LRP 614/98 July 1998

SUPPORT OF MODELLING OF MHD EVOLUTION OF
DISRUPTIONS, EDDY CURRENTS AND HALO CURRENTS

A. PLETZER
FINAL REPORT — VHTP TASK AGREEMENT

S19 TD 04 97-01-27 FE
NET/97-447, ERB5004 CT970027



Final VHTP report: May 1997 — May 1998

A. Pletzer
Centre de Recherches en Physique des Plasmas, Association Euratom — Confédération Suisse
Presently detached under a VHTP agreement to:
ITER-JCT
11025 N. Torrey Pines Rd., La Jolla CA 92037

pletzeaQiterus.org

I. FOREWORD

In the past year I have devoted my energy in three directions. Accordingly, this report
contains three distinct parts.

First I have investigated the stability properties of ITER equilibria within the framework
of the neoclassical tearing mode theory. This theory [1,2] suggests that the main driving
mechanism in the creation of magnetic island is not the free energy as measured by the
stability index A’ (= jump in the logarithmic derivative of the the radial magnetic per-
turbation), but rather the suppression of bootstrap current resulting from the flattening of
the pressure profile as the island grows. Most tokamaks have now routinely observed these
modes, Which are associated with the observation of soft 3 limits.

In neoclassical tearing mode theory, the drive originating from the bootstrap current is
such that when —p'/q’ > 0 there is no stable fixed point unless A’ < 0. The saturated island
width w is then approximately proportional to (—A’)~!, whereas no saturation mechanism
exists when A’ > 0.

Experimentally, neoclassical tearing modes tend to develop at the mode rational sur-
faces 3/2, 2/1 and 4/3, where A’ tends to be weak. Islands with corresponding resonant
poloidal and toroidal mode numbers are, however, not persistently observed and the gen-

eral understanding is that the island width needs to exceed a particular threshold to form.



This threshold could be overcome by a magnetic perturbation following a sawtooth crash,
' for instance. There are two models which are presently competing to explain the existence
of such a threshold, one based on finite perpendicular transport [3] and the other on the
effect of the polarization current [4]. The theory by Wilson et al. appears at present to be
favoured by experimentalists [5].

If we assume that ITER will be in a sawtooth regime [6] then it is likely that this threshold
will be overcome. The so-formed magnetic island could then lead to a significant reduction
in the maximum attainable 3 [7]. However, there are other stabilizing effects which come
into play. In § II it is shown that the modification of the equilibrium current profile due
to the island amounts to a wlogw term [8] in the evolution equation. Such a contribution
dominates over the generally adopted term proportional to w [9], and could explain why
modes with A’ > 0 do not necessarily lead to a disruption.

Even so, the inclusion of the quasi-linear stabilizing effect in the island equation can
still produce large saturated island of ‘width in excess of > 10% of the minor radius in
ITER, this due to a combination of weak A’ and strong bootstrap current near the 2/1
rational surface. To further mitigate the growth of the island, it has recently been proposed
to aim a modulated electron cyclotron current drive (ECCD) [10-12] at the O-point of
the island in order to overcome the bootstrap current deficit. This scheme relies on good
synchronization. Another approach investigated in’§ III consists in tailoring the current
profile by using a continuous ECCD in the neighbourhood of the rational surface so as to
decrease A/, A substantial stabilization can be achieved for both schemes even for moderate
ECCD intensities because stability depends on the gradient of the current density rather
than on its magnitude.

The third subject I have tackled concerns disruptions and in particular the determination
of the halo and eddy currents during a vertical displacement event (VDE). There is some
concern at ITER that the asymmetric component in these currents can lead to large and
localized stresses. The important parameters here are the toroidal peaking factor (TPF)

[13] and the ratio of halo current to plasma current before the disruption Iy/I,. It can
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be shown by using simple geometrical arguments [14] that these two parameters are in fact
inversely correlated (see Fig. 1).

The computation of the halo and eddy currents requires a three-dimensional nonlinear
resistive MHD code using a finite element expansion in both radial and poloidal directions.
(Previous attempts to use a Fourier expansion in the poloidal direction led to bad conver-
gence when the plasma approached the wall). There are mainly two contenders, MH3D
and NIMROD. However, none of these codes have implemented a resistive wall boundary
condition at present. I have thus been led to reformulate in § IV A the resistive wall problem
in terms of Green’s functions in a way that can be used in either codes. The representation
of the magnetic field in the vacuum is based on the scalar potential representation, which
applies also to n = 0 modes provided one takes into account the multi-valued character of
the potential in this case. By doing so I have found a new form for the toroidal Green’s func-
tions, which are expressed in terms of the hypergeometric function. I have written a code,
WALL, which has been tested in the cylindrical limit and I have spent my time recently
discussing with my NIMROD co-workers the best way to implement these new boundary
conditions.

In the mean time, Tom Gianakon and Carl Sovinec have included the possibility to use a
combination of structured mesh (made of quadrilaterals), which is numerically efficient, and
an unstructured mesh made of triangles in the region where flux surfaces are open. This

new feature will require further testing.
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FIG. 1. Toroidal peaking factor vs. the ratio of halo to plasma current. Large tokamaks tend

to have a smaller TPF I, /I, product (design basis for ITER is 0.5). Courtesy of John Wesley.



NIMROD Gr1

FIG. 2. Structured and unstructured mesh in NIMROD.

1.5 20 25 30 35

1.0



II. QUASI-LINEAR STABILIZATION FOR THE ISLAND EVOLUTION

EQUATION

Quasi-linear corrections are the result of profile modifications that occur in the course of
a magnetic island growth. In a low g plasma, the divergence-free condition for the current
density J along the toroidal angle implies that J is approximately a function of the helical
flux 9 only. Thus, as the island grows, a region where J is flat forms at the O-point. This in
turn removes some of the free energy available to the mode, thereby producing a stabilizing
effect.

The problem of estimating the current gradient stabilization has been previously tackled
by several authors [9,8,15]. The present work follows more closely the approach of Thya-
garaja [8], except that the effect is evaluated in the outer region, where the mode satisfies the
zero-frequency ideal magnetohydrodynamic equation [16,17]. Both approaches are consis-
tent and give the same wlog w dependence in the (normalized) island width w. The rational
surface where the island develops is a regular singular point in the outer region equation
and the solution there can be written in terms of a large and small Frobenius solution [18],
i.e an expansion with leading fractional power. The origin of the wlog w dependence lies in
the mingling of the small Frobenius solution with the next order term of the large solution.
Note that this only occurs when one takes the small 3 limit.

Chang et al. [19] have used a different definition for A’ based on the jump in logarithmic
derivative evaluated at the half-island width. The so obtained A(w) can be shown to be
essentially equivalent to A’ with the quasi-linear corrections, both exhibiting the wlog w
behaviour.

Other authors [9,8,15] have found a w dependence, which appears to be in contradiction
with the present results. A closer inspection of their results reveals, however, that their
coefficient of proportionality is related to the average slope of the magnetic perturbation on
either side of the rational surface. But it is widely recognized that this coefficient becomes

infinite in the w — 0 limit, when # = 0. This precisely because of the presence of a



logarithmic term in the Frobenius expansion so that this discrepancy is only apparent.

A. Flattening in the inner layer

A plasma of periodicity 27 R and magnetic field

B=B,z+2zxVy

is considered in the large aspect ratio limit. Here,

(0 :¢0+Acosmé

is the helical flux composed of an equilibrium part

r ! 2
7,[)0:/ dng(l—gfli)-)z—ngi%-l—O(ccs) A

and a small perturbation, which is resonant
1

A z
f=0—-— —
g R

at the mode rational surface, i.e. where ¢(r;) = ¢ = m/n, m and n being the poloidal and

toroidal mode numbers, respectively. Introducing the normalized helical flux

s = % (]- - lb/A) ’
Eq.(1) then becomes
22 . ,mb
$= — + sin® 5 (2)

where
L A[Y?
: (3)

By

w=2

is the island halfwidth with L, = ¢,/q. = r;/3. Equation (2) yields an island topology, with

“trapped” (0 < s < 1) and “circulating” field lines (0 < s < 1).



The procedure to obtain the island evolution equation is standard [20] and will only be
sketched here. Using Ohm’s law, V-J = 0 for the current density, and z-J = J = V24 one

then obtains

V2A cos mb = % %—?— <cos mé> + Jy ({(z) — ). (4)

Here,

=g (5) e /fa (52

is an averaging procedure which annihilates the electrostatic potential in Ohm’s law, and 7
is the resistivity along the strong B, component of the magnetic field.

The last term, which is proportional to the equilibrium current gradient has been gener-
ally omitted [20,21,2,22-24,4]. Its importance can however readily be verified by taking the
large 2 limit of (4)

9%A . 5 As A
527 <0 m = O(A*) + rs:tACOS mo, (5)
where
_ _T'SQsJ,(Ts)
A, = ToIB (6)

and noting that the linearized version of (5) produces the singularity at z = 0. Without this
singularity, there could be no asymptotic matching procedure.

The equation describing the temporal evolution of the island width is derived by applying
L [2 dx [T, df cos md onto (4). Expanding A = Ag+ ALz + - - - where + stands for z > 0
and — denotes z < 0, one finds that the Ag term only contributes to the first two terms of

(4), which yield the Rutherford equation [20]. Upon using the approximation

A 1/2
mo w? A’ a
t=dw|s—sin?— — ZE cosmb 4 .-
( 2) 4 A

one then gets,

AL — AL 2ktgp d (w) Al + AL
Ao 1, dt — kA e (")

Ts
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where k ~ 0.83, and 7r = r?/n the resistive time scale. The first term of (7) gives the well-
known A’ parameter and the last the matching index of ballooning parity. These matching

data are provided from the outer region where the solution can be written [25]

LA Al
ottty

1
1, I 1
z |2 (1+._.)+5 T

x

Ts

Aouter

Ao

Ts

1
sgne (14 --+)

(8)

T's

as ¢ — 0. The first term in (8) represents the large solution, which is assumed here to be of
even parity to leading order. The remaining two terms are the small solutions of even (odd)
parity with leading coefficients A’/2 (I'/2). In (8), u is given by the equilibrium and can be
shown to be equal to /=Dy where Dy is the Mercier stability index against ideal localized
modes. In the @ — 0 limit we have 4 — 1. This is also the limit where the next order terms
in the large solution (8) become singular so that, in order to get a finite solution, I'' must
also become infinite. Assuming for the moment p — % to be small but not zero, we proceed
and find

AL+ AL

IV 4 2),1
A — 174 n

—|+O(1 —2u) (9)

S

at distance +w, where

=T - /\51
H—3

is the odd-parity renormalized index [26], which is well defined when 8 — 0.

Substituting (9) in (7), the island width evolution equation thus becomes

re A’ = 16475 iﬂ — 1.64r,)? ( )ln
Ts dt Ts Ts

— 0.83r, A\, ( ) (10)
rs 8
This equation is the main result of this section. It indicates that there is an effective

matching index

Alw)= A +1.6432 (2 ) 1n|=
rs

+0.83), T (r) (11)

T'S
which includes finite island size effects. The index A’ can be computed by solving the

marginal stability equation in the outer, ideal region with the PEST-3 code [27], which
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assumes w — 0. The parameter ), is given by (6) and is a property of the unperturbed
equilibrium at r;. The last term is the quasi-linear stabilization obtained by White and
Monticello [9], and Zakharov et al. [15].

One aspect that has been overlooked is that

Al — A r
+ - s 1
St (1 -2 A
i (I—2u)— + A"+
also produces an additional term at distance tw. This term represents a Glasser, Greene

and Johnson stabilization [28] for the island evolution equation. A more rigorous approach

[21] gives a pressure stabilization proportional to 3.1Dgr,/w.

B. A current flattening model

It is shown in this section the current stabilization obtained previously as an inner layer
effect is consistent with the correction in A’ resulting from a flattening of the equilibrium
profile in the outer region. Hence we are mainly concerned here with solving the marginal

stability equation

1d d¥ A(r) m?
22 A g Mg
rdr dr  r(r—r) v r? 0 (12)

for the perturbed radial magnetic field ¥. Equation (12) is the Newcomb equation in the
pressureless limit for a cylindrical plasma with circular cross-section. The boundary condi-

tions are: ¥ must be regular as r — 0 and vanish as » — co. The function

_ RgJ'(z)(z — 1)
M=) = B lafaz) 1 19

is proportional to the current gradient J'(r) and give (6) at the rational surface position r,,
¢ = r/rs, B, is the constant equilibrium magnetic field, R is the major radius and ¢(r) the

safety factor.
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FIG. 3. Dependence of A’ on the constant current gradient parameter A= A; for the m = 2

mode, which has a pole at A =2m +1 = 5.

Exact solutions [29] exist in terms of the hypergeometric function F(a,b,c|z) for A =

const. Taking the wall at infinity, we then have

A F(l4+a_,14ay4,2+2m|1-)

- =m =5 F(a_,ar, 1+ 2m|1)
A F(l4ay,1—a_,242mu|l-)
Ay = —my — 4
e ™t 2mw Flay,—a-,1+42my|1) (14)
where
. . dU/dz
reN =r AL —r AL with sy = xlir& lI/l . (15)

Here,ay =m(1+v)and v = \/m . Equations (14) give the well-known result that
rsA’ — —2m in the large m limit (A\/m — 0), and has a dependence in A which is similar
to the zero-g3 analytic formula r,A’ = —mAcot(mA/2m) of Hegna and Callen [30]. One
difference is that (14) yields a higher threshold for ideal instability: A’ — oo as A — 2m + 1

(see Fig. 3) whereas the marginal stability point given by Hegna and Callen is 2m.
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FIG. 4. Model for the current flattening: A\/A; vs. z = r/r, with w = 0.1.

To model the current flattening, we take A = A;|z — 1|/w to vary linearly as shown

in Fig. 4. This allows us to express the solutions as a linear combination of Bessel func-

tions: C21J2m(21/22s(z — 1)/w) + Ca1Yom(2¢/2As(z — 1)/w) where 1 —w < z < 1 and
Catlam (24/2Xs(z — 1) /w) + C32Kam(24/2Xs(z — 1) /w) where 1 < £ < 1 + w. In total, there

are six unknown coefficients'which are determined by requiring the continuity of the solutions
and their derivatives at £ = 1 — w and 1 + w, and the continuity of ¥ at = = 1.

Figure 5 shows the effective reduction of A’ as the flattening width w increases. The
solid lines represent A’ evaluated at  — 0% whereas the dashed lines correspond to A(w),
that is A’ computed at 1 £ w. Both definitions have the same wlogw dependence, and to
a large extent give the same stabilizing correction as w increases. One exception is for case
(a) which has small A = 1 and A’ &% —2m. In this case the correction is slightly destabilizing
with A(w) > A'.
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FIG. 5. The matching index A’ and the effect of the current flattening over a half-width w for
As =1, 2,3 and 4 (A’ increases with A). The solid line corresponds to A’ evaluated at = 1+

whereas the dashed line is the index A(w) evaluated at 2z = 1 + w.

In Fig. 6, it is shown that the flattening correction has a dominant 2kA?wlogw depen-
dence and that the coefficient 2k is of the order of two over the range 0 < )\, < 3.5. This is

in good agreement with the value 2k = 1.64 found in § ITA.
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FIG. 6. Coefficient 2k vs. A, obtained by using a best fit of A’(w) to A’(0) +2kA2wIn w+ kow.

The 2k = 1.64 value obtained from the inner layer equation is shown in dashed line.

C. Application to an ITER equilibrium

The index A’ is computed using PEST-3 for a low 8 ~ 0.12% toroidal equilibrium of
ITER shape. The current density is gradually flattened over a distance 2w normalized to
the square root of the poloidal flux coordinate about the the 3/2 and 2/1 surface, while
keeping the safety factor value go = 1.05 constant on axis. The wlogw dependence is in
this case also apparent for the 2/1 mode. There appears to be a small 1/w correction for

the 3/2 mode that could be due to pressure effects.
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FIG. 7. The matching index A’ vs. the half-width of the current density flattening width for

the 2/1 and 3/2 modes.
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III. STABILIZATION OF NEOCLASSICAL TEARING MODES USING A

CONTINUOUS LOCALIZED CURRENT DRIVE

In ITER, the combination of weak A’ with strong bootstrap current drive can yield large
saturated islands. Figure 8 shows the A’ matching data for various m/n resonant modes,
m=2,3,4,5,6 and n = 1,2, 3. Higher m modes tend to be stable because rsA" — —2m as
indicated by (14) and (15). Another factor of stabilization is the proximity of the rational
surface to the conducting wall. It is found numerically and experimentally that the most
dangerous modes are resonant at the 2/1, 3/2 and 4/3 surfaces. In the present case these

three modes have a slightly negative A,

!
o A
0 T T ] A ] T ] I I

] [ - B n=1

. ‘ """ A n=2

. ..... . n=3
-5l _
-10F |
~15} A .

.
=20 <]
=251 ] | | 1 | 1 | | ] é
1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

m

FIG. 8. The matching index A’ is weakly stable for the 2/1, 3/2 and 4/3 modes.

Figure 9 is representative of the effect of strong bootstrap current drive combined with
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moderate r, A’ = —2.6. It shows the equilibrium helical flux

1 A
¢’0 = = dTBo'Ve,
(2m)?

to which a helical perturbation Acosmf has been added [cf. (1)]. The radial behaviour
of A is computed by solving the linearized outer region stability equation but with full
toroidal effects. This means that A is known up to an arbitrary constant related to the
island half-width (3), which is itself determined from the island equation

R d 2)_ L_(’"_)
1.64rs dt( = r,A(w) + 2.3 \/E;ﬁpr ” (16)

T's

and setting d/dt = 0. Here, we include the lowest order quasi-linear corrections as given by

(11) with the Glasser, Greene and Johnson stabilization, i.e.

rsA(w) = rsA’ +3.1Dg < s) + 1.64)2 (EU—) In

T w
w s

Ts

(17)

The third term in (16) represents the neoclassical bootstrap current drive [1-3], with €, =
rs/R, B, = 2p/B§ and L,/L, = —p'/¢, all quantities being evaluated at the rational surface

position. The polarization current and higher order quasi-linear corrections are neglected.

A. Effect of a Gaussian current at the rational surface on A’

Tearing modes can be made more stable by tailoring [31] the current profile in the
vicinity of rational surfaces. Since stability depends on the gradient of the current density
through the X function defined in (13), small modifications in the current profile can have
a substantial effect. It can be shown by inspection of (12) that A > 0 is destabilizing for
r < r, but stabilizing for r > r,. Clearly, if the current gradient is made positive where
r < r, and negative in the region where r > r,, this can only be favourable to stability (i.e.

A’ decreases).
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FIG. 9. ITER equilibrium with By & 2. Contours of the m = 2/n = 1 helical flux computed

using the PEST-3 code. The island sits at g=2and r,A’ = —2.6 in this case.

This is best seen by considering a specific example. Let us take a Gaussian current

density profile,

J(z) = Jop exp [— (E - a) ZJ

a

of radial extent o, which peaks at z = ac (z being the distance from the rational surface).

For such a profile, (12) can be written approximately as

So

¢rr(m) & _4_ (Jj(;[)) (.’L‘/O’ - Q) expl_ (3:/0- "= a) J ’ (18)

18



where J, = 2B,/ Rq, and § = ryq'/q. Assuming the constant ¢ approximation to hold, (18)

can be integrated analytically, yielding

xR ) ), (19)

A

SO

where

o' w exp|—(z/o—a) .- . 2
w(a) = ﬁp/_w dz [ . ] = —i a/merf(ia) exp (——a ) (20)

is shown in Fig. 10. In this approximation, the best results are achieved by aiming at
the rational surface position (a = 0) and taking a narrow channel width (o small). The
stabilization degrades, however, as |a| increases; when |a| > 1, A’ becomes positive and
reaches a maximum at o &~ 1.6. At this point, the Gaussian bump sits on either side of the

rational surface and the stabilizing effect is lost.

FIG. 10. Function w(a) representing the sta.bilization/destébilization factor. The Gaussian

current density is stabilizing for w(a) < 1 but destabilizing for w(a) > 1.

Equation (19) can be regarded as a correction to A’ when a Gaussian current distribution

is added to the equilibrium current if Jop and o are small. One effect not taken into account

19



is the flattening of the safety factor profile due to the addition of the Gaussian current. A
more realistic model consists of a current distribution to which a Gaussian perturbation is
added with safety factor and current profiles computed self-consistently, as in Fig. 11. The
black curve is the response to the unperturbed equilibrium current density. The stabilizing
effect of the incremental Gaussian current is clearly noticeable from the jump in derivatives
at the rational surface. Here we observe that the stabilization is more effective when applying
the Gaussian current outward with respect to the unperturbed rational surface position, a
direct consequence of the the rational surface moving toward the edge as Jop increases.
Note that the current drive effectively adds an odd contribution to A, which is negative

inside and positive outside the rational surface.

v q
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1 25
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FIG. 11.  Radial magnetic perturbation (top left). The jump in the radial derivative takes
place at the rational surface position, whose position is indicated by a vertical dashed line. The

black curves correspond to the unperturbed equilibrium.
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B. ECCD at the ¢ = 2/1 surface in ITER

The code PEST-3 has been used to determine A’ for an ITER profile, as predicted
immediately after a sawtooth crash.. A convergence study has been performed to estimate
A’ by gradually increasing the number of mesh nodes, and extrapolating to infinity. The
current profile is characterized by a significant bootstrap current component at the 2/1
rational surface, which amounts to 11% of the current on axis (8y = 1.9). The result of
adding the ECCD is shown in Fig. 12. The curves correspond to ¢ = 0.03 (peaked Gaussian),
o =0.06 and o = 0.12 (Broad Gaussian). The ECCD is applied inside at & = —0.5, at the
unperturbed rational surface position & = 0 and outside at o = 0.5. In addition, the current
density J¢p is varied from zero to ~ 30% of the current density on axis. The total current
in the Gaussian ECCD amounts to 5 % of the toroidal current for the peaked ECCD, and
30 % of the plasma current for the broad ECCD. |
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FIG. 12. Parallel current with ECCD channel about the rational surface.

The numerical results confirm our earlier predictions that the stabilization is inversely
proportional to Jgop over the channel width o, or o< Igp/o?®. The effectiveness of the
stabilization of the ECCD is rapidly lost, however, when applied inside (triangles pointing
to the left). This is due to the rational surface that shifts outwards with Jep to the point
where a becomes larger than one. Qur theory then predicts a destabilization. In the worst
scenario, this destabilization can reach 30 % [~ (Wmaz — 1)/(1 — wWpmin)] of the maximum
attainable stabilization in A’ at a = 0, in agreement with Fig. 10. Applying the ECCD at
a = 0 (diamonds) gives the most negative A’ at low Iop but becomes destabilizing at larger

Iep. The most robust stabilization is for a = 0.5 (triangles pointing to the right).
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FIG. 13. ECCD stabilization is more effective when applying just outside the rational surface.

The effect of an ECCD at the 2/1 surface is also investigated on the neighbouring rational

surfaces. With the exception of the cases where the ECCD overlaps these rational surfaces,

the ECCD is slightly destabilizing, as expected. For any parameter choice, however, the 5/2

surface remains stable, whereas there is a large parameter range for the 3 /2 surface where
this destabilization remains modest. The choice of a ~ 0.5 combined with 0.5 < & < 01
and Iop/ly ~ 0.05, for instance, reduces A’ at the 2/1 surface to —20 while barely affecting
the stability at the 3/2 surface.
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FIG. 14. ECCD stabilization about 2/1 surface has a small destabilizing influence on 3/2

surface.
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FIG. 15. ECCD stabilization about 2/1 surface cannot destabilize the 5/2 mode.
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IV. RESISTIVE WALL BOUNDARY CONDITIONS
A. Geometry

Adopting a cylindrical (r,¢, 2) coordinate system, we assume the existence of a plasma

surrounded by a closed, toroidally symmetric wall with finite resistivity as shown in Figs. 16

and 17. Apart from a finite set of vertical field coils and a toroidally symmetric toroidal field

| coil, we have a “vacuum” region, which extends from the wall to infinity. The volume inside

the wall will be referred to as the plasma or interior region. The tangential conductivity o

of the wall will be assumed to be sufficiently large so that the product of o times the wall
thickness § is finite. |

The geometry of the wall in the poloidal plane is parametrized by the angle 6,

r = r(6)
z = z(0)

(21)

which increases by 2m after performing one poloidal turn in the counterclockwise direction.

The normal gradient to the wall surface then reads

9 _pyolf,0_,0) L0
on " pe “ar " 52  pe Ou’

where

po = \JT§ + 7§

and the subscript § denotes 0;.

B. Magnetic field representation

In the vacuum region, the magnetic field B satisfies

V-B=0 , (22)
VXB=ZJ,' | (23)
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where J; = [ §(r — ri)é(z — zg)g%, t = 1,--- N; are toroidally symmetric current filaments

which model the vertical field coils.

For convenience, B is split into

B=B,+B,, (24)

where B is driven by the J; currents and B,, is the remaining contribution which arises

from the presence of the wall.
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DIVERTOR
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FIG. 16. Poloidal cross section of the ITER tokamak showing the geometry of the conducting

wall and the disposition of the external vertical field coils (PF coils).
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1. Field from the external coils
The contribution B driven by the J;’s is best resolved by expressing
B;=VXA,
which satisfies (22), and rewriting (23) as

VXV XA;= ZJ,

(25)

(26)

Due to toroidal geometry and the fact that J is parallel to qg, only the covariant component

A = V¢ survives and satisfies

1
v-r—2v¢=—;J§5,

(27)

where J? = J;-V ¢ is the contravariant component. This equation is solved using the Green’s

function technique,
b= LG(pp)
— . 1' % P, P;

where G/(p, p;) is the two-dimensional Green’s function satisfying

1 _

PV VrGlpl,p) = ~tni(el )

and p = (r, z). For the Grad-Shafranov equation, the Green’s function is

G(p',p) = 2nrGy1(p', p)

where G is the n =1 Green’s function of § IV B5, that is

[

r

_ 3
Gp'p)=m (;) piF(3,1,2]p)
where

7',

r(d), 2Z=z200) p=

(28)

(29)

(30)

(31)

(32)



L BN Gty A D) N Y
A= g o1t 2r =l S (33)
and
: _ ., ab o ala+1)b(b+1)a?
F(a,b,clz) =1+ Sot ot 1) 5 (34)

is Gauss’ hypergeometric series.

2. Field contribution from the wall

The magnetic field originating from the wall is irrotational and can thus be written [32]

as

B, = Vy* (35)
with

Viy* = 0. (36)

It is however well-known [33] that when the (vacuum) domain is multi-connected [34] x* is
not single-valued. Choosing a contour of integration around a poloidal cross-section of the

plasma [see Fig. 17],

C d-By, = fo dl-VX* = X*I9=21r - X*|‘0—_-o = Iaa (37)

we find that x* has a branch cut; the jump of x* across the discontinuity amounting to the
sum of the toroidal current /, flowing in the plasma and in the wall. Likewise, if we choose
our integration contour along the ¢ direction so as to intersect the current I flowing in the

toroidal field coils, we get .

]{C dl-Vx* = X*|¢=27r - X*I¢=0 = I ) (38)
b
The multi-valued character of x* can however be easily accommodated provided we write

X'=x+ks 0+k & (39)
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where x is single-valued and satisfies,
Viy=0, (40)
with
kop = - dl-B/2n | | (41)

being constants that can be determined from the toroidally symmetric B in the plasma.

‘ 5 vertical field coils

contour C,

FIG. 17. Schematic cross-section of the poloidal plane. The plasma is surrounded by a closed
and toroidally symmetric wall. There are a finite number of vertical field coils in the vacuum region
(the toroidal field coils are not shown). The contour C, circumscribes the plasma but excludes the

vertical field coils.

3. Green’s function solution for y

The scalar potential x can be obtained at any point in space using Green’s theorem

—4mx(x')
—2rx(x) ¢ = fz do-{G(x',x)Vx(x) - VG(x',x)x(x)}, (42)
0
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where ¥ is any closed surface and

1

G(x',x) = ——
(x',%) [x’ — x|

is the three-dimensional Green’s function for the Laplacian operator, i.e. VIG(x,x) =

—4mé(x' — x). Here, the enclosed volume extends from co to ¥ and the value of the left-

hand side of (42) depends on whether x’ is inside the enclosed volume, lies on the surface
X, or is outside the volume, respectively.

Upon writing

0
doV = 7"5&'
and expanding
X(x)= Y Xa(p)exping | (43)
G, x)= Y. Guld,p)expin(d —¢) (44)

in toroidal Fourier modes, (42) then reduces to

[ {  Gul(6',0) 22(p) + 56~ ) - 7 Kals pnxn(p)} —o, (45)

where

K, = 2Gn. (46)
ou

4. Finite element discretization

In virtue of the toroidal symmetry of the wall, (45) can be solved independently for every

toroidal mode n. Dropping the subscript n from now on, we further expand

X = X;xiei(0)
auX = Zi Ci 61'((9)

(47)
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in piecewise constant finite elements ei. Equation (45) then becomes the system

Xi = ; Vi ¢ (48)
where
Vi = - 5B s, (49)
Ay = /0 a0 r q(ai,a) e;(0) - (50)
and
B= [ 40 1500 — 0) — 1 K(05,0)] e;(6). e

5. Ezpressions for G and K

The Fourier projection

Glo,p) = 5= [ 48 explin(¢' — 9] C(X, )
1 cos (¢! = §)
2m /0 [r? + 72 — 2r'r cos(¢ — @) + (2 — z)Q]%
F(n+3,3n+1)p)
[(n +1)

1

n. 1
- (_1_>2 D(L +n) piti

mrir (52)

can be obtained analytically, with A, s and p defined in (32) and (33). Since A > 1 we have
1 £ s < ooand0 < p< 1 The hypergeometric function F (n + %, %,n + 1|p) is evaluated
in the WALL code using the freeware routine “hyp2fl” of the Cephes Math Library, which
has proved to be very accurate. However the price for extreme accuracy can be expensive in
CPU time. Alternatively, F (n +%,5n+ llp) can be evaluated using the Téylor expansion
(34) which is faster and yet gives satisfactory results provided the plasma aspect ratio < 100.

As a rule, we have found that the number of terms in the Taylor expansion must be typically

~10/(1 - p).
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Note also that expressing the Green’s function in hypergeometric function allows one to
p g g

easily take the ballooning limit n — co; the hypergeometric function then reduces to
11 -1
F(n+3,5n+1p) ~(1-p)72.

To compute K = 0,G, we make use of the following relations

oG  (2—z\ , 30G :

- ()@ -0, (53)
oG @ Arf—r\ 30G
5 =at (T) i oy

and
1

aa—Gﬁ "1E SG“I—GW]. | (55)
S (s2-1)8 [(s2 - 1)2

6. Singularity as p' — p

For p' — p, we have A = 14+, s = o0 and

I'(n+1 2 : |
F (n + % 5n+1p— 1—) ~ —ﬁ# [108:; +27+9(3) +¥(n +3) (56)
1
+n:— 2 log %-—}— O(1/3) + O(log s/s?) (57)

where v = 0.577215665 - - is Euler’s constant and U(z) = I'(2)/T'(2). Hence,

1 1
G(p’,P)~—( )lloglp'—P|N—Flog|9'—9+2ﬂkl; k=...,._1,0,1,... (58)
r'r)2 : v

as p' — p.

Although 8,G and §,G have a |p’ — p|™! singularity to leading order, this singularity
cancels when combining Egs. (53) aﬁd (54) to get 0,G. The first term on the right-hand
side of (54) then yields |

K(©,0) ~ —zﬁr ~

7 9,2log|9'—0+27rk‘]; k=-.--,-1,0,1,--- (59)

2rr
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as p' — p.

The integrals in (50) and (51) must be evaluated carefully. We apply here the regﬁlar-
ization prescription described by Chance [35], whereby the logarithmic terms log |6’ — 6],
log |0/ — 6 4 27| and log |6’ — 6 — 27| are extracted from G and K and projected onto the
e; basis functions. The resulting integral is evalua,ted analytically; this is straightforward in
the present case because the e;’s have finite support. The remaining (regularized) G and K
are well behaved and their projection is determined using the two-point Gauss quadrature

scheme within each (6;, 0;41) interval.

C. Matching across the resistive wall

We have up to now been only concerned with B on the vacuum side, with (48) providing
a relation between the pofentia,l x and its normal derivative at the contact of vacuum and

wall. To obtain the boundary conditions for the plasma, we make use of

‘n-|[B]] =0
B] )
nX[[E]]=0
where [[ ]| denotes the jump from the interior to exterior region. Furthermore we use

VXV XA =J within the wall and eliminate J in favour of the electric field E = —§,A by
means of Ohm’s law. The thin wall approximation allows us to neglect all surface derivatives

with respect to the normal gradient 9,. We then get .
Tw
[[B:]] = —(-Z—EXn (61)
where B, is the component of B tangent to the wall surface (i.e. B —nn-B) and
Tw=0daoc (62)

denotes the characteristic wall time, d-being the wall thickness < the minor radius a. Using

the results of § IVB1 and § IVB 2, the B field at the exterior is expressed as

v
B = Vyx + k'O + ky Ve + %70 (63)
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whereas, at the interior contact surface, we have B; = Bi*V4 + B{™V ¢ which we assume
to be given by the plasma equations. Here it is crucial to discriminate k, just outside from

its value just inside the wall:
‘ Tw 1 _ Tw
Hka]] = -b—%fEt Xn-dl = '—C;— (Et><n Xa) » (64)

where Ohm’s law has been used to determine the toroidal current flowing in the wall (x5 =

0Opx). This term can be moved to the right-hand side to yield

a 5 in 1a¢ n
B — (Boxnex) = - ( GV oo B 4 158 - ) (%)
and
a a int
EXn-x¢ = E EEV Pe B-n + kb - B¢ ‘ (66)

after projecting onto %, and xy4, respectively. Equations (65) and (66) are the boundary
conditions that the tangential electric field in the plasma is subjected to. The tangential and
normal magnetic fields inside the plasma region should be considered as floating quantities,
i.e. they automatically satisfy the proper boundary conditions through the electric field. All
other quantities on the right-hand side are known from the interior: k,; are given by (41),

V by (49) and ¥ by (28) - (31).

D. Implementation of the resistive wall bouhdary conditions into NIMROD

The present implementation of NIMROD includes the cold-plasma response only. In this

limit, the equations condense into a generalized Faraday’s law [36]
AB+ AtVX Z -VXAB = —AtV XE,, (67)

where E is explicit, i.e. it is computed at a previous time step. The second term in
VX Z-VXAB is the curl of the implicit part E;, of the electric field E = E;,, + E..,

with the tensor Z playing the role of an impedance.
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Updating B — B+ AB requires the inversion of the 2 = | +AtV X Z -V X | operator.
To do so

AB = 3, Byay(r, z,9)

| (68)
~VXE,., = Zq Rqaq(raz’¢)

are expanded in finite elements in (r,z) and in Fourier modes along ¢. Multiplying (67)
by the basis function ¢, and integrating over the plasma volume yields the set of matrix
equations

E (Mpq = Atqu)’B;) = At Z(Mpq'Rq — Spe*By) (69)

q

where * denotes the new (implicit) value,

M,, = /drapaq (70)
is the “mass” matrix,
L, = /dTVa,,x |7 Va,X | (71)

is the inductance matrix (so-called because it is related to the change in magnetic energy),

and
Spq = }4 doxa, 7V Xa,B, (72)

is the surface term arising from integrating by parts. Note that setting this term to zero is
equivalent to having E Xn zero at the boundary — these are the natural boundary conditions
which the finite element method satisfies by default. All we have to do to generalize these
boundary conditions in the presence of a resistive wall is to replace Z -V xo,B, in (72)
by (65) and (66). This can be done either implicitely or explicitely. Because the Green’s
function method couples all the nodes at the boundary through the (full) matrix V of (48),
it is suggested that an explicit scheme whereby Z -V xa,B, is replaced by the tangential
field computed at the previous time step is desirable for numerical efficiency, and justified

as long as the resitive wall time 7, > At the time step.
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E. Validation

A circular shaped plasma is considered with small radius ¢ and major radius R. Using

- a coordinate transformation from (r, z) to (p,8),

r = R(1 + epcosb)

2 = Repsinf
the Laplacian operator in (40) takes the form

19 9 1 02
a’Viy = > app% + T e2n? + O(e).

As e is varied, we have the toroidal mode number n o €~! to conserve the periodicity length

along the toroidal angle. Thus, to leading order in €, x must satisfy a modified Bessel

equation. Adopting a uniform x on the surface of the wall we then have

Ko(ne)

V= " nek;(ne)

as an approximate solution as ¢ — 0.
In Fig. 18 € has been varied from 0.5 to 0.001 and n from 1 to 20. We observe that the
numerical solutions match precisely the asymptotic form in the large, and surprisingly, also

in the small aspect ratio limit.
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V. SUMMARY

In the first part of this report, it is shown that the tearing mode experiences a stabilizing
mechanism during its growth, which is due to the flattening of the equilibrium profile and
which is proportional to the island width w times logw. This stabilization can produce
a saturated island even when the matching index A’ > 0, which is often the caserfor the
m = 2,n = 1 mode. It can also considerably reduces the saturation width of them = 3,n = 2
mode, which tends to have a slightly negative A’ and a strong bootstrap current drive.
Because the flattening occurs on a length scale comparable to the island width, the resulting
stabilization can be determined either as an outer region effect or within the inner layer
equation. Both approaches give a similar dependence with a coefficient of proportionality
of the order of two.

It appears from experimental evidences as well as from numerical simulations that the
quasi-linear stabilization mechanism may turn out to be too weak to provide an acceptable
saturation width for the 3/2, 2/1 and 4/3 modes in ITER. Thus we will have to rely on
additional means to stabilize the mode, particularly at moderate to high 3 as pressure both
increases the bootstrap current drive and A’. It is shown here that slight current profile
modifications due to the application of a small localized current drive about a rational surface
can make A’ large and negative. Such a sensitivity can be explained by the fact that A/
depends on the current density grédient near the singular (rational) surface rather than the
current amplitude. Since the saturation width is approximately proportional to (—A’)™!,
the localized current drive stabilization can be very effective.

I have last May recently written a report “Stabilization of neoclassical tearing modes us-
ing a continuous localized current drive for ITER” on this subject, which contains additional
results and which is available at http://ppcéltc.iterus.org/~pletzea/reports.html.

In the third part of this report I have developed a formalism for applying resistive wall
boﬁndary conditions to nonlinear restive codes such as NIMROD and MH3D. The approach

is similar to the one used for linear codes; it is based on solving the plasma equation inside a
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closed volume which is assumed to be toroidally symmetric. The plasma volume is bounded
by a resistive wall, beyond which the magneto-static equations are solved using Green’s
functions. A new form of the Green’s function based on the hypergeometric function has
been found, which is numerically fast, accurate and also appropriate for taking the ballooning
limit. A scalar potential representation is used for the magnetic field, both for axisymmetric
and non-axisymmetric modes. In addition provision has been made to incorporate a driven
response to toroidally symmetri.c external coils using a one-component potential vector field
representation. It is proposed that the resistive wall boundary conditions be implemented
as “natural” explicit boundary conditions into NIMROD, i.e. in the form of a surface term
given by (72) with Z -V Xa,B, replaced by the tangential electric field of Egs. (65) and
(66). The implementation into NIMROD remains to be done.
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