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1 Introduction

Ion-temperature-gradient-driven (ITG) instabilities are now commonly held respon-
sible for turbulence giving rise to anomalous radial energy transport in the core of
tokamaks. The work presented in this paper is the application of the particle methods
to simulate the fully nonlinear time evolution of these instabilities in axisymmetric
toroidal plasmas. The physical model is based on the gyrokinetic equation for the
ions, the adiabatic response for the electrons, the quasi-neutrality condition and the
electrostatic approximation. The ¢ f method is used for the discretization of ion gyro-
centre distribution function and the spline finite elements are chosen to represent both
the electrostatic field and the “macro-particle” shape in the magnetic coordinates
(s,0,¢). Furthermore, the resulting code is coupled to the Grad-Shafranov solver
CHEASE[1], thus allowing to simulate the ITG turbulence in realistic magnetic config-
urations. This combined finite element § f method has been utilized successfully in
linear ITG simulations in toroidal [2, 3], helically symmetric [4] and straight bumpy
configurations [5]. A fully 3D linear simulation code based on the same approach is

currently under development [6].
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The first nonlinear simulations presented here are primarily aimed (1) at validating
the numerical algorithms by examining the numerical convergence and the energy
conservation properties and (2) at assessing the feasibility of performing reliable global
nonlinear simulations using the present day super-computers such as the Cray T3E.

The section 2 reviews the physical model. The numerical methods are described
in section 3, including their implementation and the numerical results are shown in

section 4. Finally, conclusions are given in section 5.

2 Physical model

In the following, we assume an axisymmetric geometry for the static magnetic field

which is represented as
B =V x Vo+T($)Ve, (1)

in the standard cylindrical coordinates (R, ¢, Z) where the toroidal angle ¢ is the
ignorable coordinate. t which depends only on (R, Z) is the poloidal flux and is
related to the vector potential component A, by ¥ = RA,. The toroidal field is
B, = T/R. Denoting v, as the value of ¢ at the plasma boundary and (R, Za)
as the coordinates of the magnetic axis, the magnetic coordinates that we will use in
the following are defined as (s, , ) where s = \/¥/4; plays the role of a normalized
radial coordinate and 6 = arctan|[(Z — Zu)/(R — Ra)] is the poloidal angle. The

volume element is thus

1
d*r = 0) dsdfd 0) = . 2
r J(‘S) ) S "p’ J(S’ ) VS . VH X V(p ( )

The gyrokinetic model as derived in Ref.[7] is adopted for the plasma ions. De-
noting the ion distribution function as f(é, V|, ), where R, v|, 4 are the position,
paralle] component of the velocity along the magnetic field (€ = h=B /B) and the

first adiabatic invariant g = v2 /2B of the ion gyro-centres, the time evolution of f



is given by:
of of
5t ‘|'R Vf+v|| av“ =0, (3)
and
. 1 hxVB (E)xh
B =g =vh+ 5 (1B +v)) —F%; +<,>9* : (4)
. (EY (- v hxVB
v'||=—,uh-VB+%—>-(h+%l ;* ) (5)

where the gyro-averaged electric field on the ion guiding-centre R=7— p is defined

by

— - ]_ - =
(BY(B,p,t) = 5;/daE(R+ 5, 8), (6)
and
B*_B+%’)ﬂﬁ-vXﬁ. (7)

In the equations above, a low § plasma is assumed. Using the equations of motion
(4,5) the incompressibility of the gyro-centre orbits (or Liouville’s theorem) can be

obtained:

9 —(B*yy) =0, (8)

V(B + 5

and Eq.(3) can be written in the following conservative form:

0

O (B )+ V- (Bief) + (B ) = 0. )

Ov
It should be noted that by ignoring the v correction in B*, the relation (8) is no longer
true. From Eq.(9), it is clear that the particle number [ f d®Rd®v, (d®v = B*dudvde)

is conserved and the time variation of the ion kinetic energy is given by

; d
bi=— / m; (uB—l- ”) f d®*RdPv = g; / F e (E)d*RdPv. (10)
Assuming adiabatic electrons and using the long wavelength approximation, the

quasi-neutrality condition becomes [3]:

no [1 b (6- a)} = (n) + Vo - (129.4), (11)



where ¢ is the potential averaged over a magnetic surface i and (n;) denotes the

gyro-averaged ion density:

— 1
#5) = 5757 [[ F 060,00 d8d0, 29 = [[as,00a0dp, (12
(ne)(7) = / F(B, o, w)6%(B — 7+ §) & RdP. (13)
The second term on the right-hand-side of Eq.(11) is the polarization density com-

puted with a local Maxwellian distribution function.

Finally from Eqs.(10, 11) we can show that the total energy

£ =E+E&

2

= /mi (,uB + %“—) fdPRPv + %/((nl) —ng) ¢ d’r

is conserved. The electrostatic energy £ as defined above is indeed a positive quantity

(14)

since using the quasi-neutrality equation (11) and the definition of ¢ in (12), it is

straightforward to show that

Ngé€

= [ = na 6 @r = [ | 2219107+ 2E(0 - 37|

3 Numerical model

In this section, we will described in details the numerical discretization of the ion
gyrokinetic equation (3) and the field equation as given by Eq.(11). The approach
used is the finite element ¢ f method which was applied to the 2D axisymmetric linear
case [3]. This method is particularly suitable since the system considered is energy

conserving as shown in the previous section.

3.1 of discretization

Using the conventional “full f” particle approach is very noisy in the ITG simula-
g 1Y

tions in which the fluctuating energy is small compared to the thermal energy. An



improvement was recently proposed by Kotschenreuther [8] to reduce the statistic

noise by splitting the full f into a known background part and a perturbed part

f(}_?:, v||hu7t) = f0(67 ¢0) + Jf(ﬁ, ’U“,[,L,t), (15)

where the background f; is a Maxwellian of the particle energy € = m;(uB + vﬁ/?)
and the toroidal canonical momentum % = ¥ + (m;/q;) Rv, which are both invariant

of the unperturbed gyro-centre orbits:

= no(%o) exp [—¢/T;
fo(é, %bO) - [QTFT,'(’(/)())/m,'P/z p[ /E(¢0)] (16)

To discretize ¢ f, let consider N “macro-particles” with the phase-space coordinates

R s Ulpsp)y P = 1,... , N and an assigned “weight” w,. The discretized form of § f
ps Vllps Hp P

is then
- P - o
Sf (R, vy, 1) = NIV > wp(t) (B = Ry(1))6(vy — vp(1)) 6 — s,) /20 B*,  (17)

where i = [nod®r/V is the ion density averaged over the volume V. Integrating both
sides over the constant phase-space volume (3, (Liouville) of the particle p yields the

relation between w, and § f evaluated at the particle position

NQ,

n

_ NG,

=Zv 5f[ép(t)7 vllp(t)aupa t]. (18)

wp(t) = 0 fp(t)

The discretized form of the ion gyrokinetic equation (3), using the fact that fy is
constant along an unperturbed orbit, can then be written as

(E)xﬁ.Vfo q,(E) - gﬂl_{xVB 10fo
B* fo + ™m; <h+Q B* ) fo(‘?v“L' (19)

N

n

9]
pfOp

U)p:'—

The expression in front of the bracket on the right-hand side can be obtained from

f = fo+ éf = const. along the particle trajectory, as deduced from Eq.(3):

N

n

prOp(t) = [N?%ifm(o) + w,,(O)] — wy(t). (20)

This nonlinear éf scheme constitutes a particular case (incompressible flow) of the

more general scheme derived in Ref.[9] and was first proposed by Parker [10] in the



case of an initial Gaussian particle loading. In linear simulations the value of fo, is
kept constant in time so that the term w, does not appear in the RHS of Eq.(19).
Finally, using (17,18) the ion kinetic energy &, rate of energy transfer & and

average radial heat flux ) can be computed from

N _ a2
gk Z (fOp P + NT/]’V p) %) (21)
f=ay (folt+ rpor) (3 (B)) | 22
i~  mvl((E)xh Vs
Q:N;“’P ) ( B [Vs|) (23)

3.2 Electrostatic field discretization

Using Egs. (15-18), the quasi-neutrality equation (11) can be written as the following

Poisson-like equation for the potential ¢

V. (V) + R @-D -5 i N =TI R SN

The finite element discretization of this equation follows the standard procedure [11]:
denoting the basis functions as A, (7) such that the electrostatic potential is expressed

as:

=Y (A, (25)

the coefficients ¢,(t) which determine completely the electrostatic field, are then

obtained by solving the following matrix equation:

Z Auu'¢u'(t) = bl/(t)7 (26)

Ay = / / & [ﬁle Yk FoA A - R (26.)
8.0 = 5757 3 wlt) [ 5 M) + Ayl (26.5)



A simple choice for the basis function in the 3D (s,8,¢) space is a product of 1D

splines of the same order r [3]:
A(F) = 57(s) 55(0) Si(e). (27)

The index v stands thus for the triplet (z,7,k). In (26.a), the perpendicular gradi-
ent V can be approximated by the gradient on the poloidal plane V, =~ Vpol =
Vs 0/0s+V00/00 since the poloidal magnetic field is much smaller than the toroidal
magnetic field in tokamaks. The expression for b, in (26.b) specifies the “particle de-

position on the mesh”. The discretized electric field is computed from

- BA,, oA, oA,
B=-Vo=-Y o |59+ Levos Pevy (28)

and the electrostatic field energy as defined in (14) is simply given by

= %1 ; ¢u b,. (29)

Note that in this finite element formulation, the choice of the basis functions deter-
mines both the particle deposition to the mesh and the electric field (defined on the
mesh through the spline coefficients ¢,) interpolation on the particle.

The 3D matrix equation (26) can be decoupled into a system of 2D matrix equa-
tions for the Discrete Fourier Transforms (DFT) of ¢, = ¢;; in the index k since

the toroidal coordinate ¢ is ignorable for the magnetic equilibrium. Expressing the

DFT of both ¢; ;% and b; ;x as

K-1 .
2T >(n) 2m1
bon= 380 o (k). b= S ew (Bor). 0

n=0

leads to

ZAM ) = b M), (26")

€Ng

W: ——/ d2 [ pOlA VpolA,,: + T. (/\ Ay —(5n,0K,, K,,l)] , (26.&’)

where the index v stands now for the pair of indices (4,7), A, = S7(s) S7(0), d*ry =

J(s,0)dsdf, & is the Kronecker symbol and M can be calculated explicitly for a



given spline as

"
2 + COos —n fOI‘ linear S line
K p ’

MM ="1{3s + B cos Zn + 2 cos? Xn, for quadratic spline,
K 15 " 30 K

136 2 2 21 32r - :
& + cos Kn -|- = Cos° $En + 535 630 cos® Zn, for cubic spline.

(31)
The unicity of ¢ at the magnetic axis s = 0 and the Dirichlet condition ¢ = 0 at
the plasma boundary s = 1 are imposed by modifying the matrix A™ and the RHS
bf’;) in a standard manner, while the periodicity in 4 is taken into account during the
matrix assembly. Finally, note that the matrix A is the same for all the n # 0

toroidal Fourier modes.

3.3 Implementation

All the magnetic quantities are provided by the MHD equilibrium CHEASE [1] as tables
defined on a (R, Z) grid. Bilinear interpolation is used to obtain the value of these
quantities as well as for the mapping between (s,8) and (R, Z).

The particle gyro-centre phase-space coordinates R(t), ¢(t), Z(t), v)(¢) together
with the particle weight w(t) are evolved, using a 4** order Runge-Kutta method to
solve the equations (4), (5) and (19). The integrals over the gyro-angles o, appearing
in the field interpolation (6) and the particle deposition (26.b) are approximated
by a 4-point discrete sum. Splines of orders » = 1,2 and 3 are implemented. The
resulting matrix equation (26’) is solved by an SSOR preconditioned conjugated-
gradient method. In the present version, the n = 0 toroidal Fourier mode of the field
is discarded, neglecting thus the self-generated poloidal flow.

The parallelization of both the particles and the field is done by an 1D domain
decomposition along the toroidal direction to achieve a good particle balance and to
minimize the particle exchange between the processors at each time step. A parallel

Fast Fourier Transform (FFT) is used to compute the particle deposition term bﬁj;)



and the field coeflicients ¢; jx from the solutions of (26’). A Fourier filter in (0, ¢)

can be also applied on BE’;) to reduce the short wavelength noises.

4 Simulation results

The simulations shown here were primarily aimed at checking the energy conservation
and the convergence with respect of the number of particles. The plasma considered
in these runs has a circular section with negligible Shafranov shift and 3 value, an
aspect ratio A = 2.2 and a minor radius a/ps = 96. The ion and electron temperature
profiles are shown in Fig. 1 while the densities are assumed uniform (1; = co0). The
radial profile of the safety factor ¢, as given by the CHEASE code is also plotted in
Fig. 1. Note that the temperatures are normalized at the value T, at s = 1/2 where
gs =2 and a/Lt = —-3.6.

The number of macro-particles used

in the convergence runs is N = 8,16, 33 100

and 67 millions. The electrostatic po- S o

tential is discretized by cubic splines in -1000

(s,6,¢) on a 32 x 256 x 128 spatial grid. 0 5

A Fourier filtering in (6, ¢) is performed, & ~.4

keeping only the —50 < m < 20 poloidal F:z t”:

and 1 < n < 15 toroidal modes. The o 05 1 Y9 05 1

time step in the Runge-Kutta pusher is Fig. 1: Flux-surface plot and radial profiles
of temperatures, ion temperature gradient

oAt = 20 where y is the ion cyclotron and safety factor.

frequency calculated at the magnetic axis s = 0.
The energy conservation is tested by comparing the time evolution of the field

energy &; defined in Eq.(29) and the variations of the ion kinetic energy determined
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in the following two ways:

A& (t) = E(t) — &(0), (32)

A&a(t J/ dt' E(t') = At Y E(nAt), (33)

where & and & are given by Eqs.(21,22) respectively. The results of this comparison
are shown in Fig. 2 where the plotted energies are in unit of 7V Te. During the ini-
tial phase, the total energy is very well conserved but starts to diverge steadily after
the saturation. The energy conservation slowly improves however when the num-

ber of particles is increased. The poloidal cross-section of the electrostatic potential

X 10"3 8 Millions particles X 10'3 16 Millions particles

Energies
=
Energies

_1 ...........................................
i : s ; - : ; :
0 5000 10000 15000 0 5000 10000 15000
x 10~ 33 Millions particles X 10‘3 67 Millions particles
2 : : 2 . :
1
) 8
g g
5 2 0
] =}
= £
1
0 5000 10000 15000 ™0 5000 10000 15000
Qot QOt

Fig. 2: Time evolution of & (solid line), A&y (dashed line) and A&y, (dotted line).

¢ at a fixed toroidal angle together with the potential variation on the magnetic
surface s = 1/2 during the linear growth (4t = 2000) and the non-linear phase

(ot = 14000) are shown in Fig. 3 and Fig. 4 respectively. The linear growth phase
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appears to be dominated by the toroidal n ~ 13 eigenmode. The measured frequency
and linear growth rate are w o~ —0.011 Qy and v =~ 0.0014 Q, respectively. By using
the Fourier transform of ¢(R, Z) shown in Fig. 4, the perpendicular wavevector can
be estimated as k; p, ~ 0.56. Note that the potential is aligned along the magnetic
field line (k) < k1) during both the linear and the non-linear phases of the insta-

bility. Finally the time evolution of the normalized heat flux Q/fc,T.o is shown in

150 200 250 300
R/ps
Fig. 3: Contour plots of ¢(R,Z) at ¢ = 0 and ¢(8,¢) at s = 0.5 taken at
Q0 = 2000. The solid (dotted) lines represent positive (negative) values of
the potential and on the left plot, the dashed lines show constant s (s =
0.2,0.4,0.6,0.8,1) levels.

150 200 250 300
R/ps
Fig. 4: Same as Fig. 3 at Qot = 14000.

Fig. 5 for different numbers of particles. As for the electrostatic energy, the heat
flux converges (with respect to the number of particles) more rapidly than the energy

conservation error. An estimation for the thermal diffusivity y; can be obtained from
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Q = —xym;0T;/0r which yields xi/xy8 = (Q/ficsTeo)(L1/ps)?, where X438 = c;p?/Lr
is the gyro-Bohm diffusivity. From Fig. 5, we get x:/x,8 =~ 0.07 at the steady-state in
the case considered here. The mizing-length prediction X, = v/k?, using the values
of v and k) obtained during the linear growth, results in a larger value for the heat
transport, Xmi/xg8 =~ 0.12.

—4

x 10

0 5000 10000 15000
Qot

Fig. 5: Time evolution of the average radial heat flux.

5 Conclusions

We have developed a fully non-linear global gyrokinetic simulation code for gen-
eral axisymmetric toroidal configurations. The physical model assumes electrostatic
approximation and adiabatic electrons. In the present version of the code, the self-
generated poloidal flow (due to the n = 0 toroidal Fourier component of ¢) is not yet
implemented. The numerical methods are based on the § f particle discretization and
the spline finite elements utilized to solve the electrostatic field and to represent the

particle shape in the magnetic coordinates (s, ,¢). The convergence runs show that



- 13 -

it is very difficult to achieve energy conservation after the saturation of the instability
although the physical quantities such as the field energy and the heat flux seem to

converge.
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Abstract

The 1-D transport code PRETOR [1] is used to simulate TCV discharges having very different
plasma boundary shapes, from circular to highly elongated and from positive to negative
triangularity. This will enable a valid check for the RLW transport model [2], implemented
in the code, with respect to four different plasma parameters: elongation, triangularity, the
edge safety factor and the line average density. We have seen that a large domain can be
identified in which simulations are satisfactory, keeping a fixed choice of the free parameters
allowed by the transport model. The limits of this domain have been investigated. Roughly
we can say that agreement with experiment falls down when dedge > 5, more sensitively at
high density, with negative or even low positive triangularity or at elongations larger than 2.

1 Introduction

PRETOR is a predictive time dependent transport simulation code for tokamaks: it self-
consistently models heating and particle sources and solves the conservation equations for
heat and particles. It predicts both temperature and density profiles for electrons, ions
and impurities, and the effective charge number. This code has been used to simulate TCV
discharges. The TCV tokamak has a unique variety of plasma shapes and an interesting range
of variation of plasma parameters: therefore it provides a useful database to check transport
models. Till now we have considered ohmic discharges mainly, but also some shots with
electron cyclotron resonance heating. In this paper we will describe the transport equations
included in PRETOR, and the model used for the transport coefficients; then we will show
the experimental database which has been used and the results of simulation.

2 Transport equations in PRETOR

The code PRETOR describes a tokamak plasma, in axisymmetric geometry, using the flux-
surface averaged 1-D transport equations. The geometrical terms, defined in [1], are computed
using a coupled 2-D equilibrium code which uses the self-consistent pressure and magnetic
field profiles, the total current and the plasma boundary as inputs. PRETOR computes the
time dependent evolution of the following quantities:

- Electron: density and temperature

- Ions: density, temperature and ionization stage
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- Neutral atoms

- Current and magnetic fields

In the simulation of TCV discharges, two ion species are considered: the main ion, deuterium,
and the impurity ion, carbon. We have assumed a complete ionization stage for all the ion
species. Neutral atoms, even if they can be considered as ions with a zero ionization stage,
are treated separately: indeed they obey a completely different equation. Equations will be
presented directly in the form in which they are used in TCV simulations, omitting terms,
like source terms due to neutral beam injection, which are never present in TCV discharges.
The density of the main ions n; is determined by the following equation:

Bn, 190
Bt T Viop
where o is the ionization rate, and D;, vp; are the diffusion coefficient and the pinch term.
The boundary condition is obtained matching the flux which goes out of the plasma, from
the last closed flux surface (LCFS), with the flux reaching the limiter, supposing that no
significative change of density occurs in the scrape-off layer (SOL).
The main neutral density npy;, which appears in the source term of Eq. (1), is splitted in a

VT = nnia; where T; = —D,(|Vp|2)—a—+ n;vpi(|Vp|) (1)

cold and a hot part;: Ni = MNic + "Nk
The equation for the cold neutrals npy;, is:
1 8 Vol?) 8
W%V,FMC = —(oy + acx)nnic where DIyj. = 5§+pT|C>X 5 viicnnic  (2)

with aox the charge exchange rate. The boundary condition sets a defined flux I'y;, at the
LCFS, due to gas puffing: in the simulation this term allows to follow the experimental value
of the volume average density.

The equation for the hot neutrals ny;), reads:

19 _ v o Ti\
Vidp =—V'T'Nin = —arnyin + acxnnic where  Tyip = ~ ot oox 8p(m,-)nN'h (3)

In Eq. (3) there is a source term inside the plasma, due to charge exchange, which involves
the population of cold neutrals; the boundary condition for hot neutrals sets the flux which
crosses the LCFS equal to zero.

For the impurity ion density n,, we solve the equation:

on
= T __pV’Pp = nnpay where I’y = "D:v(|VP|2>6—; + npvpp([Vol) (4)

where np, is the impurity neutrals density, and the boundary condition is similar to the one
of Eq. (1).

For the charge Z, of the impurity we assume completely ionized ions everywhere in the
plasma. For the density of the impurity neutrals, ny,, we consider a single equation:

2
‘}_,36 V'FNp = —ajnyp where Ty, = —g-l—vagu-g;v?vp nNp (5)
The boundary condition defines the flux Iy, at the LCFS, due to recombination and sput-
tering,.
The electron density is then obtained by quasi-neutrality and the effective charge is computed
as usual:
Zizni + sznp

Ne

Ne = Z;n; + anp ; Zeff = (6)
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For heat transport, we solve two equations, one for the electron temperature T, and one for
the ion temperature 7;. It must be emphasized that 7T; is assumed the same for all the ion
species.

30(neT, ) 3
2 5t V’ IQe Se where Q.= —ne xe(IVPI 3 (7)
and where I, is the partlcle flow of electrons and is obtained by assuming ambipolarity:
e =ZiT; + Z,T, (8)

The source of electrons is given by:
Se = Pohm + (1 - gi) Pyr+ neVE(Ti - Te) - neTePcyc — L'rad (9)

where the different terms are due to ohmic heating, radio frequency heating, neoclassical
equipartition, and cyclotron and radiation losses respectively.

For the ion temperature, we introduce a total ion density ny; = n; + n, and a total ion
particle flux I'r; = T'; + T',. The equation for the ion heat transport is:

30(nrili) | 1 0., . R X 7
5 Bt V’a —V'Qri=S; where Qri = —n7; xi{|Vp| }—87+ 2I‘T,T, (10)

In the source term S; we take into account equipartition and radio frequency heating:
S; = ¢i Pur + nevp(Te — T3) (11)

In the expressions for the particle fluxes, Eqs. (1,4), and for the heat fluxes, Egs. (7,10), we
have respectively the following transport coefficients: the diffusion coefficients D; and D,, the
pinch velocity terms vp; and vpp, and the two heat conductivities x. and x;. The expressions
used for these coeflicients depend on the transport model which is assumed: the standard
neoclassical theory being insufficient, different models for anomalous transport are available.
The code PRETOR uses a version [1] of the RLW model [2] that we will describe in the next
session. On the other hand we shall not enter into details of the physical models assumed for
the other coeflicients, like ionization and charge exchange rates, and heat sources and losses.

3

3 Transport coefficients in PRETOR

As usual all the transport coefficients are made up of the neoclassical and anomalous contri-
butions. Hence, for the heat conductivities we can write:

Xe = Xe,an + Xe,neo Xi = Xian + Xi,neo (12)

The RLW model [2] assumes that transport becomes anomalous if the electron temperature
gradient is greater than a critical value. In PRETOR we take:

1
B 1 ,,7] Bt3 2
(apTe)c - Cgcrtq (ne\/ﬁ) (13)

where 7 is the neoclassical resistivity and, as in all the following formulae, 8, = 8/8p. The

anomalous contribution x. ,n is given by:
Cean ((9 o Te apne) Te , 1
= 28881 — o)/ gpe ) L | /ep,-
Xe,an \/R_O (1 \/_) 1 + Zeff 1—,e + g apq T

(0,Te)c
<1 - TT:) H(0,Te — (0,Te).) (14)
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where H(x) is the Heaviside function. For the anomalous ion heat conductivity, we use the
following expression:

o = yonCos 2o 03RoBi e (15)
,an €,an *4,an (Te + ﬂ)% \/1_'i'—Ze—ffni + np

Particle diffusion coefficients and pinch velocities can be written in the same way:

Dz' = Di,an + Di,neo Dp = Dp,an + Dp,neo (16)

UP; = UPi,an + UPi,neo UPp = UPpan + UPp,neo (17)

The particle diffusion coefficients are assumed proportional to Xe,an While the anomalous
pinch terms are assumed proportional to the magnetic shear:

0 g
Di,an = Dp,an = CD,an Xe,an UPi,an = UPp,an = CP,an %q‘ H(%‘) (18)
The coefficients Cyerty Cean and Cpan, Cpan are the free parameters to be determined with
profile simulations. As TCV does not yet have accurate T; measurements, Cian is set to 2,
as in [1]. The neoclassical coefficients are taken from the standard literature on neoclassical
theory, like [3] and [4].

4 Results

We have simulated 58 shots on 152 available in the TCV database of ohmic shots, in the
following range of variation for four parameters which are considered as the main parameters
modifying the anomalous transport:

210° < ng| < 1210%n3 ; 1.1 < elongation < 1.9
0.0 < triangularity < 0.6 ;2 < dedge < 5 (19)

where ng) is the line average density. In this range, the variation of the plasma current is
from 0.1 MA to 1 MA. We give as input conditions to the code the total plasma current, the
volume average density, the experimental edge temperature, and the plasma boundary. Sim-
ulations are then performed computing almost at every time step also the plasma equilibrium
consistent with the updated density and temperature profiles. We have seen that a single
choice of the free parameters allows a satisfactory simulation of almost all the discharges.
The fixed values assigned to the parameters are the following;:

Cgcrt =5.5 Ce,an =04 CD,an =3 CP,an =0.8 (20)

Note that the choice proposed by D. Boucher [1], respectively 6, 2, 0.5 and 0.5, would result
in temperature profiles which are always too small as compared with the experimental ones in
TCV. Following [5], we have chosen a number of tests to compare simulation and experiment.
We have considered the electron thermal energy, the electron thermal confinement time, and
the standard deviation in temperature and density profiles. These four test parameters are
defined as follows:

Wine = /gne T. dV Tthe = Wthe/Pohm (21)
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Figure 1: (a) Ezperimental and simulated electron thermal energy. (b) Ratio between simu-
lated and ezperimental electron thermal energy as a function of triangularity.

\/ Y (Te,prr — Tercv)®
Y (Terov)?

2
ne, - n 1
St. Deviation in ne profile = \/Z( i) 7cv) (22)

3 (Rerov)?

We have analyzed the results as a function of the four independent plasma parameters. In
the domain described by Eq. (19) almost all the simulations are in good agreement with
experiment, which means that in each test parameter, the error is smaller than 20 per cent.
Looking at Fig.la and 1b, we see that the highest values of the thermal electron energy,
obtained at high density, and also with low triangularity, are over estimated by the code.
Indeed, augmenting the edge safety factor, dodge = 5, only shots with low density, low
elongation and high triangularity can be satisfactorily simulated, as it is shown in Fig. 1b for
triangularity, and in Fig. 2 for elongation. Otherwise, the experimental temperature profile
is in general higher at the center and steeper at the sides than the one predicted. Other
geometrical effects can be seen, already at low edge safety factor, on the density profile at
high elongation, k =~ 1.8, as shown in Fig 2b: the experimental density profiles are very
steep close to the edge and show non-monotonic “shoulders” which cannot be reproduced by
the model. However, as we can see in Fig. 2a, a good agreement in temperature profiles is
present at low dedge- Other 26 shots have been analyzed to investigate the behaviour at the
border of this domain, also at negative triangularity. Going towards negative triangularity,
the experimental confinement time increases significatively, [6] and [7], and the present RLW
model is not able to simulate this phenomenon: simulations are satisfactory only at very low
edge safety factor.

St. Deviation in Te profile =

5 Conclusions

The RLW model allows the simulation of TCV ohmic discharges in a wide range of plasma
parameters, with a fixed choice of the free parameters. It is essential to couple the 1-D trans-
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Figure 2: (a) & (b) Standard deviations in the profiles as a function of elongation.

port equations to a self-consistent 2-D equilibrium in order to accurately simulate the profiles
in such a wide variation of geometry. The sawtooth activity has been included according to

[8] with S1erit = 0.2.

Large edge safety factors imply in general confinement which is better than the one predicted,
in particular at high density. Geometrical effects on the density transport coefficients at high
elongation must be included in the model, in order to better to simulate more accurately
also the temperature profiles. Also a dependence on triangularity must be introduced, as the
actual model does not allow a satisfactory simulation of shots with zero or negative triangu-
larity, even if large variations of the free parameters are introduced. Also other shots will be

taken and analyzed to expand the actual range of plasma parameters.
Other transport models ( Multi-mode [9] and IFS/PPPL [10] ) will be implemented in the
future in PRETOR and validated on the TCV experimental database.
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A modified version of the global gyrokinetic PIC code developed in [I, 2] aimed
at the investigation of Ion-Temperature-Gradient (ITG) modes in 3D magnetic con-
figurations is presented. A new 3D parallel iterative solver of the gyrokinetic Poisson
equation was implemented using the PETSc library [3]. This equation, discretized
with a finite-element method, is now solved in the PEST-1 magnetic system of coor-
dinates (s,8*,¢) [4], which are provided together with the equilibrium magnetic field
by the equilibrium code VMEC [5].

The new version has been successfully compared for axisymmetric cases. Bench-
marks show a significant increase of the required computation time (40%) over the
2D version due mainly to the particles, the new solver remaining unexpectedly fast.

Preliminary results are also shown with helical configurations.

1 Introduction

It is now commonly accepted that micro-instabilities, particularly Ion Temperature
Gradient driven modes, play an important role in the anomalous transport observed
in magnetic confinement devices. Theoretically and experimentally, they have been
studied intensively for axisymmetric magnetic configurations (tokamaks), whereas for
other configurations (2D systems with helical symmetry, full 3D systems) neoclassical
transport phenomena and field line diffusion have been the primary concern. It is
now time to address the question of anomalous transport in alternative magnetic
confinement systems by starting to study related microinstabilities. In this endeavour
we will largely benefit from the knowledge acquired in developmg global gyrokinetic
PIC code for various 2D conﬁguratlons [6, 7].
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2 Model and Equations

In [2], the plasma is modeled by gyrokinetic ions and adiabatic electrons, and we follow

the time evolution of quasi-neutral electrostatic perturbations of the local Maxwellian
distribution function.

Within the gyrokinetic model, using the usual gyrokinetic ordering [8] and ne-

glecting pressure effects, the equations for the particle guiding centres are given by :

dR . vjt+vi/2.  UB

d’U ]_ — -

bk | R 2 v

7 2UJ_V k, (2)
du

where }—?:, v) and g denote the position, the parallel component of the velocity of
the guiding center and the first adiabatic invariant 4 = v2 /2B, respectively. Here,
v is the perpendicular component of the velocity, B the modulus of the equilibrium
magnetic field, &, = h = é/B the direction of the magnetic field, and ) is the ion
~ cyclotron frequency.

The perturbed part of the ion distribution function evolves according to :

d, = _ (E)yxBdfs gz 200
ad = 2R g gydle
dtf(Ravlhluat) B? ob m; <E>av“ (4)
dfo 1 8fo\ ,z »_ VB
<v”8v” T 3U gy, ) (B X
where g; and m; are the ion charge and mass, f; is the ion equilibrium distribution
function and (E ) denotes the gyro-averaged electric field.

The perturbed ion density is given by :

- i 0fol 3,2 . - -
w@0) = [ [+ (6 () 52| £~ 7 5)Badoduydu)

miv)

where ¢, p and « are the electrostatic potential, the Larmor radius and the gyro-angle
respectively.

In the limit (k1 p)? << 1, one obtains for the density :

ni(Z,t) = / F(R, v, 1, t)8%(R — & — §') BdRdadvydu + V| - [%6@] , (6)
where ng is the equilibrium density.
This system of equations is closed invoking quasi-neutrality n; = n.. Assuming
the electron response to be adiabatic, their density reads
€Ng

Ne = —f—d), (7)

e
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and the Poisson equation becomes :

€Ng

T.

-V, [25.g] = / (B, vy v0,)8%(F — & — §)BdRdaduydy.  (8)

—

Note that the gyro-averaged electric field in eq. 4 is given by (E) = —V/(g).

Following [6], we choose f; as a local Maxwellian,

v, VL, 8) = ———————————no(s) ex ;lvﬁ-}-vi
folvnp v ) (2m)3/ 203, (s) p( 2 vji(s) >, ©)

where vgp,; is the thermal velocity and s is a normalized radial variable.

For a 3D equilibrium with nested surfaces, the equilibrium magnetic field can be
written as follows [5] : |
B = Vo xVx+Vd x Vo, (10)

!

where 27y and 27® are the poloidal and toroidal fluxes, respectively, ¢ is the geo-
metric toroidal angle and 6* the poloidal angle which makes the magnetic field lines
‘straight. We can define the normalized radial variable s (9) as s = &/®;, where ®,
is the value of the toroidal flux at the edge of the plasma.

3 Numerical implementation

The equations (1-4) are solved using a Particle-In-Cell scheme [2], the discretized ion

distribution function f is given by :

FRupant) = 3 up(t) P (R~ By(1) ol — ) L@

p=1

where N, is the number of particles, p denotes the particle, and w,(¢) the weight
associated with this particle. The particle trajectory (R,(t), vp(t), up(t)) is governed
by Egs. (1- 3). Inserting (11) into the density equation (6), we obtain the right-hand

side of Poisson’s equation (8) :

Np 2T
Sultlys [ dod®(E 1) - - 3(0), (12)

where pj(t) is the Larmor radius of the particle p.

The Poisson equation (8) is solved using a finite element approximation for the
electrostatic potential ¢. The ITG instability being a interchange-like instability,
i.e. the ITG driven mode is aligned with the magnetic lines, solving Poisson’s equa-

tion in magnetic coordinates increases significantly the convergence to the solution
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[6]. Choosing splines as finite element basis and the PEST-1 magnetic system of
coordinates (s, 6%, ) [4], the electrostatic potential is given by :

#(s,0", ) = 2@1\1(3,9*,80) (13)
;

where A, is a product of spline functions S* of order h, Ay(s, 8", @) = S*(s)SH(0*) St ()
[6]. In [2], linear, quadratic and cubic functions have been implemented.
Following the standard procedure of the finite element method, the discrete Pois-

son equation reads :

> Mupipn = m (14)

Mn, = / [‘;’f"/\ A,+%VLA VoA VT dsdo*de  (15)

o= Sunltg [ dahiB) -7 5(0) (16)

where /g" is the jacobian of the transformation (R, Z,¢) — (s, 6%, ¢).

The matrix M is real and symmetric, eq. (15) is solved using a conjugate gra-
dient algorithm, with a SSOR preconditioning. The solver was implemented and
parallelized with the help of the PETSc library [3], the torus being decomposed in
Npg equal sub-domains along the toroidal direction, each of which is assigned to a
processor. Here, Npg is the number of processors.

The equilibrium magnetic field (10) and all other magnetic quantities required in
eqs. (1-6) are provided by the equilibrium code VMEC [5]. They are computed in the
(8,u,v) system of coordinates, where v = ¢, and u is related to §* by §* = u+A(s,u,v).

The position of a guiding center R, Z,¢ in the (s,u,v) and (s, 6%, ¢) coordinates is

given by :
R = Z R n(8)cos(mu — nv) Z Ry i(s)cos(m'0" — n'p) (17)
zZ = Z Zpn(s)sin(mu —nv) = Z Zmi i (8)sin(m'8" — n'e) (18)
@ = v (19)

where the R, Zm, Fourier series coeflicients are provided by VMEC for each

surface. The quantities R, . and Z;, . are then obtained from [9] :

2n/L 2
Ryi(s) = / dv du(l + a}\)R(s u,v)cos(m’(u+ A) — n'v) (20)

21r/L
) /05n,0 / / du(l YR(s,u,v)

2n/L 2
mini(8) = 5;/0 dv/o du(l + %)Z(s,u,v)sm(m (u+A) —n'v) (21)
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where L is the number of field periods in the device, and §; ; the Kronecker symbol.

As particles are pushed in (R, Z, ¢), we have to express all the magnetic quantities
needed by eqgs. (1-6) in this system of coordinates. We thus need to invert the
relations (17- 18). This is performed numerically for each one of the Npg poloidal
planes (R, Z). The magnetic quantities are pre-computed and stored on each point of
a (R, Z,p) grid which encloses the plasma. Hence, using linear interpolation, we can
easily and efficiently compute all the equilibrium quantities needed by the equations
of motion of the particles.

As we assume (B?"/B¥)? << 1, the gyro-averaging in eq. (16) is performed in
the poloidal plane (s, 8*), and the operator V. is approximated as the poloidal plane

component (s, §*) of the gradient.

4 Results

The new 3D version was benchmarked with an axisymmetric configuration against
the former 2D version [2], where the Poisson equation was solved independently for

each toroidal wavenumber.

©=3.83£0.05 107°0 y=1.8£0.08 107°Q @=3.83+0.05 107302 y=1.86+0.08 10730

Z[m]

Figure 1: Le§/el surfaces of the electrostatic potential ¢ in (R, Z) plane (dashed lines
are the magnetic surfaces at s = .2,.4,.6,.8,1) at ¢ = 0 and ¢ = 200Q~! obtained
with the former (left) and the new version (right).

Figure 1 shows the electrostatic potential obtained with both versions for a cir-
cular cross-section case. The density nq(s) is constant and the gradient of the ion
temperature T;(s) peaks around so = .18 where the safety factor ¢ is equal to 2. The
toroidal wavenumber n is fixed by filtering [6] and equal to 6. We see the ITG mode
peaking around sy where k| « m — nq is small. The measured frequency and growth

rate also shown in figure 1 agree well for both versions.
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Simulations were performed with 64 points in each direction (s, 6*, ¢) and 2 x 10°
particles with 64 processors on a CRAY T3D. These are typical values needed for a
physical converged run. Each time step requires 2 milliseconds per particle and per
processor, resulting in 4 hours of cpu-time. This is only 40 % slower than the former
version. The slow-down is mainly due to the particles, because the parallel solver
turns out to be unexpectedly fast in these axisymmetric cases : when the number of
processors is equal to the number of poloidal planes, it converges in only 1 iteration.

Hence, the resolution of Poisson’s equation takes only 10 % of the total computational

time.
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Figure 2: Electrostatic potential ¢ in (R,Z) at ¢ = 0 (a), 7/4L (b), n/2L (c) and
3r/4L (d), L = 100 periods.

A preliminary result with a straight helical configuration with an helicity A = 1
m™! [7] is shown in figure 2. The poloidal and toroidal wavenumbers have been fixed
by filtering, m = 5 and n = 1, and the mode peaks around s 2 .2 where the gradient
of the temperature profile is maximum. The density is constant. We use the same
grid as in the 2D case and 2.5 x 10° particles with 64 processors. With such a small

number of particles, 90% of the computation time is spent in the solver which now
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needs 8 iterations to converge. Increasing the number of particles to 2 x 108, 50
% of the time will be spent in the solver, and the whole run will require 9 hours of

cpu-time.

5 Conclusion

We have developed a 3D code aimed at the investigation of ITG modes in 3D magnetic
configuration, a new 3D solver of the Poisson equation in magnetic coordinates has
been implemented. The code has been successfully validated against the former
version applying it to a 2D magnetic configuration. It now needs further comparisons
with the helical version of the 2D code GYGLES [7]. We also need to decrease the
computational cost of such runs, hopefully by implementing an extraction procedure
using the ballooning phase factor [6].

This work was partly supported by the Swiss National Science Foundation. The
computations have been performed on the CRAY T3D of the Ecole Polytechnique

Fédérale de Lausanne
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1 Introduction

Microinstabilities are a major candidate to explain anomalous transport and thus have
been extensively investigated. In particular, Ion Temperature Gradient modes seem
to play an important part in ion confinement. These modes have been thoroughly
studied, first through dispersion relations [1]-[2] and ballooning representation [3]-[7].

Recently some evidence has been noticed that sheared £ x B flows could be
responsible for creation of internal transport barriers in fusion devices, thus improving
confinement [8]. If so, these flows should strongly affect the ITG instability. So
far, their effect in tokamaks has only been studied via ballooning representation [9]
although it has been established [10] that this representation breaks down for strong
values of these flows.

Therefore, in the present work we study F x B flows with a global fluid model
for ions and adiabatic electrons. Results show an important effect of these flows;
they reduce the overall maximum growth rate of the instability and they contract the
radial extent of the convective cells. Both effects tend to reduce the linear estimate for
transport. We have also studied the effect of negative magnetic shear in combination
with poloidal flows and in the absence of these flows. Negative magnetic shear does
not exhibit a systematic effect on the growth rates of the unstable modes, but it also

tends to reduce the linear estimate for transport.

2 Equations and Implementation

The plasma is modeled by ion fluid and adiabatic electrons. Considering electrostatic
perturbations the system is closed using the quasi-neutrality condition. The equations
are simplified using the gyrokinetic ordering and resolved globally within a spectral

approach.
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The ion fluid is described by the equations of continuity and motion (without vis-
cosity) that are closed assuming that the perturbed pressure is adiabatic. Moreover,
we assume an ad hoc equilibrium state; this allows us to choose arbitrary profiles for
ion equilibrium pressure, electron temperature and density and to assume that the
time dependence of the perturbed quantities is exp(—iwt) with w € C, the so-called

spectral approach. Our equations read:

T,
: _ . ]
iwe noev (nov) (1)
. 1
wp = 5 [VéxVp-e (2)
. 1 e
wy = —— op + Eanfﬁ (3)
= + L ey x Vo +i2v g + e x V (4)
Vo= vet g e i Vg + gaoen < Vp

Equation (1) is the continuity equation, where ¢ is the electrostatic perturbation, T}
is the electron temperature, ng is the equilibrium density, e is the proton charge and
v is the fluid velocity. Equation (2) is the closure equation, where p is the perturbed
pressure, B is the modulus of the magnetic field, p, is the equilibrium pressure and
ej = B/B. Equations (3) and (4) are the equations of motion, where v is the
perturbed parallel velocity, m; is the ion mass, g = (e - V), VL = V —¢(9))
and w,; = eB/m; is the ion-cyclotron frequency. Equation (4) has to be inserted
in equation (1) and then Eqgs. {1,2,3} form a complete system for the unknowns
{¢, v, p}-

So far our equations are valid whatever the geometry is, but in order to include
the sheared poloidal flow we now restrict ourselves to large aspect ratio tokamaks. We
assume a very simple geometry: concentric circular flux surfaces, with the following

magnetic field:

where R is the major radius, r(p) = R + pcos(6) is the cylindrical radius, By is the
magnetic field on the axis, e, is the unit vector along the toroidal angle, p € [0,a] is
the minor radius, ¢;(p) is the safety factor, which is chosen arbitrarily, and ey is the
unit vector along the poloidal angle. We assume that a/R < 1.

We now introduce the poloidal sheared E x B flow by assuming that our equilib-
rium state does have a poloidal sheared rotation us(p)es. This equilibrium velocity
can be chosen arbitrarily. Moreover, we retain it only on the left-hand side of Egs.
{1,2,3}, which corresponds to retaining only the leading contribution in the Hahm
kinetic equations [11]. Thus, the effect of flow is to transform sw — [iw — ug (p)(i—@o)
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in the left-hand side of Eqs. {1,2,3}. The flow profile is normalized with respect to
ion thermal velocity multiplied by a Mach number, i.e. ug(p) = Mach - vy, - ig(p)
with dg(p) € [-1,1].

We may write the local dispersion relation, including sheared poloidal flow as:

0=14+—0 4 ll"w—;o] l(km}‘;)z— (k”—c)2+<w—g>] (6)

w — koug w — koug w — kgug

where w; = (clkg/wei)(dIn(no)/dp), with 2 = T./mi, wi = (ctks/we)(dln(po)/dp),
pL = Cs/wei, ks = m/po (with m being the poloidal wave number) and < w,; >=
(2¢2kg/ Rw,;) is the average magnetic drift frequency. Each quantity is evaluated at
some local point po. We can see, by looking at (6) that the effect of ug in the dispersion
relation can only be to shift the real part of w, i.e. changing the frequency, but not
the growth rate of the instability. Therefore, the effect of ug cannot be interpreted
locally and really requires a global resolution of the equations.

We now come to the numerical implementation and resolution of the equations.
First we have cast our set of equations into a variational form, then we have written
a Fortran 90 code which uses linear finite elements along the minor radius, a Fourier
series decomposition along the poloidal angle and as the toroidal angle ¢ is ignorable,
we assume the ansatz exp(ing), n € N. Equations {1,2,3} are discretized and lead to

a generalized eigenvalue problem:
Az = Bwz (7)

where A and B are real matrices, w is the generalized eigenvalue and z is the corre-
sponding eigenmode. It includes the three unknowns {¢, vy, p}. This discrete form
allows a resolution of the complete spectrum of the instability, using Lapack routines.

A typical run lasts between 15 minutes to 1 hour on a workstation.

3 Results

Let us first describe a typical result (¢ = 0.5 [m], R = 2 [m], B = 1 [Tesla], n = 3,
Te=Ti="175 [keV], ¢gs(p) € [1,7] and ¢, = 4 where the mode amplitude is maxi-
mum), without flow. The spectrum of the instability has some recurrent patterns. It
has many unstable modes and it is possible to divide it into two different sorts: the
slab-like and the toroidal modes, as shown in Fig. 1. The slab-like modes are the ones
that “survive” to a cylindrical limit (R — oo with Rgq,(p) and ng,(p) being fixed),
while toroidal modes need the curvature of magnetic field to exist and disappear in a
cylindrical limit. As seen in Fig.1, there are many slab modes and just a few toroidal
ones. This is a feature of the fluid model, which misses Landau damping that would

stabilize most of these slab-like modes.
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Figure 1: Part of the spectrum for a typical case, Wyporm =

Including sheared poloidal flow strongly stabilizes the toroidal modes, but only
weakly affects the slab-like modes. Even with very small values of Mach number,
sheared poloidal flow tears the toroidal modes apart and stabilizes them. As seen in
Fig.2, the toroidal modes are strongly stabilized and disappear before Mach number
reaches 0.1; in fact, in this figure, only the first four modes are toroidal ones, the others
are slab-like ones. But after toroidal modes have been suppressed, the slab-like ones
are still unstable and they are not too much affected by poloidal flow. Therefore, as an
artifact of our fluid model (absence of Landau damping), the maximum stabilization
that can be observed mainly depends on the gap that exists between slab and toroidal
modes in the absence of flow.

As the effect of flow is weak on slab-like modes and as the spectrum always contains
plenty of such modes, we have never been able to observe complete stabilization of
the ITG. Therefore, it must be stressed that the criterium ygxp = [(RB;)?/B] -
0,(E,/RBg) & “mas for full stabilization does not fit our model, as can be seen in

Fig.2. The value of ygxp being a function of Mach number, we have plotted a line

y/o

= 2 .2
norm x10™ D=v/ ki [Cs/wci]

? ' ' 05— : '
0 0.2 0.4 0.6 0 0.2 0.4 0.6

Mach number Mach number

Figure 2: Effect of sheared poloidal flow.
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at the value of Mach number for which Ygx5 = Ymas, i-e. there should be no more
unstable modes beyond this line if the criterium was to be true.

Nevertheless, the sheared poloidal flow does not only have an effect on the growth
rate of the mode, but also strongly affects its radial structure, diminishing the extent
of the convective cells. Therefore it exhibits two different behaviors, both tending to
reduce transport. A linear estimate for the transport coefficient D = v/k? is shown
in Fig.2, where D is reduced by more than a factor two. To compute D, we average
k) over the mode, i.e. k3 = (V _ ¢* -V ¢)/(d*¢).

We have investigated different shapes for the profile of sheared poloidal flow and
have observed that the final overall stabilization of the instability is not strongly de-
pendent on the shape of this profile. But qualitatively, the structure of the mode
strongly depehds on the shape of the profile. An example is provided by the compar-
ison of a flow which is zero where the mode amplitude is maximal (radially) but has
shear there, with a flow which is non-vanishing where the mode amplitude is maximal
and has the same shear. In the first case, one observes a “tilt” of the mode around
the point where the flow is zero (“tilt” in the poloidal plane). In the second case, one
observes a shift of the ballooning region, in the direction of rotation of the plasma
(shift in the poloidal plane). Thus, the effect of flow is not symmetric with respect
to a change in sign of Mach number.

We can also say that the main drive for stabilization in our model is the first
derivative of ug(p)/p. The second derivative of this quantity (the so-called curvature
of effective flow) does not exhibit any special feature, and this is irrespective of its
sign.

We have also studied the effect of negative magnetic shear with or without flow.

The scan in magnetic shear has been done like this: fix a point py where the mode

70

norm x 10
T 24

2.2
L D=y/K (o]

-1

-0.5 0 0.5
Shear at Po

Figure 3: Effect of negative magnetic shear.

amplitude is radially maximal, fix the value of ¢;(po) and vary the g, profile in order to
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change value of (pod,qs(p0))/gs(po). The magnetic shear does not exhibit a systematic
effect (see Fig.3), it does stabilizes very quickly a single toroidal mode, but at the
same time it is destabilizing another one. This kind of behavior seems recurrent and
does not result in an overall stabilization. Nevertheless, the transport coefficient D is
more smoothly affected (see Fig.3); it is slightly smaller for negative than for positive
shear; its highest value is met by the shearless case.

The combined effects of magnetic shear and poloidal sheared flows are shown in

Fig.4. The first line shows the evolution of the overall maximum growth rate, for the

Shear at Po = +1 Shear at Po= 0 Shear at Py = -1

2
s/mci]

2
y/kl[c

D=

Mach Number

Figure 4: Magnetic shear and flow combined.

values {+1,0,—1} of the magnetic shear at the spot py where the mode amplitude is
the largest; Mach number is varied from —0.5 to 0.5. The second line shows the linear
estimate for transport D for the same parameters. As seen in the first line, the effect
of poloidal flow is greater for the positive value of magnetic shear. The second line
shows that the combination of flow and negative magnetic shear reduces by about a
factor four the linear estimate for transport, compared to the most unfavorable case

(i.e. shearless without flow).
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4 Conclusion

A global fluid model has been coded in order to study effects of sheared poloidal E x B
flows as well as negative magnetic shear. The main drawback of the fluid model is
that it exhibits plenty of slab-like modes, which are not strongly affected by poloidal
flows. Therefore results show that poloidal flow has an important effect on ITG, but
do not demonstrate complete stabilization. Moreover, negative magnetic shear does
not have a systematic role on stabilization. Nevertheless, a substantial reduction of
mixing length estimate for transport has been observed.

It is important, in our opinion, to use a global model for the study of flow, be-
cause, as we have seen, flow shows no effect on the growth rate in a local dispersion
relation and as shown by Taylor et al. [10], it cannot be thoroughly studied with in
a ballooning representation.

Acknowledgment: this work was in part supported by the Swiss National Sci-

ence Foundation.
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1. INTRODUCTION

Quasisymmetric (QS) configurations are defined as the fully 3D systems in which
the guiding centre motion equations conserve an additional integral just as in sym-
metric systems. It means that the charged particle drift motion in QS systems is
similar to that in fully symmetric configurations.

It was shown by Boozer [1] that for systems to have an additional conserved
integral of the drift motion equations, it is enough that the modulus of the magnetic
field B = |B| (mod- B ) be independent on one of the angular variables of Boozer
flux coordinates.

The discovery of the possibility of quasisymmetry was made by Nihrenberg and
Zille [2]. They showed numerically that the QS condition can be satisfied with high
enough accuracy on the boundary magnetic surface. The results of [2] demonstrate
that the effective control of the behaviour of mod- B on the magnetic surfaces is
possible through the appropriate choice of the boundary magnetic surface.

The fulfillment of the QS condition is very desirable for neoclassical transport
improvement in stellarators. This is the main reason of the great interest in QS
systems. Many articles are devoted to the numerical investigations of plasma equi-
librium, stability and transport in near-QS configurations. Moreover, some projects
of QS systems are currently in development: the Helically Symmetric eXperiment
(HSX) [3] at the University of Wisconsin-Madison, and the National Compact Stel-
larator eXperiment (NCSX) - a quasiaxi-symmetric stellarator with toroidal plasma
current at the Princeton Plasma Physics Laboratory [4].

Unfortunately, the QS condition is too strong to be fulfilled in the entire plasma
column [5]. Furthermore, the attempt to fulfill the QS condition with maximal pos-
sible accuracy can be incompatible with the condition of stability [2]. On the other
hand, the optimised stellarator WVII-X [6] with enhanced neoclassical plasma con-
finement does not satisfy QS. Therefore, it seems natural to try to formulate less
restrictive conditions of enhanced neoclassical transport than those of QS and to
study the possibility to fulfill them.
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The ideas of omnigeneity [7], quasi-isodynamicity [8] and pseudosymmetry [9] were
suggested for plasma confinement improvement in stellarators. As well as the QS
condition, these ideas can be formulated as restrictions on the behaviour of mod- B
on the magnetic surfaces.

In the paper which follows, the conditions mentioned above are discussed in terms
of the behaviour of B on the magnetic surfaces and the possibilities to fulfill one or
another of them are considered.

The paper is organised as follows. In the second part the quasisymmetrical config-
urations are considered. Various formulations of the QS condition are presented here
including the invariant one. The possibility of the existence of the different types of
QS configurations is discussed as well as of QS systems with different directions of
quasisymmetry - helical, axial, and mirror-type. The consequences of the QS condi-
tion fulfillment are analysed for different directions of quasisymmetry. The results of
numerical local mode stability calculations are discussed for a few configurations. In
the third part, the less restrictive conditions of plasma confinement improvement than
those of QS are discussed, such as the conditions of omnigeneity, quasi-isodynamicity
and pseudosymmetry. The additional degrees of freedom in comparison with the QS
condition are considered as well as the possibilities to fulfill one or another condition
locally only: within some region of the plasma column or for some fraction of the
particle distribution function. In the last part some conclusions are summarised.

2. QUASISYMMETRICAL CONFIGURATIONS
2.1. QS conditions and guiding centre motion

There are three types of symmetric configurations with axial, helical or mirror-type
direction of symmetry. As the fulfillment of the QS condition means the ”restoring” of
symmetry, three corresponding conditions of quasiaxi-symmetry (QAS), quasihelical-
symmetry (QHS) and quasimirror-symmetry (QMS) can be formulated. By analogy
with fully symmetric systems, it is convenient to use in QS configurations the coordi-
nates in which B depends only on two variables. Thus, for toroidal - axial or helical
- direction of QS one should have

B = B(a,0B), (1)

where lines 0 = const on magnetic surfaces have axial or helical directions, respec-
tively. The fulfillment of the condition (1) leads to the conservation of the additional
integral of the guiding centre motion equations:

¥ + pF' = const. (2)

where a,0p,(p are Boozer flux coordinates, ¥ and F are external poloidal mag-
netic flux and electric current flux depending on the definition of the poloidal coordi-
nate, py is the Larmor radius defined on the parallel velocity and the total magnetic

field.



- 37 -

In the case of poloidal QS,
B = B(a,(B), (3)

the lines B = const as well as lines (g = const go around the magnetic axis as in
open systems. The additional integral of motion here is

® + p)J = const, (4)

where ® and J are toroidal magnetic flux and electric current flux, respectively.
In QS systems, the following conditions are satisfied simultaneously:

1) there are no locally-trapped particles in the confinement system;

2) the bounce-averaged trajectories lie on magnetic surfaces;

3) the radial width [in terms of ¥ ] of the "banana” trajectory of the trapped

particle is constant during the particle drift along the line B = const .

There are some difference in the guiding centre motion for the cases of poloidal and
toroidal QS. As can be observed from Eq.(4), for poloidal QS with J = 0 the next
item can be added:

4) the radial width of the "banana” orbits is zero, i.e. all drift trajectories lie on
magnetic surfaces.

This is the ideal case when the neoclassical transport becomes classical.

2.2. Different formulations of QS condition

The condition of QS can be formulated in different ways. If we replace in (1) or (3)
the Boozer coordinates with Hamada coordinates, the expressions (2) or (4) still remain
valid. This is the consequence of the independence of the Jacobians /g = {(Vax V8)-
V(}™! in the Hamada /g, = V’(a)/4x? and the Boozer /g, =< B? > V'/4n*B?
coordinates with respect to one of the angular variables in the Boozer coordinates
in QS configurations. The function ¢ that describes the relations between the two
coordinates with straight magnetic field lines, e.g., Boozer and Hamada coordinates,

On=0+t, (u=CB+o, (5)
can be found from the equation
1 1 do  Op
= 1+ + . 6
Vin = Va0, T 8g) (6)

Thus, for toroidal QS, it immediately follows from (1) that ¢ = ¢(a,0s) and
hence, B = B(a,0y). In Eqgs. (5) and (6) ¢ is the rotational transform, ¢ = —¥'/®’,
measured relative to the line B = const.

The QS condition can be expressed in the invariant form [10]. As the expression
for the basis vector es of Boozer coordinates has the invariant form, the vector of QS
can be introduced,

_ FB4[BVY]

Q=e3= o7 B2 ) (7)
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so that the condition (1), 0B/0(p = e3VB =0, acquires the form

FB+ [BVY]
21 B?
Analogously, it is easy to see that for the case of poloidal QS, Boozer coordinates in
(3) can be replaced by Hamada coordinates and the invariant form of the QS condition
(3) acquires the form

QVE: = VB? = 0. 8)

JB + [BV 9]
2n B2

It is seen, that this condition follows from (8) after the straightforward replacement
F=J V=9.

VB? =0 (9)

2.3. Secondary currents in QS systems

The fulfillment of the QS condition means that the equation for the secondary
equilibrium plasma current, divj, = —divjL , with j; =aB

BVa = -B x Vp x V(1/B?) (10)
can be integrated, as in fully symmetric configurations [10]. Thus, using Eqs. (8) or
(9), the expressions for j acquire the forms

s = {SB2 o[- 1 ]}p, W
JQs't‘{<13*2>+F1”(‘I') B <msl Pt B 1
oo {<iB> o [J__ 1 ] [BVy]
joss = { SZ + 1(0) |5 - 5] B+ 12

for toroidal and poloidal QS, respectively.
Let us discuss briefly the effect of the QS condition fulfillment on the value of the

secondary currents.

Poloidal QS. For J =0 the condition of poloidal QS acquires the form

[BV®]|VE? =0. (13)
Evidently, it is fulfilled in axi-symmetric open traps. For the nonsymmetric open
systems (stabilised by multipole magnetic fields) with a straight magnetic axis, the
condition (13) can be fulfilled in some approximation only, e.g. near the magnetic axis.
Such ”quasisymmetric” mirror-type systems were considered in Refs. [11,12]. As the
lines B = const on magnetic surfaces are orthogonal to the magnetic field lines, such
configurations were termed in Ref. [11] as "orthogonal” ones.
The condition (13) means that divj, = 0, so the secondary equilibrium currents
are absent in configurations with poloidal QS without toroidal current, J = 0.

Toroidal QS. Let us consider the configurations with F # 0 [nonzero toroidal mag-
netic field]. The secondary current is nonzero in this case, and as p/'(¥) = p'(a)/¥'(a) =
—p'(a)/¢®'(a), it is inversely proportional to the rotational transform ¢ which is mea-
sured relative the closed lines B = const. For QAS systems, this corresponds to the

tokamak-like rotational transform. The poloidal inhomogeneity of B is connected |
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with the toroidal effect and the value of the secondary current is similar here to that
of a tokamak.

The QHS means the elimination of the toroidal effect, and the residual part of the
inhomogeneity in B is helical. The rotational transform relative to the helical line is
of the order of unity on one field period, thus even with a moderate number of periods,
the value of ¢ could be rather large and the secondary currents become small. This is
the main reason of the equilibrium A limit increase in QHS systems even in compact
configurations.

2.4. QS in near-axis approximation

Toroidal @S. The QS equations in the near-axis approximation were derived in [13-
14]. To illustrate the geometrical sense of the QS requirements, it is enough to use the
simplest expression for B,

B = By(1 - kz). (14)

Here By = const, k is the magnetic axis curvature and « is the distance along the
principal normal to the magnetic axis in a linear approximation with respect to a .

The elliptic magnetic surfaces cross-sections near the magnetic axis are charac-
terised by the ellipticity E(¢) = l1/l; and by the angle of inclination of the ellipse
8(¢) relative the magnetic axis principal normal. The case 6 =0 and E > 1 corre-
spond to elliptical cross-sections with the small semi-axis being parallel to the principal
normal.

Let us consider some magnetic axis with k = k(¢) (for simplicity it is shown as
planar in Fig.1) and let us choose some initial cross-section. Then the values of By
and B, in this cross-section are fixed: they correspond to the maximal and minimal
values of z, respectively.

The mod- B behaviour on the magnetic surfaces and therefore the guiding centre
trajectories depend on the E({) and 6(¢). In the general case, some cross-sections
can cross the surfaces B = const corresponding to B,,, and B, of the initial
cross-section. In such configuration there are the islands of lines B = const on the
magnetic surfaces. If the value of B inside the island is minimal, locally-trapped
particles appear. The deeply trapped particles inside these islands can freely drift
along the surface B = const out of the plasma volume.

To fulfill the QS condition, it is necessary to have the same values of Bp,,; and
B,.in on every cross-section. Thus, for every ( it is necessary to place the elliptical
cross-section with the same area in such a way that it touches the surfaces B = B4,
and B = Bpn , which are the surfaces kz = const. It is clear that the configurations
of different types can be constructed in such a way. In some of them the ellipse rotates
relative the principal normal while in others the elliptical cross-section only oscillates
relative the principal normal. These two different types of magnetic configurations
display properties similar to the Heliac-like (no rotation) and Helias-like (one half of a
turn within the system period) configurations.
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|B|=min surface

axis.

magnetic surface
plane sections

Fig. 1. The surfaces B = const corresponding to By, and By, on the initial
cross-section. These two surfaces define the corridor for revolving elliptical magnetic
surface cross-sections. For the configuration to be quasisymmetrical, it is necessary
that every cross-section align with the corridor walls.

For a given magnetic axis and shape of the initial cross-section, the only configu-
ration considered above is quasisymmetric. This is the configuration in which the line
B = B, coincides with the line 0g = const. The type of QS of the configuration
cannot be prescribed. It is defined by the magnetic axis curvature and torsion and by
the parameters of the initial cross-section.

The detailed shape of the QS magnetic surfaces is determined by the corresponding
equations. They follow from the expression for kzr in an approximation linear with
repsect to a :

kz = a(A;cos0p + Aysinfg) = aAcos(dp + A(()) (15)

where A; and A; are defined by the magnetic axis and the initial cross-section pa-
rameters.
The condition of QS requires A; = const, A; = const, or

A? + A = A? = const, A, = const (16)

It is seen from Eq. (15) that the first part of Eq. (16) requires Bpin and Bpgs
to be the same in every cross-section, while the second part of Eq. (16) selects the QS
configuration ( A = const ) among the variety of configurations with the same Bps,
and Bp.r on the magnetic surface in every cross-section.

The regions of existence of different types of QS configurations obtained from the
QS equations in the linear approximation are shown in Fig. 2 for the case when
the magnetic axis is a helical line r = ry + agcos(N(¢), 2z = aosin(N¢) on some
"supporting” torus with ro and a¢ being the major and minor radius, respectively.
Here ¢ =0 corresponds to the largest value of the curvature, Eo is the ellipticity for
(=0 and 6 =6(0) =0, N is the number of periods, n, is the number of cross-
section turns relative the magnetic axis principal normal in one period. The systems
with n; = 0 are realised for a large number of periods (small curvature variation)
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and/or large initial elongation. In the systems with n; = —1/2, the cross-section
rotates more slowly than the principal normal. For N = 6, the principal normal
oscillates only, consequently the QAS configuration is realised here. For Eo < 1, only
the configurations with n; = 0 can exist regardless of the number of periods. This
follows from simple geometrical considerations.

20

18
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1/Eo 2 1 3 5 Eo

Fig. 2. The dependence of the rotational transform ¢ on the initial elongation of the magnetic
surface cross-section Ey = E(0) for pN/Ro = 0,15, é =0 and few numbers of N . The
coordinate axes and dotted lines separate the regions with different n; values. The negative
values of s correspond to the cases of quasiaxisymmetric configurations in which the principal
normal to the magnetic axis does not rotate.

Poloidal ()S. To establish poloidal QS, one needs to have an inhomogeneous longi-
tudinal magnetic field By = By((). To first order in «a , it is necessary to exclude the
dependence on the poloidal coordinate g . As follows from the results of Ref.[13],
the relation between toroidal coordinate ( used above and the corresponding Boozer
coordinate does not contain the terms linear in a . Thus, in a closed configuration,
it is impossible to fulfill the condition of poloidal QS in the linear approximation. As
was mentioned above, this condition can be satisfied in straight open systems (zero
curvature) to zero and second order approximation.

2.5. Local mode stability in Helias-like and Heliac-like QHS configura-
tions

The [ limit for QHS systems with a large number of periods approaches that
for a helically symmetric However, compact stellarators constitute nowadays a much
more interesting from an engineering perspective. Therefore, systems with a moderate
number of periods are presently studied. Let us discuss here the results of numerical
calculations of the Mercier and ballooning mode stability in four-period QHS-optimised
configurations. Such investigations were reported in Ref. [15] for a Helias-type HSX
[3] configuration and in Ref. [16,17] for Heliac-like configurations.
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In the HSX stellarator, the A value is limited by the Mercier criterion for broad
pressure profile, and almost equivalent limits for 3 follow from the Mercier and the
ballooning criteria for peaked pressure profile. Depending on the details of the config-
urations, the largest S values vary from 8~ 0.8% to 8=~ 1.3% [16].

From the viewpoint of magnetic well creation, the Heliac-like systems seem prefer-
able because of the smaller change in cross-section orientation relative the magnetic
axis principal normal. Thus, one can believe that the 8 limit from the Mercier crite-
rion can be high enough here. In reality, the Mercier limit is 5 =~ 3.0% in Heliac-like
system considered in Ref. [16].

The QS requirements impose strong limitations on the magnetic surfaces cross-
sections. Connected with these requirements, the inhomogeneity of the configuration
leads to the existence of regions on the magnetic surfaces with large and destabilizing
value of the magnetic field lines curvature. Moreover, just in these regions the value of
|V¥|?> can be very large, so that sharp changes of the disturbance amplitude in this
region do not lead to significant energy increase. Due to these factors, the very localised
ballooning modes along the magnetic field line in extended poloidal angle variable [18]
can become unstable in QS configurations. As follows from numerical calculations, such
modes constitute the most dangerous in Heliac-like configurations. The corresponding
B limit is three times smaller than that of Mercier modes, corresponding to similar
limits achievable in Helias-like near-QHS configurations at 8 =~ 1.0% , [17].

3. ALTERNATIVE CONDITIONS FOR PLASMA CONFINEMENT
IMPROVEMENT

It is seen from the previous section that the condition of quasisymmetry can be
formulated as the simultaneous fulfillment of the set of criteria 1) - 3). The fulfillment
of part of these conditions can be suggested as alternative conditions for enhanced

plasma confinement.

3.1 Pseudosymmetrical configurations

The main shortcoming of stellarators is the drastic increase of transport coeffi-
cients in the low-collisionality regime in comparison with the symmetric systems. The
reason for such an increase is the presence in the system of particles with very large
deviation of their guiding centre trajectories from the initial magnetic surface - the
locally-trapped particles. Consequently, the elimination of locally-trapped particles
orbits can be considered as the natural first step in confinement improvement. The
systems which possess such property were referred to in [9] as pseudosymmetric (PS).
To satisfy pseudosymmetry, the system should not tolerate islands formed by lines
B = const on magnetic surfaces. In this case, the lines B = const can be taken as
lines @ = const or ( = const , so that B = B(a,0) or B = B(a,() . The absence of
islands of lines B = const is not a sufficient condition of PS: locally trapped particles
can still exist here. It can happen if the magnetic field lines touch or cross twice in a
small distance along the same line B = const on a magnetic surface. In such configu-
rations, it is impossible to introduce flux coordinates with straight magnetic field lines
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by the deformation of the ignorable coordinate in the expression for B . Therefore,
the conditions of pseudosymmetry can be formulated as the independence of B with
respect to one of the angular variables in the flux coordinates with straight magnetic
field lines [9].

As was shown in previous section for systems with a toroidal direction of lines
B = const , the relaxation of the condition of the coincidence of these lines with the
corresponding Boozer coordinate lines yields the additional freedom in the choice of
parameters. In the near-axis approximation, only the first part of the condition (16)
should be satisfied for the configuration to be PS. The additional freedom in the mod- B
behaviour on magnetic surfaces permits, at least formally, to satisfy the PS condition
in the entire plasma column [9].

In contrast to the condition of poloidal QS which cannot be fulfilled near the mag-
netic axis in closed systems, the closed PS systems with a poloidal direction of lines
B = const can exist. For linked-mirror systems in an approximation linear with
respect to a , the modulus of the magnetic field can be expressed as

B = By(¢)(1 + ak(A.cos 8 + A,sinb)). (17)

By introducing the new toroidal coordinate (* = ( + a(y,sind + y.cosf), the
expression for B can be rewritten as

B = By{l — (B}/Bo) - a(vssinf + . cos 0) + ka(Aycos 0 + Aysind) +---}  (18)

and the choice 7, = BokA./B}, 7s = BokA,/ B} corresponds to the PS configuration.
It is seen that the 5, and «, values are finite only if the curvature of the magnetic
axis is zero in the cross-sections with B, = 0. This condition is obvious from the
geometric view: if it is not the case, then the local maximum or minimum exists on
the inside or outside part of the torus for ¢{* corresponding to an extremum in B .
It is clear from expressions for v,, <, that if the curvature and its derivative are
equal to zero on cross-sections for which B Tis an extremum and B” # 0, then
s = 7. = 0. For deeply trapped particles, such a configuration appears QS in the
linear approximation, and if the longitudinal current is zero, such configuration becomes

isodynamic for deeply trapped particles.
Local stability in mirror-type closed configurations

The configurations with a poloidal direction of lines B = const are not typical for
stellarators. Nevertheless, it is interesting to note that one of the possible magnetic
configuration of the stellarator WVII-X is of the mirror-type [6]. The results of the
local mode investigations have shown that the transition to mirror-type topology of
the lines B = const can improve the stability of compact systems of both Helias- and
Heliac-type. Thus, in Ref. [17] it was shown that for a N = 4 Heliac-like system,
the transition from helical to mirror-type configuration leads to an increase of the g
limit with respect to local mode stability from 8 = 1% for a near QHS configuration
to B=3% .
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Local mode stability in Helias- and Heliac-like mirror-type systems with N = 5
were studied in Ref. [19]. It was shown that (& 6% is achievable here in both types
of device. It is seen that this value is large compared with the corresponding N = 4
configurations.

As the configurations considered are systems that combine stellarator and mirror-
trap features, the question arises as to what type of system will such configuration
evolve towards when N increases. Thus, the question about the highest 8 value in
such systems remains open.

3.2 Omnigenous and quasi-isodynamical configurations

In PS configurations there are no locally-trapped orbits and the trapped particles
can go along the direction of lines B = const here. During this motion, the particle
deviates from the initial magnetic surface. The bounce-averaged trajectory also does
not lie on the magnetic surface. So, as the next step to confinement improvement it
is natural to consider the condition of omnigeneity [20]. By definition the bounce-
averaged trajectories of trapped particles in omnigenous systems lie on a magnetic
surface. It is evident that for the configuration to be omnigenous it should be the
pseudosymmetric. The requirement of the "banana” width to be constant is omitted
here in contrast with the QS condition. Thus, one can hope that the condition of
omnigeneity is milder than that for QS. The possibility of the existence of omnigenous
systems that are far from QS was discussed in Ref. [7].

Let us consider the condition of omnigeneity in poloidally pseudosymmetric sys-
tems. For PS configurations, we have B = B(«,() in the coordinates ( a,8,( ) with
straight magnetic field lines . The relations between the Boozer representation and
these coordinates are analogous to those from Eq.(5) and the function ¢ is defined
from Eq. (6) with the subscript "H” omitted. Note, that for ¢ = ¢(a,() , the lines
(B = const and { = const on magnetic surfaces coincide, thus B(a,{) is equiva-
lent to B(a,(g) . That means the QS condition is satisfied. Thus, to obtain the less
restrictive omnigeneity condition we need to consider only the case ¢ = ¢(a,8,() . As

Jy= / v d¢B\/g/®' (19)

one needs for omnigeneity that the Jacobian to be function of a,( . It is clear from
the relation between two Jacobians that g = g(a,{) only if B-Vyp = 0. If this
restriction is satisfied for the whole magnetic surface we have the quasisymmetrical
configuration [7]. Hence, the requirement of global omnigeneity is equivalent to that
of QS. Locally, the condition of omnigeneity can be satisfied in configurations that are
far from quasisymmetric. It is worth to consider such local omnigeneity only if there
are the trapped particles whose orbits lie wholly in this local region. Let the condition
B V¢ =0 be fulfilled in the region between two lines B = B; on the magnetic
surface with the line B = By,;, inside this region (see Fig. 3).
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Fig. 3. The line ¢ = const for local omnigeneity. The piece inside the local
magnetic wells ({3 < ¢ < {3) coincides with magnetic field line, thus B - Vo = 0

and /G =.,/gs here.

If the width of this region is smaller than that of system period, then by the
corresponding deformation of ¢ outside this region, the condition of periodicity of ¢
can be fulfilled. For trapped particles inside the region B < B, , the configuration
will be omnigenous while the behaviour of the lines B = const in this region can be
far from straight lines in Boozer coordinates, i.e. the configuration can be far from QS.
In contradiction with the suggestion in Ref. [7], it follows from the analysis presented
that the system far from QS can be omnigenous in a local region only. Perhaps,
some difficulties with the analyticity of B in fully omnigenous systems considered
in Ref. [7] reflect the impossibility to fulfill the omnigeneity condition on the entire
magnetic surface.

The condition of omnigeneity has clear geometrical sense: the distance along the
magnetic field line between two lines B = const is the same for all magnetic field lines
on the magnetic surface considered [7,21].

In Ref. [8], the condition of local omnigeneity for mirror-type configurations was
considered both analytically and numerically. The vacuum configuration found pos-
sesses remarkable confinement properties. Such systems were identified in Ref. [8] as
quasi-isodynamic. It is easy to see from the expression for guiding centre drift velocity,

Ref. [22],

v, = SpBteit Ve xB
9= P 1+ py(jB)/B?

(20)

that the condition v, - Va = 0 1is reduced to the orthogonality condition
(VaxVB)-B =0 . Thus, in locally omnigenous systems the trapped particle guiding
centre trajectories do not lie on magnetic surfaces. Nevertheless, deeply trapped par-
ticles have a small bounce period, so that their deflection from the magnetic surface is
small too. It is interesting to note that the more dangerous deeply trapped particles in
non symmetric systems become the best confined ones in locally omnigenous systems.
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Fig. 4 Schematic behavior of the B = const lines (dot) and the magnetic field lines
on the magnetic surface in Boozer coordinates for: (a) general case of 3D configura-
tion; (b) configurations with no islands formed by B =const lines on the magnetic
surface and with locally trapped particles; (c) pseudosymmetric configuration in
which there are no locally trapped particles and the center of the banana orbit of a
trapped particle is displaced from the magnetic surface as the particle drifts along
the line B =const; (d) locally omnigenous configuration in which the center of the
banana orbit of deeply trapped particle lies on the magnetic surface as the particle
drifts along the line B =const. The distance between two lines B =const near the
minimum of B along the magnetic field line is the same for all magnetic field lines.
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Ananalogous consideration can be done for the case of toroidal direction of lines
B = const . The difference is in the following: near the magnetic axis the dependence
of B on the toroidal coordinate can be arbitrary, while the dependence on the poloidal
coordinate in an approximation linear in a contains the first term only. Thus, in the
configuration with toroidal direction of lines B = const near the magnetic axis, the
condition of local omnigeneity is equivalent to the condition of global omnigeneity, i.e.
to the QS condition. At a large enough distance from the magnetic axis, the condition
of local omnigeneity can be fulfilled in non-quasisymmetric configurations with toroidal
direction of lines B = const too.

Fig. 4 illustrates the consequence of the steps in plasma confinement improvement
discussed above. Here the lines B = const and the magnetic field lines on a magnetic
surface are shown in Boozer coordinates. As a starting point, the general case of 3D
configuration is shown in Fig. 4a. The elimination of islands of lines B = const ,
Fig. 4b, and the diminishing of the slope of the lines B = const lead to pseudosym-
metrical configurations, Fig. 4c. The next step is the fulfillment of the condition of
local omnigeneity, Fig. 4d, when near the line B = B,,;, the distance between the
lines B = const along the magnetic field lines does not depend upon the position of
the field line. In QS configurations the analogous picture will be the simplest one: the
lines B = const as well as the magnetic field lines are straight.

4. CONCLUSIONS

The analyses of the possibilities to regulate the behaviour of the B = const lines
on mdgnetic surfaces based on recent analytical and numerical investigations of 3D
stellarator configurations shows a variety of ways to enhance the neoclassical plasma
transport. The simple relations between the behaviour of the lines B = const on
magnetic surfaces and the guiding centre trajectories permits to consider the transport
quality of 3D configurations in terms of the mod- B behaviour. The sequence of
steps is discussed that indicates the path from general cases of 3D configurations to
quasisymmetry.

From the results reviewed, it follows that stellarator configurations with poloidal
direction of lines B = const demonstrate attractive features with respect to plasma
stability and transport. The possibilities of such configurations require further investi-
gation. The combination of elements of usual stellarators and mirror-type traps open
a new field of search for optimal configurations. Among them, systems with complex
period structure should be considered. It seems that the question about the B limit in
improved stellarators still remains open at this point, and in principle, the possibilities
should be investigated to construct stellarators with B high enough for a D*He re-
actor. DRACON-type configurations [23] constitute one possible approach that could
be considered.

The new knowledge about the possibilities to control the secondary currents and
the behaviour of the B = const lines on magnetic surfaces show that further efforts
are required to identify the optimal closed 3D stationary magnetic configuration and

the best parameters that could achieve this.
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Abstract

The 1-D transport code PRETOR! is used to simulate TCV discharges. The discharges studied in this
work are all ohmic L-modes and cover a very wide range of plasma and shape parameters. The code
PRETOR also has a sawtooth crash model which was used to predict ITER sawtooth period?2. It turns
out that TCV is in the same collisionality regimes as ITER, with regard to the sawtooth crash
criterion. Therefore PRETOR can be used to model TCV sawtooth periods in order to obtain more
accurate q profiles and better transport simulations. In doing so, the limits and range of validity of the
sawtooth model are also tested. The crash model involves several conditions, but for TCV ohmic
discharges the decisive criterion is that the effective growth rate of the internal kink must be larger
than some fraction of the diamagnetic frequencies. It is shown that the crash criterion, which can be
written as s{ 2 s{¢rit with s1 the shear at q=1, allows one to model the sawtooth activity for all the
ohmic L-modes shots considered. For transport analysis, setting s1crit = 0.2 is sufficient as then only
the sawtooth period is not correctly determined, but the inversion radius and the profiles are good.

. Introduction

In all tokamak plasmas, the temperature and density profiles are strongly influenced by the presence
(or absence) of sawtooth activity. It tends to flatten the profiles within a given radius related to the
mixing radius defined in the Kadomtsev complete reconnection model2-3. Recently it has been shown
that the width of the profiles in TGV can be directly related to the q = 1 radius using such a simple
argument for current and pressure profiles4. Therefore if one wants to simulate and eventually
predict the profiles in an experiment, using a 1-D transport model, one has to have a good sawtooth
model. It is shown in another paper in this conference that we can obtain the correct temperature and
density profiles for most of the wide variety of the ohmic L-modes discharges in TCV using fixed
transport coefficients. In this study, we want to go one step further: simulate the time evolution of the
profiles including the sawtooth activity. In this way we can also simulate the sawtooth period.

As this was used to predict the sawtooth period in ITER, this study can be seen as the first
benchmark of the model with respect to experimental data. Of course, as TCV does not have alpha
particles, this is only a first step towards a reliable complete model valid for reactor-like parameters.

We have studied 17 ohmic L-modes shots which cover well the following range of parameters:
2.3 < (edge <4.6; 0.1MA<Ip <1 MA; 2<ng19<12; 0.1 < § (triangularity) < 0.6; 1 < k< 1.9. The
sawtooth period ranges from 2ms to 8ms and the inversion radius from 20 to 60% of the minor radius.
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In Section Il we describe the model, or more precisely the modification of the model with respect to the
one in Ref. [2], and then present the results in Section [lI. Al the variables are defined in the appendix
of Ref.[2], except if specified here.

Il. Sawtooth crash model

The aim of the model is to be able to predict when a sawtooth crash should occur and how to
determine the current (or q), density and pressure profiles after the crash. In this way it can be
coupled to a 1-D transport code, like PRETORT, to simulate the time evolution of these profiles
including the sawtooth activity. As the crash time is much shorter than the transport time-scale, we
are not interested in simulating the crash itself which moreover is a nonlinear phenomenon. Therefore
the crash in our model is assumed to be instantaneous and all is required to know are the profiles after
the crash in order to be able to simulate the profiles until the next crash is triggered.

First we need to consider the main scale lengths which play an important role in the magnetic
reconnection process. We assume that the crash is triggered by a m=1/n=1 internal kink mode which
starts to reconnect in a thin layer around the g=1 surface p1. The layer width depends on the values
of the fon Larmor radius pj, the resistive layer width 3, and the inertial skin depth dg (note that On ~
B-1/3 instead of B! in app. of Ref.[2]). In TCV we have n ~ pi (=0.3cm) >> dg (=0.06cm). Therefore
we are slightly more collisional than ITER, for which p; >> 8, >> dg, but the ion Larmor radius is of
the order of the layer width and therefore also influences the expected growth rate.

Second we have to know in what regime we are with respect to the ideal internal kink mode. As TCV
is also in the semi-collisional regime, we expect that the layer physics will determine the growth rate
if, using the notations defined in Ref.[2):

3< 8W<05(odiai TA (1)
where p pilp1. OtherW|se the growth rate is given by the ideal internal kink y = - SW/’EA The

potential energy SW is determined by the destabilizing ideal MHD po}\entlal energy S\lehd and the
stabilizing potential energy contribution from the thermal trapped ions 8Wkg [7):

SN = 8Wing + SWio (2)

In TCV ohm|c L-modes, the poloidal beta is just above the critical value, prior to the crash, and
therefore 6Wmhd is relatively small of the order of (-104). On the other hand SWKO, due to its 1/s4
dependence, is not as small and is typically of the order of 10-3. However, one can expect this term to
be smaller if the ions are collisional, in particular if y < vjj as less trapped pamcles can contribute to
SWKO A first estimate based on Ref. [8] suggests that the effective value of SWKo is modified as

ko /(1 +viry) or  Wko /[1+ (vir)2] (3)

As vjj= 104s1 and y= 3- 103 s, SWKOIU + (Viily)2) = 104 is still of the order of IS\RImhdI and has a
stabilizing effect. However as p ~ 102 and 0.5 wgjaita ~ 1073, it follows that Eq (1) is always
satisfied in TCV ohmic L-modes discharges, independent of the exact contribution of 5WKo

As Eq. (1) is satisfied, the ideal kink is stabilized by FLR and diamagnetic effects, but finite resistivity
enables a reconnecting mode to become unstable, namely the resistive internal kink, with a growth
rate given by:

S12/3 S-1/3 ! TA (4)
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where S is the Lundquist number and Ta the Alfvén time. If p; is larger than 3y, then it determines the
reconnection layer width and the growth rate of the internal kink in this *ion-kinetic" regime is:
204 7) 27 A&IT 117 617
B=(=—)" 6" S/ )
where t=T¢/T;. In Ref.[2], as pj > &y, in ITER, only the latter growth rate was considered. However
as in TCV pj can be either smaller or larger then dy, we have to take both into account, namely use:

Yeft = Max (Yp, tn)- (6)

Depending on the collisionality regime of the electrons and ions, and if the electrons are adiabatic or
isothermal, the stabilization of the mode yeft by diamagnetic effects enters in different ways in the
relevant dispersion relations [2, 8, 9, 10). As a general form one expects the mode to be stabilized if:

((Doﬂ mgge 0)*053 mgit:i)1/(oc1+a2+oc3+a4) > ¢t Yoff (7)
where Wxe. = Te.i L;,L;i / eBpy, Odiae;i = Te:i L;)L;i / eBp1. The coefficient c« also depends on
collisionality. In the collisionless limit one expects c«=1, while ¢« = (9/D)'/3 in the collisional limit'0,
where D = 0.3 Bg1 v miTe/meT; is the ratlo of the resistive time to the perpendicular ion momentum
diffusion time with Beq = 2pone1Te1/B1 As Bg1 is typically of the order of 1% and T¢/T; = 2, then c«
= 3-4 in the collisional limit. The exact form of Eq. (7) cannot be obtained from analytical dispersion
relation as experiments are never in an asymptotic limit, however we know from these works that
density and temperatures gradients of both species can play a role. Therefore, as a first step, we
propose the following condition for triggering a sawtooth crash:

Cx Yeff > ((Ddiae (Ddiai)”2 (8)

where we simply consider the electron and ion pressure gradients. A similar condition was successfully
used in TFTR to discriminate between sawtoothing and sawtooth-free discharges!?. As all the growth
rates of the lnternal k|nk mode obtained in different parameter regimes are proportional to sy, like
T ~ s1 or\(p sI |t follows that condition Eq. (8) can be rewritten for a given form of yeff as:

$1 > Scrit (9)

Therefore if Eq. (1) is satisfied, the sawtooth model specifies that the crash is triggered once the
shear at =1 exceeds a critical value s1¢rit determined by Egs. (8) and (6).

Once the crash condition Eq. (9) is satisfied, the q profile is relaxed according to Kadomtsev complete
reconnection model, as explained in Section 4.1 of Ref. [2]. In this way the profiles are modified up to
the mixing radius pmix and for simplicity the density and pressure profiles are flattened within pmix
while keeping the total particle and energy conserved. A partial relaxation model has also been
implemented in PRETOR [2] but has not yet been used in this study.

Iil. Results

The first step before simulating the sawtooth activity is to make sure that the profiles are correctly
modeled by the transport code. Indeed, as the crash criterion depends on the local values at the q = 1
surface and on some derivatives, it is important that the profiles are close to the experimental one
just before the crash. This is shown in Ref. [5] where for most of the cases both the temperature and
density standard deviations are within 10%-20%.
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As the exact form of Eq. (8) is not well defined at this stage, we have simulated all the shots with ¢«
as free parameters such as to fit the experimental sawtooth period within 30%. We see in Fig.1(a)
that we can simulate the sawtooth period over the wide range of parameters described above with a
reasonable variation of c«. The value of c« vs. elongation is shown in Fig.1(b). It shows that for most
of the cases we obtain the correct sawtooth period with c«=1.5. In a few cases at low Jedge the
predicted period is too small and a smaller c«=1 is needed. This shows that we can simulate the
experimental sawtooth period with a criterion as Eq. (9) for all the TCV ohmic L-modes discharges in
the range of parameters described above. We have also changed slightly the transport coefficients in
order to change the temperatures and densities profiles at the q=1 surface within the experimental
error bars. We had then to change accordingly the value of c« to obtain the same sawtooth period as
before. We obtained that the value of s1¢it is the same as before, thus the value of sy¢rit such as to
recover the experimental sawtooth evolution is a well-defined parameter. This shows in a different
way that Eq. (9) is the relevant criterion for triggering the sawtooth crash. It confirms the results of
Ref. [11] but in @ more detailed way as we simulated the whole sawtooth evolution.

In Fig. 2 we show the typical time evolution (a) of s1, and the critical shear obtained with et = s
S1critn, and Yeff = Yp, S1critp; and (b) of the q = 1 radius and Teo. There are typically two phases in
the evolution of the q profile. First the q = 1 radius evolves rapidly to a certain value close to the
value at the crash, as seen in Fig. 2(b). This is because the q profile is relatively flat after the crash
and therefore a small decrease of the q profile induces a large variation of p1. Then p1 is almost fixed
and the shear at q=1 starts to build up until it reaches sy¢rit. On the other hand sq¢rit usually
increases rapidly at the beginning as the profiles peak and then saturate. In this case the crash time is
well determined. Note that if we had only a partial reconnection such that the q profile is flat around
=1 after the crash, but qq is stili below one, then the first phase might be a bit shorter while the time
for the shear s1 to increase up to s1¢rit Would be similar. Therefore we would not expect much change.
However for some cases the time evolution of s1 and syt are very close because the confinement
time and the resistive time inside the q=1 surface are very similar. Then in these cases small changes
can change the sawtooth behavior and the period is not as well defined as it depends on the relaxation
model. This dependence needs further detailed studies.

In Fig. 2(b) we also show the time evolution of Tgg. Depending on the plasma parameters, its shape is
either triangular with a linear increase until the next crash or more saturated-like when the increase is
more rapid relatively to the sawtooth period and then saturates.

Once the sawtooth period is correctly simulated then both the sawtooth amplitude and the inversion
radius are relatively well predicted as is shown in Fig. 3. Therefore the current, q, density and
temperature profiles are consistent with the experimental measurements. This is true even for
inversion radius varying from 0.2 to 0.6 of the minor radius. Note that there is no correlation
experimentally between the inversion radius and the sawtooth period. This is also correctly simulated
with the model, even if we assume complete reconnection. It is due to the fact that the sawtooth
period depends on the relative time evolution of s1 and s¢rit, and therefore mainly on the local plasma
parameters.

This latter remark explains why the sawtooth activity is so much sensitive to electron cyclotron
frequency heating (ECRH) as shown in Ref. [12]. Indeed local heating can change both s1(t), by
changing the local resistive time and the current profile, and s1¢it(t) by changing the temperature
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gradients. Moreover it affects the q=1 radius. As a first check we have simulated a case with
0.5 MW of ECRH deposited over a radial width of 0.15 a. Changing the mean deposition radius from
p=0,03to 0.5 we see first that py/a = 0.44, 0.40 and 0.27 respectively. Then, in the first two
cases, Sicrit is relatively large, 0.35, because heating inside q =1 gives large gradients at q = 1.
Therefore long sawtooth periods are obtained, while heating outside p1 gives a very small sy¢it and
short sawtooth periods. This is in qualitative agreement with the experiment as sawtooth periods of
2 ms are observed when the heating is outside q = 1 and it increases rapidly to 7-8 ms when heating
near the q = 1 surface. However, heating closer to the magnetic axis decreases again the sawtooth
period, which needs a more detailed study to be fully understood.

IV. Conclusion

We have shown that the crash model, which predicts that if Eq. (6) is satisfied then the crash is
triggered when s1 > Sq¢rit, is in good agreement with all the TCV ohmic L-modes discharges with
820.1, gedge < 4.5 and arbitrary « and density. Indeed, using this criterion we are able to model
correctly the inversion radius, the sawtooth period and the crash amplitude. The value of sqgit
depends on the local plasma parameters and their derivatives at the q = 1 surface and on the actual
maximum growth rate, Eq. (7), as well as the specific diamagnetic effects. We have proposed a
model, Eq. (8), which can reproduce the sawtooth period over a wide range of parameters, inversion
radii and periods with a value of c« varying only between 1 and 2. The study gives confidence in the
model used in Ref. [2] to predict the ITER sawtooth period even though in this latter case another
term, including the alpha particles, is the main stabilizing term.

As we are able to follow the time evolution of the sawtooth ramp and crash, using self-consistent
density, temperature, current and q profile as well as toroidal MHD equilibria, we have shown that the
q =1 surface broadens relatively fast after the crash and then saturates. This is why for transport
analysis of TCV-like ohmic L-modes discharges it is sufficient to use the simple criterion:

s1> 02
as trigger condition. Indeed, choosing s1 small but not too small such that p1 has time to evolve to its
pre-crash value allows one to obtain correctly the inversion radius and the crash amplitude. Only the
sawtooth period is then not correctly modeled if the actual s1¢rit would be 0.3 or more for example.
However it only changes slightly the profile shapes, certainly within the experimental error bars. This
criterion is what has been used for the TCV transport simulations in Ref. [5).

Using this model we understand why and how the sawtooth activity is so sensitive to local ECRH12,
We have explained the sharp increase in sawtooth period when heating outside or near the g=1 radius.
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Abstract. Ion-Temperature-Gradient (ITG) modes are studied in straight stellarator
configurations with a global approach based on a time-evolution, Particle-In-Cell , finite
element formulation of the gyrokinetic equations. The global code GYGLES [1] has been
adapted to the helical symmetry and will also serve as a benchmark for a 3-D gyrokinetic
code now under development [2]. In this paper we consider a straight heliac configuration
characterized by virtually zero shear, elongated bean-shaped cross sections, and a helical
curvature of the magnetic axis. We study in particular the marginal stability points
and the transition from “slab-like” or “Trapped-lon-Mode” (TIM) to interchange-like
(“helical-ITG”) regimes for different Ky, LT and mode number values. The helical-ITG
has a large critical gradient, whereas the other modes have a stability behaviour that

critically depends on k) resonances and is strongly affected by VB drifts.

1 Introduction

As stellarators are designed with increasingly optimized neoclassical confinement proper-
ties, it is appropriate to study collective effects that may dominate the transport. Among
the candidates is turbulence related to micro-instabilities such as ITG modes, a process
thought responsible for anomalous transport in tokamaks. The issue is to determine
whether stellarators will suffer a comparable confinement degradation. -

The first step towards this goal is the linear stability analysis in the simpler geometry
that captures essential stellarator features, namely helically symmetric configurations.
As we shall see, the modes with lowest critical gradients are slab or TIMs for which the
ballooning approximation is inappropriate. Moreover, the configurations studied have no
shear. Therefore a global approach is the only possible one.

The first results of global ITGs in helical systems [3] were obtained for configurations
with a straight magnetic axis or a small magnetic axis curvature. In such cases the most
unstable modes were slab-like. In the present study we focus on heliacs that, because of
their magnetic axis curvature and short connection length, have very good ideal MHD
stability properties. The motivation here is not to study an existing configuration but to

identify the dominant physical and geometrical quantities that determine ITG stability.
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2 Model

We consider low frequency electrostatic perturbations for which the ion gyro-ordering can
be applied: kj/ky, pri/Leg, w/we are small. The electron response is assumed adiabatic
and the quasi-neutrality condition is applied. The basic equations are taken from [4]
and are subsequently linearized and written for helically symmetric configurations. The
helical invariance implies that any equilibrium scalar quantity can be written as a function
of r and { = ¢ — hz, where r,¢, z are the cylindrical coordinates and & is the helicity,
defining a helical period length L = 27 /h. By analogy with a real stellarator having Nper
field periods and a major radius Ry we have h = N,.,/Ry. We define a helical coordinate
system z',y’, 2 with 2’ = z cos(hz) + ysin(hz), y' = —zsin(hz) + y cos(hz).

The 2-D equilibrium magnetic field can be represented as B = Fu+ V1 x u, where 3
is the helical flux, F' = F(¢) and u = (hre,+e,)/(1+h*r?). In the following we consider

vacuum fields that are a superposition of longitudinal, azimuthal and helical fields:

P = %bohr2 —colnr — r Y biI(lhr) cos(l() F = b+ heo (1)
}

We define the magnetic coordinate system s, 8, z with s = \/(1/) — 10)/(¥a — %o) and 6 is
the angle to the z’ axis taken from the magnetic axis. We define yet another coordinate,
X, in which the magnetic field lines are straight:
h 2*B-Vz h (*B-Vz
§=— dé == de 2
=5 Jo B-Vo X=5) B-VE )

[Note that the rotational transform per helical period length is ¢ = 1/§+1.] The pertur-

bation of the potential ¢ is written as

é(x,1) = ¢(s,0,t) expli(mox(so, 8) + kz — wot)] (3)
and a similar phase extraction is applied to the perturbed distribution function f. The
axial wavenumber is k = hn /N, with z the ignorable coordinate. The frequency shift
wo can be chosen close to the expected mode frequency so as to possibly increase the
timestep, which is particularly useful when searching for modes with v << w. The phase
variation mey is applied to extract the modes with small Ky which are expected from
the gyro-ordering. In the x coordinate we can write the parallel wavenumber for a single

Fourier harmonic m as
n

B.,, m

By choosing mo >~ ~ng(so)/Nper, Where s is the expected radial localization of the mode,
¢ and f have a slow poloidal variation, thus allowing the study of high mode numbers
with an improvement in numerical performance by up to two orders of magnitude.

The numerical procedure follows similar lines as in [1]. The perturbed distribution f
is evolved along unperturbed trajectories in phase space (2, 3/, v, v1) and the potential

é is discretized with quadratic spline finite elements in (s, ).
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3 Results

We consider a straight heliac configuration (Fig.1) with the parameters A = 1 m™3,
bo=1T, co=06Tm, b =05T, by = —0.06 T, for which the magnetic surfaces have
elongated bean-shaped cross-sections. The configuration is characterized by a virtually
constant ¢ = —1.505. The average minor radius is @ ~ 0.61 m. The mod-B varies as
Binin/ Bmes = 0.65 and an average Lg ~ 1.9 m. The VB drifts are unfavourable on the
low-field-side and favourable on the high-field-side, similarly to the standard tokamak
case, but their poloidal dependence is markedly different, with stronger |VB | on the
favourable side than on the unfavourable side. This can have implications for the ITG

stability properties investigated in this paper. The nearly constant § implies that for a

o8} "~ -

0.6

02 04 06 08 1 12
v

Figure 1: Heliac configuration with v surfaces and |B| contours (dashed)

single poloidal Fourier component m in the straight-field-line coordinate y, the paral-
lel wavenumber, Eq.(4), is constant across the plasma cross-section. We shall see that
both slab-like ITGs and Trapped-Ion-Modes (TIM) have an almost pure m behaviour.
Alternatively, interchange modes (“helical-ITGs”) tend to localize poloidally in the un-
favourable VB drift region and their parallel wavenumber is determined not by Eq.(4)

but by the connection length:
h

Blint ¥ — 5
[Iyint qm ()

where 7,4 is the magnetic axis position. For the configuration considered in this paper
we have kyin: ~ 0.53 m™L.

We consider 7; profiles with a gradient region localized around s=0.7, Tjo=4 keV, and
vary the gradient length Ly. The density profile is chosen constant. The main physical
quantities determining the I'TG stability are Lz, k)|, k1 pr; and VB. lon Landau damping

provides stabilization when w/kjvy; approaches unity.
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Figure 2: Frequencies (top) and growth rates (bottom) for m = 12 (open squares) and

m = 18 (filled circles).
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Figure 3: Slab-ITG (left, a/Lt = 2.5), helical-ITG (middle, a/Ly = 6.7) for m = 18 and
Trapped-Ion-Mode (right, a/Ly = 2) for m = 6.

One of the effects of VB is to destabilize the interchange-like helical-ITG. An estimate

can be derived from a fluid dispersion relation [5] for the transition from slab-like to

helical-ITG:
kepri > kyint\/ LBLT (6)

which for our parameters corresponds to m > 48+/Lr. We have verified it for a number
of m and Lt values. Fig.2 shows how the most unstable mode switches from the slab-
ITG to the helical-ITG: the frequency jumps at a/Lr &~ 4 for m = 18 and at a/Ly ~ 8
for m = 12. The mode structure shows some change: the slab-like ITG (Fig3, left) has
a nearly constant amplitude in the poloidal direction, whereas the helical-ITG (Fig.3,



- 59 _

middle) has an amplitude modulation. The maximum amplitude is not in the most
unfavourable V B drift region, but at a shifted position in the ion diamagnetic direction
(clockwise direction on Fig.3). Another indication characterizing the type of mode is
that the wave-particle power transfer, j- E, is exclusively given by v) £ for the slab-ITG
of Fig.3 (left) whereas v, - E contributes 35% to the instability drive for the helical-ITG
of Fig.3 (middle). The behaviour of the growth rate (Fig.2) shows some edging up at
the transition point. The critical gradient is (a/LT)ei &~ 1 — 1.5. This value depends
sensitively on the value of &, as the following will show.

But VB has another effect which is to create trapped particles. When the mode fre-
quency w is smaller than the average ion bounce frequency, w;, TIMs can be destabilized
by the helical precessional drift of trapped ions. For our case we have w, &~ 10° s, In
order to obtain w < wjy we consider lower mode numbers so as not to be in the helical-ITG
regime and also consider low k| ,,,. (To vary kym we vary n/Npe ; in a real stellarator n
must be integer and a continuous variation of |, can be made by changing ¢, which we
chose not to do here for the sake of simplicity). Fig.3 (right) shows the most unstable
mode for n/Npe, = 3.95, a/Lr = 2, which has kj,, = .02 for the dominant Fourier com-
ponent m = 6. This mode is a TIM. A naive expectation is that TIMs, since destabilized
by trapped ions, localize in the low-field-side region where these particles concentrate.
Fig. 3 (right) shows this is not the case. Nothing in the wave structure differentiates a
TIM from a slab-ITG. To verify that the mode in Fig.3 (right) is indeed destabilized by
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Figure 4: Left: growth rates of TIM (a), TIM with inversed VB (b) and slab-ITG with
VB =0 (c). Right: Critical gradients versus parallel wavenumber for m = 6.

trapped ions, we have recomputed the same case but enforcing dv/dt = 0 thus artifi-
cially making all particles passing; the instability then disappears. Keeping dv/dt # 0
and varying a/L7 we obtain Fig.4 (curve a) which shows a remarkable behaviour: the
growth rate increases with a/Lt above a critical value (a/ Lt)erin = 0.77, then levels off

and goes to complete stability at (a/Lr)si2 & 6, exhibiting therefore a second stable
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region. To understand this, we have rerun the same case but with artificially inverted
VB. We obtain curve (b) on Fig.4, which shows a much more unstable mode everywhere
and, although some levelling-off of v is observed at high a/Lr, there is no second-stable
region. The mode (b) in Fig.4 is also a TIM. A comparison of (a) and (b) shows that
the V B drifts of the real configuration are favourable on average. A third case has been
made by artificially setting VB = 0 in the evolution equations. We obtain then curve (c)
in Fig.4, which is a slab-ITG and does not show a second stable region. The slab-ITG
of Fig.4(c) is unstable, whereas the slab-ITG obtained by enforcing dv|/dt = 0 but keep-
ing the drifts in particle trajectories is stable; this demonstrates that finite orbit width
(FOW) is stabilizing.

The puzzling result of Fig.4(a) showing a stabilization with increased 7; gradients
can now be understood. As a/Lr increases, the real frequency (not shown) increases
and approaches wy, therefore the trapped ion drive decreases. The favourable FOW and
average V B are still there and provide full second-stabilization. And m is too small to
be in the helical-ITG regime (see Eq.(5)).

To further study the region of parameters that have k around zero, we show in Fig.4
the critical gradients plotted as a function of kj,,. The first critical gradient increases
with kjjm. The second-stable region of the TIM exists only for a small range of small

Ki|m values.

="

Figure 5: Growth rates of helical-ITGs for m=24 (*), m=80 (open circles) and m=36
(filled diamonds)

For high mode numbers the frequency is always above the bounce frequency and when
the criterion of Eq.(6) is satisfied we are in the helical-ITG regime. We have computed
the stability behaviour of the helical-ITG for a range of Lt and m values. Note that m
refers in this case only to the middle of the poloidal Fourier spectrum of the mode. The
helical-ITG typically contains several m’s that are centered around m = —(n/N,.,)d.
The growth rates for m = 24,30,36 versus a/Lr are plotted in Fig.5. The critical



- 61 -

gradient of the helical-ITG is (a/L7)eris = 3, which compares very favourably with the
typical tokamak result: (R/Lr).is = 4 — 5, which would give, for an aspect ratio 3,
(a/LT)crit ~ 1.5.

4 Conclusion

The first study of ITG global stability in a straight heliac has been presented. The
intricate effects of VB have been brought into evidence: trapped ions are destabilizing,
FOW is stabilizing, and while VB allows the helical-ITG to be destabilized its critical
gradient is rather high. The most dangerous mode is therefore the TIM that is found
unstable down to very small gradients for low values of k). The sensitivity of the
critical gradient to k|, implies that the stability behaviour will resonantly depend on
the value of the rotational transform of the device. We have found that the radial extent
of slab-ITGs, TIMs and helical-ITGs are the same, whereas in tokamaks with shear the
slab-ITGs tend to be very localized in a thin radial region around ¢ = m/n (where &y,
is small enough) and therefore are not expected to contribute much to transport. We
stress also that most of the results presented in this paper could not be obtained with a
local or ballooning calculation: a global approach is necessary. More work needs to be
done to assess whether these properties found in straight systems will survive in a real
3-D configuration [2]. Finite 3, trapped-electrons and electromagnetic effects might also
change the picture.
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