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Abstract

Ion-Temperature-Gradient (ITG) modes in tokamaks are stabilized when the plasma
diamagnetism at high pressure reverses the magnetic drifts; this stabilization is studied
in the trapped-ion and toroidal ITG regimes with a linear global gyrokinetic Particle-
In-Cell code that uses the full MHD equilibrium data. It is found that a magnetic drift
reversal parameter that scales like the gradient of the normalized pressure 8 describes
the stabilization well, better than the standard ballooning parameter that scales like
the Shafranov shift and poloidal pressure 8,. There exists a window of simultaneous
second stability for MHD ballooning modes and ITG modes. Stability to global kink
modes, in the presence of an ideal wall outside the plasma, is obtained for cases with
high temperature gradients and with ITG growth rates that are an order of magnitude

lower than at low plasma pressure.



I. Introduction

Ion-temperature-gradient-driven turbulence is commonly believed to cause strong anoma-
lous radial energy transport in tokamak discharges and therefore to limit the performance
of current and future tokamaks. Turbulence develops when the plasma equilibrium is
linearly unstable; the knowledge of the stability conditions for ITG modes is therefore of
great interest. In this paper, we discuss the stabilization of electrostatic ITG modes that
occurs at high pressure, when the plasma diamagnetism creates a well in the magnetic
field 1] [2] [3]. We show that this regime can be used to optimize the plasma stability
simultaneously to ITG and MHD instabilities, for both short and long wavelengths.

The finite-pressure effects on electrostatic modes were studied numerically in Refs. [4]
and [5] using the “s —a” approximation to the equilibrium, which is valid at high aspect
ratio for shifted circular magnetic surfaces. It was shown that increasing e, the radial
derivative of the Shafranov shift, has a strong stabilizing effect on ITG modes; this is
sometimes referred to as “Shafranov-shift stabilization”. The same effect was seen in
ref. [6] in a flux-conserving sequence of MHD equilibria. Analytical work related to
the stabilization of trapped-ion modes can be found in Refs. [1] and [7]. The “s — a”
approximation to the equilibrium, however, is poor for the equilibria of typical tokamak
plasmas, which are strongly shaped with a low aspect ratio. Moreover, these results
were obtained using the ballooning approximation, which breaks down at low n or low
magnetic shear, as the mode radial envelope varies over the distance between rational
surfaces, and cannot describe slab-like modes that are not localized on the outer side
of the torus, i.e. that do not “balloon”. This approximation tends to break down in
the most interesting cases. First, relatively low-n modes (trapped-ion modes) tend to
produce the largest amount of anomalous ion heat transport. Second, we shall use low
magnetic shear (though not very low) to stabilize the MHD ballooning modes at high

pressure. Finally, we find modes that have a slab ITG character and do not “balloon”.

We study this regime in detail with GYGLES (G Yrokinetic Global Linear Electrostatic
Solver) [3] [8], a fully-global linear gyrokinetic simulation code aimed at describing the
most unstable ion-temperature-gradient modes in toroidal geometry. The code is based
on a Particle-In-Cell method formulated with finite elements defined on magnetic co-

ordinates, which has excellent numerical convergence properties. The poloidal mode



structure corresponding to k) = 0 is extracted without approximation from the gyroki-
netic equations. This results in a reduction of computing time by up to two orders of
magnitude for a given resolution. The code can routinely simulate modes with both
very long and very short toroidal wavelengths, can treat realistic (MHD) equilibria of

any size, and runs efficiently on a massively parallel computer.

The previous results are therefore extended by the inclusion of global perturbations,
necessary for an accurate description of trapped-ion modes, and of the MHD equi-
librium data. We also use consistent MHD and kinetic equilibrium profiles and con-
sider MHD stability, both in the regimes of high-n ballooning modes and low-n kink
modes. However, we consider neither electromagnetic effects on the ITG modes nor
the trapped-electron dynamics. Inclusion of the latter would permit the description of
trapped-electrons modes; these where shown to be stabilized by drift-reversal in a study
[9] of reversed-shear discharges where ITG modes were stable because of low n values.
At high 3, the electrostatic approximation that we use formally breaks down. We know
from ballooning electromagnetic studies [5] [10] [11] [12], that further stabilization of
the ITG modes can be expected when the perpendicular perturbation of the magnetic
field is included in the model. However, the first finite-3 effects on the eigenfrequency
have been shown to come through the MHD equilibrium [6] [13] [14], which are modeled
correctly. Inclusion of the parallel magnetic field perturbation could also lead to new

instabilities in conditions close to magnetic drift reversal [7].

The remainder of this paper of organized as follows. Section IT describes the gyrokinetic
model we use and Sec. III the MHD equilibrium. We define a magnetic drift reversal
parameter in Sec. IV and show its effect on gyrokinetic stability in Sec. V. In Sec. VI,
we examine MHD stability and in Sec. VII the effects of shear and safety factor. We
shown in Sec. VIII that the relevant regime can be obtained in experimental discharges

and we conclude in Sec. IX.

II. Linear gyrokinetic model

Our model is based on the gyrokinetic equations for the ions, an adiabatic response for

the electrons, the quasineutrality equation and the electrostatic approximation. This



unstable eigenmode. By analyzing the electrostatic potential and its time evolution, we

can then compute the frequency, growth rate and spatial structure of the most unstable

mode.

ITII. Consistent MHD equilibria

Any axisymmetric magnetic field can be written, using a cylindrical coordinate system
(R,0,2):
B =GVp+ VIXVep (6)

The MHD equilibrium condition, or Grad-Shafranov equation, then reads [15]:
Vetvo=2o oy GC (7)
R? R R?
where j, denotes the toroidal plasma current and the prime the derivative with respect
to ¥; G and p are free functions of U that determine the equilibrium. We use consistent
kinetic equilibrium distribution function fo and MHD equilibrium magnetic field: the

pressure profile p is given straightforwardly by density and temperature profiles that

determine fy in our gyrokinetic model:

p(s) = no(s) (Te(s) + Ti(s)) (8)

It is easier to choose the safety factor profile when G is specified implicitly by the surface
averaged current density [*:
$ Jo idX
I*(s) = —=2E = 9
(9 = T (9
where § dx denotes integration over the magnetic surface and J the appropriate Jaco-
bian. The CHEASE code [16] solves the Grad-Shafranov equation for ¥ when I*, p’ and

the plasma boundary are specified.

The full gyrokinetic stability problem is specified by four independent profiles: the
density no(s), the ion and electron temperatures T.(s) and T;(s) and the surface-averaged
normalized current profile I*(s). Once these are chosen, the Grad-Shafranov equation is
first solved (with CHEASE) using the profiles /*(s) and p’ = -&-p to determine ¥(R, Z)
and G(¥). The ITG stability is then obtained by solving the gyrokinetic equations, with



GYGLES, using the profiles no(s), Ti(s) and T.(s) and the magnetic field given by ¥
and G.

At fixed magnetic field, the density no appears effectively only through its logarithmic
gradient, which is insensitive to a multiplication by a constant. Equation (8), which
couples the gyrokinetic problem to the Grad-Shafranov equation, introduces a new de-
pendence of gyrokinetic stability on the absolute value of the density; the finite-pressure

stabilization of ITG modes then occurs at high density.

IV. Magnetic drift reversal parameter o,

At low normalized pressure 3, the magnetic drifts are destabilizing on the outer side
of the torus. If these drifts are reversed by the plasma diamagnetism at high pressure,
they become stabilizing everywhere and lead [2] to what can be called a second stability
regime for the ITG modes. A condition for drift reversal can be derived by noting that
the unfavorable gradient occurs in the region where %% < 0. Using the equation of MHD
equilibrium 4oVp = (V x B) x B, one can show that, for an axisymmetric system,

gg _ -—%%Bf _ uoj—g +0(B?) (10)
where B; and B, are the toroidal and poloidal components of the magnetic field. The
0(B}) term on the right-hand side of this equation is small compared to the first one
and may be neglected. Drift reversal thus occurs when, B; being the toroidal magnetic
field,

—po~r— > == B;} (11)

The pressure gradient must be sufficiently large to reverse the magnetic field gradient.
Since large pressure gradients can destabilize MHD modes, configurations of practical
interest have to be a compromise between microstability and MHD stability. We shall

address this question later.

Locally on the outer plasma mid-plane, the drift reversal condition (11) can be rewritten

in dimensionless form:

— R ap _ R loc
o = —'LLOEE@ = Z—LP‘,B >1 (12)
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I, = arP nd FU=2h (13)
To quantify the magnetic field gradient reversal, it is natural to use the parameter a,
which is equal to zero at low pressure and to one at full reversal on the outer mid-plane.
It is therefore a local parameter characterizing the magnetic field gradient at the most

unfavorable point. We note that a similar parameter
o, = 2¢%ay (14)

is the radial derivative of the Shafranov shift in the “s — o” approximation of the
equilibrium. It is often used to define the second stability zone for MHD ballooning
modes and has been used in [4] and [5] to study ITG modes. It is usually called «;
we use the notation ¢, to recall that this parameter scales like the normalized poloidal

plasma pressure (3, unlike o which scales like the total pressure .

V. Simultaneous second stability zone for MHD bal-

looning modes and ITG modes

Table (I) defines a set of equilibria with JET size and shape where:

o The normalized temperature gradient Ry/Ly = ~§}% peaks at the magnetic
surface s = s, and so confine the unstable modes around that surface. The

maximum value (at s = sop = 0.6) can be varied by changing the parameter Tp,.;.
¢ The reversal parameter a; at s = s can be varied by changing the parameter jo.

¢ In the region where the modes lie, the safety factor g does not depend on Ry/L7

and o, as is shown on Fig. (4).

e The magnetic shear 5 is low (0 < § < 0.2) where the modes lie. This favors MHD
stability and all these equilibria are in fact stable to MHD ballooning modes; in
particular, equilibria with high pressure gradients lie in the second MHD stability

zone.
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Figure 1: Profiles from table (I), with Figure 2: Profiles from table (I), with
Tru=1.8 and jo=1.5; normalized density, Tnu=1.8 and jo=1.5; logarithmic gradients
temperature and associated pressure. of density —%’fﬁg, temperature '

I
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and corresponding value of n;.
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Figure 3: Profiles from table (I), with Figure 4: Superposition of the safety factor

Lnu=1.8 and jo=1.5; current density I* profiles for all the equilibria studied which

and pressure gradient —dp/dV, sources to have oy < 1.5; since the unstable modes re-

the Grad-Shafranov Equation. main localized radially between s = 0.4 and
s = 0.8, the relevant q profile is almost con-
stant in the scan.



Global parameters Major radius Ry = 3 m, aspect ratio a/Ry = 1/0.36,
elongation x = 1.6, triangularity § = 0.3,
g:/m; = 4.8e7 C/kg (deuterium)

Vacuum field at R, Byo=3T
Safety factor at s = s q(s0) =1.5
lon temperature gradient | for |s — so| < 2As: ﬁ?} = *%RT (1 + cos [g.s_Z%aD

for |s — so| > 2As: ﬁ% =0
KT = ﬁlog(Tmul), 80 =10.6, As=0.1
T;'(So) = To =10 Kev

Electron temperature T.(s) = Ti(s)
Density profile ni(s) = no(l — s?)*
Norm. pressure gradient p = no—lTE%iniTi
Norm. current profile I*(s) = jo(1 — s%) + j, exp [—%ﬁ]
J
Ja = Topur * (14 * 70 + .24), A.Sj = 0.15
Scan parameters Jo € [0.8,100], T € [1.1,1.8]

Local parameters at s = so | Ro/Lr = krRo/a, Ro/ L, = 2.8, shear § ~ 0.1
p =48 mm, } ~ 144 MHz, w, ~ 80 kHz

Table I: Specification of the JET-size equilibria studied. The temperature is of 10 keV at
s = o that steps up and down by a factor Ty around this value over a fized distance As;
an example of the profiles obtained is given in Figs. (1)-(3). The values of Ty and jo
determine respectively the temperature gradient and the value of the reversal parameter
at. The current profile is a parabola to which a local Gaussian current of amplitude Ja
has been added around the mazimum pressure gradient. The expression for Ja insures
that the profiles of the safety factor a@d the magnetic shear are conserved during the

scan. The normalized profiles p' and I* are those given to the equilibrium code; their
rescaled, final values are determined by the renormalization done by CHEASE to obtain
the specified vacuum field at R = Ry and safety factor at s = sq.

The equilibrium profiles obtained for j, = 1.5 and T},,; = 1.8 are shown in Figs. (1)-(3).
The shape of the temperature profile closely resembles the experimental reversed shear
discharge in the JT60-U tokamak from Ref. [17]. With this set, we perform a generic
study of global ITG stability as a function of Ro/Lz and o at fixed safety factor profile,
varying jo and 77,y only. In the text that follows, Ry/Lt and «; refer to their values at

S = 8¢g.

Figure (5) shows the ITG growth rate as a function of a; for the n = 48 eigenmode.
This mode is in the toroidal ITG regime as its frequency w is larger than the trapped-
ion bounce frequency w, = 1/%33(1%0,/%. As oy is increased and the magnetic drifts

are reduced, then reversed for oy > 1, the growth rate decreases until the mode is fully

9



stabilized. Strongly reversed drifts are needed to fully stabilize the modes.

For n = 12, the mode frequency w is smaller than w, and the mode is in the trapped-ion
regime. The effect of the drift reversal is qualitatively different, as shown in Fig. (6)
by the solid line. As o is increased, the toroidal precession velocity of the trapped ions
reduces, then reverses, completely stabilizing the trapped-ion mode for a; > 1.2. Small
values of oy (a; < 0.5) do not influence the growth rate (shown by the crosses) as much
as in the toroidal ITG regime. For oy > 1.2, the growth rate of the trapped-ion mode
lies below that of a coexisting slab-like ITG mode, and the frequency measured, being
always that of the most unstable mode, jumps abruptly. This slab-like mode is close to
marginal stability and remains weakly unstable, even at high values of a;. Its slab-like
nature is visible in its structure, Fig. (9d). Further evidence of the nature of the modes
is obtained by artificially making all the particle passing (i.e. with constant v and vy ),
as in [3]; the trapped-ion mode then disappears, Fig. (6), dashed line, and the remaining

slab mode, now weakly damped rather than weakly unstable, is seen for all values of a.

Figures (7) and (8) show the contours of the growth rates obtained for n = 12 and
n = 48 in the (oy,Ro/L7) plane. The frequency of these modes increases with Ry /Lt
and with n, whereas the ion bounce frequency wy is fixed. As a result, the n = 12 modes
are in the trapped-ion regime (w < w;), except at high Ry/Lr, where they have a small
toroidal ITG character, and the n = 48 are in the toroidal ITG regime (w > w;), except

at very low values of Ry /L.

We call “first stability zone” for the ITG modes the stable zone that lies below the
critical temperature gradient of By/Lr ~ 4. In the “second stability zone”, at high
values of oy, the ITG modes are stabilized by VB reversal. The equilibria are fully
stable in the toroidal ITG regime, while a weakly unstable slab-like mode remains in the
trapped-ion regime. These slab-like modes are not expected to cause much anomalous

transport, since they are radially narrow and only weakly unstable.

The structure of a few of the eigenmodes, marked (a) to (e) on Fig. (8), are shown in
Figs. (9) and (10). The sequence (a)-(b) goes towards the boundary of the first stability
zone, (a)-(c)-(d) towards the second stability and (a)-(c)-(e) follows approximately a line
of constant growth rate. The mode (d) has a typical slab-like structure and is clearly

different from the other eigenmodes shown.

11
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Figure 5: Toroidal ITG regime, n = 48. Growth ratey versus oy for different temperature
gradients. The growth rate is normalized to its value at o, = 0; stable modes are indicated
by the arbitrary negative value of —0.1.
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Figure 6: Trapped-ion mode regime, n = 12. Frequency and growth rate as a function
of ai; the temperature gradient is Ry/Lr = 7.3. The corresponding mode structures are
shown in Fig. (9) (a), (c) and (d). The mode at o, = 0 is of trapped-ion nature and is
stable for oy = 1.2. At o = 1.2, its growth rate goes below that of a coezisting slab-like
ITG mode, and the frequency measured jumps abruptly to a new value. When all the
ions are made artificially passing (dashed line) the trapped-ion mode disappear and we
obtain the slab-like mode for all values of o.
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Figure 7. Toroidal ITG regime. Contours of the growth rate for n = 48 versus oy and
temperature gradient Ro/Lr. The crosses (z) and circles (o) represent points where
the equilibrium was found respectively unstable and stable. The n = 48 mode is in the
toroidal ITG regime, ercept around Ro/Lt = 5, where the frequency is lower than the
ton bounce frequency. It is quite sensitive to the magnetic field gradient and is fully
stabilized above a Ry/Lr-dependent value of oy which defines the boundary of the second
stability zone. The eigenmode at point (f) is shown in Fig. (10).
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and temperature gradient Ro/ L. The circles (o) represent equilibria that are stable. The
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(z) are unstable to trapped-ion modes; they are deep in the trapped-ion regime at low
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second stability zone lies roughly above o = 1.2, where the trapped-ion mode is stable,
but a slab-like mode is very weakly unstable. The modes corresponding to the points (a)
to (e) are shown in Figs. (9) and (10).
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The heat diffusivity coefficient x, induced by an unstable mode can be estimated roughly
using mixing length arguments; we take here x, = ~/k?. As a function of n, X1
is expected to peak roughly around n = 12, where ky =~ k, (the poloidal and radial
components of the wavevector). For n = 12, we take k? = 2k2, with ks = 30m~!. For
the n = 48 modes, kg > k, and we take k; = kg, with k; = 120m~!. The contours of the
growths rate corresponding to x; = 1, 3 and 5 m?/s are shown in bold in Figs. (7) and
(8). While these values should not be taken as more than rough estimates, they show

that the scan covers most of the experimentally relevant range of 0.1 — 10 m?/s.

We note that this second stable regime for ITG is different from the regime reported in

[18], which is related to strong anisotropies in the equilibrium distribution function.

VI. MHD stability calculations

The CHEASE code was used to compute the stability of MHD ballooning modes. All
the equilibria presented here are stable to these modes at the surface s = sq; this was
achieved by lowering the magnetic shear to a value around § = 0.1, thus pushing the

equilibria with high values of o into the second stability regime for ballooning modes

[19].

Though the present scan was designed to study the dependence of stability on local
plasma parameters, it is instructive to look at the global MHD stability limits. The
code ERATO [20] was used to compute the stability to the ideal n=1 kink mode. We
focus here on equilibria with Ro/L7=16.3, the highest temperature gradient used in
the scan. The stability boundary is shown with two dotted lines in Figs. (7) and (8);
in the absence of a conducting wall outside the plasma, the kink mode is stable up
to o = 1.2 (B8 = BaB/I = 3.5 [mT/MA]), where the ITG growth rates are already
strongly reduced compared with their values at low ;. In the presence of a perfectly
conducting wall at ryqi/a=1.2, the kink mode is stable up to oy=2.3 (By=>5.4), which
is in the second stability region for n = 12 and where the ITG growth rate for n = 48 is
an order of magnitude lower than at o;=0. The anomalous heat diffusivity is expected
to be of the order of 1 m?/s, a rather low value, although the temperature gradient is

three times higher than the critical gradient (i.e. at a;=0).

14
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Figure 9: Eigenmodes corresponding to the points (a)-(d) outlined in Figs. (6) and (8).
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Figure 10: Left: eigenmodes for n = 12 and n = 48 corresponding to the points (e) and
(f) marked in Figs. (8) and (7). Right: the n = 48 eigenmode for the same equilibrium.
It “balloons” around 6 = 60 degrees, where its mazimum amplitude is three times larger
than its mintmum amplitude at 0 = 150 degrees.

Optimization of the plasma shape and profiles could lead to even better configurations
that are stable to all ideal MHD modes and stable or weakly unstable to global ITG
modes. Further optimization could probably be obtained by allowing lower values for

the aspect ratio.

VII. Effect of the safety factor

We now examine whether the second-stable regime for ITG modes is obtained at high
oy, as the drift-reversal condition indicates, or rather at high o, = 2¢%a;, as for MHD
ballooning modes. Figure (11) shows the growth rate versus oy for different values of
q at fixed Ro/L; = 7.3. The value ng, which is proportional to the drift frequencies,
is kept constant at ng = 18 in the scan, so that the mode frequency w does not vary

when ¢ is changed. As the trapped-ion bounce frequency is inversely proportional to g,

16
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Figure 11: Normalized growth rate versus o ~ 8/ L, for different values of q; the quantity
nq = 18 is kept constant in the scan. The equilibria are as in table (I) for fived Ro/Ly =
7.3, except that the value of q is varied. The bounce frequency wy ~ vi;/qRo decreases
when q is increased, so that the mode, whose frequency vartes little, is in the trapped-ion
regime for q < 2.5 and in the toroidal ITG regime for ¢ > 2.5. This transition excepted,
the accessibility to the second-stable regime does not depend much on q at constant o.

Figure 12: Normalized growth rate from Fig. (11) replotted versus dp/Z = q?a;. The
values are scattered over a wide range in o,; unlike for MHD ballooning modes, the finite-
pressure stabilization for ITG modes is better described by o than by o, i.e. scales like

B/L, rather than B,/ L,.
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Figure 13: Growth rate for the n=12 mode (trapped-ion mode) versus oy for two different
values of the magnetic shear. Low shear is stabilizing for c;=0, but the drift-reversal
stabilization occurs at the same value of o; independently of the shear.

the mode is in the toroidal ITG regime (w, < w) for large values of ¢ (here, ¢ > 2.5)
and in the trapped-ion regime (w, > w) for low values (¢ < 2.5). These two regimes
are reflected in the dependence of the growth rate on ¢y, which decreases faster around
a; = 0 for toroidal ITG modes, consistently with the results from Figs. (5) and (6).
Within each of these regimes, the stabilization is well described by the parameter a;.
The same growth rates are shown versus o, on Fig. (12); they are scattered over a wide

range of ;. The comparison with Fig. (11) shows that o describes the stabilization

much better.

The magnetic shear § has a much stronger effect on the second stability limit for MHD
ballooning modes than for ITG modes. In equilibria similar to those from table (I), but
with higher shear, the equilibria become unstable to MHD ballooning modes for § > 0.5.
For ITG modes, higher shear increases the growth rates, however the marginal stability

is still determined by oy, and depends weakly on the shear, as seen in Fig. (13) for §=0

and s=1.

The access to the second-stable regime for the electrostatic ITG modes is not, unlike
that for MHD ballooning modes, eased at low magnetic shear or high safety factor. It is
better described by drift-reversal (large oy, large 3) than by a condition on the Shafranov

18
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Figure 14: Normalized vertical VB drift velocity from JET discharge number 38838. The
data is obtained from the magnetic field reconstruction; the dashed line shows VB/B?
[a.u.], which is proportional to the VB drift velocity. Its value on the plasma midplane
is plotted as a function of the major radius R. The full and dotted lines show respectively
the contributions from the gradient of the poloidal and toroidal magnetic field. The low-3
reference indicates the value obtained in a usual low-f discharge with B ~ 1/R. The
drift velocity is reduced by a factor four at R = 3.6 compared to the usual low-0 value,
which corresponds to o = .75.

shift (large a,, large 3,).

VIII. Discussion

We give here two examples where the favorable value of o ~ 1 seems to have been
obtained in experimental discharges. A reduction of ITG-induced transport is then
expected. Of course, this can translate into improved confinement only if other transport

mechanisms are not dominant.

Some reversed shear discharges [17] in the JT60-U tokamak show temperature profiles

that are very similar to those used in our scan. There is an internal transport barrier
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where the pressure gradient is very steep and the confinement very good; a rough esti-
mate from the published data indicates that o, is of the order of one. We note that the

control of MHD instabilities is critical to obtain such discharges.

An analysis of a small number of JET discharges has shown that o; =~ .75 has been
obtained. Discharge number 38838 has # = 3%, 8, = 1.5, a current /=1 MA and a
magnetic field B=1 T. The quantity VB/B? on the plasma midplane, which is pro-
portional to the vertical VB drift and to (1-c;), was computed from the reconstructed
equilibrium and shown in Fig. (14). It is reduced by a factor of four compared to
the value obtained in a usual, low-8 configuration with B ~ 1/R and oy = 0. The
corresponding value of oy is larger than 0.5 over half of the small radius and peaks at
a; = 0.75 for B = 3.6. The global confinement time was not better than for a typical
JET H mode, but the reduction of ITG-induced transport might have been masked by
other transport mechanisms; the discharge has MHD activity and the density approaches

the Greenwald limit, which can degrade the confinement.

IX. Conclusions

Similarly to MHD ballooning modes in the second stability regime, ITG modes are sta-
bilized at high pressure gradient, when the plasma diamagnetism reverses the magnetic
drifts. This stabilization is well described in general axisymmetric equilibria by the

reversal parameter:

or = e o = L ger
B?9R 2L,
We have shown that the ITG modes are stabilized at high values of ¢y, and that these
values are roughly independent of the safety factor and the magnetic shear; a; describes
the stabilization better than the standard ballooning parameter o, that scales like the
Shafranov shift and 3,. The trapped-ion modes (low n) are fully stabilized for a; > 1.2;
the toroidal ITG modes (high n) are more affected by small values of ¢y, but higher
values are often required for full stabilization. Electromagnetic effects and trapped-
electron dynamics should be included to confirm these results and obtain quantitative

thresholds; this should be the main emphasis in the near future.

The stabilization occurs at high values of the pressure gradient, which tend to destabi-
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lize MHD modes; a regime of simultaneous second stability for ITG modes and MHD
ballooning modes has been found at low magnetic shear. Stability to global (n =1) kink
modes is helped by an ideal wall; in that case, we have found kink-stable configurations
at Oy = 5.4 with temperature gradients three times above the low-3 critical gradient,
where trapped ion modes are stable and toroidal ITG have growth rate that are an order

of magnitude lower than for a;=0.

Further simultaneous optimization for ITG and MHD stability should be possible by
modifying the profiles, plasma shape and aspect ratio; the latter was set in this paper
around the value for conventional tokamaks. Values of a; of unity are expected to reduce
strongly any ITG-induced transport. Such values are attainable in practical discharges,
as shown with examples from the JET and JT60U tokamaks.
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