
have changed by 7 radians as a result of the change of sign of the detected component
(see Fig. 1).

In the case where the wave ellipticity is not zero the phase transition will become
more gradual as a result of the existence of a signal component along the minor axis of
the ellipse. The sign of the ellipticity, i.e. whether the phase of this smaller component is
% ahead or behind the phase of the main component, determines whether this transition
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Figure 2. The individual wave phases ¢, and ¢, for probing and reference wave,
resulting perturbative phase ¢,,, change of azimuth of the probing wave v — 9, and
output ellipticity of the probing wave, all as a function of input azimuth 1,. The last
plot shows the output ellipticity as a function of output azimuth . The parameters

are chosen so as to allow comparison with Fig. 1 of [2], i.e. sin(2x2) = —0.98, tand = 1
(hence tanxj = 0.098) and tanyx, = 0.05 (dashed), 0.098 (solid) and 0.20 (dash-
dotted).

is positive or negative. Half a revolution later, at ¢ = 37", a second phase transition will
occur with the same sign. After one full revolution the wave will therefore have acquired
a phase difference of 2 with respect to the stationary reference, as is to be expected.
In the limiting case where the wave polarization approaches circular, the slope of the
transition will go to unity and the phase difference will grow linear in time (see Fig. 1).

In polarimetric schemes which use waves with a rotating polarization ellipse the
phase transitions will affect both the probing and the reference wave. Therefore in
general two transitions will be present when the phase difference between a probing
and a rotating (actual) reference wave is considered. In the absence of a plasma the
azimuthal angle v and ellipticity € of both waves (and thus the exact position and
slope of the transitions) will be identical. The two transitions will cancel and the phase
difference will be stationary. However, a minor mismatch in the orientation of the
analyzer in probe and reference arms will already compromise this situation. In the
presence of a plasma the azimuth of the polarization of the probing wave is changed as
a result of Faraday rotation, causing a shift of the position of its transition with respect
to that of the reference. The two phase transitions will now no longer coincide, and the
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interferometric phase will be perturbed by a ‘spike’, having a width determined by the
amount of rotation.

In addition, the Cotton-Mouton effect will cause a change in ellipticity of the
probing wave. For given plasma parameters, represented by & and y3, a value for the
initial ellipticity of the probing wave exists for which the ellipticity after passage through
the plasma will be zero at the moment when the main axis is oriented perpendicular
to the axis of detection. This threshold value is given by the variable x* as introduced
in [2]. A wave with ellipticity between tan(x?) and zero (irrespective of the sign of
X;) will, after passage through the plasma, have its ellipticity reversed with respect to
that of the reference wave at the time of their respective passages through the z—axis
(¥,%,==£Z). The two signals will undergo phase transitions with opposite signs, which
do not cancel but instead accumulate after half a revolution of the polarization vector.
If the ellipticity of the incident wave lies outside the interval mentioned above, the sign
of the ellipticity at the time of passage through the z—axis will be identical for probing
and reference waves, and the phase difference will follow the evolution described in the
previous paragraph. The difference in ellipticity of the two waves will nevertheless cause
the slopes of the transitions to differ and consequently the ‘spike’ becomes asymmetrical.

This effect is illustrated in Fig.2, where three of the curves of Fig.1 of [2] are
reproduced. Additional plots describe the change in polarization of the probing wave
after passage through the plasma slice. For the case where x, equals x7, the ellipticity
of the emerging wave is shown to pass through zero at the moment when its azimuth
is parallel to the z-axis ()= Z). Contrary to the presentation given in [2], in this plot
the associated phase transition has been preserved. However, since in this particular
case the sign of the slope is undetermined, one may alternatively assume an upward
transition, causing the curve to qualitatively follow the upper branch.

4. Review of improved schemes

From the analysis presented above and in [2] the impression may be obtained that
a perturbation of the interferometric phase is inevitable in combined interferometer
and polarimeter systems. However, one has to realize that up until now only schemes
implying a single probing beam have been considered. In the following, two schemes
are discussed in which the problem of phase perturbation has been avoided through the
application of two probing beams.

4.1. The RTP scheme

In spite of some apparent similarities with a scheme proposed in [10], the method
implemented at the RTP tokamak [6, 7] should not be regarded as one based on a
single probing beam with rotating linear polarization. It would be better to treat it
as the combination of two independent interferometers, one of which employs a left-
handed and the other a right-handed circularly polarized probing beam (i.e. x, = £1).
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The phase change of both interferometers is determined independently by mixing each
with a linearly polarized LO beam. Each of the probing beams will, upon passage
through the plasma, undergo a phase change A + ¢,,, where A is the conventional
interferometric phase change and ¢,, a perturbation thereon. As discussed previously,
¢m depends on the polarization of the probing wave and on plasma parameters. Starting
from Eq. 4 it can be demonstrated [6, 7] that for circular waves ,, equals the probing
wave ellipticity e (i.e. +1 or —1) multiplied by the conventional Faraday rotation angle
ap. The phase difference between the two probing waves then equals twice this angle
and its average value yields the interferometric phase.

In practice the two independent interferometers can be combined on the same
optical setup by using frequency separation. In this case the probing waves will also
mix after passage through the analyzer, and the phase of this mixing product gives
an alternative means of determining the phase difference between the probing waves.
Although advantageous, this feature is not essential to the method.

One important distinction between the RTP method and the one by Dodel-Kunz is
that it does not require equal beam power in the two probing beams, i.e. the polarization
of the composite wave is not relevant. Also separation of carrier and envelope signal is
not necessary after detection. Instead, individual phase measurements are performed
on distinct signals, well separated in the frequency domain. This completely different
method of detection avoids all artifacts described in section 3.

4.2. The TCV scheme

In the case of the combined interferometer/polarimeter presently being installed at the
TCV tokamak [5, 11], two linearly polarized waves are used to probe the plasma. The
polarization of one, with amplitude A, is rotating with angular frequency w;,, while the
polarization of the other, with amplitude B, is stationary and directed parallel to the
external magnetic field. Upon detection the component in this direction is selected with
an analyzer. The composite incident wave can be described by

_ A cos(wt) sin(w,t)
b= ( —A cos(wt) cos(w,t) + B cos(wt — ¢,) ) (6)

where the rotating polarization vector is taken to be aligned parallel to the external
magnetic field at ¢t = 0. The parameter ¢, represents a phase difference between the
two probing waves which in the TCV scheme will be adjusted to a multiple of 7. In
this case the composite incident wave will again be linearly polarized with time-varying
amplitude and azimuth. Upon passage through the plasma both the non-rotating and
the rotating component will undergo a polarization rotation as a result of the Faraday
effect. Consequently, the rotating part and hence the amplitude modulation will show
a phase lag with respect to the reference, from which the polarimetric phase can be
retrieved.
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Figure 3. The individual wave phases ©p and ¢, for probing and reference wave,
resulting perturbative phase @, incident azimuth of the probing wave 1, change
of azimuth ¥ — 4, and output ellipticity of the probing wave, all as a function of
modulation angle w,t. To facilitate comparison with Fig.2, plasma parameters were
again chosen to be sin(2y3) = —0.98 and tand = 1. The ratio of rotating to non-
rotating wave amplitudes A/B was taken to be 0.25 (dashed), 0.50 (solid) and 0.75
(dash-dotted).

The azimuth ¢, of the incident wave is given by

_ —A sin(w,t)
Yo = arctan (—A cos(w,t) + B) (")

where 9, is again defined with respect to the y-axis. This Eq. reduces to 1, = w,t if

the component with stationary polarization is absent (B = 0). In reality the ratio of
the probing wave amplitudes A/B is chosen to be sufficiently small. This is done to
avoid phase transitions of the type depicted in Fig. 1 and to keep the modulation depth
limited, which is beneficial to an accurate determination of the interferometer phase.

Eq. 7 can now be used to express the rotation of the A~component in terms of the
azimuth 1, so that the formalism of [2] can be applied. The results are shown in Fig. 3
and indicate a negligible perturbation of the interferometric phase for this modulation
scheme and the chosen plasma parameters (note that tan §=1 corresponds to a significant
amount of birefringence). At each moment during the modulation cycle the polarizations
of both probing and reference waves remain close to linear and sufficiently far removed
from the phase transition points at ¥, , = +7.
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5. Conclusions

It has been shown that identical results for the phase perturbation term in a combined
interferometer and polarimeter system can be obtained on the basis of different
formalisms (Stokes/Jones matrices). The results given in [2] can indeed also be derived
from equations previously presented in [6, 7].

A physical interpretation of the mathematical equations has been developed by
considering the behaviour of probing and reference waves individually, thus revealing
the meaning of the parameter x* as introduced in [2]. It has been shown that a phase
transition occurs also in the case where the incident wave has an ellipticity tan x?*, but
that then the slope of the transition is undefined because the detected signal vanishes.
The bifurcative behaviour of the curves shown in [2] is explained as being the result of
a change in sign of the probing wave ellipticity.

In the latter part two single-detector polarimetric schemes were discussed neither
of which suffers from a perturbation of the interferometric phase. The RTP method
basically involves two separate phase measurements using orthogonally polarized waves,
the polarization of each of which remains stationary. The interferometric phase and
Faraday angle are obtained by combining these two measurements. Since modulation is
absent, so are the modulation artifacts. The scheme proposed for the TCV tokamak uses
a composite wave which only scans a limited azimuthal interval (between = arctan(A/B)
in the case of the reference beam). It avoids 1 values close to the positions of the phase
transition, and thus keeps the perturbation of the interferometric phase small.

Appendix

Realizing that any phase can be considered as the ratio of imaginary to real component
of a complex signal, one may write

15 (8)
Vo

and an analogous expression for ¢, relating it to C, and S,. The phase difference
between these two terms, ¢,,, can then be obtained by determining the phase of the

exp[—jpp] = exp[—j arctan(S/C)] =

quotient of the two,

exp[—jom| = exp[—j,] / exp[—7p,]

_ [C2+52 CC,+8S,—j(8C,—CS,) )
V482 C2 + S?

which leads to Eq. 2 of the main text.

References

[1] Geck W R, Qin X, Liao J, Domier C W and LuhmanJr N C 1995 Rev. Sci. Instrum. 66 860-2
[2] Segre S E 1998 Plasma Phys. Control. Fusion 40 153-61
[3] Donné A J H 1995 Rev. Sct. Instrum. 66 3407-23



Phase measurements in interferometer/polarimeter systems 9

[4] Rice B W 1992 Rev. Sci. Instrum. 63 5002-4
[5] Barry S, Nieswand C, Buhlmann F, Prunty S L and Mansfield H M 1996 Rev. Sci. Instrum. 67
1814-7
[6] Rommers J H and Howard J 1996 Plasma Phys. Control. Fusion 38 1805-16
[7] Rommers J H 1996 thesis University of Utrecht
[8] De Marco F and Segre S E 1972 Plasma Phys. Control. Fusion 14 245-52
[9] Soltwisch H 1990 Jiilich report 2339
[10] Dodel G and Kunz W 1978 Infrared Phys. 18 773-6
[11] Barry S, Nieswand C, Prunty S L, Mansfield H M and O’Leary P 1997 Rev. Sci. Instrum. 68
2037-9



