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Abstract

We have investigated the topological modification of an equilibrium
with nested magnetic flux surfaces computed with the free boundary
VMEC code subject to an applied magnetic field perturbation. Mag-
netic field lines are traced in the domain interior to the plasma-vacuum
interface either in the coordinates of the VMEC code (s, u, v) or using
canonical coordinates (¥, 8*,v) that allow a Hamiltonian description
of the magnetic field lines. The perturbation models the effect of the
magnetic flux leakage from the saturated iron core of the JET device.
Island formation around resonant surfaces near the boundary is ob-
served, but these islands do not overlap.The Chirikov parameters and
the Liapunov exponents that are specifically calculated verify this.



1 Introduction

We have studied the topological modification of a three dimensional (3-D)
free boundary equilibrium plasma subject to a magnetic field perturbation.
A 3-D magnetohydrodynamic (MHD) tokamak equilibrium with finite ripple
due to the discrete toroidal coils is calculated with the free boundary VMEC
code [1, 2, 3]. The magnetic perturbation is computed using the Biot-Savart
Law applied to the superposition of sets of current carrying filaments of
slightly different shapes that yield a toroidally modulated vertical field. To
visualize the topological modification, we have to trace the magnetic field
lines inside the plasma boundary. There are several possible approaches to
treat the problem. The first one consists to solve the equations of magnetic
field lines in the VMEC coordinates using directly the magnetic field com-
ponents in the contravariant representation B*, B* and BY. This method
does not impose any approximations concerning the magnetic fields. But
in physics, we often study Hamiltonian systems. The incompressibility of
the magnetic field B allows a Hamiltonian representation for the magnetic
field lines. The main problem consists to identify the canonical coordinates
and the Hamiltonian function of the system. We have two possibilities. The
first one consists in taking an analytic Hamiltonian and thus some approx-
imations are made. The canonical coordinates in this case correspond to
the magnetic coordinates (¢, 0*,v). On the other hand, if we do not want
to make any approximations, we have to compute the Hamiltonian in the
canonical coordinates (¥, 6*, v) numerically.

To realize these different methods, we have developed the Magnetic Field
Line Tracing 3-Dimension (MFLT3D) code. This code allows to trace the
magnetic field lines inside the plasma boundary with the help of magnetic
fields (first version), with an analytic Hamiltonian (second version) and fi-
nally with a numerical Hamiltonian (third version). All these versions need
the output of the 3-D free boundary VMEC code.

We are interested to determine the differences or the common points
between these three methods for a given system (equilibrium + magnetic
perturbation). Therefore, we have studied the influence of the magnetic
flux leakage from the saturated iron core of a JET Tokamak equilibrium.
This example allows us to demonstrate that the calculation of the numerical
Hamiltonian is possible and that the differences with the magnetic field lines
traced directly from the magnetic fields are not large.

Concerning the organization of the paper, in the first section we present a
brief review of the theory: the VMEC coordinates, the magnetic coordinates
with the analytic Hamiltonian and the calculation of canonical coordinates.



In the second section, we will examine the main differences between the
three methods that we have outlined above.



2 Review of the theory

2.1 The 3-D free boundary VMEC equilibrium code

We use the 3-D free boundary VMEC equilibrium code [1, 2, 3] (VMEC =
Variational Moments Equilibrium Code) to calculate the MHD equilibrium
state . This code generates free boundary equilibria with nested magnetic
flux surfaces. The shape of the boundary between the plasma and the vac-
uum is determined by the pressure balance BZ/2u, +p = BZ/2u, (B, is
the magnetic field inside the plasma boundary, p is the plasma pressure and
B, is the vacuum magnetic field) with vanishing normal component of the
magnetic field at the boundary, B, - n = 0.

The contravariant components of the VMEC magnetic field is given by

B, = Vi(s) x V8" + Vv x Vx,(s), (1)

where 271)(s) and 27x,(s) are the toroidal and poloidal fluxes, respectively,
s is a radial coordinate, v is the geometric toroidal angle and 8* is a poloidal
coordinate defined by

0" = u+ A(s,u,v), (2)

where u is the VMEC poloidal coordinate. We show the difference between
these two poloidal coordinates in Fig. (1). Using the formalism of curvilinear

0*=u + A(5,u,v).
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Figure 1: Definition of the poloidal coordinate 6* = u + A(s,u,v) for different
values of s (solid line: 6* = u. Dashdot line: s = 1.0. Dot line: s = 0.3) .



coordinates and equation (2), equation (1) becomes
P'(s)
Ve

(0 -get B0 e, @

Bg By

B.(s,u,v) =

J/

where /g = [Vs X Vu - Vv]~! is the Jacobian of the transformation and ¢
the rotational transform.

The MFLT3D code obtains from the VMEC code the Fourier amplitudes
of the contravariant components of the magnetic fields (B%,(s), B%,(s)),
the poloidal angle renormalisation function lambda (A, (s)), the Jacobian
(+/9,,,,(5)), the cylindrical coordinates (R (8), Zmns(s)) that parameterize
the flux surfaces, the toroidal and poloidal flux functions ¥(s) and x,(s),
respectively, and the rotational transform (.(s)). All interpolations required
are performed with the NAG library function EO1AAF [4].

2.2 Equations of magnetic field lines in VMEC coordinates

In the VMEC coordinates (s, u, v), the equations of the field lines are

ds _B-Vs B° du_ B-Vu B @
dv B-Vv BY" dv B-Vv Bv

where B is the sum of the equilibrium magnetic field B, and a perturbation
magnetic field 6B whose contravariant components are given by

. R [. ,0R Raz]
5B _ﬂ[éB ]| (5a)
§BY = % 5BR8—Z _sB? %1:] (5b)

where we have used the cylindrical components for 6B = §BRégr + §Bvé, +
§BZ&z. Without the perturbation, the magnetic field lines form nested
surfaces because B* = (0. With this choice of coordinates, an inverse trans-
formation is not necessary as we have R = R(s,u,v) and Z = Z(s,u,v)
directly.



2.3 Equations of the magnetic field lines in magnetic coor-
dinates

If we analyze eq. (1) and if we take as new coordinates the triplet (1, 6*, v),
we can write for the contravariant components of the equilibrium field

1 3x

BB-V¢=—'\7_9—80*, (62)

Be ° Vo* = \/]:a. %_);Zﬁ (Gb)
1

Be Vv = (6C)

V9,

where /g, = [V¢xV8*-Vv]~1. So we see that the equations of the magnetic
field lines become

d* B.-Ve  dx, dp B, VY Oy, _
dv B. Vv - o = d¥), dv B. Vv ~ 9o~ =0.

We recognize here a Hamiltonian formulation (a non-autonomous system
with one degree of freedom) where H < x,, p <> ¥, ¢ <> 6* and ¢ < v.
Furthermore, we note that for a VMEC equilibrium x, = x,(%) and thus
our system is integrable (two constants of the motion x,, % exist) and the
trajectories are straight in the phase space. In addition, we observe that the
rotational transform plays the same role as the eigenfrequency in integrable
conservative systems subjected to weak perturbations (KAM theory).

Unfortunately, this choice of coordinates does not allow our perturbation
to be cast in a Hamiltonian form. On the other hand, following Refs. [5, 6, 7],
we can express the perturbed Hamiltonian as

dx = —ROAY, (7)

hence the equations of the magnetic field lines become,
de* 0dx  dvy 0dx

= - i 8

& =T W T o (®)

where A is the vector potential of the perturbation. In order to justify

this form, we note that the vector potential §A = §ARér + 6Avé, + 64%¢5,
the magnetic field lines are given by,

984y _ 9éA, 85 Agn
dor _ U0t 5 - Tt dy B - e

dv 1y 8%Aer 004y 0 gy Ty, D0Agr  03Ay°
+ 9 — o o9 56%



Therefore to put these equations into a Hamiltonian formalism, we have to
make the following assumptions:

1. ‘%a# - ag% << 1 & 6B-Vv << B, - Vv which is true in most cases.

o 804y _ 954, ., _ 884, and 98Au _ 88Aee 284,

v o9 oy 26+ v " 96 -

The last assumption implies —B%ﬁR ~ 0, asaﬁz ~ 0 and %E ~0,% ~ o
v ' Qv
because §Ay = 6ARSE + §AZ0Z and 6Ap. = SARZE + 547 2Z, and this is
not satisfied in general.
Consequently, we have to find another representation for the magnetic
field lines in which the perturbation can be written in a Hamiltonian form

without approximation.

2.4 Equations of magnetic field lines in canonical coordinates

We have seen that eq. (1) yields a Hamiltonian description for the magnetic
field lines in the (%, 8*,v) coordinates. We can write in general [8] that

B(x) = V¥ x V8* + Vv x Vx(¥, 6%, v). (9)

and this representation satisfies automatically V-B = 0. In this notation ¥
and x are the toroidal and poloidal flux functions, respectively, and #* and v
are the poloidal coordinate and geometric toroidal angle, respectively [9]. In
these coordinates, the poloidal flux function depends on (¥, 8* v) contrary
to the magnetic representation where it is a function of the toroidal flux
function 4 only. This important difference allows complex trajectories in the
phase space like stochastic solutions and magnetic islands. The magnetic
field lines become
dg*  ox(¥,0%,v) d¥ ax (¥, 6%, v)

dv 0% ' dv 8 (10)

where we recognize the Hamiltonian formulation (a non-autonomous system
with one degree of freedom) with x & H, ¥ < p, 6* & g and v & t. To
determine x, we have to make the assumption that B can be written in the
form

B(x) = B;(x) + 6B(x)

where 0B is a general magnetic field and B, is a magnetic field with nested
flux surfaces, hence the poloidal flux associated with this field is a function



of the toroidal flux only. Typically, this magnetic field corresponds to the
VMEC magnetic field. This hypothesis implies the existence of magnetic
coordinates (1, 8*, v) for B;. Therefore, we can define a transformation of
coordinates x = x(1/1, 6%, v), with the Jacobian \/g, = [V¢ x V§* - Vv]~!
which ¥ = ¥(¢, 6%, v) and x = x (¢, §*,v) [8, 9, 10]. Multiplying eq. (9 ) by
V9, Vv and by /g, V¥, we obtain

ov
w(,lp)a*, ’U) = \/g*B : Vvl'l,b,e*,'u’ (113;)
¢(¢ 6",v) = g,B- V& . . (11b)

and we can evaluate the Hamiltonian

X= X("/J = ’@b(\II’ 0*, ’U), 9*, ’U) (12)

where we have inverted the relation given by eq. (1la). Concerning the
determination of x, we have to resolve eqs. (11a) and (11b) on a 3-D mesh
and then fit the solution. The choice of the initial condition is not important;
we can take, for example, U(¢p = 0,0%v) = Yymec(s = 0) and x(¢p =
0,6", v) = vaec(s = 0)

Finally, we have to evaluate the contravariant components of the equi-
librium magnetic field B, = B, and of the perturbed magnetic field §B.
Using eqgs. (2) and (3), we obtain

B.-Vv=1B] (13a)
B. V0" = B:(1+ 6)\) + B, g}\ (13b)
since
oA X oA
ve* (1+a)v+8w+av

Using the cylindrical coordinates for 6B (6B = éBfe, x éz + §Bvé, +
§BZép x é,), we can write that

(5B-Vv:(SB

(14)



and

« R R OX\ 0Z 0OM0Z
0B - V§" = \/5{53 [<1+6u) ds 835;;}

JAOR OX\ OR dBY 9
z|\Z27 2 hA Bk = =z
+4B [83 ou (1 + 8u) as] } + R Ov (1)

where /g = [Vs x Vu - Vu]~l. With regards to the expression for V9, =
[V x V6* - V]!, we use the relation for V6* and V1) = 1’(s) Vs to obtain

Va.= 1 =

'(s) (1 + g—z)Vs x Vu-Vv = P(s) (1 + %) (16)

L
By
We recall that in eqs. (14-16), we invert the relation (s = s(¢), v =

u(%, 6*,v), v). In this way, it is not necessary to broaden the VMEC spec-
trum. To map from (3, 6*,v) to (s,u,v), we use the system

¢(3)—1Z:07
u+ A(s,u,v) — §* = 0.

where ¢ and 8* are known. The solution is obtained with the NAG library
routine COSNBF [11, 12]. The transformation from (¥, 6*,v) to (1, 8*,v)
requires the application of eq. (11a):

U(e,0%,v) — ¥ =0.

Therefore we can map from (¥, 8*,v) — (¢, 6%, v) = (s, u,v).
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3 Numerical results

The JET Tokamak has an iron core with 8 legs in which a magnetic flux
flows to induce an ohmic current in the plasma. The flux can saturate and
leak from the structure. We can model this flux with a vertical magnetic
field modulated toroidally. As a model, we use a system of vertical field
coil filaments formed by two symmetric (with respect to the plane z =
0) octahedrons with current 81, superimposed on two circular loops with
current —481, (Fig. 2).

' N

LOOP

PERTURBATION

. J

Figure 2: System of vertical field coil filaments formed by two symmetric octahe-
drons with current 47, superimposed on two circular loops with current —§1I, which
model the effect of the flux leakage from the saturated iron core.

To compute the magnetic field we use the Biot-Savart Law and the eval-
uation of the vector potential is carried out with the formula

A(x)—ﬂ"—/ _fdl

B An wire |X - xll .

The calculations to determine the magnetic field line trajectories inside the
plasma boundary are undertaken with the application of egs. (4), (8) and
(10). The Chirikov parameter and the Liapunov exponent are also evaluated.
The dimensions of the model vertical coil filaments are R = 3.2 m,h =
1+2.5m with current 61, = 0.1 M A. With this choice of parameters the ratio
between §B* and BY is approximatively 0.1%.

For the VMEC equilibrium, we have used a linear profile for the current
and for the pressure in order to obtain a § ~ 3.21% and a plasma current

11
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Figure 3: a) Different flux surfaces of the VMEC equilibrium (left). b) Safety
factor profile ¢ of the VMEC equilibrium as a function of s (right).

I, ~ 6.14 MA. This value of § is actually higher than has been presently
obtained in JET high current discharges. The profile of the safety factor
and a set of flux surfaces are displayed in Fig. 3. Because of the modulation
of the toroidal magnetic field, we have to treat the JET as a 3-D configu-
ration. In fact, if we impose an axisymmetric case, the VMEC code does
not converge. For this reason, the spectrum of the equilibrium computation
with VMEC include 0 < m < 7 and -3 < n/L < 3, where m is the poloidal
mode number, n is the toroidal mode number (per period) and L = 32 is
the number of the toroidal coils. To compare the three different methods
to determine magnetic field lines, we examine the right hand sides of the
relevant equations (4), (8) and (10).

Fig. 4a (application of Sec. 2.2) shows the behavior of B*/BY for differ-
ent values of s. Because of B® # 0, the perturbation displaces the field line
from the unperturbed flux surfaces. To understand this figure, we can com-
pare it with Fig. 4b (circles). When B*/BY > 0 (B*/B” < 0) the magnetic
field lines are pushed radially outwards (radially inwards). Consequently,
when 0 < u <1 (1<wuw<2)and4 <u<b5((55<u<6.0), we
have that ds/du > 0 (ds/du < 0) which is confirmed in Fig. 4b (circles).
Moreover when d(B*/B")/du = 0, we have saddle points for the trajectories
(u ~ 0.8,1.5,4.6,5.5). From all this, it follows that B®/B" measures the
transition rate across unperturbed flux surfaces. Fig. 4c constitutes a mea-
sure of the rotational transform. However, this cannot be fully appreciated
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in the (s, u,v) coordinates. Canonical coordinates provide a more insightful
picture. Fig. 5a (application of Sec. 2.3) and 5b (application of Sec. 2.4) have
similar meaning to Fig. 4a. Therefore, the comments we have made about
the implications of the variations of B®/BY are applicable to —8x/86* and
—06x/08* too. Comparing Figs. 4a, 5a and 5b, we note that the behavior of
the curve B°/B" is closer to —dx/06* in Fig. 5b than —8dx/06* in Fig. 5a.

Concerning the profile of the rotational transform, Figs. 6a and 6b
demonstrate the weak influence of the perturbation on it. The weak modula-
tions in Fig. 6b are attributed to the discretisation of ¥ during the resolution
of eq. (11a).

The behavior of the trajectories in the phase space (s, u) are displayed
in Fig. 4b. In this space, we have to solve eq. (4), (8) and (10) and to
invert (¥,0%) — (v,6%) — (s,u) and (1,6*) — (s,u). We observe that
the trajectory calculated with eq. (10) (Sec. 2.4) resembles the trajectory
computed with the help of the eq. (4) (Sec. 2.2) except for some values
around u ~ 3. The reason is that when we resolve the eqs. (11a) and (11b),
we have not used the initial conditions % = tymec(s = 0), because the
VMEC values near the magnetic axis are not fully reliable. Thus, we have
taken as the initial conditions

x(% = 0.05,8%,v) = Xnemec (¥ = 0.05), ¥(¢ = 0.05, 6%, v) = 0.05.

This can account for the difference between the two trajectories. If we look
at the trajectory calculated with eq. (8) (Sec. 2.3), we observe that it differs
significantly compared with the trajectory computed with eq. (4) (Sec. 2.2).
But if we estimate the error between the three trajectories, we can determine
the physical distance in the cylindrical coordinates at any given value of u
calculated with the analytic and numerical Hamiltonian methods compared
with that obtained from the nonHamiltonian approach. The maximal error
with the numerical Hamiltonian is ~ 0.5 mm, but it exceeds 3 mm with the
analytic Hamiltonian as shown in Fig. 7. This difference results from the
assumptions made to obtain the analytic Hamiltonian (Sec. 2.3), particulary
the fact that % is not equal to zero.

Finally, we observe that the flux leakage can cause island formation on a
surface with rational values of the rotational transform. When ¢ = 8/22 (1 =
8/23), then there are 22 (23) island structures that are generated (Figs. 8, 9).
Stochastic solutions are not induced because the Chirikov parameter is ~
1.02 x 10~2 and which is smaller than unity. Thus, there is not an overlap
between the two resonances 8/22 and 8/23. To evaluate this parameter we

13
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Figure 4: a) B*/BY as a function of u for different values of s (top left) (Circles:
s = 0.14. Triangles: s = 0.44. Squares: s = 1.0 ). b) Trajectories of the magnetic
field lines in (s, u) coordinates (top right) (Circles: in using the magnetic fields
(eq. (4)). Crosses: in using the analytic Hamiltonian dx (eq. (8)). Triangles: in
using the numerical Hamiltonian x (eq. (10))). ¢) B¥/BY as a function of s for
different values of u (bottom) (Squares: u = 0.0. Crosses: u = /2. Triangles:
u = 7. Circles: ¢ of the VMEC equilibrium).
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Figure 5: a) —0dx/06* of the analytic Hamiltonian as a function of 6* for different
values of ¢ (left) (Circles: 279 = 5.0. Triangles: 27y = 12.0. Squares: 27y = 25).
b) —0x/06* of the numerical Hamiltonian as a function of §* for different values
of ¥ (right) (Circles: 27xW = 5.0. Triangles: 27¥ = 12.0. Squares: 27V = 25).
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Figure 6: a) 06x/0¢ of the analytic Hamiltonian as a function of ¢ (left) and
b) dx/0¥ of the numerical Hamiltonian as a function of ¥ (right) (Dasdot line:
u = 0.0. Circle: ¢ of the VMEC equilibrium) .
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Figure 9: a) The 22 magnetic island structures (left) and b) 23 (right) computed
with the numerical Hamiltonian x (eq. (10)).

have used the formula [5, 7, 13, 14, 17]:

5an R 5Xm+l n.
d—a‘i’ l‘I’mn + d_a’\f: |‘I"m+1,n
1

iq.|.
av i mn

U(\i’mna \il'rn+1,n) ~ 2

1
n

To conclude, if we estimate the biggest Liapunov exponent [15, 16, 17], we
note that it tends towards zero (A(N) ~ cteN~%64%) (Fig. 10) and we con-
clude that the perturbation does not produce a stochastic solution. Initially
adjacent field lines do not separate.
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Figure 10: Liapunov exponent for different initial conditions (Circles: in the
22 magnetic island structures. Triangles: in the 23 magnetic island structures.
Squares: between 22 and 23 magnetic island structures. Solid line: comportment
of the Liapunov exponent A(N) ~ cte N ~9-644),
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4 Conclusion

We have shown that a Hamiltonian representation of the magnetic field lines
in a 3-D free boundary equilibrium subject to a magnetic perturbation is pos-
sible. The Hamiltonian formulation allows the application of the formalism
developed for Hamiltonian systems [17]. The comparison of the trajectories
between the three different methods described in Secs. 2.2, 2.3 and 2.4 yield
similar results. Although the approximate analytic Hamiltonian approach
we have investigated can displace the orbits locally up to 0.5 ¢m from the
correct position (Fig. 7).

The method we have applied superimposes a perturbation of a 3-D equi-
librium with perfectly nested magnetic surfaces. A more self consistent
approach would require the application of a more general 3-D MHD equi-
librium code that can treat magnetic islands and stochastic regions like the
PIES code [18], but modified to account for the variable permeability x in
the iron core. For small perturbations around an equilibrium state, these
types of codes may be extremely time consuming and expensive to operate.

We have investigated the effect of the magnetic flux leakage from the
saturated iron core of a model of the JET tokamak and have detected the
formation of island structures on surfaces with rational values of the rota-
tional transform ¢ = 8/22 and « = 8/23. However, we have not observed a
stochastic solution for the magnetic field lines inside the plasma boundary.
To verify this, we have computed parameters such the Chirikov parame-
ter and the Liapunov exponent. The calculation of the Chirikov parameter
demonstrates that it is smaller than unity and thus there is no overlap be-
tween the two resonances (there is not an overlap between the two islands
structures and so the solution is stable). The Liapunov exponent yields
an estimate of the divergence of initially adjacent field lines and we have
observed that it tends towards zero.

We have also looked at a different model for the flux leakage of the
iron core. Eight up-down symmetric frames formed by pairs of adjacent
filaments in which current flows radially inwards in one filament and radially
outward in its neighbor set up the toroidally modulated vertical field. Island
formation without a stochastic solution was also observed. Applying the
three different methods of resolution, we have obtained very similar results
as those with the model described in this paper.

Finally, it will be necessary to calculate more precisely the VMEC values
near the magnetic axis in order to optimize the calculation of the Hamilto-
nian. We could use the Hamiltonian version of the MFLT3D code to make
investigations on the magnetic topology of a perturbation in a 3-D free
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