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Abstract

Methods previously developed for a cylindrical system are generalized to a
tokamak plasma for solving the full 2-dimensional eigenvalue problem of elec-
trostatic microinstabilities in the frame of gyrokinetik theory. By solving the
spectral problem in a special Fourier space adapted to the curved geometry,
orbit width as well as Larmor radius can be kept to all orders. For a first nu-
merical implementation, a large aspect ratio plasma with circular concentric
magnetic surfaces is considered. A root finding algorithm for identifying the
eigenfrequencies, based on a higher order Nyquist method, enables straight-
forward implementation on a parallel computer. Illustrative results of ITG
(ion temperature gradient) -related instabilities are presented. These include
scaling studies of the radial width, toroidicity and magnetic shear scans, as

well as the effects of non-adiabatic trapped electron dynamics.
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I. INTRODUCTION

The work presented in this paper is the generalization and application to a toroidal
plasma of methods first developed for a cylindrical system [1] for solving the eigenvalue
problem of microinstabilities in the frame of gyrokinetic theory. While most previous linear
calculations have been carried out using the lowest order ballooning approximation [2]- local
to a magnetic surface and limited to perturbations with high toroidal wave numbers- the
approach presented here solves the full two-dimensional eigenmode structure in the poloidal
plane. In particular, this allows one to cover the entire range from low to high toroidal
wave numbers and to compute the radial extent of the instabilities, which provides valuable
estimates for the radial correlation length.

The only previously published results from true global, eigenvalue studies were obtained
using a code initially developed by Marchand, Tang and Rewoldt [3-5], which is based on
a second order expansion with respect to the banana width and contains no finite Larmor
radius (FLR) effects. This expansion leads to the presence of spurious modes in the spectra
and therefore to the difficult identification of physical eigenmodes. The derivation presented
here, based on solving the eigenvalue problem in a special Fourier space adapted to the
toroidal geometry of the system, enables to keep orbit width as well as the Larmor radius
to all orders and thus avoids the problem of non-physical modes. This formulation therefore
stays consistent up to high toroidal wave numbers, i.e. short wavelengths.

Simultaneously to the development of this new eigenvalue code, another global, linear
code was written, based on a time evolution, particle in cell (PIC) method [6,7]. These
two complementary approaches have already allowed extensive benchmarking [8]. More
comparisons will be presented in this paper.

In practice, solving the gyrokinetic equation (GKE) in the guiding center (GC) phase
space of a tokamak plasma is numerically a costly process and therefore, possible imple-
mentation on a parallel computer is of great interest. For this, PIC codes are particularly

adapted. It is shown here how an efficient root finding method [9], applied for identifying



the spectra of the system, also allows for a straightforward implementation of an eigenvalue
code on a parallel machine.

In fact, in the past years, a limited number of global, non-linear PIC codes have been
developed [10,11]. The main goal being to simulate anomalous transport in the turbulent
state, these non-linear computations tend to be less accurate in the linear phase of the
evolution. This defines a particularly interesting field for applying linear codes: determining
global marginal stability over a wide parameter range [12].

In Sec.IT a general derivation is given for the eigenvalue equation in a toroidal, axisym-
metric system. At the present state, these results have been applied for numerical imple-
mentation to a large aspect ratio, low # plasma. The extensive modeling carried out in this
simplified geometry is discussed in detail in Sec.III. Section IV provides some details on the
numerical methods employed. Illustrative results are presented in Sec.V , including scans
obtained by varying different parameters, such as the toroidal wave number, toroidicity and
the magnetic shear. Scaling studies of the radial width, as well as non-adiabatic trapped
electron effects are also discussed. More results can be found in reference [13]. Finally,

conclusions are drawn in Sec. VL.

II. DERIVATION FOR A GENERAL AXISYMMETRIC SYSTEM
A. Starting Equations

The dynamics of each species is described by the GKE, appropriate for the low frequency

microinstabilities. This equation, linearized for electrostatic perturbations, is given by [14]:

~ 0 0 |~ .q N
9 (R,E,\0;t) = [—B—E+ Yao El g= --zT-FM(w —w*) < ¢ >y, (1)

E u.t.GC
where D/Dt|u.t.GC stands for the total time derivative along the unperturbed trajectories

of the GC. Through the gyro-averaged potential < ¢ >,, the GKE takes into account the

Larmor radius to all orders.



For electrostatic microinstabilities, the system of equations may be closed by invoking
quasineutrality:

Z ;q (?’w) =0, (2)

species

where ﬁq is the fluctuating part of the charge density for a given species.

In the above relations and in the following, we use the standard notations: w the fre-
quency of the perturbation, 5=; +q¢F /T the non-adiabatic part of the fluctuating dis-
tribution function }, Fuy = Nexp(—€/vip)?/(27v3,)%/? the local Maxwellian distribution of
equilibrium, q the electric charge, M the mass of the particle, @ = ¢B/M the cyclotron
frequency, vy = \/1—’71—\/1_ the thermal velocity, ¢ the electrostatic potential of the pertur-
bation, (?, ?}) the position of the particle in phase space, ]_i)’—_-? +(5) X Eﬁ)/ﬂ the guiding
center position, € = v?/2 the kinetic energy, u = v2 /2B the magnetic moment, A = Bou/E
the “pitch-angle” variable, o = sign(vy), Vao= ) éﬂ + Uy the GC velocity divided into
parallel motion and magnetic drifts Ug= (1/9) é-ﬁ X [(vﬁ_/2 + v|2|) Vin B+ vﬁ(uo/BZ)Vp],
p the plasma pressure. In an axisymmetric system, the magnetic field is of the form
Z)?: Vi x Vo + rB,Vp, (r,¢,z) being the cylindrical coordinates and 2 the poloidal
magnetic flux. The amplitude of the magnetic field on the magnetic axis is given by By.
Besides the parallel unit vector e_)“=§ /B, one defines ¢, = Vi /|Vi| and Ez=g|)| X e (see
Fig.1). In general V, =e, -V. Density N (4) and temperature T'() are flux functions,
so that the diamagnetic drift frequency operator is given by w* = (T'//qB)V,In Far(—1V,),
with VpIn Fyy = Vo, In N1+ n(€/v}, —3/2)] and p = dInT/dIn N.

B. Solution to the GKE

Fourier representation appears naturally when solving the GKE, as it allows to perform

explicitly integrations of the unknown potential ¢. Indeed, by defining



one can for instance carry out gyroaveraging:

— —+
’U><e||

)

== A 1 2r .
< ¢ >, =/d-]g e’k'Rqﬁ(Z)%/o do exp(—zz-
k = =
= [dk Jo( g’l)e’k"*%(%’),

where a is the gyroangle and Jy the zero order Bessel function , containing FLR effects to all

orders. As discussed in reference [1], it is practical to consider a wave decomposition more
adapted to the geometry of the system than the standard plane wave representation. Thus,
in this case, a toroidal wave decomposition is chosen, so that in fact one must read here:

fd EeFT () — 3 qAﬁ(k,m) expi(kyp + my + nyp), (3)

(kym)
with (¢, x, ) the magnetic coordinate system, which has been completed by a generalized
poloidal angle x, increasing by 27 over one poloidal rotation (see Fig.1). As the stationary
state 1s axisymmetric, the toroidal wave number n can be fixed. However, the perturbation
is generally a superposition of wave components with different sets of radial and poloidal
wave numbers. Furthermore, as the mode structures are localized radially in an interval
[¢1,%4], & Fourier series instead of a Fourier transform is also considered in this direction.
Thus, the radial wave number takes the discrete values k = k27w /A, where k is an integer

and Ay = |¢, — 11|. Note that for a given wave component, the wave vector z is now local:
_)
k= Vi +mVx+nVe. (4)

A problem arising with representation (3), when gyroaveraging near the magnetic axis, is
pointed out and extensively discussed in reference [1]. To lighten notations, the symbol for
plane wave representation will often be kept further on, although it will actually stand for
the right hand side of (3).

The essential role of Fourier representation also appears when inverting the GKE for g

by integrating along the unperturbed GC trajectories:
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having assumed Im w > 0, in agreement with causality, which ensures convergence of the
time integral.

The GC trajectories }—2)’ (t') are given by the following differential equations and initial
conditions:

-
d R
at’

- -+
=Toc (R, E,\0), R (¢ =t) =R,

where (€, \) are invariants and o changes its sign at the turning points in the case of trapped
particles. As the system is axisymmetric, this differential equation must essentially be solved
in the poloidal plane. The unperturbed system being time independent, the origin of time
can be chosen arbitrarily when integrating along a given trajectory. In the following, this
origin will be fixed as the particle passes x = 0, assuming that y has been defined such
that | B (¥,X = 0)] = Bnin(¢), where Bpin(¥) (resp. Bpas(¥)) is the minimum (resp.
maximum) of the magnetic field on a fixed magnetic surface 9 =const. With this definition,
all particles, even the deeply trapped, pass at least one point in the poloidal plane where
x = 0. Let us also define ¢y = ¢'(t' = 0), the magnetic surface on which the GC is located
at ¢ =0.

The time integral in (5) can somewhat be reduced, first by noting that the unperturbed
distribution function Fj is invariant along the unperturbed trajectories. Furthermore, let
us choose x so that (3, x, ) becomes a straight field-line coordinate system [15]. For a wave

component with fixed poloidal wave number m, the operator w* then becomes a function of

Y and €:

W = T(d))alnFM("b?g) m
q W  g()

where ¢,(7) is the safety factor profile. The variation of w* over the unperturbed trajectories,
of order 4%, i.e. due to drifts, can therefore be neglected to lowest order in the gyro-ordering
parameter ¢ = Az /a (A is the ion Larmor radius and @ a characteristic length of equilibrium
such as the minor radius of the plasma). In the same way, temperature T'(¢)) alone is

considered invariant. Finally, the argument k v,/ of the Bessel function varies on the
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order of the inverse aspect ratio and in practice a ¢-surface averaged value < k v, [Q >y is

considered. Thus, relation (5) becomes:

~___q_ - kJ_’UJ_ 57:-1'%’\ =, o
G=—Z Py [T Jo(ZE2)eEE § (R)iw - )P, (6)
The key term in (6) is the propagator:
t -
’P(F%), Z, E N\ ow) = / dt' expi [Z (R — ﬁ) —w(t' =), (7)

which is the time integral of the phase factor of a given wave component.
Let us further develop P in the case of a toroidal system, so that the resonances it
contains appear explicitly. This is particularly useful for numerical implementation, as it

allows to discard all but the leading contributions. To start, note that in (7) the phase

— ! —
7{:) (R, - R) = dt” -]—C) * I))G’C' (R,a 8) )\,0'), (8)

T
is usually not periodic in time. Indeed, although the axisymmetry of the system leads to a
periodic trajectory in the poloidal plane, the toroidal motion, being the integral of a periodic

function, in general contains a secular term:
1y 1t tm " = ;
Pt +m) =)= [ "V Tgo=<t> 7,
tl

where 7, is the time period in the poloidal plane and <¥> the average toroidal angular
velocity, corresponding to the precessional drift <¢>; in the case of trapped particles. In
fact, x'(t') also contains a secular term for trajectories enclosing the magnetic axis, which
however does not affect the periodicity of the phase factor exp: [Z (ﬁ’ - ﬁ)] itself:

t'+7
X't +1)—-xX@)= / dt"Vx- Vo= £2m, if magnetic axis is encircled.
tl

Thus, by subtracting the toroidal secular term in the phase, the following function becomes

periodic and can therefore be decomposed into a Fourier series [16]:

ot o . iy )
expz/ dt'(k-Vgo —n<®>) = Y Cpexpipw,t
0 pm—eo

= (9)

1 Ty t .
C,(k, m; %0, €,2(,0)) = ?/o dtexpi[/o dt'(k - Teo —n <90>)—pw,,t],
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where w, = 2 /7, is the frequency of the motion in the poloidal plane, corresponding to the
transit frequency w; (resp. bounce frequency w;) in the case of circulating (resp. trapped)
particles. For circulating particles, the coefficients C;, are still function of o = sign(y)), for
trapped particles however both o = +1 are covered on the same trajectory. With the above

decomposition, the time integration in (7) can be carried out analytically:

t 1
P =exp [—i/o dt”(—]; Veo —w)] / dt'> " Cpexpi(pw, +n <> —w)t’
—o o

t - . +o0 O etpwit
=exp|—1 [ dt"(k - vgo —n <¥> ] £ - . 10
P [ 0 ( G0 ) p__.z_:oo i(pw, +n <P> —w) (10)

The possible resonances relative to the basic frequency w, and its harmonics now appear
explicitly.

The perturbed charge density 7)4 is evaluated from }: —qdFu/T+ g by integrating
over velocity space, after transforming back to particle variables, which basically consists in

replacing exp ¢ 2?2 in Eq.(6) by exp1 7; . [? +(’l_1) X gﬁ)/ﬂ]

Py (7) = —N—:,?i [¢+/dk &7 B /d v Jo( km FWMz(w w )73]. (11)

In (11) the gyroangle integration has again been performed, providing a second Bessel func-

tion Jo, so that [d ¥ stands for

/d v=2r /0+oo vidv, -/-‘::0 d?)” =2 Bé?) Z /+00 EdE ‘/(;BO/B(-;) —G-li (12)

0 g=41Y0 lU”l

The quasineutrality relation (2), which leads to the final eigenvalue equation, is ultimately
solved in the special toroidal Fourier representation defined in (3). The perturbed charge

density 5q is therefore projected on expi }3 . ?, giving:
Py (B) = /d ek T B (7 /dk' MR, F) 6 (1), (13)
the kernel of this integral relation being given by:

- = o N kv,  F '
l —z(k k)r q 2 M R
M(k, k") /dre ( T)[l-l—/d J§( Q)N(w wIP|. (14)




- -
Concerning notations, k stands for the set of mode numbers (k, m,n), while &’ stands for the

, -+
set (k',m’,n). All terms tagged with a prime, such as w*, are evaluated for k. Furthermore,

in (14), fd T symbolically represents:

/d?

with 77! = V¢ - (Vx x V) the Jacobian of the magnetic coordinate system.

_1_
Ay

"//u ™ m
[ dx [ dpg,
3 -7 —Tr

A certain number of operations are still carried out, allowing to cast relation (14) into
an elegant form. When performing the integral [ d r fd v over phase space to evaluate the

- =
non-adiabatic contribution to M(k, k'), one starts by interchanging the integrals relative to

x and A:
™ Bo/B(’(ﬁ, ) B /Bmin("/’) %
/dX/ di=/° dA/de,
- 0 0 X1
with
=47 if 0<)i< —B—O— : circulating particles
Xiu Bmax(Q/J) : gp
B('I:/)a Xl u) 1 . 0 B )
— e = if <A< —— : trapped particles.
BO /\ Bma,z(d)) m’m(¢) PP P

Then, the following change of variables is carried out:

(%, x) ¢ (o, 1), (15)

which, for fixed (€, 1), is based on the above defined trajectories:

W0, t) = Yo+ [ 4"V Tao= o+ O(e), (16)
x (1o, t) = /dt Vy: Vo= — /dt” AL + O(e). (17)

To lowest order in the gyro-ordering parameter ¢, the Jacobian of transformation (15) is

therefore given by:

D(s, x)

Wix = 'D(«po,t)

_yyl
‘dwodt = g diodt.

This leads to the relation:



E/XI dy = Z/ Ivnl

o=z1 o=t1
where 3°C_,, is only carried out for circulating particles. In fact, in the same way as (6)
was established, the difference between 3 and v, of order O(¢), is only taken into account
in the phase factor and to lighten notations, 1 is ultimately replaced again by . In this

way, one finally obtains:

— — 1 , Nq2 1 - . ,
M ! =M m).(kmt) = —— d _’(”’ —r' Yo [__ —i(m-m/)x
1_33(,;/0 e | i a2 ) 2w — ) x (18)
OT:lt exp {—z /dt” &V + (m —m')Vx]- vGC} 'P]
1 N
—_ —i(k—k")Y q [ i(m—m')x
=%/, d¢ ( ) / Jdye™ + (19)

Bo/Bmin +o0 *—) _7
E/ de et —o) [ gy, 3 S ]

o==%1 p=—00 P + n <90> )

having used relation (10) for P and definition (9) for the coefficients C,. The notation *

~stands for the complex conjugate.

C. Eigenvalue equation in Fourier representation

The quasineutrality equation constitutes the actual eigenvalue equation. Written in

Fourier representation, equation (2) reads:

A
~ -
5 P (Row) = X M) 63=0, (20)
species Py
where Mt is the sum over all species of contributions of the form (19):
M= Y M.
species

Relation (20) is not a standard eigenvalue problem, as M**(w) is an intricate function of w.

One can nonetheless always write the characteristic equation for the eigenfrequencies:
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det M**(w) = 0, (21)

det M** being the determinant of the matrix.

The main advantage of solving the eigenvalue equation in Fourier representation, lies
in the fact that there is no singularity to be integrated, as the one which appears when
solving the integral eigenvalue equation obtained in configuration space. This is related to
the fact that in Fourier representation, the system is already naturally discretized by the

wave numbers (k,m) taking integer values. More details to this point are given in reference

[1].

III. LARGE ASPECT RATIO TOKAMAK

For numerical implementation, the above relations have been applied to a large aspect

ratio tokamak. In this case, the plasma is confined by a magnetic field of the form:

s R [

B= BO? <_ Rqs es + e<p> 3 (22)
where R is the major radius and g,(p) an arbitrary safety factor profile. The standard
toroidal coordinates (p,0, ) are considered here, which in this large aspect ratio configura-

tion define a straight field line system. For a fixed toroidal wave component, the local wave

vector (4) is now given by
-—}
k:: kp 6—; +k9 ?9 +k<p e_:o,

where k, = k2m/Ap, k¢ = m/p and k, = n/R, Ap = |p. — pi| being the width of the radial
interval {py, py] considered.

Applying the large aspect ratio approximation, only lowest order non-vanishing terms
with respect to the inverse aspect ratio A™! = p/R are retained. In this way, together
with a set of other approximations, the large aspect ratio geometry allows one to push the
analytical derivation further than in a general tokamak geometry and therefore leads to the

simplest possible equations for a first numerical implementation.
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A convenient parameter for the subsequent expressions, especially when treating trapped
particles, is given by

1 — ABpnin/Bo

X=—a1

(23)

allowing one, as A, to classify the two sub-groups of particles:

B
circulating: 0<A< 2 =1<X< +00,
By By By . o0
t d: A< — 2 _
rappe Bma.:l:< < B <Bmm<=>0<s1n 2<X<1,

with Bragmin = Bo(l £ A™!) and B = By(1 — A~ cos 6) the magnetic field at the point of
interest (p, ).

In the following, contributions of the form (19) are derived successively for circulating
lons, trapped ions and trapped electrons. To lighten notations, subscripts characterizing

physical quantities of different species are usually omitted.

A. Circulating ions

For this fraction of particles, the modulation of v and v, along a given trajectory, due
to the variation of | B |, is neglected, so that in fact all particles are approximated as highly
passing. The only toroidal effect which is retained are the GC drifts, which for the low

pressure equilibrium defined above are vertical:

- - 1 'Ui 21 =2
V= Vg, €,= ﬁ 7—|—v“ €, .

In the absence of drifts, the motion parallel to the magnetic field leads to a circular trajectory
in the poloidal plane:
p'(t') = p = const, | (24)
0'(t") = —wyt', (25)
with w; = v/ Rq, the transit frequency. Drifts are then taken into account iteratively by

integrating their contribution along the lowest order trajectory (25) when evaluating the

phase (8):

12



fo A E Ve = kot + /0 U T T Koyt — /O " dt'k va, cos(0 + )
= kot + ¢ [sin(6' + 3;) — sin B¢], (26)
having used
k, = —(k,sinf + kg cos 0) = —k cos(8 + ),
and the definitions:
ke

cos Bi(k) = — and sin,@t(',:k-;)) = — p

z(k) = kLvgs jwr,
Pt
4 kJ_‘

The component of z parallel and perpendicular to the magnetic field are approximated by

k| = (ngs — m)/Rys, ki = \/k2+ K.

From (26) one obtains <¥>= v/ R, so that the Fourier coefficients of the harmonic decom-

position (9) become:

1 . . .
Colk,m; p,v),vL) = :t'[) dtexp it { —mwt + ¢ [sin(—wit + B;) — sin B] — pw;t}

= J_(p+m)(z¢) exp i [ki}jz —(p+ m)ﬁt] ; (27)

where J stands again for the Bessel function.

Inserting (27) into (19) provides the contribution to the eigenvalue equation from circu-

lating ions:

. 1 Pu ik k! RQS qu
Mgiredons _/ doe i(kp kL)p (_-—-——— o 5m m! 1
(), (K.m) = Ay J,, p By, T [odm,
RIS d 0 _Nf.”_(w —w*)JE(zh) % (28)
+Z°:° I (o) (£0) I (pmy () PP =)
p=-00 (p + nqs)wt el ,

having used J = Rg,/By and the notation é,,,, for the Kronecker relation as well as

zr = k1vy/Q. The adiabatic term in (28) has been weighted by the fraction «; of circulating

ions.
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Neglecting all drifts in transformation (15), applied when going from (18) to (19), corre-
- -
sponds to replacing 3; = ﬁt(Z) by B, = Bi(k') as well as z; = xt(Z) by z; = z4(k’) in (28),

leading to an even simpler relation:

irc. 1 fpu il Rq, N¢*
Mczr;;zon.z = — doe i(kp kP)P (____";____ o 5m i
(em) (ki) = A | 4P B, T ) lom
a1 F. , 2 Jp(@) T ipmmamn (x1)
i(m—m )ﬁt d - M( Lk )JZ( ! p\Lt)Y(p m+m/ Y\ Ly 29
€ V—(w —w X ,
circ. o(ez) pgoo kl"v” — pw; — W (29)

having also carried out the transformation p — —(p+ m’). In the approximation of highly
passing ions, it is practical to come back to the velocity variables (v,vL). The magnetic
surface-average boundary condition (evaluated at § = 47/2) for circulating particles in

velocity space is then given by:

V| > \/Bmaz/Bo—1 vy : circulating.

Concerning the velocity dependence of the different terms in (29), let us recall that Fas ~
exp—(vﬁ +v2)/2, w* ~ 1+ (v + vﬁ —3)/2, x, ~ vy, @~ (V3/2 + vﬁ)/v” and w; ~ V).
Thus, the resonant denominator is not a function of v, , so that the integrals with respect
to this variable can be precalculated numerically, independently of the unknown frequency

w. In terms of the normalized velocity V=10 /v, these integrals are of the form:

. ~ V"/\/A_1 . _y2 ~ .
I\J/L(P, kJ—’v“’p’p,) = /0 dV_LVi‘H-le vl/zjg(k-l- VL)Jp(mt)JP'(xt)i' 7=0,1,
with z;= kt”q (? + vﬁ) and  ki= kiv,/.

The resonant denominators are however function of v|,, so that the integral with respect
to this variable must be recalculated numerically for each frequency w. The final form for

numerical implementation therefore reads:

= Ap Bo T o Jo

> {w—wi [1+n(d =3)2]} B}, (0.7) = Ry, (.7) /2
kl’lvthv” — pwi — w

Lo u . ‘ 2 . Nt +oo _
M(clzt“;l-go&sl’ml) -—1— ’ dpe‘“(kp"“p)f’ (——%—Nq ) [at(sm,m' 4 gilm—m )ﬁt-—l,_ dV||€ v|2|/2><

» (30)

p=—co p'=p—m+m'

having used the notation wy = (Tky/qB)dIn N/dp.
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B. Trapped ions

.4
While | B | had been considered flat in the case of circulating ions, it is approximated
by a harmonic well in the case of trapped ions, i.e. | B | is expanded to second order around

0 = 0, where the field is minimum:
—11
B~ B, + BoA 5«9 .

In other terms, all trapped ions are approximated as deeply trapped. Thus, the spirit of
the following derivation is to assume X « 1 (see definition (23)), the final expression being
then applied for all values of X: 0 < X < 1. As for the barely passing particles in the highly
passing approximation, the barely trapped particles are not described correctly with this
model. However, the effect of these marginal particles should not be dominant, this will be
confirmed by the numerical results in section V.

The lowest order motion along the magnetic field is easily obtained starting from the

conservation of kinetic energy:

1 1 do 1
E = -2— ’U|2| + B,LL ~ 5 (Rqsgg)z + (Bmm + ByA 1—2'02) 1y
leading to
E(1 = ABpin/ Bo) 2y 1,d0, 1 ,
(Ra.)? _2wa-2(dt) +2wb0, (31)

having used A >~ (Bo/Bmin )(1 —2A7 X B/ Bpin )+ O(X?) and the expression for the bounce

frequency:

VA-LE
Rq,

wy =

By analogy with the energy conservation of a harmonic oscillator, one can immediately

establish from (31) the lowest order motion along 8 for deeply trapped particles:
p'(t") = p = const, (32)
0'(t’) = 01, sin(wbt'), (33)

15



with the turning point angle being given by
0y = 2vX.

The radial motion, due to drifts, is again evaluated iteratively by integration along the lowest

order trajectory (33):

tf t e
") — ol (t = — dt" s — _/ " gin 6" , = — / " . "
p'(t) —p'(t=0) A Vo Vgo A dt" sin 8" vy ar dt" 6y sin wyt

wpt!

= pp[cos(wpt’) — 1] = —2p, sinz(—%—), (34)
having applied E; . E:,——- —sinf® ~ —0 as well as vq, >~ £/QR and using the relation for the
half banana width:

2q; |EX
m=9\a

The motion in the toroidal direction is the superposition of the oscillation along the magnetic

field line and the precessional drift <@ >;:
¢ .
gol(t,) - sol(t, = 0) = /0 dt”V(‘p 3GC= —qsﬁ’(t')-i- <90>b t/. (35)

The toroidal precessional drift is the combined effect of the parallel motion along the mag-
netic field line and the vertical drifts v Therefore, to obtain <¥>}, one cannot proceed
iteratively, as these two motions must be treated simultaneously. The derivation of <¥>,

for the large aspect ratio geometry considered here, is given in Ref. [17]:

<p>y = — an G, (36)
G(p,X):4)\{§ [(X_1)+£%]+%[£—g%—%]}, (37)

where K(X) and E(X) are the complete elliptic integrals of the first and second kind
respectively (using definitions from Ref. [18]) and 5= dln gs/d1n pis the magnetic shear.
Relation (37) for the factor G is valid for 0 < X < 1. Instead of taking the deeply trapped
limit X < 1, a single X-averaged value < G >x for each magnetic surface p is considered.

The advantage of this procedure is twofold. First, as will be shown, it enables to perform
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part of the final velocity integrals analytically. Second, it allows one to take into account the
contribution of both, the deeply and less deeply trapped particles, whose toroidal drift tend
to be in opposite directions. In this respect, the modeling goes somewhat beyond the deeply
trapped particle approximation. The average of G is taken at 6 = 0, the point reached by

all trapped particles:

-1
<G>y (p)=<td3vFM> td3'UFMG
rap. rap.
: -1 1 2
B A X _G(p, X), (38)
BO \/]- - Bmin/Bma:c 0 \/1 - )‘Bmin/BO

having used Rel.(12) together with d\/dX = ~2A~'A%. The above integral is ultimately

evaluated numerically.

The full phase factor is obtained by combining relations(33), (34) and (35):

t .
/ dt’ Z -Veo = (m — ng,)0y sinwyt + kypp(coswpt — 1) +n <P>y ¢
0

= xp sin(wpt + ﬂb) —k,pp+n <P>p t,

with

zo(k) = \/(m — ngs)20% + (k,p5)?,

_),

k
py=monele 0 Gn ) = B
Ty Tp

The Fourier coefficients (9) of the harmonic decomposition can now be evaluated:

Cp(k,m;p, €, X) / dt expi [zp sin(wyt + B) — kpps — pwyt]

= () expi(pfs — ko). (39)
Inserting (39) into (19) gives the contribution to the eigénvalue equation from trapped ions:

1 Rq, N
Moy oty = " dpemithek )"( e ) [t o mi+

Ap 141 Bo T
-1 +00 ,
[2A / dE\/_ 5/”th(w—w* VI (]) x
+00 1 12 (Bo—By)
/ ix Y To(@s) Jp(2p) PR (40)
p__oo n <‘P>b —PpWp —
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having taken the approximation x; = k;v/2€/Q, which is justified for trapped particles and
transformed p — —p. In (40), the adiabatic term has been weighted by the fraction a; of
trapped particles (naturally o; + oy, = 1). Considering in (40), as already discussed above,

an X-averaged relation for <¥>y, the integrals with respect to X reduce to:

~ o~

[X(:Eba T ap) = ‘/01 dXJP(‘rb)‘]P(xz) = </01 dXJP(\/_X gb)JP(\/X— “gb,)a

with

ak,\? €
zy (k,m;p,€) = 2J (m —ng,)® + (—Q’i) e

These integrals can be carried out analytically [19]:

~ ~ ~ ! ~ ! ~ ~ !
~ o~ xp Jp_1(xp)p(xp )= xp Jp(xp)Jp—1(Tp . ~T
Ix (85 p) = 272 1(@5) J( f,l)z v p(T6)Jp-1(y) A
Tp — Tp

~ ~ ~ ! ~

[X(wb,:cb ,p) = JZ(:CN(,) — Jp—l(:gb)‘]p+1($b) it Tp =Tp .

Note however that the resonant denominators remain functions of £, as wy ~ v/€ and <@>y~

€. The integrals with respect to this variable must therefore be recalculated numerically for

each frequency w. The final form for numerical implementation thus reads:
; 1 fpu ~ ) Rg, N¢? [2A-1 teo
trap.tons — —1(kp—kp)p _ qs {Yq , / / -FE
M(k,m),(k’,m’) _Ap ) dpe ( 'B—“‘O —T ) ab(sm’m + T 0 dE Ee X

IX (:E;) (k,’ m))fgb (kla m/)7p) eip[ﬁb(kl’m)“ﬁb(k'vm')]
n <Sb>b —pwp — W

4

(& — w*)J5 (L)

| w

using the normalized energy variable E = £/v%. In obtaining (41), ;=% (Z) has been
replaced by z;, (k',m) and 8, = ,Bb(_];) by Bs(k’,m), corresponding again to neglecting all
drifts in transformation (15), used when going from (18) to (19).

C. Electrons

The contribution from electrons turns out to be significantly simpler than the one from

ions. Indeed, for this species, only the non-adiabatic response from the trapped fraction is

18



taken into account. Furthermore, as the bounce frequency of electrons is high with respect to
the frequency of the perturbation, one can in fact consider a bounce-averaged relation [20],
consisting in retaining only the contribution of the harmonic p = 0 in (19). Finally, FLR as
well as finite banana width effects can also be neglected. In this way, as will be shown, one
can perform one of the velocity integrals - in this case the integral with respect to energy
€ - analytically when evaluating the corresponding density fluctuations, without having to
consider the deeply trapped limit as for trapped ions. This approximation is therefore not
taken here.

Finite banana width effects being discarded, the Fourier coeflicient (9) can thus be eval-

uated considering only the motion parallel to the magnetic field:

1 T) . t
Co(m;p, X) = -7-_—/0 bdtexpz/O dt'kyv

i(m ngs)8
l/eb\/l_ 1—A1cost9] [/eb \/1— (1 - A-'cosb)

2K(X) (42)
having used df/dt ~ —v,/Rq, and with
o(mi p, X / " cos(m — ng,)d (43)
\/X sin (9/2)
2Rgq, 23 db 4Rq,
T = = K(X). 44
’ VEIA-1 Jo \/X—sin2(0/2) VENA- ) (44)

Here, the turning point angle is given by 6, = 2arcsin /X and K stands again for the
complete elliptic integral of the first kind. The integrals Iy can be precalculated numerically,
independently of frequency. In the limit X < 1, it can be easily shown that relation (42)
reduces to Cp ~ Jo((m — ng,)0), in agreement with (39) for zero banana width (p, =
0). Inserting relation (42) into (19) gives the contribution to the eigenvalue equation from

adiabatic electrons and non-adiabatic trapped electrons:

1 _ Rq Nq
Melectron,s N= — d i(ko—kp)p s 5., !
(kym), (' m) = X P pe By [ +

1 o0 Kl
2A /dX/\\/—Ig( )Ig / d&/ Epy 0=

19




where the toroidal precessional drift <%>; is given this time by the full relation (36)- (37).
Here the adiabatic term has not been weighted by any fraction, as it stands for both, the
circulating and trapped contribution.

The integrals with respect to £ can be expressed in terms of the plasma dispersion

function W(z) [21]:

z 2

W(z) = \/2—7r/—J:o - exp(——:-;—)d:c , Sm(z) > 0.

-z

This is carried out as follows, with E = € /v3:
-E

1 o e 2 yle V' /2
—_— dEV2E - = d
V2 /0 E—w/n<®>y  2r / TR

@;/ (y—l—z * —y—z> = W)

and in the same way:

— | CaBVIE—L 9 gyl
V2 Jo E—w/n<§0>b0 n<¢>bo 2’

having performed the change of variable E = y?/2 and having been careful with causality

when defining:

2
z = sign(n<P>p0)\/ 2w/n<P>yg, With <P>40 = —];);’b jflG.
Using these last relations, the electron contribution finally becomes:

1 —ite—kryo [ Bas N¢? \/2A - Iy(m)Ig(m)
Melectron;? N = — d i(ko—kp)p (_———) [Jmm — / dX)\\/_
(kym), (k' \m ) Ap pe By, T n<90>b0K(X)

n<:;>b0W(z) + 5] }] : (45)

{ [w — (1= 3)| W) =

IV. NUMERICAL METHOD

For the large aspect ratio model described in the previous section and assuming a plasma,

with one species of ions, the two-dimensional eigenvalue equation in Fourier space (k,m) is

of the form (20), with:
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tot __ circ.ions trap.ions electrons
M* =M +M + M

?

the different contributions being given respectively by (30), (41) and (45). The infinite
system (20) must still be reduced by identifying the finite number of significant matrix

elements Mk m),(k'm")-

1. Radial mode numbers

On the basis that all higher radial mode numbers are averaged out over the FLR of ions,
the considered values of k for ion driven modes are such that

2
k| < kmas  with kmw—Af;;AL = kymazdr ~ 1,

where here A\ = vy,;/§); is the thermal ion Larmor radius. In the case of electron driven
modes, such as the trapped electron mode (TEM), higher values of k., may have to be
considered.

The integrations over p in (30), (41) and (45) are carried out by applying fast Fourier
transform (FFT) algorithms to n, equidistant mesh-point evaluations. Due to the factor
ei(ko=k;)? appearing in all these relations, the transform is taken from p to k" = k — k.
Consistently, the coupling between the radial mode numbers k and k' is therefore only taken
into account if [k”| = |k — k| < n,/2. The density of the radial mesh and thus the coupling

between radial mode numbers must naturally increase with the inhomogeneity of the system.

2. Poloidal mode numbers

Microinstabilities tend to align with the magnetic field lines, thus justifying the gyro-
ordering assumption kyAr < 1. For fixed toroidal wave number n, the significant poloidal
mode numbers are therefore those for which the corresponding mode rational surface p = p,,
(gs(pm) = m/n), lies inside the unstable region. A good estimate of this radial interval, for
different types of microinstabilities, is obtained applying simple local stability conditions

(see e.g. reference [22]).

21



3. Harmonics of transit and bounce frequency

To determine which orders of the harmonic decomposition must be taken into account
in (29) and (40), one must not only consider the resonant denominators, but also the weight
of the numerators corresponding to the bulk response. Thus, the nearest neighbors to the

resonant harmonic p, are retained, where

pr = (kv — wr)/wy for circulating ions

pr = (n <P>y —w,)/wy for trapped ions,

having defined w, = Re(w). The above relations are evaluated for characteristic values, i.e.
typically kjvy ~ wy ~ v/ Rgs, n <P>p~ —vinkeAr/R and wy ~ A7lvy,/ Rqs. In general,
one retains |p — pr| < Apestra, With Apesira ~ 5 to ensure convergence. The numerators

however are dominant for

Ipl < @i~ kips for circulating ions

|p| < T~ kips for trapped ions,

where p; ~ g,Ar and py ~ ¢;Ar/V A~ are typical radial excursions of circulating and trapped
ions respectively. These last values of p must therefore also be included. The last relations
are based on the fact that in absolute value, the Bessel function J,(z) is a decreasing function

of p for |p| > |z|.

4. Velocity integrals

For circulating ions, the velocity integrals with respect to (vj,v.) in (29) must both
be calculated numerically. As already pointed out, the v,-integrals can be precalculated,
while the v)-integrals must be evaluated for each new considered frequency w. For trapped
ions, the E-integrals in (41) and for trapped electrons the X-integrals in (45) must also be

computed numerically for each new frequency.
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Owing to the Maxwellian distribution of equilibrium, the considered velocity space can
be reduced to the sphere | v | < Vmaz With vmee ~ 4vgy. All the velocity integrations
are carried out using an extended trapezoidal rule on equidistant meshes. Concerning the
vj-integral in (29) and the E-integral in (41), the density of the mesh must be such as to
resolve the width of the resonances. This width naturally varies with the considered growth
rate v = Sm(w) and becomes very narrow near marginal stability. Usual mesh densities are
10 to 20 points per thermal velocity to ensure convergence of final result to the order of a

percent.

5. Solving for the eigenfrequencies

Solving the characteristic equation (21) basically consists in finding the zeros of the
analytical function detM** in the complex frequency plane. This is carried out using an
efficient method devised by Davies [9], based on a higher order Nyquist algorithm. This
approach requires the sampling of detM** along a closed path in the complex w plane, until
a minimum resolution in the phase of the function is obtained. From this sampling, the
eigenfrequencies enclosed by the curve can then be determined with very high accuracy. A
practical generalization from circular to non-circular contours is described in reference [1].

The process of sampling detM** can easily be implemented on a parallel machine with
very little message passing required. Indeed, each processor computes independently the
determinant for different values of w. This has been done on a Silicon Graphics Orion 2000,
involving up to eight of its R10000 processors. Average computing time of detM®! is of the
order of 1-2 minutes per frequency and per processor. The number of frequency evaluations

required is typically of the order of 8 - 16 per enclosed eigenfrequency.

6. Equilibrium profiles

All the numerical results presented in this paper have been computed using the following

equilibrium profiles. For density and temperature, the same type of dependence is chosen:

23



N(s) ( alsy s—so>
N, = exp | — Ton tanh Aow ) (46)
T(s) ( aAsr s— so>
= - tanh 4
T, = exP T, ton Aor ) (47)

where s = p/a is the normalized radial variable and Asy 7 the radial width over which these
profiles vary. The characteristic length of variation Ly = |dln N, T/dp|™* is minimum at

s = s and given by Loy 7. For the safety factor, a fourth order polynomial is considered:
4s(s) = ¢5(0) + as® + bs® + cs*. (48)

This choice allows one, for instance, to fix the safety factor on axis g,(0), on the edge ¢,(1)

as well as its value g,(so) and shear s (So) at an intermediate point $.

V. RESULTS
A. Toroidal wave number scan, benchmarking with PIC code

To validate the spectral code, a toroidal wave number scan was carried out, similar
to the one previously computed with a linear, time evolution, PIC code [6]. This PIC
approach assumes adiabatic electrons and therefore this approximation was also first taken
for obtaining the eigenvalue results. Except for FLR effects, included only to second order,
the PIC code has full ion dynamics and therefore provides a useful benchmark of the model
derived in Sec.III.

In this case, a TFTR-like deuterium plasma is considered. The magnetic geometry (22) is
thus chosen with By = 3.8T', R = 2.58m, a = 0.92m, ¢,(s) = 1.24-9.65%. The density profile
is of the form (46), with Loy = 0.74m, Asy = 0.26 and sp = 0.315. Temperature profiles
of the form (47) are identical for ions and electrons, with Ty = 1.3keV, Lor = 0.19 m,
Asp = 0.26 and so = 0.315. For these temperatures, the minor radius contains an average
of a/Ar =~ 650 ion Larmor radii. At s = s, where the logarithmic derivatives are maximum
and the modes tend to localize, the relevant parameters for local stability take the values

¢ = 1.5, 5= dlng,/dlns = 0.6, T./T; = 1.0, ey = Ly/R = 0.29, n = Ln/Lr = 4.0,
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A~ = 0.11, corresponding to a state well above marginal stability. Let us point, out, that
the density and temperature dependences are only a fit of those in Ref. [6], where the profiles
have been defined with respect to the radial variable s’ ~ /2. Also, for a more effective
drive when later including the non-adiabatic trapped electron dynamics, a non-flat electron
temperature was considered here, while in Ref. [6] T. = 1.3keV throughout the plasma.
This difference is acceptable, as only the adiabatic response of electrons is considered for
this comparison.

Comparing spectral and time evolution results is essentially straightforward. Indeed,
asymptotically in time the real frequency w,, growth rate 4 and wave structure of the
PIC simulation must match the eigenfrequency and mode structure of the most unstable
eigenmode found with the eigenvalue approach. Figure 2 a.) and b.) show w, and v
respectively as a function of the toroidal wave number n for both, the spectral and the time
evolution approach. For the spectral results, only the most unstable eigenmode is plotted.
All frequencies are normalized with respect t0 wWporm = wo/eBoa® = 404.2571. Values up
to n ~ 100 have been computed, showing the ability of dealing with low as well as very
high toroidal wave numbers. Notice that for n < 15, the real frequency |w,| falls bellow the
average ion bounce frequency < wy; > (s = s0) ~ VA-1y,, /Rgs = 53 Wnorm , 80 that both the
toroidal-ITG and the trapped ion mode (TIM) regime are covered here. These plots show
good agreement throughout most of the scan. A shift in the real frequency, appearing at
higher values of n, may in part be explained by the time evolution results still containing
components of next most unstable eigenmode, as shown explicitly in another comparison
[8]. The Fourier analysis in time of the PIC signal, necessary to evidence this effect, was not
carried out in this case. However, as shown in Fig.3 for n = 24 , the relative position of the
PIC result with respect to the most unstable eigenfrequencies, backs up this explanation.
Also represented in Fig.3 is the closed curve which enabled to identify simultaneously the
five most unstable eigenmodes with the higher order Nyquist algorithm.

Different mode structures computed with the spectral code are given in Fig.4. The mode

n = 4 is typical of a TIM instability. Note the almost slab-like character, with only slight
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ballooning and the radial width barely spanning the mode rational surfaces neighboring
q5(s0) = 1.5. The modes n = 64 and n = 96 are however typical of the toroidal-ITG regime,
with a strongly ballooned envelope and the width spanning many mode rational surfaces.
The case n = 24 is near the transition between the two regimes.

The average radial, poloidal and perpendicular components of the wave vector Z of the
most unstable eigenmode are given, as a function of n, in Fig.5. These values, for a given

mode structure ¢, are respectively evaluated using

A A
2 E(k,m) I ¢(k,m) (kQﬂ-/AP)P < ko >2_ ,Zu dem l ¢m( )(Tn‘/p)l2
- A ’ - A
Likim) | By 12 o dp Y | Du(p)?

and <ky>? = <k, > 4 <k>?

<k,>

K

where gm (p) =3, g(kym) €' is the radial dependence of the poloidal Fourier component m.
Other average values, discussed further on, are computed with similar relations. The average
poloidal component varies essentially linearly with n, following < ks >~ ngs/soa. The
highest growth rate is reached for n ~ 64, where typically ksAz ~ 0.5. The corresponding
mode structure is given in Fig.4 c.). The average radial component shows an approximatively
linear variation only for high values of n, in agreement with the local ballooning estimate
<k,>=kg §<A0>, where <A@ >is the average poloidal width. For lower toroidal wave
numbers, this dependence must ultimately break down as < k, > can never fall significantly
bellow 27/2Asa, with As the root mean squared width of the mode. This behavior of
< k, > as a function of n had already been pointed out in Ref. [4].

The root mean squared width As of the most unstable eigenmode as a function of the
toroidal wave number is represented in Fig.6. The width is maximum at the transition
between the TIM and toroidal-ITG regime. A fit in the toroidal-ITG regime for n > 24,
following a power law As ~ n”, gives v = —0.489, which verifies the analytical estimate
As ~ n~1/% in Ref. [23], based on a second order, fluid ballooning calculation.

The mixing length estimate [24] Dasr, = v/k? of the diffusion coefficient as a function of

n is given in Fig.7 with a line labeled with circles. The maximum value is reached for n = 24,
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Le. near the transition from TIM to toroidal-ITG modes and logically located between the
toroidal wave number leading to the largest radial width (n ~ 15) and the one giving rise to
the highest growth rate (n ~ 64). The corresponding eigenmode structure appears in Fig.4
b.). The diffusion coefficient Dz, = y(aAs/m)? estimated with the average radial width As
of the mode is also plotted in Fig.7, with a diamond-labeled line. The two estimates for Dj,
show approximatively the same qualitative dependence of n. These results confirm the one
of Ref. [6] and tend to emphasize the importance of accurately resolving the intermediate

regime between trapped-ion and toroidal-ITG modes for transport simulations.

B. Effect of non-adiabatic trapped electron dynamics

The toroidal wave number scan described in the previous section has been repeated
including non-adiabatic trapped electron dynamics. In this case, the spectrum not only
contains ITG-type eigenmodes propagating in the ion diamagnetic direction, but also in-
stabilities with a TEM character propagating in the electron diamagnetic direction. The
highest growing eigenfrequency for each direction of propagation is given as a function of
n in Fig.8. For comparison, results with only the adiabatic electron response have been
reported from Fig.2.

Although the growth rate of the ITG-type mode is enhanced when taking into account
non-adiabatic trapped electron dynamics -in this case by a factor of the order 2 over most of
the scan-, its character is still predominantly determined by the ions. This is in particular
revealed by the role over of the growth rate for ks\; ~ 0.5 at n ~ 64. The TEM however
is not affected by FLR effects of ions and its growth rate therefore keeps increasing. Thus,
for very short wavelengths, the TEM would be the only one to remain unstable before being
itself damped by FLR effects of electrons (which would then have to be taken into account
in the calculation). The mode structure in the poloidal plane of the ITG and TEM -type
eigenmodes are given in Fig.9 for n = 4 and n = 64. Note that for both modes, the real

frequency w, is lower (resp. higher) then the average ion bounce frequency < wy; > for n = 4
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(resp. n = 64).

C. Larmor radius scaling of radial width in different regimes

The radial width estimate of the eigenmodes being one of the additional informations
provided by a global, versus a local ballooning calculation, a study of the Larmor radius
scaling of this width has been carried out in different regimes. These results were computed
without taking into account the non-adiabatic response of electrons. The corresponding
scans, reported in a log-log scale plot in Fig.10, have been carried out starting from the
same plasma as in Sec.V A, by varying the ion and electron temperature Tp at s = s
as well as the toroidal wave number n such, that the average poloidal wave component
normalized with respect to the Larmor radius, < kyAz >~ n+/Tp, remains constant. All
other equilibrium parameters are kept unchanged. This ensures that the relevant parameters
for a local ballooning calculation, i.e. g, fs\, T./T;, en, n, A7' and kgAp, are constant and
that in this sense one stays in the same regime. Such scans were made in the toroidal-ITG
regime for kgAr =~ 0.5 as well as in the TIM regime for kgAz ~ 0.025, i.e. starting from point
n = 64 and n = 4 respectively in Fig.2. Also considered was the slab-ITG regime, reached
when unbending the torus into a cylinder by taking B — oo, while holding Rg, and n/R
constant. This naturally removes all trapped particles and also corresponds to taking z} = 0
in relation (29) for circulating ions, clearly eliminating all toroidal coupling between poloidal
mode numbers and the radial coupling due to finite orbit width. The only remaining radial
coupling is then provided by the Larmor gyration of ions. In this case, the value kg ~ 0.1
was chosen arbitrarily. Figure 10 clearly shows different scalings in these three different
regimes. In the toroidal-ITG case, a fit following a power law of the form As ~ AL ¥ gives
v = 0.514, which verifies the analytical estimate As ~ A}J/ ? in Ref. [23], leading to Bohm
scaling of the diffusion coeflicient estimated with Dasr, = v(aAs/7)2. In the slab-ITG case,
a fit Ap” gives v = 0.957, clearly reproducing the well-known dependence As ~ A, leading

to a gyro-Bohm scaling of Dpsr. For the trapped ion modes, one obtains a fit 3%, giving
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rise to a scaling intermediate between Bohm and gyro-Bohm.

D. Aspect Ratio Scan

To illustrate the transition between the toroidal-ITG and the slab-ITG regime, an initial
toroidal configuration, called full torus, is unbent into a cylinder while following the full
unstable spectrum. As mentioned above, this is achieved by increasing the major radius
R while holding Rgs, n/R and a constant, as well as all equilibrium profiles. For this
calculation, non-adiabatic trapped electron dynamics have again been neglected. In fact,
trapped ion dynamics had not yet been included in the code at the time this study was
carried out. This, however, has little effect on the results as the real frequency, in the
absolute value, stays above the average ion bounce frequency throughout the scan, so that
the effect of the trapped ions remains minor.

The full torus plasma has an inverse aspect ratio A~! = a/R = 0.18, its magnetic
geometry is given by By = 1.T, R = 1.19m, a = 0.21m and ¢,(s) = 1.25 + 3s2. Density
and electron temperatures are flat, the ion (hydrogen) temperature is of the form (47), with
Tio = Te = 1.keV, Lor; = 0.16m, Asy; = 0.31 and sg = 0.5. At s = sg, where the
modes tend to be localized, one thus has the local values: ¢, = 2, 5= 0.75, T./T; = 1.0,
er; = L,/R = 0.13 and a/Az; = 65. Here frequencies are normalized with respect to
Wnorm = Tio/eBoa® = 2.27 - 10%*s™!. In the initial toroidal configuration, the toroidal wave
number takes the value n = 4, giving an average normalized poloidal component of the
order kgAr ~ ng,Ar/aso = 0.25 . Two particular intermediate states, labeled half torus and
quarter torus and having respectively half and quarter inverse aspect ratio of full torus, are
considered in the following.

Real frequency w, and growth rate 4 of the most unstable eigenmode are plotted in
Fig.11 as a function of the inverse aspect ratio A='. The full unstable spectra, at the four
particular aspect ratios mentioned above, are given by the left column of frames in Fig.12.

One must in fact specify what is meant by full unstable spectrum. As already mentioned, an
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increasing number of velocity points are required for integrating the resonant denominator
as one approaches marginal stability. In this case, growth rates down to v~ 0.2Wn0rm
were considered. In cylinder, the set of slab-ITG instabilities, localized on the different
mode rational surfaces, have similar growth rates and form a well packed spectrum. With
toroidicity, these modes couple together and there appears an isolated eigenmode whose
growth rate increases faster then all other values. Simultaneously, some eigenfrequencies
already start to be damped. The prominence of this mode corresponds to the transition to
the toroidal-ITG instability and, as can be seen in Fig.12, occurs after quarter torus. This is
also reflected by the sharp increase of the growth rate in Fig.11 at A~! ~ 0.05. The highest
growth rate is reached near half torus and with even stronger curvature the unstable spectra
is limited to the single toroidal-ITG eigenmode whose growth rate also begins to decrease.

Plots in the central column of frames of Fig.12 represent, for increasing toroidicity and
most unstable eigenmode, the radial dependence of the poloidal Fourier components. Also
indicated are the positions of the mode rational surfaces. Frames on the right-hand side give
the corresponding structure in configuration space. In cylinder, the most unstable eigenmode
turns out to have poloidal mode number m = 7. Quarter torus is the onset of transition
where the poloidal modes are already coupled by pairs. At this stage, a second eigenmode
takes over and gives rise to the true toroidal-ITG instability of half and full torus, nicely
centered at s = sp = 0.5. Coherent radial structures called fingers’ have now appeared
in the unfavorable curvature region where the mode balloons. Their twisting can easily be
explained by the increasing of the safety factor towards the edge and using the constant

phase relation g¢,(s)§ =const. from ballooning representation.

E. Magnetic shear scan

For this scan, the magnetic equilibrium was chosen such that B, = 1.7, R = 2.m
and a = 0.5m, that is approximately the dimensions of the DIII-D tokamak. The local

parameters are fixed at so = 0.4, which enables realistic safety factor profiles of type (48)
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to take many different values of shear at this point. The safety factor itself is held at
gs(s0) = 1.5. Positive shear cases up to 5 (so) = +1 are obtained by convex combinations
of profile g#! (defined by: (s0) = +1., gs(s0) = 1.5, ¢;(0) = 1.05, ¢,(1) = 6.5) and profile
q#*? (./s\ (s0) = 0., g5(s0) = 1.5, ¢,(0) = 2.2, g,(1) = 6.0), while negative shear configurations
are obtained by convex combinations of profile ¢#? and ¢#3 (Q (so) = —1., gs(s0) = 1.5,
¢s(0) = 2.5, ¢,(1) = 6.5). These three particular profiles are given in Fig.13. The density
profile, of the form (46), is defined by Loy = 0.5m, Asy = 0.35 and so = 0.4, while the
temperature dependence, equal for ions (hydrogen) and electrons, of the form (47) is given
by Lo = 0.2m, Asy = 0.2, sp = 0.4 and Ty = 2.13 keV. Furthermore, fixing the toroidal
wave number to n = 10, the different local parameters take the values ¢, = 1.5, T./T; = 1.,
ey = 0.25, i = ne = 2.5, kg, = 0.35, A™! = 0.1 and a/Ar = 106.

Results were first computed neglecting trapped electrons and ions. In this case, real fre-
quency w, and growth rate v as a function of shear s are plotted in Fig.14. Here, frequencies
are normalized with respect to wn. = 3.195 - 10° s™! evaluated at s = so. Different unstable
eigenmodes computed with the global code are represented with full lines. Note that, in the
absolute value, w, never falls bellow the average ion bounce frequency wy, =~ 0.15wye, thus
validating, a posteriori, the absence of trapped ion dynamics for obtaining these results.

For comparison, the growth rate computed by Dong et al. with a local ballooning
approximation [25], is drawn with a dashed line. This local calculation is appropriate for
comparison with our global results as it also considers a large aspect ratio with only highly
passing ions, the electron response being adiabatic.

The evolution of this spectrum can essentially be explained using the relation for the GC

drift frequency [26] in the frame of ballooning representation:
wge = —kgvg,(cos 0+ 5 @sin 6).

Thus, for a mode which is not too localized around § = 0, decreasing shear partly suppresses
this toroidal drive. In this respect, a shear scan is similar to the toroidicity scan presented

in section VD. Hence, for 5< 0.5 the growth rate of the unstable eigenmode decreases
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when lowering shear, to the point where at 5= —0.5 the average value of wge is insufficient
to sustain the toroidal-ITG instability and the transition to a slab-like regime is induced.
Typical for such a state, a whole set of new unstable eigenmodes appear with growth rates
of the same order. The roll over of + at s= 0.5 results in part from the toroidal drive which
has become too strong, as in Fig.11 for configurations with too low aspect ratio.

The attenuation of y by a factor ~ 4.5 between $= 0.5 and 5= —1.0, observed in Fig.14
for the global results, is significantly more important then the factor ~ 2.5 over the same
interval from the ballooning results. This may be explained by the fact that the ballooning
approximation, assuming an interchange-like mode structure, is inappropriate for describing
the slab-ITG regime at negative shear and tends to overestimate the instability.

In a second step, non-adiabatic trapped electron dynamics were included. The corre-
sponding results for w, and v appear in Fig.15. Besides containing ITG-type eigenmodes
propagating in the ion-diamagnetic direction, the spectrum may now also contain TEM-
type eigenmodes propagating in the electron diamagnetic direction. For each direction of
propagation, only the eigenmodes which turn out to dictate the highest growth rate dur-
ing one part or the other of the scan have been followed in Fig.15. Note, that for some
of these eigenmodes, |w,| approaches and actually falls bellow the average ion bounce fre-
quency wp ~ 0.15 wy, for short intervals of Q, especially for modes 1 and 6, which actually go
through a transition from ion diamagnetic to electron diamagnetic propagation. As trapped
ion dynamics had still not been included, these calculations are not fully consistent in this
sense.

The TEM-type eigenmodes are progressively damf)ed when going to negative shear so
that no positive frequency is found at $= —1.0. This can naturally be explained by the
decrease of the average amplitude of the toroidal precessional drift which drives these in-
stabilities, from < G >x~ 1.2 at 5= +1. to < G >x~ 0.2 at s= —1.0 (estimates from
Rel.(38))

Throughout the scan, the highest growth rate over all eigenvalues is always determined
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by the ITG-type instabilities. Except for the fact that more then one of these eigenmodes
are already present at 5= +1.0, the qualitative behavior of this part of the spectrum is
quite analogous to the one in Fig.14. Quantitative comparison shows that trapped electron
dynamics increases the maximum growth rate for all values of shear. An enhancement
factor of ~ 3.0 (respectively ~ 3.4) is measured at 5= +1.0 (respectively 5= —1.0) so that
in relative values these particles have a slightly more destabilizing effect at negative shear.
Thus the attenuation factor of 4 through shear reversal between S~ 0.5 and 8= —1.0 is
~ 4.0 instead of ~ 4.5 with only adiabatic electrons.

The structure of the most unstable eigenmode at 5= +1. and 8= —1. appear in Fig.16.
At 5= —1. the mode has essentially lost its ballooning envelope and its radial extent is

somewhat diminished compared to 5= +1., indicating a more slab-like character.

VI. CONCLUSIONS

A new formulation has been derived for solving the full two-dimensional eigenvalue prob-
lem of electrostatic microinstabilities in a general tokamak geometry. A Fourier represen-
tation, adapted to the curved geometry of the system, provides a useful approach for orbit
width and Larmor radius to be taken into account to all orders.

At present, this has been demonstrated in the case of a large aspect ratio geometry
with circular, concentric magnetic surfaces. For this model equilibria, a set of additional
approximations, mainly considering all circulating ions as highly passing and all trapped ions
as deeply trapped, led to a final relation, more tractable for a first numerical implementation.
Together with a higher order Nyquist method for identifying the full unstable spectrum,
which enabled straightforward implementation on a parallel computer, resolution of the
eigenvalue problem could thus be achieved in reasonable computing time.

This first model has been extensively benchmarked against a global, linear, time evolution
PIC code [6,7], which contains full ion dynamics, except for FLR effects only retained to

second order. In both the TIM and toroidal-ITG regime, very good agreement has been
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obtained.

The spectral code has then been applied for various studies, which illustrate some of its
unique capabilities. In particular, the full unstable spectrum through different regimes could
be followed. For instance, it was shown how the slab-ITG spectrum in cylinder, contain-
ing many narrow eigenmodes localized on the different unstable mode rational surfaces, is
replaced, when unbending the system into a torus, by a toroidal-ITG spectrum with fewer
eigenmodes, but with a large radial width spanning the different mode rational surfaces.

The ability of the global approach to provide estimates of the radial correlation length
has also been exploited. In this way, it was found that the radial width of the TIM presents a
scaling with respect to the ion Larmor radius, which is intermediate between the gyro-Bohm
and Bohm scaling of the slab-ITG and toroidal-ITG respectively. This result is somewhat
in opposition to the observation made by Tang and Rewoldt in reference [4], where by
artificially reducing the width of the unstable region, it was concluded that the radial extent
of the TIM seemed to be significantly affected only by the equilibrium lengths. It may be,
that if the width of the unstable region had been increased instead, a maximum width of
the eigenmode would have also been obtained as a function of the ion Larmor radius.

Such scaling studies, together with a further result described in this paper, pointing out
that the mixing length estimate of the diffusion coefficient reaches its maximum near the
transition from the toroidal-ITG to the TIM regime, may be of interest when interpreting
results on anomalous transport. Nonetheless, one must be cautious before drawing any
quantitative conclusions in this respect, as the present model still neglects some important
effects. In particular, shear flows, which may partly break up the large radial coherent
structures, should be included in the near future.

The role played by non-adiabatic trapped electron dynamics in ITG-related instabilities
has also been analyzed with the global eigenvalue code. The basic effects, previously de-
scribed with local approaches [27,28], have thus been confirmed. For instance, the removal
of the threshold on the ion temperature gradient for the onset of instability, observed for

non flat densities (low ey) and achieved by a transition of the toroidal-ITG to the TEM,
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is described in reference [13]. In this paper, it was illustrated how for high toroidal wave
numbers the toroidal-ITG is damped due to FLR effects of ions while the TEM keeps on
growing. Ultimately this would require taking into account banana width and Larmor radii
of electrons.

Following experimental observations of core transport barriers in negative central shear
(NCS) discharges [29-31], we have studied the stabilizing effect of negative magnetic shear.
Not only does it reduce the growth rate of the toroidal-ITG, but also the radial extension
by inducing a transition to a more slab-like mode. In the absence of trapped electron
dynamics our global calculations predict a stronger attenuation when going to negative shear
then local ballooning calculations [25]. This probably illustrates the problem of applying
this representation in a slab-like regime. When considering trapped electron dynamics,
these particles destabilize the ITG-type mode for all values of shear. The enhancement
factor is however larger for negative values, so that the stabilizing effect of shear is slightly
reduced. Anyway, realistic negative magnetic shear alone can only account for the complete
suppression of the TEM, but not of the ITG instability and thus is not sufficient to explain
the dramatic improvement of confinement in the core of NCS discharges. Experimental
results [30] point towards the E x B flow shear for being responsible of the full stabilization

of these modes.
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FIGURE CAPTIONS

Fig.1 Magnetic coordinate system (), x, ¢) in a general axisymmetric system.

Fig.2 Real frequency w, (a) and growth rate 4 (b) along a toroidal wave number scan for
a TFTR-like plasma. Here, the non-adiabatic response of electrons is not taken into
account. The most unstable eigenfrequency obtained with the spectral code for each
value of n is plotted with a circle. Results given by the linear, PIC code are marked
with crosses. For n < 15, |w,| falls bellow the average ion bounce frequency, which

corresponds to a transition from the toroidal-ITG to the TIM regime.

Fig.3 Five most unstable eigenfrequencies (circles) of spectrum in the case n = 24 of Fig.2.
The closed curve used for applying the higher order Nyquist algorithm is represented
with a dashed line. Real frequency and growth rate of the PIC simulation are added
with a cross. One sees good agreement between the two methods on the growth rate.
The difference with respect to w, may in part be explained by the PIC signal still

containing some contributions from the next most unstable eigenmodes.

Fig.4 Eigenmode structures in the poloidal plane for n = 4 (a), n = 24 (b), n = 64 (c) and
n = 96 (d) of Fig.2. Dash-dotted lines correspond to mode rational surfaces s = 0.2
and s = 0.4. The case n = 4 is typical of a TIM mode, i.e. barely spanning three
consecutive mode rational surfaces and only slightly ballooned. The eigenmode n = 24
is near the transition between the toroidal-ITG and the TIM regime and gives rise to
the highest value of the mixing length estimate Dpsr, = v/k2 . The eigenmodes n = 64
and n = 96 are typical of the toroidal-ITG regime: strong ballooning and radially
oriented, coherent structures spanning many mode rational surfaces. The case n = 64
corresponds to the highest growth rate, while n = 96 is already attenuated due to FLR

effects.

Fig.5 Average perpendicular (circles), poloidal (diamonds) and radial (squares) wave com-

ponents, normalized with respect to the ion Larmor radius, for the scan of Fig.2. For
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high toroidal wave numbers, < k, > and < ks > vary essentially linearly with n. This
breaks down in the case of < k, > for low values of n, due to the finite radial extension

of the system.

Fig.6 Root mean squared radial width As of the most unstable eigenmode along the n-scan
of Fig.2. The maximum width is reached at the transition between the toroidal-ITG
and TIM regime. For the toroidal-ITG modes, As basically varies as 1/1/n.

Fig.7 Mixing length estimate Dy, of the diffusion coefficient for the scan of Fig.2. Both,
the average perpendicular wave component < k; > (circles) and the average radial
width As (diamonds) were used for estimating Dysz. The maximum values are reached

near the transition from the toroidal-ITG to the TIM regime.

Fig.8 Real frequency w, (a) and growth rate v (b) along the toroidal wave number scan of
Fig.2 having taken into account non-adiabatic trapped electron dynamics. The spec-
trum now contains modes propagating in the ion, as well as in the electron diamagnetic
direction. The most unstable eigenmode for each direction of propagation have been
plotted with diamonds and squares respectively. As a reference, results from Fig.2

with only the adiabatic electrons have been plotted with circles.

Fig.9 Eigenmode structures relative to results from Fig.8 including non-adiabatic trapped
electron dynamics. Modes propagating in the ion diamagnetic direction for n = 4
and n = 64 are given in frames (a) and (b) respectively. Modes propagating in the
electron diamagnetic direction for n = 4 and n = 64 are given in frames (c) and (d)

respectively.

Fig.10 Scaling of the radial width As with the ion Larmor radius in different regimes.
These results were computed considering only the adiabatic response of electrons. The
toroidal-ITG (squares) and slab-ITG (circles) regimes basically show a dependence as

As ~ /AL tesp. As ~ A, leading respectively to a Bohm resp. gyro-Bohm scaling of
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the mixing length estimate Dasr. For the TIM regime (stars) an intermediate scaling

is found.

Fig.11 Real frequency w, (a) and growth rate 4 (b) of highest growing eigenmode when
going from cylinder to a toroidal configuration called full torus, having an inverse
aspect ratio A™!' = a/R = 0.18. At quarter torus (A~ ~ 0.05) a sharp increase in the

growth rate corresponds to the transition from the slab- to the toroidal-ITG regime.

Fig.12 Unstable spectra (left frames), radial dependence of poloidal mode components (cen-
tral frames) and mode structure in poloidal plane (right frames) of most unstable eigen-
mode in cylinder (a), quarter torus (b), half torus (c) and full torus (d). The dash-

dotted lines in the frames on the right are the magnetic surfaces s = 0.2,0.4,..., 1.

Fig.13 Safety factor profiles with fixed value g, = 1.5 and shear 8= +1 (dashed line), 5=0
(full line), 5= —1 (dash-dotted line) at so = 0.4

Fig.14 Real frequencies w, (a) and growth rates v (b) as a function of shear S, with-
out non-adiabatic trapped electron dynamics. Results obtained by following different
eigenmodes using the global eigenvalue code are plotted with full lines. With decreas-
ing shear, the toroidal mode (1) becomes slab-like and new eigenmodes (2, 3, & 4)

appear. The growth rate of the local ballooning approximation results are reproduced

with a dashed line.

Fig.15 Real frequencies w, (a) and growth rates v (b) as a function of shear §, taking
into account non-adiabatic trapped electron dynamics. For 5= +1.0 the unstable
spectrum contains simultaneously positive and negative frequencies, corresponding to
modes having a TEM respectively an ITG character. At 5= —1.0 only the ITG-type
modes remain destabilized, however, with a significantly reduced growth rate compared

with the highest one around $= +0.5.

Fig.16 Mode structure of the highest growing eigenmode for 8= +1. and 5= —1.. These
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results have been computed with non-adiabatic trapped electron dynamics.
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